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Abstract

This paper reports our research results that improve
second level buffer cache performance. Several pre-
vious studies have shown that a good single level
cache replacement algorithm such as LRU does not
work well with second level buffer caches. Second
level buffer caches have different access pattern from
first level buffer caches because Accesses to second
level buffer caches are actually misses from first level
buffer caches.

The paper presents our study of second level buffer
cache access patterns using four large traces from
various servers. We also introduce a new sec-
ond level buffer cache replacement algorithm called
Multi-Queue (MQ). Our trace-driven simulation re-
sults show that MQ performs better than all seven
tested alternatives. Our implementation on a real
storage system validates these results.

1 Introduction

Servers such as file servers, storage servers, and web
servers play a critical role in today’s distributed,
multiple-tier computing environments. In addition
to providing clients with key services and maintain-
ing data consistency and integrity, a server usu-
ally improves performance by using a large buffer
to cache data. For example, both EMC Symmetric
Storage Systems and IBM Enterprise Storage Server
deploy large software-managed caches to speed up
I/0 accesses [7, 8].

Figure 1 shows two typical scenarios of networked
clients and servers. A client can be either an end
user program such as a file client (Figure 1la), or
a front-tier server such as a database server (Fig-
ure 1b). A server buffer cache thus serves as a

second level buffer cache in a multi-level caching hi-
erarchy. In order to distinguish server buffer caches
from traditional single level buffer caches, we call a
server buffer cache a second level buffer cache. In
contrast, we call a client cache or a front-tier server
cache as a first level buffer cache.

Second level buffer caches have different access pat-
tern from single level buffer caches because accesses
to a second level buffer cache are misses from a first
level buffer cache. First level buffer caches typically
employ an LRU replacement algorithm, so that re-
cently accessed blocks will be kept in the cache. As
a result, accesses to a second buffer cache exhibit
poorer temporal locality than those to a first level
buffer cache; a replacement algorithm such as LRU,
which works well for single level buffer caches, may
not, perform well for second level buffer caches.

Muntz and Honeyman [28] investigated multi-level
caching in a distributed file system, showing that
server caches have poor hit ratios. They concluded
that the poor hit ratios are due to poor data shar-
ing among clients. This study did not character-
ize the behavior of accesses to server buffer caches,
but raised the question whether the algorithms that
work well for client or single level buffer caches can
effectively reduce misses for server caches. Willick,
Eager and Bunt have demonstrated that the Fre-
quency Based Replacement (FBR) algorithm per-
forms better for file server caches than locality based
replacement algorithms such as LRU, which works
well for client caches [43]. However, several key
related questions still remain open.

e Do other server workloads have access patterns
similar to file servers?

e How do recently proposed client cache replace-
ment algorithms such as LRU-k [15], Least Fre-
quently Recently Used (LFRU) [14] and Two
Queues (2Q) [23] perform for server caches?
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e What properties should a good server buffer
cache replacement algorithm have?

e Is there an algorithm that performs better than
FBR for server buffer caches?

This paper reports the results of our study of these
questions.  We first studied second level buffer
cache access patterns using four large traces from
file servers, disk subsystems and database back-end
storage servers. Our analysis shows that a good sec-
ond level buffer cache replacement algorithm should
have three properties: minimal life time, frequency-
based priority and temporal frequency. Finally, we
introduce a new algorithm called Multi-Queue. Our
trace-driven simulation results show that the new
algorithm performs better than LRU, MRU, LFU,
FBR, LRU-2, LFRU and 2Q, and that it is robust
for different workloads and cache sizes. Our re-
sult also reveals that the 2Q algorithm, which does
not, perform as well as others for single level buffer
caches, has higher hit ratios than all tested alter-
natives except Multi-Queue for second level buffer
caches.

To further validate our results, we have imple-
mented the Multi-Queue and LRU algorithms on a
storage server system with the Oracle 8i Enterprise
Server as the client. Our results using the TPC-C
benchmark on a 100 GBytes database demonstrate
that the Multi-Queue algorithm improves the trans-
action rate by 8-11% over LRU. To achieve the same
improvement with LRU requires doubling the cache
size of the storage server.

2 Methodology

The goal of our study is to improve the second level
buffer cache performance. In this section, we briefly
describe the existing algorithms tested in our evalu-
ation and present the four traces used in our study.

2.1 Algorithms

We evaluate seven existing on-line replacement algo-
rithms that were original designed for client/single
level buffer caches.

The Least Recently Used (LRU) algorithm has
been widely employed for buffer cache manage-
ment [9, 6]. It replaces the block in the cache which
has not been used for the longest period of time. It
is based on the observation that blocks which have
been referenced in the recent past will likely be ref-
erenced again in the near future. However, for sec-
ond level buffer caches, this observation is no longer
present, or exists to much lesser extent. That is
the reason why LRU does not perform well for file
server caches in Willick, Eager and Bunt’s study
[43]. It is interesting to see whether this is also true
for other workloads such as database back-end stor-
age servers. The time complexity of this algorithm

is O(1).

The Most Recently Used (MRU) algorithm
is also called Fetch-and-Discard replacement algo-
rithm [9, 6]. This algorithm is used to deal with



the case such as sequential scanning access pattern,
where most of recently accessed pages are not reused
in the near future. Blocks that are recently accessed
in a second level buffer cache will likely stay in a first
level buffer cache for a period of time, so they won’t
be reused in the second level buffer cache in the near
future. Does this mean MRU is likely to perform
well for second level buffer caches? Willick, Eager
and Bunt did not evaluate this algorithm in their
study [43]. The time complexity of this algorithm
is O(1).

The Least Frequently Used (LFU) algorithm is
another classic replacement algorithm. It replaces
the block that is least frequently used. The mo-
tivation for this algorithm is that some blocks are
accessed more frequently than others so that the ref-
erence counts can be used as an estimate of the prob-
ability of a block being referenced. The “aged” LFU
usually performs better than the original LFU be-
cause the former gives different weight to the recent
references and very old references. In [43], “Aged”
LFU always performs better than LRU for the file
server workload, except when the client cache is
small compared to the second level buffer cache.
Our results show this is true for two traces, but
for the other four, LFU performs worse than LRU
because they have some temporal locality. The time
complexity of this algorithm is O(log(n)).

The Frequency Based Replacement(FBR) al-
gorithm was originally proposed by Robinson and
Devarakonda [31] within a context of a stand-alone
system. It is a hybrid replacement policy combining
both LRU and LFU algorithms in order to capture
the benefits of both algorithms. It maintains the
LRU ordering of all blocks in the cache, but the
replacement decision is primarily based upon the
frequency count. The time complexity of this algo-
rithm ranges from O(1) to O(logan) depending on
the section sizes. The algorithm also requires pa-
rameter tuning to adjust the section sizes. So far,
no on-line adaptive scheme has been proposed. In
Willick, Eager and Bunt’s file server cache study
(1992) [43], FBR is the best algorithm among all
tested ones including LRU, LFU, MIN, and RAND.

The Least kth-to-last Reference (LRU-k) al-
gorithm was first proposed by O’ Neil, et.al for
database systems [15] in 1993. It bases its replace-
ment decision on the time of the K*'-to-last refer-
ence of the block, i.e., the reference density observed
during the past K references. When K is large, it
can discriminate well between frequently and infre-
quently referenced blocks. When K is small, it can

remove cold blocks quickly since such blocks would
have a wider span between the current time and the
Kth-to-last reference time. The time complexity of
this algorithm is O(log(n)).

The Least Frequently Recently Used (LFRU)
algorithm was proposed by Lee, et.al in 1999 to
cover a spectrum of replacement algorithms that in-
clude LRU at one end and LFU at the other [14].
It endeavors to replace blocks that are the least fre-
quently used and not recently used. It associates
a value, called Combined Recency and Frequency
(CRF), with each block. The algorithm replaces
the block with the minimum CRF value. Each ref-
erence to a block contributes to its CRF value. A
reference’s contribution is determined by a weight-
ing function F(x) where z is the time span from
the reference to the current time. By changing the
parameters of the weighting function, LFRU can im-
plement either LRU or LFU. The time complexity
of this algorithm is between O(1) and O(log(n)).
It also requires parameter tuning and no dynamic
scheme has been proposed.

The Two Queue (2Q) algorithm was first pro-
posed for database systems by Johnson and Shasha
in 1994 [23]. The motivation is to removed cold
blocks quickly. It achieves this by using one FIFO
queue Al;, and two LRU lists, Al,,; and A,,.
When first accessed, a block is placed in Al;,; when
a block is evicted from Alj,, its identifier is in-
serted into Al,,:;. An access to a block in Al,u;
promotes this block to A,,. The time complexity
of the 2Q algorithm is O(1). The authors have pro-
posed a scheme to select the input parameters: Al;,
and Al sizes. Lee and et. al. showed that 2Q
does not perform as well as others for single level
buffer caches [14]. However, our results show that
2Q in most cases performs better than tested alter-
natives except the new algorithm for second level
buffer caches.

2.2 Traces

We have collected four server buffer cache traces
from file servers, disk subsystems and database
back-end storage servers. These traces are chosen
to represent different types of workloads. All traces
contained only misses from one or multiple client
buffer caches that use LRU or its variations as their
replacement algorithms. The block sizes for these
traces are 8 Kbytes.

Table 1 shows the characteristics of the four traces.



First Level # Reads | # Writes # Clients or
Cache Size (MBytes) | (millions) | (millions) | # First level Servers
Oracle Miss Trace-128M 128 7.3 4.3 single
Oracle Miss Trace-16M 16 3.8 2.0 single
HP Disk Trace 30 0.2 0.3 multiple
Auspex Server Trace 8 per client 1.8 0.8 multiple

Table 1: Characteristics of the four traces used in the study.

The first level buffer cache size clearly affects server
buffer cache performance. We set the first level
buffer cache sizes for the two Oracle traces to rep-
resent typical configurations in real systems. How-
ever, we could not change the first level buffer cache
sizes of the other two traces because they were ob-
tained from other sources.

Oracle Miss Trace-128M is collected from a stor-
age system connecting to an Oracle 8i database
client running the standard TPC-C benchmark [42,
27] for about two hours. The Oracle buffer cache
replacement algorithm is similar to LRU [5]. The
TPC-C database contains 256 warehouses and oc-
cupies around 100 GBytes of storage excluding log
disks. The trace captures all I/O accesses from the
Oracle process to the storage system. That is, the
trace includes only reads that are missed on the Or-
acle buffer cache and writes that are flushed back to
the storage system periodically or at commit time.
The trace ignores all accesses to log disks. In order
to better represent the workload on a real database
system, we used 128 MBytes for the Oracle buffer
cache.

Oracle Miss Trace-16M is collected with the
same setup as the previous trace except the
database buffer cache (first level buffer cache) size
is set to 16 MBytes. For both traces, we fixed the
execution time to be 2 hours instead of fixing the
total number of transactions. Oracle Miss Trace-
128M has performed many more transactions than
the second trace. That is why both traces have sim-
ilar amount of misses.

HP Disk Trace was collected at Hewlett-Packard
Laboratories in 1992 [33, 32]. It captured all low-
level disk I/O performed by the system. We used
the trace gathered on Cello, which is a timesharing
system used by a group of researchers at Hewlett-
Packard Laboratories to do simulations, compila-
tion, editing and mail. We have also tried other
HP disk trace files, and the results are similar.

Auspex Server Trace was an NFS file system
activity trace on an Auspex file server in 1993 at

UC Berkeley [16]. The system included 237 clients
spread over four Ethernets, each of which connected
directly to the central server. The trace covers seven
days. We preprocessed the trace to include only
block and directory read and write accesses.

Similarly to [16], we first split the trace into small
trace files according to the client host ID. We then
ran these traces through a multi-node cache sim-
ulator and collected the interleaved misses from
different client caches as our server buffer cache
trace. The multi-node client cache simulator uses
8 MBytes for each client cache and runs the LRU
replacement algorithm.

3 Server Access Pattern

We have studied the access pattern of these four
traces with the goal of understanding the behavior
of server buffer cache accesses by examining their
temporal locality and the distribution of access fre-
quency.

3.1 Temporal Locality

The first part of our study explored the temporal
locality of server buffer cache accesses. Past stud-
ies have shown that client buffer cache accesses ex-
hibit a high degree of spatial and temporal locality.
An accessed block exhibits temporal locality if it is
likely to be accessed again in the near future. An ac-
cessed block exhibits spatial locality, if blocks near
it are likely to be accessed in the near future [11, 38].
The LRU replacement algorithm, typically used in
client buffer caches, takes advantage of temporal lo-
cality. Thus, blocks with a high degree of temporal
locality are likely to remain in a client buffer cache,
but accesses to a server buffer cache are misses from
a client buffer cache. Do server buffer cache acc-
cesses exhibit temporal locality similar to those of a
client buffer cache?
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Figure 2: Comparison of temporal locality of client
and server buffer cache accesses using temporal dis-
tance histograms. (Note: figures are in different
scales)

We used temporal distance histograms to observe the
temporal locality of the server buffer cache traces.
A reference sequence (or reference string) is a num-
bered sequence of temporally ordered accesses to a
server buffer cache. The temporal distance is the
distance between two accesses to the same block in
the reference sequence. It is similar to the inter-
reference gap in [30]. For example, in the reference
sequence ABCDBAX, the temporal distance from
Ay to Ag is 5 and the temporal distance from Bs
to Bs is 3. Formally speaking, if we denote the
sequence number of the current access and previ-
ous access to a block b as current(b) and prev(b)
respectively, then the temporal distance of the cur-
rent access to block b is current(b) — prev(b). A
temporal distance histogram shows how many cor-
related accesses (accesses to the same block) for var-
ious temporal distances reside in a given reference
sequence.

Figure 2 compares the client and server buffer
cache’s temporal locality using temporal distance
histograms with the Auspex traces. The client
buffer cache trace is collected at an Auspex client,
while the server buffer cache trace is captured at the
Auspex File Server. Each Auspex client uses an 8
megabyte buffer cache. The data in the figure shows
the histograms by grouping temporal distances by
powers of two. The block size is 8 Kbytes. Re-
sults are similar with other block sizes. Distances
that are not a power of two are rounded up to the
nearest power of two. Significantly, for the client
buffer cache 74% of the correlated references have
a temporal distance less than or equal to 16. This
indicates a high degree of temporal locality. Even
more significantly, however, 99% of the correlated
accesses to the server buffer cache have a temporal
distance of 512 or greater, exhibiting much weaker
temporal locality.

Figure 3 shows the temporal distance histograms of
four server buffer cache traces. These traces exhibit
two common patterns. First, all histogram curves
are hill-shaped. Second, peak temporal distance val-
ues, while different, are all relatively large and oc-
cur at distances greater than their client cache sizes
(see Table 1). This access behavior at server buffer
caches is expectable. If a client buffer cache of size
k uses an locality-based replacement policy, after a
reference to a block, it takes at least k references to
evict this block from the client buffer cache. Thus,
subsequent accesses to the server buffer cache should
be separated by at least k£ non-correlated references
in the server buffer cache reference sequence.

A good replacement algorithm for server buffer
caches should retain blocks that reside in the “hill”
portion of the histogram for a longer period of time.
In this paper, “time” means logical time, measured
by the number of references. For example, initially,
time is 0, after accesses ABC, time is 3. We call
the beginning and end of this “hill” region mini-
mal distance (or minDist) and mazimal distance
(or max Dist) respectively. We picked minDist and
max Dist for each trace by examining the histogram
figure for simplicity. Since the temporal distance
values in the “hill” are relatively large, a good re-
placement algorithm should keep most blocks in this
region for at least the minDist time. We call this
property minimal lifetime property. It is clear that
when the number of blocks in a server buffer cache
is less than the minDist of a given workload, the
LRU policy tends to perform poorly, because most
blocks do not stay in the server buffer cache long
enough for subsequent correlated accesses.

3.2 Access Frequency

Next, we examined the behavior of server buffer
cache accesses in terms of frequency. While it
is clear that server buffer cache accesses represent
misses from client buffer caches, the distribution of
access frequencies among blocks remains uncertain.
If the distribution is even, then most replacement
algorithms will perform similarly to or worse than
LRU. If the distribution is uneven, then a good re-
placement algorithm will keep frequently accessed
blocks in a server buffer cache. Past studies [11, 38]
have shown that blocks are typically referenced un-
evenly: a few blocks are hot (frequently accessed),
some blocks are warm, and most blocks are cold
(infrequently accessed). Is this also true for server
buffer caches?



50000 -

%]
(]
1) 250000
2 400000 40000 -
S 200000
g 300000 30000 -
s 150000
Pl 200000 E
3 20000 100000
1S
5 100000 10000 - 50000
0 0- 0
1 16 256 4k 64k 1m16m 1 16 256 4k 64k 1m16m 1 16 256 4k 64k 1m16m 1 16 256 4k 64k 1m16m
temporal distance temporal distance temporal distance temporal distance
(a) Oracle Miss Trace-128M  (b) Oracle Miss Trace-16M (c) HP Disk Trace (d) Auspex Server Trace
Figure 3: Temporal distance histograms of server buffer cache accesses for different traces. (Note: figures
are in different scales)
100 ¢ 100 -¢ 100 -# 100 ¢ —e— percentage of accesses
1 1 1 1. --—+-- percentage of blocks
80 80 " 80 " 80 "
60 60 | 60 | 60 *
40 - 40 40 - 40 - *,
20 20 20 20
1 o 0- e SR O. ‘*“_L 1 e R SN
T T T T T I 1 T T T T T 1 | T T T T T I T T T T T T | | 1
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64128256 1 2 4 8 16 3264128256512 1 2 4 8 16 32 64 128256512
frequency frequency frequency frequency
(a) Oracle Miss Trace-128M (b) Oracle Miss Trace-16M (c) HP Disk Trace (d) Auspex Server Trace

Figure 4: Access and block distribution among different frequencies. A point (f,p1) on the block percentage curve
indicates that p1% of total number of blocks are accessed at least f times, while a point (f,p2) on the access
percentage curve represents that p2% of total number of accesses are to blocks accessed at least f times.

Our hypothesis is that both hot and cold blocks will
be referenced less frequently in server buffer caches,
because hot blocks will stay in client buffer caches
most of the time and cold blocks will be accessed
infrequently by definition. If this hypothesis is true,
the access frequency distributions at server buffer
caches should be uneven, though probably not as
uneven as those at client buffer caches. A good
server buffer cache replacement algorithm should be
able to identify warm blocks and keep them in server
buffer caches for a longer period of time than others.

In order to understand the frequency distributions
of reference sequences seen at server buffer caches,
we examined the relationship between access distri-
bution and block distribution for different frequen-
cies. Similar to most cache studies, frequency here
means the number of accesses. Figure 4 shows, for
a given frequency f, the percentage of total number
of blocks accessed at least f times. It also shows
the percentage of total accesses to those types of
blocks. Notice that the number of blocks accessed
at least ¢ times includes blocks accessed at least j
times (j > 7). This explains why all the curves
always decrease gradually. The access percentage
curves decrease similarly for the same reason.

For all four traces, the access percentage curves de-
crease more slowly than the block percentage curves,
indicating that a large percentage of accesses are to
a small percentage of blocks. For example, in the
Oracle Miss Trace-128M, around 60% accesses are
made to less than 10% blocks, each of which are
accessed at least 16 times. This shows that the ac-
cess frequency distribution among blocks at server
buffer caches is uneven. In other words, a subset of
blocks are accessed more frequently than others even
though the average temporal distance between two
correlated accesses in this subset is very large (Fig-
ure 3). Thus, if the replacement algorithm can se-
lectively keep those blocks for a long period of time,
it will significantly reduce the number of misses, es-
pecially when the server buffer cache size is small.

3.3 Properties

To summarize our study results, a good server buffer
cache replacement algorithm should have the follow-
ing three properties:

1. Minimal lifetime: warm blocks should stay
in a server buffer cache for at least minDist



time for a given workload.

2. Frequency-based priority: blocks should be
prioritized based on their access frequencies.

3. Temporal frequency: blocks that were ac-
cessed frequently in the past, but have not been
accessed for a relatively long time should be re-
placed.

The first two properties are derived from our study
of the traces. The third property is obvious. It
addresses the common access pattern where a block
is accessed very frequently for some time and then
has no accesses for a relatively long time.

Algorithms developed in the past do not possess all
three properties. Both LRU and MRU algorithms
satisfy the temporal frequency property, but lack
the other two. The basic LFU algorithm possesses
only the second property. With frequency aging, it
can satisfy the third. LRU-2 can satisfy the third
property but it only partially satisfies the first and
second. FBR and LFRU vary between LRU and
LFU depending on the input parameters, but it is
almost impossible to find parameters that satisfy
all three properties at once. 2Q satisfies the third
property, but it can only partially satisfy the second
property. When the server buffer cache is small, 2Q
lacks the first property, but, for large cache sizes,
satisfies it.

4 Multi-Queue Algorithm

We have designed a new replacement algorithm,
called Multi-Queue (MQ), that satisfies the three
properties above. This algorithm maintains blocks
with different access frequencies for different periods
of time in the second level buffer cache.

The MQ algorithm uses multiple LRU queues: @y,
«.vy Qm_1, where m is a parameter. Blocks in Q;
have a longer lifetime in the cache than those in Q);
(i < 7). MQ also uses a history buffer Q,,;, simi-
larly to the 2Q algorithm [23], to remember access
frequencies of recently evicted blocks for some pe-
riod of time. @, only keeps block identifiers and
their access frequencies. It is a FIFO queue of lim-
ited size.

On a cache hit to block b, b is first removed from the
current LRU queue and then put at the tail of queue
Qr according to b’s current access frequency. In

other words, & is a function of the access frequency,
QueueNum(f). For example, for a given frequency
f, QueueNum(f) can be defined as logaf. So the
8th access to a block that is already in the second
level buffer cache will promote this block from Q-
to Q3 according to this QueueNum(f) function.

On a cache miss to block b, MQ evicts the head of
the lowest non-empty queue from the second level
buffer cache in order to make room for b, i.e. MQ
starts with the head of queue Q¢ when choosing
victims for replacement. If @ is empty, then MQ
evicts the head block of 1, and so on. If block
¢ is the victim, its identifier and current access fre-
quency are inserted into the tail of the history buffer
Qout- If Quut is full, the oldest identifier in Q¢
will be deleted. If the requested block b is in Qu:,
then it is loaded and its frequency f is set to be
the remembered value plus 1, and then b’s entry is
removed from Q.. If b is not in Quy, it is loaded
into the cache and its frequency is set to 1. Finally,
block b is inserted into an LRU queue according to
the value of QueueNum(f).

MQ demotes blocks from higher to lower level
queues in order to eventually evict blocks that have
been accessed frequently in the past, but have not
been accessed for a long time. MQ does this by
associating a value called expireTime with each
block in the server buffer cache. “Time” here refers
to logical time, measured by number of accesses.
When a block stays in a queue for longer than a
permitted period of time without any access, it is
demoted to the next lower queue. This is easy to
implement with LRU queues. When a block en-
ters a queue, the block’s expireTime is set to be
currentTime + li feTime, where li feTime, a tun-
able parameter, is the time that each block can be
kept in a queue without any access. At each ac-
cess, the expirelime of each queue’s head block is
checked against the currentT'ime. If the former is
less than the latter, it is moved to the tail of the
next lower level queue and the block’s expireTime
is reset. Figure 5 gives a pseudo-code outline for the
MQ algorithm.

When m equals 1, the MQ algorithm is the LRU
algorithm. When m equals 2, the MQ algorithm
and the 2Q) algorithm [23] both use two queues and a
history buffer. However, M(Q uses two LRU queues,
while 2Q uses one FIFO and one LRU queue. MQ
demotes blocks from Q1 to Qg when their life time
in Q1 expires, while 2Q does not make this kind of
adjustment. When a block in @1 (or A,,) is evicted
in the 2Q algorithm, it is not put into the history



/* Procedure to be invoked upon a reference
to block b */
if bis in cache{
i = b.queue;
remove b fromqueue Qi];
}el sef
victim= EvictBl ock();
if bisin Qout {
remove b from Qout;
}el sef
b.reference = 0;

load b’s data into victims place;

b.reference ++;

b. queue = QueueNun(b. reference);
insert b to the tail of queue QKkJ;
b.expireTime = currentTime + |ifeTine;
Adj ust () ;

Evi ct Bl ock(){
i = the first non-enpty queue nunber;
victim= head of i];
renove victimfromQil];
if Qout is full
renmove the head from Qout;
add victinmis IDto the tail of Qout;
return victim

}
Adj ust () {
currentTime ++;
for(k=1; k<nm k++){
¢ = head of QKkJ];
if(c.expireTine < currentTine){
nove ¢ to the tail of Qk-1];
c.expireTinme = currentTime + |ifeTine;
}
}
}

Figure 5: MQ algorithm

buffer whereas it is with MQ.

Like the 2Q algorithm, MQ has a time complexity
of O(1) because all queues are implemented using
LRU lists and m is usually very small (less than
10). At each access, at most m — 1 head blocks are
examined for possible demotion. MQ is faster in
execution and also much simpler to implement than
algorithms like FBR, LFRU or LRU-K, which have
a time complexity close to O(logan) (where n is the
number of entries in the cache) and usually require
a heap data structure for implementation.

MQ satisfies the three properties that a good sec-
ond level buffer cache replacement algorithm should
have. It satisfies the minimal lifetime property
because warm blocks are kept in high level LRU
queues for at least expireTime time, which is usu-
ally greater than the minDist value of a given
workload. It satisfies the frequency-based priority
property because blocks that are accessed more fre-
quently are put into higher level LRU queues and
are, therefore, less likely to be evicted. It also sat-

isfies the temporal frequency property because MQ
demotes blocks from higher to lower level queues
when its lifetime in its current queue expires. A
block that has not been accessed for a long time will
be gradually demoted to queue @)y and eventually
evicted from the second level buffer cache.

5 Simulation and Results

This section reports our trace-driven simulation re-
sults of nine replacement algorithms including LRU,
MRU, LFU, LRU-2, FBR, LFRU, 2Q, OPT (an op-
timal off-line algorithm), and MQ. Our goal is to
answer three questions:

e How does M(Q compare with other algorithms?
How does recently proposed single level cache
replacement algorithms such as LRU-2, LFRU
and 2Q perform for second level buffer caches?

e How can we use the second level buffer cache
access behaviors to explain the performance?

e How do one use the simulation information to
tune the performance of the M(Q algorithm?

The following addresses each question in turn.

5.1 Simulation Experiments

We have implemented the nine replacement algo-
rithms in our buffer cache simulator. The block
size for all simulations is 8 KBytes. With ex-
periements, we found out that using log(f) function
as our QueueNum(f) function works very well for
all traces. Our experiments also show that eight
LRU queues are enough to seperate the warmer
blocks from the others. The history buffer Q.+ size
is set to be four times of the number of blocks in
the cache. Each entry of the history buffer occupies
fewer than 32 bytes so that the memory requirement
for the history buffer is quite small, less than 0.5%
of the buffer cache size. The lifeTime parameter is
adjusted adaptively at running time. The main idea
for dynamic lifeTime adjusting is to efficiently col-
lect statistic information on the temporal distance
distributions from access history. Due to page lim-
its, we will not discuss it in this paper, but details
can be found in [44].



The history buffer size for 2Q) is one half of the num-
ber of blocks in the cache as suggested by Johnson
and Shasha in [23]. For fairness, we have extended
the LFRU, LRU-2, FBR and LFU algorithms to
use a history buffer to keep track of C'RF values,
second-to-last reference time and access frequen-
cies for recently evicted blocks respectively (see sec-
tion 2), using a history buffer of size equal to that in
MQ. We have tuned the FBR and LFRU algorithms
with several different parameters as suggested by
the authors and report the best performance. The
off-line optimal algorithm (OPT) was first proposed
by Belady [2, 17] and is widely used to derive the
lower bound of cache miss ratio for a given reference
string. This algorithm replaces the block with the
longest future reference distance. Since it relies on
the precise knowledge of future references, it cannot
be used on-line.

ws Belady’s OPT algorithm and WORST algo-
rithm [2, 17]

As with all cache studies, interesting effects can only
be observed if the size of the working set exceeds
the cache capacity. The three traces provided by
other sources (HP Disk Trace, Auspex Server Trace
and Web Server Trace) have relatively small working
sets. To anticipate the current trends that working
set sizes increase with user demands and new tech-
nologies, we chose to use smaller buffer cache sizes
for these three traces. In most of experiments, we
set the second level buffer cache size to be larger
than the first level buffer cache size. However, this
property does not always hold in real systems, For
example, most of storage systems such as the IBM
Enterprise Storage Server have less than 1 Giga
Bytes of storage cache (second level buffer cache),
while the frontier server, database or file servers,
typically have more than 2 Gigabytes of buffer cache
(first level buffer cache). Because of this reason, we
have also explored a few cases where the second level
buffer cache is equal to or smaller than the first level
buffer cache.

5.2 Results

Table 2 shows that the MQ algorithm performs bet-
ter than other on-line algorithms. Its performance is
robust for different workloads and cache sizes. MQ
is substantially better than LRU. With the Oracle
Miss Trace-128M, LRU’s hit ratio is 30.9% for a 512
Mbytes server cache, whereas MQ’s is 47.5%, a 53%
improvement. For the same cache size, MQ has a

10% higher hit ratio than FBR. The main reason for
MQ’s good performance is that this algorithm can
selectively keep warm blocks in caches for a long
period of time till subsequent correlated accesses.

LRU does not perform well for the four server cache
access traces, though it works quite well for client
buffer caches. This is because LRU does not keep
blocks in the cache long enough. The LFU algo-
rithm performs worse than LRU. The long tempo-
ral distance (minDist) at server buffer caches makes
frequency values inaccurate. Of the eight on-line al-
gorithms, the MRU algorithm has the worst perfor-
mance. Although this algorithm can keep old blocks
for a long time in server buffer caches, it does not
consider frequencies. As a result, some blocks kept
in server buffer caches for a long time are not ac-
cessed frequently.

FBR, LFRU and LRU-2 perform better than LRU
but always worse than MQ. The gap between these
three algorithms and MQ is quite large in several
cases. Although FBR and LFRU can overcome
some of the LRU drawbacks by taking access fre-
quency into account, it is difficult to choose the right
combination of frequency and recency by tuning the
parameters for these two algorithms. LRU-2 does
not work well because it favors blocks with small
temporal distances.

2Q performs better than other on-line algorithms
except MQ. With a separate queue (Al;;,) for blocks
that have only been accessed once, 2Q can keep fre-
quently accessed blocks in the A, queue for a long
period of time. However, when the server buffer
cache size is small, 2Q performs worse than MQ.
For example, with Oracle Miss Trace-128M, 2Q has
a 4% lower hit ratio than MQ for a 512 MBytes
cache. With Oracle Miss Trace-16M, the gap be-
tween MQ and 2Q is 6.7% for a 64 MBytes cache.
This is because the lifetime of a block in the 2Q
server buffer cache is not long enough to keep the
block resident for the next access.

5.3 Performance Analysis

To understand the performance results in more de-
tail, we use temporal distance as a measure to an-
alyze the algorithms. Since the traces in our study
have similar access patterns, this section reports the
analysis using the Oracle Miss Trace-128M trace as
a representative.

The performance of a replacement algorithm at



Table 3: Oracle Miss Trace-128M hits and misses
distribution with a 512 MBytes cache (Note: first-
time accesses to any blocks are not counted in either
category).

server caches primarily depends on how well they
can satisfy the life time property. As we have ob-
served from Section 3, accesses to server caches tend
to have long temporal distances. If the majority of
accesses have temporal distances greater than D,
a replacement algorithm that cannot keep blocks
longer than D time is unlikely to perform well.

Our method to analyze the performance is to clas-
sify all accesses into two categories according to
their temporal distances: < C and > C where C
is the number of entries in the server buffer cache.
Table 3 shows the number of hits and misses in the
two categories for a 512 MBytes server buffer cache.

LRU has no miss in the left category because any ac-
cess in this category is less than C' references away

The 2Q, FBR, LFRU and LRU2 algorithms reduce
the number of misses in the right catefory by 15-25%
because these algorithms can keep warm blocks in
the cache longer than C' time. However, in order
to achieve this, the FBR, LFRU and LRU2 algo-
rithms have to sacrifice some blocks, which are kept
in the cache for a short period of time. As a result,
these three algorithms have some misses in the left
category. But the number of such misses is much
smaller than the number of misses avoided in the
right category. Overall, the three algorithms have
fewer misses than LRU. Because the 2Q algorithm
has no misses in the left category, it outperforms the
FBR, LFRU and LRU2 algorithms.

MQ significantly reduces the number of misses in
the right category. As shown on Table 3, MQ has
2,646k misses in the right category, 36% fewer than
LRU. Similarly to the FBR algorithm, MQ also has
some misses in the left category. However, the num-
ber of such misses is so small that it contributes to
only 10% of the total number of misses. Overall,

c;ireue OPT| MQ | 2Q |FBR |LFRU|LRU2| LRU | LFU |MRU Cgi(;r;e OPT| MQ | 20 |FBR |LFRU|LRU2| LRU | LFU | MRU
64MB | 21.6| 140 120 84 101 | 81 6.1 5.9 2.6 16MB | 16,5 100 7.5/ 44| 51 42| 414 32 1.9
128MB| 30.3] 21.7| 20.0, 14.6| 163 | 141 | 10.1| 10.8 37 32MB | 22.7| 15.2| 124| 9.0 100 7.2 6.3] 6.0/ 23
256MB| 41.8] 33.0] 300 242 243 | 235 | 176/ 187 5.8 64MB | 30.8] 22.9| 16.2| 155/ 19.0f 126| 114| 110 31
512MB| 56.1] 47.5| 435/ 37.8 395 | 382 | 309 311 9.9 128MB| 40.8| 32.3| 325| 25.2| 26.8] 215 199 19.1| 47
1GB | 70.7] 62.1] 62.1) 558/ 58.8 | 57.2 | 53.0, 47.6| 17.9 256MB| 52.4| 44.1| 43.8| 38.4| 36.0, 34.0, 32.2| 303 7.9
2GB | 82.0| 76.3| 76.8| 75.2| 76.8 | 75.8 | 745 65.1| 33.7 512MB| 63.9| 57.4| 57.8| 53.7| 50.2| 49.5| 47.7| 445| 143
1GB | 72.6| 69.2] 69.1] 68.1] 67.0] 66.0] 648 61.1] 26.7
() OracleMissTrace128M 2GB | 838 80.1] 800 79.7] 801 795 792 761 50.1
(b) OracleMissTrace-16M
Csaiize OPT| MQ | 2Q |FBR|LFRU|LRU2| LRU | LFU | MRU Csaiize OPT| MQ | 2Q |FBR|LFRU|LRU2| LRU | LFU |MRU
16MB | 36.5| 22.0, 20.6/ 205 20.2| 129 145/ 202 12.6 8MB | 324| 21.7| 94| 84| 84 131 20 69 08
32MB | 499 36.4| 36.3] 30.0] 29.6/ 24.8 22.1| 296 169 16MB | 45.2| 33.0/ 313| 19.2| 187 265 16.7] 138 1.8
64MB | 658 54.2 538 474 445 476 414] 436 227|  |32MB| 57.7 471 469 387 383 403 361 20.7| 35
128MB| 77.2| 68.9] 69.2| 65.1| 65.0f 64.0f 625 573 329 64MB | 68.7| 59.3| 59.5| 55,5 55.0 53.4| 533| 257 7.3
256MB| 81.2| 785/ 78.3| 785 780/ 76.8/ 77.8 715/ 51.0 128MB| 77.9| 705 704| 683 67.3 649 669 354 139
256MB| 86.4/ 813 80.8] 809 788 763 780 60.6 263
(c) HP Disk Trace
(d) Auspex Server Trace
Table 2: Hit ratios in percentage

Algor- | distance < 64k | distance > 64k from its previous access to the same block. The

ithms | #hits | #misses | #hits | #misses block being accessed should still remain in the cache

MQ | 1553k 293k | 1919k 2646k since the buffer cache can hold C blocks. However,

2Q 1846k 0 | 1330k 3235k LRU has a large number of misses in the right cat-

FBR | 1611k 234k | 1146k 3418k egory because any block that has not been accessed

LFRU | 1412k 434k | 1470k 3094k for more than C time can be evicted from the cache

LRU2 | 1606k 239k | 1179k 3385k and therefore lead to a miss for the next access to

LRU | 1846k 0| 407k 4157k this block. Since the right category dominates the

LFU | 1077k 769k | 1196k 3368k total number of accesses (Figure 3(a)), LRU does

MRU 285k 1560k | 434k 4131k not perform well.




the MQ algorithm performs better than other on-
line algorithms.

6 Implementation and Results

We have implemented the MQ and LRU algorithms
in a storage server system. The goals of our imple-
mentation are:

e to validate the simulation results;

e to study the end performance improvement on
a real system.

This section describes the storage system architec-
ture, the MQ and LRU implementation, the exper-
iment setups, and the experimental results of the
TPC-C benchmark with the Oracle 8 Enterprise
Server.

6.1 Architecture

We have implemented a storage server system using
a PC cluster. The storage system manages multi-
ple virtual volumes (virtual disks). A virtual vol-
ume can be implemented using a single or multiple
physical disk partitions. Similarly to other clustered
storage system [35], our storage system runs on a
cluster of four PCs. Each PC is 400 MHz Pentium
IT with 512 KBytes second level cache and 1 GB
of main memory. All PCs are connected together
using Giganet [22]. Clients communicate with stor-
age server nodes using the Virtual Interface (VI)
communication model [29]. The peak communica-
tion bandwidth is about 100 MBytes/sec and the
one-way latency for a short message is about 10 mi-
croseconds [22]. Data transfer from Oracle’s buffer
to the storage buffer uses direct DMA without mem-
ory copying. Each PC runs Windows NT 4.0 oper-
ating system. The interrupt time for incoming mes-
sages is 20 microseconds. Each PC box holds seven
17 GBytes IBM SCSI disks, one of which is used
for storing the operating system. The bandwidth
of data transfers between disk and host memory is
about 15 Mbytes/sec and the access latency for ran-
dom read/writes is about 9 milliseconds. Each PC
in our storage system has a large buffer cache to
speed up I/0 accesses.

We have implemented both MQ and LRU as the
cache replacement algorithms. The parameters of

Oracle
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Oracle Server

Oracle Cache

Storage Node

Storage Cache Storage Cache

i Storage Node

Storage Server

Figure 6: The architecture of a storage server.

the MQ algorithm are the same as described in the
previous section. It uses eight queues. The history
buffer size is four times the number of cache blocks.
The lifeTime parameter is set dynamically after
the warmup phase and adjusted periodically using
the statistic information [44].

We measure the performance using the TPC-C
benchmark [27] running on the Oracle 8i Enterprise
Server [5]. Figure 6 gives the architecture of our ex-
periments. The hardware and software setups are
similar to those used for collecting the Oracle Miss
Trace-128M. The Oracle 8i Server runs on a separate
PC, serving as a client to the storage system. It ac-
cesses raw partitions directly. All raw I/O requests
from the Oracle server are forwarded to the storage
system through Giganet. The Oracle buffer cache
is configured to be 128 MBytes. Other parameters
of the Oracle Server are well tuned to achieve the
best TPC-C performance. Each test runs the TPC-
C script on an Oracle client machine for 2 hours.
The Oracle client also runs on a separate PC which
connects to the Oracle server through Fast Ether-
net. The TPC-C script is provided by the Oracle
Corporation. It simulates 48 clients, each of which
generates transactions to the Oracle server. The
TPC-C benchmark emulates the typical transaction
processing of warehouse inventories. Our database
contains 256 warehouses and occupies 100 GBytes
disk space excluding logging disks. Logging disk
data is not cached in the storage system. The stor-
age system employs a write-through cache policy.



Storage cache size MQ | LRU
128MB 19.85 | 8.85
256MB 31.42 | 17.66
512MB 44.34 | 31.69

Table 4: Percentage hit ratios of the storage buffer
cache. The Oracle buffer cache (first level buffer
cache) size is always 128 Mbytes.

6.2 Results

Table 4 shows the hit ratios of the storage buffer
cache with the MQ and LRU replacement algo-
rithms. The difference between the implementation
and simulation results is less than 10%, which vali-
dates our simulation study. The small difference is
mainly caused by two reasons. The first is that the
timing is different in the real system due to concur-
rency. The second is the interaction between cache
hit ratios and request rates. When the cache hit
ratio increases, the average access time decreases.
As a result, more I/0 requests are forwarded to the
storage system.

As shown on Table 4, MQ achieves much higher
hit ratios than LRU. For a 512 MBytes storage
buffer cache, MQ has a 12.65% higher hit ratio than
LRU. Since miss penalty dominates the average ac-
cess time, we use the relative miss ratio difference
to estimate the upper bound of MQ’s improvement
on the end performance. For a 512 MBytes buffer
cache, the relative miss ratio difference between MQ
and LRU is 18.5% (12.65/(100 — 31.69)). Therefore,
the upper bound for end performance improvement
with MQ over LRU is 18.5%.

In fact, in order for LRU to achieve the same hit
ratio as MQ), its cache size needs to be doubled. The
hit ratio of MQ with a 128 MBytes cache is slightly
greater than that of LRU with a 256 MBytes cache.
The hit ratio of MQ with a 256 MBytes cache is
about the same as LRU with a 512 MBytes cache.

Figure 7 shows the end performance of the MQ
and LRU algorithms. For all three buffer cache
sizes, MQ improves the TPC-C end performance
over LRU by 8-11%. Due to certain license prob-
lems, we are not allowed to report the absolute per-
formance in terms of transaction rate. Therefore, all
performance numbers are normalized to the transac-
tion rate with a 128 MBytes buffer cache using the
LRU replacement algorithm. Because of the high
hit ratios, the MQ algorithm improves the transac-
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Figure 7: Normalized TPC-C transaction rate with
different storage buffer cache sizes (All numbers are
normalized to the transaction rate achieved by LRU
with an 129 MBytes storage buffer cache).

tion rates over LRU by 8%, 12%, and 10% for 128
MBytes, 256 MBytes and 512 MBytes cache sizes
respectively.

Similar to the cache hit ratio improvement, using
the MQ algorithm is equivalent to using LRU with
a double sized cache. With a 128 MBytes buffer
cache, MQ increases the transaction rate by 8%,
which is exactly same as the improvement achieved
by LRU with a 256 MBytes buffer cache. MQ with
a 256 MBytes cache achieves a similar transaction
rate to LRU with a 512 MBytes cache.

7 Related Work

A large body of literature has examined cache re-
placement algorithms. Examples of buffer cache
replacement algorithms include the LRU [9, 6],
GCLOCK [36, 19], First in First Out (FIFO), MRU,
LFU, Random, FBR [31], LRU-k [15], 2Q [23],
and LFRU [14]. In the spectrum of off-line algo-
rithms, Belady’s OPT algorithm and WORST algo-
rithm [2, 17] are widely used to derive a lower and
upper bound on the cache miss rate. Other closely
related works include Muntz and Honeyman’s file
server caching study [28] and Eager and Bunt’s disk
cache study [43]. Most of these works have been
described in our Introduction and Methodology sec-
tions.

Cache replacement policies have been intensively
studied in various contexts in the past, including



processor caches [38], paged virtual memory sys-
tems [36, 3, 40, 4, 12, 4, 34, 13, 10], and disk
caches [37]. Although several studies [1, 20, 24] fo-
cus on two level processor cache design issues, their
conclusions do not apply to software based L2 buffer
cache designs because the former has more restric-
tions. Some analytical models of the storage hierar-
chies have been given in [21, 25].

Many past studies have used metrics such as LRU
stack distance [17], marginal distribution of stack
distances [18] or distance string models [39] to an-
alyze the temporal locality of programs. However,
the proposed LRU stack distance models were de-
signed specifically for stack replacement algorithms
like LRU. Moreover, distance string models do not
capture the long-range relationships among refer-
ences. O’Neil and et. al. recently proposed the
inter-reference gap (IRG) model [30] to characterize
temporal localities in program behavior. The IRG
value for an address in a trace represents the time
interval between successive references to the same
address. But this model looks at each address sepa-
rately and does not look at the overall distribution
of the IRG values. Thesefore, it cannot well capture
global access behavior.

Our study uses the distribution of temporal dis-
tances to measure temporal locality. The idea of
using multiple queues with feedback has appeared
in process scheduling [26, 41]. With this method,
the priority of a process increases on an I/O event
and decreases when its time slice expires without an
I/0O event.

8 Conclusions

Our study of second level buffer cache access pat-
terns has uncovered two important insights. First,
accesses to server buffer caches have relatively long
temporal distances, unlike those to client buffer
caches, which are much shorter. Second, access fre-
quencies are distributed unevenly; some blocks are
accessed significantly more often than others.

These two insights helped us identify three key
properties that a good server buffer cache replace-
ment algorithm should possess: minimal lifetime,
frequency-based priority, and temporal frequency.
Known replacement algorithms such as LRU, MRU,
LFU, FBR, LRU-2, LFRU, and 2Q do not satisfy
all three properties; however, our new algorithm,

Multi-Queue (MQ), does.

Our simulation results show that the MQ algorithm
performs better than other on-line algorithms and
that it is robust for different workloads and cache
sizes. In particular, MQ performs substantially bet-
ter than the FBR algorithm which was the best al-
gorithm in a previous study [43]. In addition, an-
other interesting result of our study is that the 2Q
algorithm, which does not perform as well as other
algorithms for single level buffer caches [14], outper-
forms them for second level buffer caches, with the
exception of MQ.

We have implemented the Multi-Queue and LRU
algorithms on a storage server using an Oracle 8i
Enterprise Server as the client. The results of the
TPC-C benchmark on a 100 GBytes database show
that the MQ algorithm has much better hit ratios
than LRU and improves the TPC-C transaction rate
by 8-12% over LRU. For LRU to achieve a similar
level of performance, the cache size needs to be dou-
bled.

Our study has two limitations. First, we imple-
mented only MQ and LRU replacement algorithms
on our storage system. It would be interesting
to compare these with other algorithms. Second,
this paper assumes that the only information an L2
buffer cache algorithm has is the misses from the
L1 buffer cache. It is conceivable that the L1 buffer
cache might pass hints to the L2 cache in addition
to the misses themselves. We have not explored this
possibility.
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