
USENIX Association

Proceedings of the
FREENIX Track:

2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



TrustedBSD

Adding Trusted Operating System Features to FreeBSD

Robert N. M. Watson

FreeBSD Project, NAI Labs

rwatson@fFreeBSD.org,tislabs.comg

Abstract

Trusted operating systems provide a \next
level" of system security, o�ering both new
security features and higher assurance that
they are properly implemented. TrustedBSD
is an on-going project to integrate a number
of trusted OS features into the open source
FreeBSD operating system, and involves both
architectural and development process im-
provements. This paper describes how the
open source development practices of the
FreeBSD Project impacted the design and im-
plementation choices for these features, and
describes lessons learned that will in
uence
future work. Several key TrustedBSD fea-
tures are discussed as examples of how new
security services may be introduced in such
an environment.

1 Introduction

TrustedBSD[20][22] is a project to add
trusted operating system functionality to
FreeBSD[7][14], including improvements to
the kernel and userland security infrastruc-
ture, services to better support security fea-
tures, and speci�c security features includ-
ing Access Control Lists (ACLs), �ne-grained
privileges (\Capabilities"), and Mandatory
Access Control (MAC). While TrustedBSD
is still under development, several features
are already complete and now integrated into
the base FreeBSD distribution for inclusion in
FreeBSD 5.0. This process has resulted in a
great deal of gained experience, which in turn
can be used to draw useful conclusions about
how future work, especially with regards to

development practices, should be performed.
The integration of new security features in
FreeBSD o�ers a number of practical lessons,
both technical and social.

This paper introduces the basic features
that make up TrustedBSD, describes the
goals and processes by which these are being
accomplished, details a subset of the features,
and re
ects on lessons learned as well as fu-
ture directions for work.

2 TrustedBSD Feature Set

The TrustedBSD feature set attempts to
address a number of requirements originat-
ing from several communities. This in-
cludes the traditional trusted operating sys-
tem community, in the form of the Or-
ange Book[16], and more recently the Com-
mon Criteria[5][11][10], but also the more
widespread desire in the FreeBSD commu-
nity for improved security functionality in the
form of greater protection 
exibility. These
features improve both improvements in exist-
ing code, development process improvements,
and speci�c new features.

� Improved security consistency and cor-
rectness. An important part of introduc-
ing new security models and extensively
modifying security subsystems is verify-
ing that they are correctly implemented.
The FreeBSD developer community did
not have test suites covering security be-
havior, so tests are being developed to
determine that no new vulnerabilities are
introduced, and so that changes can be
experimentally quanti�ed.



An early observation made during this
process was that supposedly-equivalent
security checks would often be imple-
mented di�erently. For example, di�er-
ent access control checks were used for
the two ways in which debugging can
be attached to a process, ptrace() and
the process �le system. Little or no
code sharing, combined with an incre-
mental development style, has lead to
inconsistent and undocumented protec-
tion behavior, especially in the areas of
inter-process authorization and �le sys-
tem permission evaluation.

Correctness is clearly an important part
in any security project; however, with-
out appropriate tools to verify correct-
ness, it can be diÆcult to achieve. Access
control consistency (and hence abstrac-
tion), careful documentation, and exten-
sive and rigorous testing are necessary to
accomplish this goal.

� Improved security abstractions and mod-
ularity. Introducing common imple-
mentations of access control check code
across check instances improves consis-
tency, but also allows the introduction
of improved abstractions, making it eas-
ier to introduce new models by substitut-
ing policy logic at well-de�ned enforce-
ment points. Likewise, improving the
abstractions associated with the labeling
of subjects (process credentials) and sys-
tem objects (such as �les, network pack-
ets and interfaces, and kernel manage-
ment services) allows the more consis-
tent introduction of comprehensive secu-
rity features such as many MAC policies.

� General services to support security re-
quirements. A number of the com-
ponents of TrustedBSD have usefulness
outside of the base TrustedBSD feature
set, providing utility for purposes other
than purely security work. One exam-
ple of this is in �le system Extended At-
tributes (EAs), which provide a general
interface and implementation for associ-
ating arbitrary meta-data with �les and
directories. A number of the new secu-
rity services require that additional secu-
rity labels be associated with �le system
objects; however, EAs can also be used

by applications to store version meta-
data, portability information, or even �le
icons.

� Fine-grained Discretionary Access Con-
trol (DAC). The UNIX permission model
allows users to specify discretionary pro-
tections for objects they have created;
this mechanism, however, is in
exible
and inexpressive, particular in large-
scale environments, or where there are
complex security requirements.

POSIX.1e[9] Access Control Lists
(ACLs) allow object owners to specify
�ner granularity protections for �le sys-
tem objects. The ACL implementation
leverages the availability of a general
EA service, and provides a high level
of compatibility with the permission
model. ACLs are not only a relatively
simple implementation task, but are also
a \bullet feature" expected by many
operating system consumers, making
them a particularly appealing target.

� Fine-grained privilege model. One tra-
ditional criticism of the UNIX security
model has been its reliance on a single
concentration of system privileges in the
\root" user. This focuses an unnecessar-
ily high level of privilege in a large num-
ber of applications, violating the princi-
ple of least privilege, and leaving the ap-
plications as easy targets for attackers.

POSIX.1e capabilities decompose the
root privilege set into several logical
components, decoupling privilege from
the UID of the process. Processes may
manage the availability, inheritance, and
e�ectiveness of capabilities, limiting the
scope of damage due to compromise.
This implementation leverages EAs to
bind capabilities to binaries, and im-
proved security abstractions to replace
the superuser access control checks.

� Mandatory Access Control (MAC).MAC
permits security administrators to de�ne
mandatory security policies regarding
the relationships between subjects and
objects in the system. Traditional MAC
policies have included Multi-Level Secu-
rity (MLS)[3] which provides a military-
style con�dentiality policy, as well as a
variety of integrity and safety models



such as Biba integrity models[4], com-
partmentalization models, and more gen-
eral policy mechanisms such as TE[13]
and DTE[2].

Free UNIX-like systems have tradition-
ally lacked such features, which can pro-
vide higher levels of protection; manda-
tory policy enforcement is one of the de-
termining features associated with the
traditional trusted operating system.
Many of the enforcement points for MAC
already exist in FreeBSD by virtue of
the existing security models, including
the Jail[12] model, but improved labeling
and access control abstractions, as well
as the ability to store labels persistently
in EAs, are required for most MAC poli-
cies.

� Plugability. A long-term architectural
goal is to allow the rapid introduction
of new security services by continuing
to improve abstractions and encourag-
ing modularity. An important element of
this is untangling the existing set of se-
curity models into independently struc-
tured components which are then cleanly
composed to generate access control de-
cisions. Providing an easy means to in-
troduce and integrate new models will
promote the development of new secu-
rity features by simplifying the develop-
ment process. This goal presents sub-
stantial challenges, both to design and
implement, and in maintaining the nec-
essary performance and usability charac-
teristics.

� Documentation and Education. The
TrustedBSD feature set introduces a
large number of new interfaces and ser-
vices that are relevant to both system
developers and users. A substantial and
continuing e�ort is being invested in
maintaining up-to-date developer docu-
mentation, and as features are integrated
back into the base FreeBSD distribu-
tion, user documentation must also be
brought up-to-date. Trusted operating
system features are a topic unfamiliar
to many system programmers and users:
detailed yet readable documentation is
vital to both maintaining the correctness
of the implementation, and to introduc-

ing operating system consumers to the
suite of newly available functionality.

3 Implementation and Process

Goals

FreeBSD is an actively developed and
widely-deployed high performance produc-
tion operating system. As a result, introduc-
ing new security features into the base distri-
bution places a number of constraints on their
implementation. This includes the desire to
introduce features that provide a rapid secu-
rity bene�t, to avoid degrading performance
in existing deployed con�gurations, to intro-
duce features in a manner compatible with
the FreeBSD development and release sched-
ule, and to participate in on-going education
and public relations to introduce and promote
the ideas and features within the FreeBSD
community. In addition, outreach to other
operating system communities is necessary to
develop standards for application interfaces
so as to assure portability of applications tak-
ing advantage of these features.

3.1 Satisfying the Requirements of
a General-purpose Operating
System

� Rapid security improvement. Target im-
provements that have a demonstrable se-
curity impact in the short term without
high development cost, such as improved
access control consistency, code sharing,
correctness checking. These changes pro-
duce real-world security improvements,
as well as making it easier and safer
for developers to integrate new security
models.

� Popular features �rst. Target features
that are more generally useful �rst, es-
pecially primitives that may be reused.
This includes extended attributes, ACLs,
and improvements to existing security
services such as the jail() code. Some
features, such as MAC, o�er bene�ts
but require a substantially higher invest-
ment, as well as further research into how



they can be deployed in existing environ-
ments, and should be considered long-
term goals.

� Minimize cost on today's deployed in-
stallations. Initially optimize for mini-
mal impact on currently deployed con-
�gurations (where new security features
will not be enabled), maintaining perfor-
mance and ease of use. Otherwise, the
community will resist the e�orts to in-
troduce new features, as they would be
contrary to stated goals of the FreeBSD
project. Integrating slower features into
the base distribution as optional com-
ponents will, however, increase exposure
in the broader developer community in-
creasing the chances of additional devel-
opers picking up and working on the im-
plementation to improve perceived per-
formance problems.

� Support the applications. Provide secu-
rity services that allow as many exist-
ing applications to run as possible. In
practice, this has two implications: �rst,
applications unaware of security mech-
anisms must behave correctly, and if
they must fail, do so safely, and sec-
ond, security-aware applications must
continue to function properly, possibly
adapting to support new security prim-
itives. This strategy encourages the
adoption of new security features while
avoiding introducing risks by changing
the fundamental assumptions of applica-
tion interfaces (in particular, POSIX).

3.2 Emphasis on Portability

Each TrustedBSD feature has introduced
a plethora of new APIs for providing access
to new services. If similar services exist on
other platforms, it is desirable that applica-
tions written on one platform be portable to
the other. This will be possible only through
close communication and cooperation with
other vendors, and in some cases, through the
development of new standards.

The starting point for this work has been
POSIX.1e, a withdrawn IEEE speci�cation
draft intended to provide portable interfaces

for Access Control Lists, Auditing, Capabil-
ities, Information Labeling, and Mandatory
Access Control. As many of these topics are
contentious within the security community,
large parts of the draft are e�ectively unus-
able as they constitute a consensus on the
need for a feature, rather than practical in-
terface details needed for actual implementa-
tion. However, the ACL and Capability com-
ponents of the draft are quite usable, with
partial implementations of both widespread.
We selected Draft 17, the �nal draft of the
speci�cation, as a starting point. We made
extensions or modi�cations where necessary
to disambiguate aspects of the draft, pro-
vide functionality not anticipated by the draft
writers, or to handle non-POSIX and BSD-
speci�c extensions.

POSIX.1e does not describe extended
attributes (EAs), although a number of
POSIX.1e implementations rely on EAs to
provide storage to support its features. This
includes SGI's Trusted Irix[18], FreeBSD, and
now also Linux[8]. As EAs will likely be con-
sumed by applications directly, as well as by
kernel security services, adopting consistent
application interface syntax and semantics is
highly desirable. The POSIX.1e online dis-
cussion mailing list has provided a forum for
the discussion of EA interfaces; a �nal inter-
face has not been agreed upon, but there is
a reasonable consensus on the desired seman-
tics.

The mandatory access control interface de-
scribed in POSIX.1e, on the other hand, may
be too speci�c to the MLS and Biba MAC
models, which each de�ne a dominance opera-
tor, requiring a policy that orders labels. The
interface also lacks a means by which user
processes can host objects and enforcement
points, but rely on the operating system to
provide label management and policy service.
There is substantial consensus in the broader
community that more general access control
primitives are required to support a broad ar-
ray of 
exible policy mechanisms, and that
the POSIX.1e interfaces may provide a use-
ful starting point for that work.

Working with existing models, where pos-
sible, o�ers substantial bene�ts in the form
of application portability. It also allows for a



faster design and implementation process, as
there is greater understanding of the model
(including its limitations), reducing develop-
ment risk. Where portability standards do
not exist, it is desirable to develop new stan-
dards, such as with EAs. Creating many di-
vergent \Trusted Sendmail" implementations
to account for many MAC interfaces, for ex-
ample, is clearly undesirable, both from the
perspective of increased workload, risk associ-
ated with reduced review, and divergent (and
con
icting) security properties.

3.3 Gradual Integration via the
Open-source Approach

The open source development processes
di�er substantially from many commercial
development approaches. The distributed
volunteer-oriented development process rein-
forces a number of design and development
trends, resulting in a rapid development cy-
cle, featurism, integration of experimental
features, and diverse models of \success".

For many open source projects, the motiva-
tions for developers are di�erent from those
of closed source commercial products: they
are highly motivated to do the work, but of-
ten have limited resources to bring about the
results they seek. This can result in a \many
testers but few developers" syndrome for fea-
tures that are either less popular or techni-
cally diÆcult to implement. The volunteer
nature of the work means that the model of
success is often based on the degree to which
the software is available and used, and the ef-
fectiveness in attracting new developers to a
project, rather than monetary compensation.

The limitations of version control and col-
laboration tools often drive the organization
of open source software projects that use
them. For example, CVS's inability to e�ec-
tively handle a three-tier development pro-
cess (central repository, per-project reposi-
tory, local development tree) makes it diÆcult
to track the rapidly moving central FreeBSD
source repository without pushing changes
back into the central source tree. This fur-
ther encourages the wide-spread open source
technique of providing early access to work

still under development, allowing for broader
exposure of the code and therefore more e�ec-
tive testing. Providing early access to the EA
implementation greatly facilitated the devel-
opment of TrustedBSD features by permit-
ting independent development of other fea-
tures, otherwise made diÆcult by CVS's in-
ability to handle a hierarchal model. Like-
wise, allowing early access to the ACL imple-
mentation, even though it was still partially
complete, allowed for far broader testing and
greater numbers of developers.

Releasing early and often during the devel-
opment process often means submitting the
necessary hooks to support easier develop-
ment, such as reserving system call numbers
and adding prototype interfaces. These tech-
niques are appropriate where hooks and inter-
faces are intended to remain relatively static,
but allow the feature under development to
generate few modi�cation con
icts even as
the base tree moves forward. For example, a
number of the TrustedBSD APIs appeared in
the 4.x-STABLE FreeBSD release branch, al-
though the underlying implementations were
not present. The development of improved
abstractions and modular service interfaces
allows the development process to be further
streamlined|as better abstractions are intro-
duced, the changes to the base source distri-
bution necessary to support new features get
progressively smaller.

The open source development process also
allows a new element to be introduced in the
software portability process: direct code shar-
ing to improve interface portability. This fa-
cilitates the development of parallel imple-
mentations in a number of ways: the code
may be directly \borrowed" from another dis-
tribution if the licenses are compatible, di-
rect inspection of parallel code can improve
consistency and correctness, and it is pos-
sible to take advantage of the source code
for third party tools relying on the service
to perform testing. The TrustedBSD project
has frequently made use of open access to
other systems' source to understand the inter-
faces and implementation quirks of services
on those systems. Implementing ACLs, for
example, was greatly facilitated by the ability
to recompile and test the Linux getfacl and
setfacl tools on FreeBSD to determine that



they behaved consistently with the FreeBSD
implementations, and that our ACL library
routines behaved correctly.

For the TrustedBSD Project to succeed, it
must leverage the bene�ts of the open source
model while avoiding the pitfalls: in general,
this means adapting the development cycle
and processes to that of the FreeBSD Project,
which has shown remarkable success in nav-
igating the challenges of distributed collabo-
ration and development. Understanding the
social aspects of open source software devel-
opment is also important, including accepting
the open source success model, leveraging dis-
tributed development and testing, and using
open source as a tool for improved portability.

4 Case Studies in Feature Im-

plementation

These design and implementation goals
outline a strategy for the development and
integration of new advanced security features
into the FreeBSD operating system. We now
consider a number of the features under de-
velopment as part of the TrustedBSD project,
and how these goals have in
uenced the de-
sign and development process.

4.1 Regression tests

One of the primary challenges and risks of
security feature development is that of cor-
rectness: unlike many areas of software au-
thoring where it is possible to accurately cap-
ture the common case and then gradually ad-
dress the less visited code paths, a single fail-
ure in security software can render the en-
tire construction useless. This is especially
true when introducing complex security fea-
tures such as mandatory access control, where
many components act in concert over a spec-
trum of system abstractions. As such, an im-
portant tool for successfully developing secu-
rity features is a comprehensive set of tests
and evaluation mechanisms, which can be
used to analyze and quantify the existing im-
plementation, then to perform incremental

veri�cation of any changes made. Part of the
challenge also lies in that FreeBSD is not a
perfect starting point: the existing implemen-
tation su�ered from a number of inconsisten-
cies which had to be understood|often these
existed precisely because such tools were not
available.

TrustedBSD testing tools �t into two gen-
eral categories: tests intended to evaluate
the correctness of speci�c aspects of the im-
plementation, and tests intended to evalu-
ate the overall correctness of larger scenar-
ios. Smaller context-speci�c tests attempt to
exhaustively explore the behavior of a spe-
ci�c piece of access control or related secu-
rity functionality by constructing the relevant
characteristic arguments and context, then
comparing the results of the function with de-
clared expectations.

An example of this includes the
proc to proc regression test, which was
developed to explore the correctness of
authorization policy for inter-process system
calls. Inter-process calls typically involve two
processes: the �rst (subject) process invokes
a system call which will a�ect another (ob-
ject) process. Depending on the credentials
associated with processes, and the security
model in use, the kernel should reject some
calls, and accept others. For example, the
ptrace() system call allows a process to
attach debugging services to another process,
permitting it to read and write the memory
contents and state of the process, as well as
control its execution 
ow. Such a service
allow the subject process to gain access to
any resources available to object process, and
as such, constitutes a substantial security
risk if not properly protected. The following
sample output from proc to proc illustrates
a test failure when a process successfully
signals another process instead of receiving
the EPERM error.

[21. unpriv1 on daemon1].signal: expected

EPERM, got 0

(e:1000 r:1000 s:1000 P_SUGID:0)

(e:1000 r:0 s:0 P_SUGID:1)

Larger scenario tests attempt to explore
whether more general expectations for cor-



rect behavior are met by the system. These
tests typically perform compound operations,
checking only that, given the correct starting
state and sequence of operations, the desired
end property is present. For example, the
setuid protected test evaluates whether or
not a process that has executed a setuid bi-
nary undergoes the expected credential trans-
formation, and, if so, is then protected from
manipulation by other processes present in
the system.

In both types of test, a clear notion of \cor-
rect" and an understanding of potential fail-
ure modes is required to design useful and
complete tests. This is not a challenge unique
to informal regression testing of security func-
tionality on open source operating systems,
but is complicated by a lack of clarity as to
what the intended model should be.

The regression test design and implemen-
tation task o�ers substantial bene�ts to both
TrustedBSD developers, and to the broader
FreeBSD community. The test suites have
already been used to simplify a number of
access control checks, as well as point out
inconsistencies in access control implementa-
tion. By using these tests in the development
process, it is possible to gain greater assur-
ance that the new features being added are
implemented correctly, and that they do not
weaken existing protections.

4.2 Extended Attributes

Extended attributes (EAs) provide a clean
abstraction for associating additional meta-
data with �les and directories, a requirement
for the implementation of many new kernel
security features (ACLs, Capabilities, MAC,
...) as well as a feature which non-security ap-
plications may �nd useful. Providing a meta-
data storage abstraction reduces the imple-
mentation overhead associated with these fea-
tures, both in terms of redundant work and
the substantial complexity of extending on-
disk storage formats. Specifying a clean API
allows new services to be implemented with-
out knowledge of underlying format, permit-
ting a rapid EA implementation early in the
project to facilitate development of a number

of other features.

The EA interface provides simple seman-
tics: for each �le or directory, zero or
more names may be de�ned. EA names
exist in disjoint namespaces, of which two
are de�ned: EXTATTR NAMESPACE SYSTEM and
EXTATTR NAMESPACE USER. Namespaces de-
termines the protection properties of an EA|
access to the system namespace is limited to
the kernel and privileged processes, while EAs
in the user namespace are protected using the
discretionary and mandatory protections on
the �le or directory. Each de�ned name may
have zero or more bytes of data associated
with it. No EAs are de�ned for a newly cre-
ated �le or directory, although consumers of
EAs may de�ne names and values during the
creation process. Two operations are de�ned,
allowing EAs to be atomically retrieved and
set.

For a �rst implementation, we selected a
simple design that permitted us to move on
to additional new features that rely on EAs,
allowing later performance optimization by
those with greater expertise in �le systems.
Rather than modify the on-disk �le system
format, we chose to store EA data in back-
ing �les. This allowed us to avoid a lengthy
and bug-prone development process, avoid
con
icts with other on-going development on
FFS, and avoid requiring low-level �le system
modi�cations to allow developers and users to
experiment with EAs or features that rely on
them. Each backing �le stores one named EA
from a single namespace for all �les in the �le
system, and is treated as an array of EA in-
stances indexed by inode number. Both the
�le itself and each instance of an EA have
headers. The �le header contains a backing
�le format version, as well as a �eld de�ning
maximum size any EA instance can take on,
permitting the array record size to be calcu-
lated as the sum of the EA instance header
size and maximum EA instance size. EA in-
stance headers indicate whether or not the in-
stance is de�ned for the given inode, the size
of the EA instance if de�ned, as well as a copy
of the inode generation number, used for syn-
chronization purposes. A privileged user pro-
cess can invoke the extattrctl() system call
to start EA support on a given UFS-based �le
system, and then enable individual EAs by



EA File
Header

EA Instance
Header

EA Instance Data

EA Instance
Header

EA Instance Data

In
od
e 
24
5

In
od
e 
24
6

EA Instance
Header

EA Instance DataIn
od
e 
24
7

Figure 1: EA backing �le format

associating backing �les with EA names and
namespaces.

It is also possible to have EAs au-
tomatically started and enabled for the
�le system at mount-time by specifying
the UFS EXTATTR AUTOSTART kernel option.
When enabled, the mount code will search the
.attribute/system and .attribute/user

directories o� of the �le system root for valid
backing �les. When a �le is found, an EA
with the same name is enabled in the ap-
propriate namespace. This permits atomic
starting of EA services with the mount oper-
ation, preventing race conditions that might
be present as a result of a delay in EAs be-
coming available while other �les in the �le
system are accessible.

This implementation o�ers acceptable per-
formance, requiring an additional seek for
most operations if the EA has not already
been loaded from disk. Currently, the UFS
EA implementation relies on the �le system
bu�er cache to cache the backing �le, rather
than implementing a custom EA cache; the
temporal locality properties of most services
currently layered on EAs allow this caching to
be e�ective in mitigating most performance
costs.

This implementation is suÆcient to imple-
ment services such as ACLs, Capabilities, and
MAC above the EA interface. However, it

su�ers from a number of limitations, includ-
ing the treatment of EA meta-data as \data"
from the perspective of the �le system syn-
chronization policy, in particular, with re-
gards to the soft updates mechanism used
in FFS. One important synchronization fail-
ure mode occurs if an EA is not always en-
abled when the �le system is active. In this
scenario, two problems arise: �rst, EAs are
not garbage collected at �le deletion, and
second, services relying on EAs cannot up-
date meta-data. The inode generation num-
ber replication into EA instance headers per-
mits some synchronization problems to be de-
tected, by preventing old EA data from be-
ing used with a new �le, as the inode gener-
ation number is changed when the inode is
re-allocated. In large part, the service meta-
data update problem is solved by allowing the
atomic auto-starting of EAs at mount-time.
Currently, work is in the planning stages for
a block-level implementation in FFS, which
would have stronger performance and consis-
tency properties while retaining the same in-
terface, requiring no change to services above
it.

4.3 Access Control Lists

Access Control Lists (ACLs) allow users to
express more detailed policies for �les and di-
rectories that they own. POSIX.1e de�nes an
ACL interface that acts as a superset to the
current permission mechanism: the �le access
ACL consists of a base ACL derived from the
�le permissions, and the extended ACL de-
�nes permissions for additional users, groups,
and an optional ACL mask. Each non-mask
entry in the ACL associates a user or group
with a set of rights that the user or group will
have on the �le or directory.

The ACL evaluation algorithm selects an
appropriate part of the credential and an en-
try in the ACL that are combined during
permission evaluation; this order of prefer-
ence matches �rst the owner, then additional
user entries, then group entries, and �nally,
the \other" entry. The POSIX.1e ACL mask
plays an important role in providing compat-
ibility for ACL-unaware programs: it places
a bound on the maximum rights provided



by any additional users or group entries. If
an extended ACL is available for an inode,
the chmod() operation on the �le is modi�ed:
rather than setting the �le group bits, the
ACL mask is modi�ed. As a result, modi�ca-
tion of the group bits in the permission e�ec-
tively masks the rights for all entries of the
ACL other than the �le owner and other en-
tries, allowing programs not aware of ACL in-
terfaces to place an upper bound on �le acces-
sibility. Additional compatibility is provided
by a default ACL placed on directories, which
is combined with the permission set provided
by the process on open() or create() to pro-
duce the new access ACL for a �le created in
that directory, allowing ACL-unaware appli-
cations to create a new �le with an appropri-
ate ACL.

The FreeBSD implementation splits the
ACL data over the existing inode mode �eld
in UFS, and two EAs, posix1e.acl access

for the access ACL on an inode, and
posix1e.acl default for the default ACL.
At the VFS layer, two new vnode operations
are introduced: VOP GETACL to retrieve avail-
able ACLs from a vnode, and VOP SETACL

to set ACLs on the vnode. The caller may
specify the ACL type determining whether
the ACL operation is intended for the ac-
cess or default ACL. When ACL support is
compiled into the kernel, ACL code is en-
abled in a number of other UFS vnode oper-
ations, including VOP ACCESS which invokes a
generic vaccess acl posix1e() access check
routine, as well as during �le and directory
creation via VOP CREATE(), VOP MKNOD(),
VOP MKDIR(), and VOP SYMLINK(), where the
default ACL, if any, is combined with the
requested �le mode to produce the access
ACL for the child. As the ACL is split over
both the inode mode and EA storage, the
�elds must be synchronized during certain
operations|in particular, the ACL vnode op-
erations, but also during �le creation to com-
bine the default ACL and request mode.

As a result of splitting the access ACL
in this manner, many frequently performed
operations, such as stat() and chmod() in-
cur no additional overhead. The access ACL
must be read for open() and access() calls
on a �le, and during actual ACL read or
update operations. Access ACLs impose a

slightly higher cost on directory operations
than on �le operations, although they also
exhibit higher locality: directory lookup and
listing requires that the access ACL be evalu-
ated for the ACL EXECUTE and ACL READ per-
missions, respectively. Creation of a new �le
or sub-directory within a directory also ex-
hibits higher cost because both the access and
default ACLs must be retrieved for the par-
ent, and then new access and default ACLs
may be written out for the child.

In practice, ACL operations have high tem-
poral locality lending them to caching, and
su�er from higher latency rather than actual
disk I/O utilization increase. When ACLs are
not enabled on the �le system, there is no
measurable performance di�erence from the
pre-ACL implementation, in keeping with the
\minimal impact on current con�gurations"
mandate. When ACLs are enabled but not
used, an overhead is perceived due to reads
associated with determining if an access ACL
is de�ned, and for the lookup of default ACLs
during �le or sub-directory creation. When
ACLs are enabled and utilized, higher costs
are perceived during �le and sub-directory
creation if a default ACL is set on the direc-
tory in which new children are created. To
improve the actual cost of ACLs when in use,
the primary target for optimization is the EA
implementation: the measured costs of ACL
operations is e�ectively identical to the mea-
sured cost of the EA operation supporting the
ACL operation.

The POSIX.1e ACL speci�cation o�ers a
largely complete and unambiguous speci�ca-
tion for an ACL implementation; some exten-
sions, however, are required to add more com-
plete functionality in FreeBSD, such as the
ability to perform ACL operations on directo-
ries via a �le handle. Although the ACL mask
behavior increases complexity, it provides rel-
atively transparent support for ACL-unaware
applications. While the ACL speci�cation is
not identical to the variations used in many
commercial UNIX variants, it o�ers compati-
ble semantics. The ACL implementation will
be included in FreeBSD 5.0-RELEASE, and a
number of applications, including Samba, al-
ready work properly with ACLs on FreeBSD
5.0-CURRENT development branch.



4.4 Mandatory Access Control
(MAC)

Mandatory access control permits security
administrators to specify �ne-grained policies
limiting the interactions between users and
objects on the system, which will be enforced
regardless of the any permissions granted by
discretionary access control primitives. Of-
ten, mandatory access control policies con-
sist of schemas for limiting information 
ow,
such as MLS and Biba policies, but may also
consist of more general policies, such as Type
Enforcement, or more speci�c policies, such
as the FreeBSD jail mechanism. MAC poli-
cies generally require that subjects and ob-
jects be labeled with the necessary admin-
istrative information to support the policy,
which might include information sensitivity
or integrity levels, an assigned data type, or
the index or name of a compartment. They
also require a broad set of enforcement points
across a majority of operating system opera-
tions.

An initial experimental implementation
has provided the desired functionality of en-
forcing three �xed MAC policies: MLS, a
�xed-label Biba policy, and a generalization
of the native FreeBSD Jail compartmental-
ization policy. In the long term, we hope
to provide a more general framework for in-
troducing mandatory access control mecha-
nism. The policies are enforced over a fairly
wide set of system objects, including pro-
cesses as the target for inter-process oper-
ations, system management objects such as
sysctl nodes, �le system objects such as �les
and directories, and network objects such as
sockets, interfaces, and mbufs. MAC labels
are described by a struct mac which is ap-
propriate for use on both subjects and ob-
jects, and currently contains three �elds rele-
vant to the three policies.

To support the labeling of subjects (pro-
cesses), the ucred structure is extended to in-
clude an additional struct mac. cred0, the
process credential for the �rst kernel process,
is initialized to high integrity, low secrecy, and
is not present in any jail compartment. All
other processes inherit this credential, unless
an intermediate process has modi�ed it; priv-

ileged processes are permitted to update the
MAC �elds in accordance with the MAC poli-
cies. The user login mechanisms have been
updated to retrieve per-user label information
from the login.conf user class data. This re-
quires that components of the system making
use of the setusercontext() call now also
set the SET MACLABEL 
ag. Eventually, addi-
tional sources of information, such as incom-
ing terminal and network label, may be used
to make a policy-driven label determination.

For inter-process authorization, the exist-
ing p can*() primitives were modi�ed to call
the mac ucan*() versions of the call which
could return a new failure mode.

To handle the labeling of transient ker-
nel objects, a new label structure was cre-
ated, struct objlabel, which contains the
necessary ownership and protection infor-
mation, including owner and ACL, as well
as a struct mac for mandatory protection.
struct objlabel behaves in a similar man-
ner to struct ucred, in that a set of initial
object labels are initialized by appropriate
kernel subsystems, and then inherited (copy-
on-write) by various children objects. For
example, packets inherit the object label of
the interface they originate from. for objects
created by subjects, the new object label is
based on a composition of the subject cre-
dential, and possible object parents. A se-
ries of new access control check primitives
were introduced that check authorization be-
tween subject credentials and object labels,
and were liberally scattered through system
operations.

Some objects, such as sockets, play the
interesting role of both subject and object:
FreeBSD caches the subject's credential with
the socket on creation, which allows the prop-
erties of the socket to remain static when
transfered or inherited; this also allows UID-
based decisions to be made on delivery of
packets to sockets in the ipfw �rewall code.
This permits MAC delivery decisions to be
made at the network layer without directly in-
specting the receiving process or dealing with
the ambiguity of multiple processes having
access to a single socket. However, sockets
are also objects when written to or read from
by processes that have access to them, and



therefore have an object label. Both types of
events (acting on the socket as a subject and
as an object) require mediation.

Currently, �le system objects do not make
use of the object label abstraction, instead
mapping MAC labels into EAs on the �le
system, reading them when an access con-
trol check must be made. A new access con-
trol primitive, vaccess mac() accepts sub-
ject credentials, vnode properties, and MAC
labels loaded from EAs, and returns an access
control decision which is then composed with
the results of the discretionary access control
check, vaccess acl posix1e() to generate a
�nal access control result. In the future, we
will look at allowing �le systems to maintain
objlabel structures directly, improving their
ability to utilize more general abstractions.

Many MAC implementations make use of
poly-instantiation to resolve namespace use
con
icts by processes with con
icting labels.
For example, UNIX processes may expect
to be able to write �les to /tmp at will|
however, information 
ow policies may not
permit a process with one integrity level to
be aware of �les written to the directory by
a process with a lower integrity level. If the
two processes select the same �le name, un-
der traditional UNIX semantics, one process
will receive an error: this is not permitted
under information 
ow MAC policies. Poly-
instantiation allows di�erent processes to ap-
pear to address the same namespace while
being partitioned from one another: in the
case of the �le system, this might mean that
the namei() name lookup routine points the
processes at di�erent underlying directories.
TrustedBSD does not currently implement
automatic poly-instantiation for directories,
or for other namespaces such as the IP port
and System V IPC namespaces, and in that
sense, is incomplete. For the purposes of
processes making use of the /tmp directory,
appropriate setting of the TMPDIR environ-
ment variable has proven suÆcient for the
present|however, in the future, this issue
will need to be addressed.

Since this is still a highly experimental en-
vironment, performance �gures are not yet
available, but appear to be similar to those
of ACLs: when not involving �le system ac-

cesses, the performance cost for most objects
is negligible; when an EA operation is re-
quired, the performance corresponds to the
required EA operations. The impact on the
network subsystem is of particular interest,
as new label operations are now interposed
on existing packet and interface operations,
and may impose a performance hit. Future
MAC work on FreeBSD will include improved
abstractions for managing labels, more perva-
sive use of these abstractions, such as in the
�le systems, and implementation of features
such as poly-instantiation, processes making
use of ranges of labels to mediate access be-
tween normally isolated process classes, and
work to measure and optimize performance.

5 Lessons Learned

A number of important lessons relating to
both open source and security development
can be derived from the experience of intro-
ducing the current TrustedBSD feature set
into the FreeBSD operating system, and will
be carried into future work.

� Adapt to an ill-de�ned starting point.
While FreeBSD is characterized by
strong architectural design, security
functionality has never been a speci�c
target. As a result, substantial cleanup
was required to bring the starting point
in line with expectations. This is actu-
ally a bene�t, as it provides the opportu-
nity to educate the broader community
about security requirements, and to grow
a more complete understanding of cur-
rent use.

� Incremental improvement can result in
good software. While incremental devel-
opment can introduce security problems,
as seen with inconsistent access control
checks, introducing interfaces and fea-
tures incrementally during the overall
software development process of a larger
project reduces the workload for devel-
opers by reducing the cost of testing and
source code merging. That is to say, \re-
lease early and often" can be rephrased
as \release early and merge often" for



projects that build o� an existing project
that constitute a moving target.

� Improved abstractions for existing fea-
tures support most new features. Cur-
rent security functionality in FreeBSD
provided rationale for the abstraction
improvements necessary for new secu-
rity work. Making these abstraction im-
provements has had a high payo� in
terms of improving 
exibility to intro-
duce new security models and services.

� Being part of the developer community
provides credibility to make more far-
reaching changes from within, rather
than \throwing the changes over the
fence". To have greatest impact, it is
necessary to be part of the development
community, working with that commu-
nity to reach design decisions that are
acceptable to all relevant parties.

� Cross-platform portability e�orts have
high pay-o�. Working to build cross-
platform consensus on security interfaces
can have a high payo�: this has already
proven the case with Samba support for
POSIX.1e ACLs, and is likely to continue
to be the case moving forward with se-
curity integration into other common ap-
plications.

� Time invested in public relations activity
is time well spent. The open source com-
munity is driven by a desire for features
and improvement, and revolves around
a relatively small set of online forums.
Investing time in publicizing work and
building credibility can have very posi-
tive results in terms of generating broad
support for the features, and may be vi-
tal when it comes to portability work.

6 Future Directions

TrustedBSD remains very much a work in
progress: while a number of features and
interfaces have been successfully integrated,
much of the work remains to be done. There
are several areas in which particular attention
will be focused:

� Extended attribute interface. Substan-
tial progress has been made in de�n-
ing and implementing a general meta-
data service for UNIX-style �le systems.
However, substantial portability work re-
mains to be done so that applications can
be assured consistent interfaces for ac-
cessing meta-data on FreeBSD and other
platforms. For the TrustedBSD project,
this will involve porting the EA mech-
anism to other operating systems, in-
cluding the currently targeted OpenBSD
and Darwin platforms; it will also in-
volve continued discussion with members
of the Linux community.

� Mandatory access control. With one
and a half experimental MAC imple-
mentations under the bridge, the expe-
rience gained is becoming suÆcient to
look at integrating some of the com-
ponents of the MAC implementations
back into the base system. In partic-
ular, this involves abstraction improve-
ments such as generalized object label-
ing, which permit the association of se-
curity labels with arbitrary kernel ob-
jects. MAC is an important feature to
many potential TrustedBSD consumers,
and therefore represents the next major
integration challenge.

� Audit. An important trusted operating
system feature unmentioned in this pa-
per is that of event auditing. While
implementing event auditing has been a
goal of the project since it started, au-
dit will most likely represent a serious
challenge. In part, this is because au-
diting support requires widespread and
intrusive changes throughout the kernel
to gather information, as well as posing
a substantial performance burden.

� Plugability. A long-term goal of the
project is to improve the modularity of
security services within the kernel so that
they may be easily extended or replaced.
This is possible through improved ab-
stractions, and many examples of exten-
sible kernel subsystems exist on which to
base this work, including the Virtual File
System (VFS)[21].

� Documentation. As the availability of
TrustedBSD features increases for the



broader FreeBSD community, documen-
tation and education will play an in-
creasing role in the project's work, to
keep both system developers and users
abreast of the new services.

7 Related Work

There is a long history of research and
development relating to trusted operating
systems. In the area of access control,
there has been extensive research into various
types of discretionary and mandatory control
models[3][4][6], evolution of these models into
standards and requirements[16] [9][5][11][10],
and improved abstractions and models de-
rived from these experience[2][13].

A number of trusted systems have been de-
veloped in the form of both research operat-
ing systems, and extensions to existing com-
mercial systems. Trusted Mach[19] and other
experimental trusted operating systems have
explored the impact of secure design when
building from the ground up. Many UNIX
vendors o�er trusted versions of their sys-
tems built in-house, such as SGI's Trusted
IRIX[18]. There are also operating system
security extension products that introduce
trusted operating system features, such as
PitBull from Argus Systems[1]. Open source
trusted system work includes the LOMAC ex-
tensions for Linux[6], SELinux[13], POSIX.1e
ACLs[8] and Capabilities[15] for Linux, and
the Linux RSBAC project[17].

The TrustedBSD project bene�ts from
both past and current research, building on
the exploration of access control requirements
and models, as well as research into improved
abstractions and interfaces.

8 Conclusion

TrustedBSD provides a set of trusted oper-
ating system extensions to the FreeBSD op-
erating systems. Through close cooperation
with the FreeBSD community, a tight integra-

tion between the security features and base
services of the operating system will be pos-
sible. The challenges in such an environment
are both technical and social, where tasks
from both categories play an important role
in the success of the project. Not least of the
challenges is the education of FreeBSD devel-
opers and users regarding new features.

9 Acknowledgments

Large parts of this work were done in co-
operation with the FreeBSD and TrustedBSD
development communities. In particular, I
thanks Chris Faulhaber, Thomas Moestl, Il-
mar Habibulin, and Brian Feldman for their
participation in developing and debugging
these features. In addition, my thanks to
Ruslan Ermilov, Dima Dorfman, and Chris
Costello for documentation support.

A major focus of the TrustedBSD work has
been to emphasize portability of the feature
sets, particularly with other open source op-
erating systems. Both Andreas Gruenbacher,
author of the Linux ACL and EA implemen-
tations, and Andrew Morgan, author of the
Linux Privileges implementation, have been
vital to this approach through their discus-
sion of the POSIX.1e speci�cation, and im-
plementation feedback and critique. Thanks
also to the Trust Technology group at SGI, in-
cluding Casey Schau
er, Richard O�er, and
Linda Walsh, all of whom have provided feed-
back on the POSIX.1e speci�cation, and sys-
tem/application requirements.

Substantial contributions of funding, de-
velopment resources, and travel and commu-
nication reimbursement have been provided
by NAI Labs, BSDi, Safeport Network Ser-
vices, without whom the TrustedBSD Project
would not have been possible.

10 Availability

The TrustedBSD Extensions to FreeBSD
are distributed under a two-clause Berkeley-



style license, encouraging integration into
both open and closed souce products. Dur-
ing development, patches and code are
available via the TrustedBSD web site:
http://www.TrustedBSD.org/

As features reach maturity, they are inte-
grated back into the base FreeBSD distribu-
tion: http://www.FreeBSD.org/

References

[1] Argus products overview: Pitbull.
http://www.argussystems.com/product/
overview/pitbull/.

[2] L. Badger, D. F. Sterne, D. L. Sher-
man, and K. M. Walker. A domain and
type enforcement UNIX prototype. In
Computing Systems, Winter, 1996., vol-
ume 9, Berkeley, CA, USA, Winter 1996.
USENIX.

[3] D. E. Bell and L. J. LaPadula. Secure
computer systems: Mathematical foun-
dations and model. Technical Report
M74-244, The MITRE Corp., Bedford
MA, May 1973.

[4] K. Biba. Integrity considerations for se-
cure computer systems. Technical Re-
port TR-3153, Mitre, Bedford, MA, Apr.
1977.

[5] N. C. C. I. Board. Common criteria ver-
sion 2.1 (ISO IS 15408), 2000.

[6] T. Fraser. LOMAC: MAC You Can
Live With. In Proceedings of the
USENIX Annual Technical Conference,
June 2001.

[7] FreeBSD Project. FreeBSD home page.
http://www.FreeBSD.org/.

[8] A. Grunbacher. Extended attributes
and access control lists for linux.
http://acl.betbits.at/.

[9] IEEE. Portable operating system in-
terface (POSIX){part 1: System appli-
cation program interface (API): Protec-
tion, audit and control interfaces: C
language, October 1997. PSSG/D17,
POSIX.1e.

[10] N. S. A. Information Systems Secu-
rity Organization. Controlled access pro-
tection pro�le version 1.d, October 1999.

[11] N. S. A. Information Systems Secu-
rity Organization. Labeled security pro-
tection pro�le version 1.b, October 1999.

[12] P.-H. Kemp and R. N. M. Watson.
Jails: Con�ning the omnipotent root.
In Proceedings, SANE 2000 Conference.
NLUUG, 2000.

[13] P. A. Loscocco and S. D. Smalley. In-
tegrating Flexible Support for Security
Policies into the Linux Operating Sys-
tem. In Proceedings of the USENIX An-
nual Technical Conference, June 2001.

[14] M. McKusick, K. Bostic, M. Karels, and
J. Quarterman. Design and implemen-
tation of the 4.4BSD operating system,
1996.

[15] A. Morgan. Privileges for
linux. http://www.kernel.org/pub
/linux/libs/security/linux-privs/.

[16] U. S. D. of Defense. Trusted Computer
System Evaluation Criteria. Department
of Defense, December 1985.

[17] Rule set based access control (RSBAC)
for linux. http://www.rsbac.org/.

[18] SGI. B1 sample source code.
http://oss.sgi.com/projects/ob1/.

[19] Trusted Mach Security Architecture.
TIS TMACH Edoc-0001-97A.

[20] TrustedBSD Project. TrustedBSD home
page. http://www.TrustedBSD.org/.

[21] D. Walsh, B. Lyon, G. Sager, J. M.
Chang, D. Goldberg, S. Kleiman,
T. Lyon, R. Sandberg, and P. Weiss.
Overview of the Sun network �le sys-
tem. In Proceedings: USENIX Associa-
tion Winter Conference, January 23{25,
1985, Dallas, Texas, USA, pages 117{
124. USENIX, Winter 1985.

[22] R. Watson. Introducing supporting in-
frastructure for trusted operating sys-
tem support in FreeBSD. In BSD Con-
ference, Monterey, CA, USA, October
2000.


