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Abstract
Many objects, such as Þles, electronic messages, and
web pages, contain overlapping content. Numerous past
research projects have observed that one can compress
one object relative to another one by computing the
differences between the two, but these delta-encoding
systems have almost invariably required knowledge of
a speciÞc relationship between themÑmost commonly,
two versions using the same name at different points in
time. We consider cases in which this relationship is de-
termined dynamically, by efÞciently determining when
a sufÞcient resemblance exists between two objects in a
relatively large collection. We look at speciÞc examples
of this technique, namely web pages, email, and Þles
in a Þle system, and evaluate the potential data reduc-
tion and the factors that inßuence this reduction. We
Þnd that delta-encoding using this resemblance detec-
tion technique can improve on simple compression by
up to a factor of two, depending on workload, and that
a small fraction of objects can potentially account for a
large portion of these savings.

1 Introduction
Delta-encoding is the act of compressing a data ob-
ject, such as a Þle or web page, relative to another ob-
ject [1, 13]. Usually there is a temporal relationship be-
tween the two objects: the latter object exists, and when
it is subsequently modiÞed, the changes can be repre-
sented in a small fraction of the size of the entire object.
There is often also a naming relationship between the
objects, since a modiÞed Þle can have the same name
as the original copy. In these cases, identifying the base
version against which to compute a delta is straightfor-
ward.

Delta-encoding is particularly attractive for situations
where information is being updated across a network
with limited bandwidth. For example, web sites are of-
ten replicated both for higher performance and availabil-
ity. The bandwidth between the replicas can be lim-
ited. Another example would be replicated mail systems.
Electronic mail systems often allow clients to replicate
copies of mail messages locally. Clients may be con-
nected to the network via phone lines with limited band-
width. For an email client connected to a mail server

via a slow link, techniques which minimize bandwidth
required for updates are highly desirable. However, in
each of these environments, it is not always possible to
identify an appropriate base version to take advantage of
delta-encoding.

Our work therefore addresses a domain in which there
are very many objects with arbitrary overlap among dif-
ferent pairs of objects, and the relationships between
these pairs are not known a priori. If one can identify
which pairs are suitable candidates, delta-encoding can
reduce the size of one relative to another, thereby reduc-
ing storage or transmission costs in exchange for com-
putation. We consider several application domains for
this technique, which we refer to as delta-encoding via
resemblance detection, or DERD: web trafÞc, email, and
Þles in a Þle system.

We defer additional discussion of our research until
after a more detailed discussion of delta-encoding and
resemblance detection, which appears in the following
subsection. After that, the next section describes the
framework of our analysis in greater detail, including
the metrics we consider. Section 3 presents the various
datasets we used. Section 4 describes the experiments,
and Section 5 provides the results of these experiments.
Section 6 discusses the resource usage issues that would
arise in a practical implementation of DERD. Section 7
surveys related work, and Section 8 summarizes and de-
scribes possible future work.

1.1 Background
It is difÞcult to describe our approach without provid-
ing a general overview of both delta-encoding and re-
semblance detection. We cover enough of each of these
areas here to set the stage for combining the two, then
return to a more comprehensive comparison with related
work toward the end of the paper.

Deltas are useful for reducing resource requirements,
and existing applications of deltas generally fall into two
categories: storage and networking. For storage, when
one already stores a base version of a Þle, subsequent
versions can be represented by changes. This lowers
storage demands within Þle systems (the Revision Con-
trol System (RCS) [25] is a longstanding example of
this), backup-restore systems [1], and similar environ-
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ments.
Over a network, transmitting data that are already

known to the recipient can be avoided. The most com-
mon approach in this case is to work from a common
base version known to the sender and recipient, com-
pute the delta, and transmit it. This technique has been
applied to web trafÞc [16], IP-level network commu-
nication [24], and other domains. An extension to the
traditional web delta-encoding approach is to select the
base version by Þnding similar, rather than identical,
URLs [7].

What if one wishes to Þnd a similar Þle based on con-
tent rather than name, among a large collection of Þles?
Manber devised a method for extracting features of Þles
based on their contents, in order to Þnd Þles with over-
lapping content efÞciently [14]. He computed hashes of
overlapping sequences of bytes (also known as Òshin-
glesÓ), then looked for how many of these hashes were
shared by different Þles. Manber indicated that cluster-
ing similar Þles for improved compression would be an
application of this technique. Broder used a similar ap-
proach but used a deterministic sampling of the hash val-
ues to dramatically reduce the amount of data needed
for each Þle [5, 6]. With his approach, a subset of fea-
tures of a Þle is used to represent the Þle, and if two
Þles share many of those features in common, there is
a high probability of signiÞcant content in common as
well. A common use for this technique is to suppress
near-duplicates in search engine results [6], and varia-
tions of the technique have been used in link-level dupli-
cate suppression [24] and Þle systems [8, 17, 20].

Because the shingling technique has seen so much use
in the systems community of late, we refrain from pro-
viding a detailed description of it. Brießy, it uses Ra-
bin Þngerprints [21] to compute a hash of consecutive
bytes; the key properties of Rabin Þngerprints are that
they are efÞcient to compute over a sliding window, and
they are uniformly distributed over all possible values.
Thus, BroderÕs approach of selecting the

�
Þngerprints

with the smallest values effectively selects
�

ÒrandomÓ
features in a deterministic fashion, and two documents
with many features in common overall would hopefully
have many of these

�
features in common.

1.2 Goals
As Manber suggested, one can use the features of doc-
uments to identify when Þles overlap and then delta-
encode pairs of overlapping Þles to save space or band-
width. One goal of this work was to assess whether this
technique is generally applicable, and if not, to identify
some speciÞc instances in which it is applicable. A sec-
ond goal was to evaluate a number of the parameters
used in this process, such as:

� the size of a shingle,

� the amount of overlap among features necessary to
get a sufÞciently small delta,

� the number of Þles with similar overlap necessary
to get close to the ÒbestÓ delta,

� selection of delta-encoding algorithms and param-
eters to those algorithms,

� whether delta-encoding the contents of specially
formatted Þles such as Zip Þles in an application-
speciÞc method is beneÞcial,

� and other metrics.

1.3 Summary of Results
We have found that the beneÞts of application-speciÞc
deltas vary depending on the mix of content types. For
example, HTML and email messages display a great
deal of redundancy across large datasets, resulting in
deltas that are signiÞcantly smaller than simply com-
pressing the data, while mail attachments are often dom-
inated by non-textual data that do not lend themselves
to the technique. A few large Þles can contribute much
of the total savings if they are particularly amenable to
delta-encoding. Application-speciÞc techniques, such as
delta-encoding an unzipped version of a zip or gzip Þle
and then zipping the result, can signiÞcantly improve
results for a particular Þle, but unless an entire dataset
consists of such Þles, overall results improve by just a
couple of percent.

Numerous parameters can be varied in assessing the
beneÞts of deltas in this context, and we have evalu-
ated several. The results do not appear to be sensitive
to the size of shingles or the delta-encoding algorithm,
within reason. The extent of the match of the number
of features is a good predictor of the delta size. Perhaps
most importantly, when multiple Þles match the same
number of features, there is minimal difference between
the best deltaÑthe smallest delta obtained across all the
ÞlesÑand the average delta. The latter two results sug-
gest that while it is beneÞcial to determine the Þle(s)
with the maximal number of matching features, only one
delta need be computed. This is crucial because Þnd-
ing matching features, given a precomputed database of
the features of other Þles and the dynamically computed
feature set of the Þle being delta-encoded, is far more
efÞcient than computing an actual delta.

2 Framework
This section describes our approach to the problem of
delta-encoding with resemblance detection in greater de-
tail. We discuss the types of data we considered and the
way in which we evaluate the potential beneÞts of DERD.

2.1 Types of Data
In the past, delta-encoding has been used for many types
of data in numerous environments. Our interest has fo-
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cused on data that are located Òtogether,Ó meaning that
they belong to a single user, or they reside on a single
server. Earlier work has demonstrated the potential ben-
eÞts of deltas when the same object is modiÞed over
time, whereas we consider different objects that exist at
the same time. Thus far, we have analyzed web data
(primarily HTML), email, and a Þle system.

In a Research Report [10] coauthored with Kiem-
Phong Vo of AT&T Labs, we previously argued that one
could use BroderÕs technique for efÞciently selecting
features of objects to determine dynamically a suitable
candidate to serve as the base for HTTP delta-encoding.
This would be an extension to the proposed standard de-
scribed in a recent RFC [15]. The report described a pos-
sible protocol but gave no statistics to support the utility
of the idea in practice. In the case of individual web
clients, objects must be large enough to justify the added
overheads of transmitting their features, comparing the
features on a client, possibly computing a new delta-
encoding on the ßy in response to the clientÕs request,
and reconstructing the page on the client. Beyond that
proposal, similarity among different web pages could be
used for efÞcient distribution of new pages to caches in a
content distribution network (CDN), or other replicas; in
this case, by transmitting many pages at once, overheads
could be minimized. We have estimated the best-case
beneÞts for a web-based DERD system, by downloading
numerous pages from several sites at a single point in
time, and then comparing each page against the others.
In practice, not all the other pages would be cached by
an individual client, though they might be cached by a
CDN if they are not completely dynamic.

In parallel with assessing the overlap of content on
real web sites, we identiÞed the overlap of content in
email and other local Þle system content as an appro-
priate application domain. At any instant, all the Þles
are available, so in theory any Þle could be represented
as a delta from one or more other Þles. As new Þles
are created, they could be encoded against all earlier
stored Þles, especially a previous version of the same Þle
should it exist. If a ÒliveÓ Þle system uses this approach,
it must use techniques such as copy-on-write and ref-
erence counting to ensure that the base version against
which a delta was computed is not modiÞed or deleted
until the delta itself is no longer needed. The same ap-
proach could be used to efÞciently back up a Þle sys-
tem: rather than delta-encoding updates in an incremen-
tal backup, the entire Þle system would be compressed
by identifying where similarity exists.

None of these techniques would be useful without sig-
niÞcant reduction in Þle sizes, so the primary focus of
this study is to evaluate those reductions. Like the ear-
lier study of deltas in HTTP [16], we consider regular
compression as a basis for comparison, since compress-

ing each object to remove internal redundancy is trivial.
We analyzed several datasets: the contents of /usr on
a Redhat Linux 7.1 PC, totaling nearly 2 Gbytes of data;
the contents of a userÕs MH mail repository, with each
message stored in a separate Þle (possibly including one
or more MIME attachments) totaling 566 Mbytes of
data; and the contents of several usersÕ Lotus Notes mail,
with message bodies and attachments separated into dis-
tinct Þles. Section 3 describes the datasets in detail.

2.2 Evaluation Metrics and Practical Con-
siderations

As noted above, size reduction is the crucial determin-
ing factor for the success of our proposal. This reduc-
tion must be considered not only relative to the origi-
nal content, but relative to the size of the content using
traditional compression tools such as gzip. Considering
that reconstructing the original requires the reference Þle
to be available, one might favor a compressed version
over a delta-encoded version if the former is marginally
larger.

Furthermore, the effect of the reduction is dependent
on the environment:

� If an individual Þle is encoded, either as a delta
or simple compression, and then stored on disk or
some other block-based medium, the gain is not ex-
actly the number of bytes by which the Þle is re-
duced. Instead, it is a function of the number of
blocks taken up by the Þle before and after en-
coding. For instance, if every Þle is rounded to
the nearest 4-Kbyte boundary, then shrinking a Þle
from 4097 bytes to 4095 bytes actually saves 1
block, i.e. 4096 bytes. More typically, a Þle might
be encoded but still use the same number of blocks
on disk.

� Similarly, reducing trafÞc over a network has low
marginal beneÞts if the same number of packets is
used; however, if the number of round-trips in com-
munication can be decreased, the improvement in
response time is more signiÞcant.

� If many Þles are encoded together, such as a full
backup or web server replication, then the beneÞts
are more directly related to the actual per-Þle gains,
since rounding effects are amortized over the entire
dataset.

There are other evaluation metrics of interest, includ-
ing:

Computation There are overheads due to computing
the features for each Þle, comparing the features
of the candidate and stored Þles, and encoding a
delta once a base version is selected. Since there
has been extensive research in making both delta-
encoding [1] and resemblance detection [5, 6] ef-
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Þcient even in enormous datasets such as Inter-
net search engines, and because our prototype is
geared toward assessing space reduction beneÞts
rather than speed, we do not report timings in this
paper. However, we discuss performance issues in
general terms in Section 6.

Space overheads A system that is selecting a base ver-
sion given a set of features must be able to com-
pare those features to a large set of existing Þles.
The overhead per Þle may be from 50-800 bytes de-
pending on how much information is stored, which
in turn affects the quality of the comparison [6].

Execution parameters There are a number of run-time
parameters that can affect the performance and/or
effectiveness of the system. We consider the fol-
lowing:

Size and number of features Shingling a Þle cre-
ates an enormous number of Þngerprints,
or features, representing sequences of data.
BroderÕs technique selects a ÒsmallÓ number
of them, where ÒsmallÓ is parameterizable [5].
We evaluated the sensitivity of the results to
this parameter. We also can require a minimal
fraction of features to match before comput-
ing a delta, to see if the poorer matches still
demonstrate beneÞts. Finally, the number of
bytes used to create a single feature can vary.

Best matches If multiple Þles match the same
number of features, an exhaustive computa-
tion could determine which base Þle produces
the smallest delta. In fact, a Þle matching
fewer features could produce a smaller delta
than one matching more features. However,
in practice, one would want to consider as
few base versions as possible. While it was
not possible to perform an exhaustive search
within large datasets, we sampled several Þles
with an equal number of matching features to
determine whether there is a signiÞcant vari-
ance among candidate base Þles.

There is also an interaction between the
number of features and the quality of the
match. If more features are compared, then
different base Þles can be distinguished more
Þnely, possibly resulting in a smaller delta.

Lastly, some Þles may produce particu-
larly large savings relative to an entire dataset,
while others may contribute relatively little.
Assuming Þles are sorted by the savings from
encoding them, we analyze how many Þles
need be delta-encoded to produce a given
fraction of the total beneÞt.

Unzip-Rezip A small change to a Þle can re-
sult in signiÞcant differences in a com-

pressed version of the Þle. For ex-
ample, we made a copy of the Redhat
7.1 /usr/share/dict/words (409,276
bytes, 45,424 one-word lines) and changed
line six from abandon to xyzzy. We
call the copy words1. Both words and
words1 generated gzipped Þles of about
131 Kbytes, with a difference of just four
bytes in size. Encoding the differences
between the uncompressed words1 and
words, using vcdiff, represented the differ-
ences in just 79 bytes. In stark contrast, delta-
encoding words1.gz against words.gz
generated about 93 Kbytes.

Therefore, delta-encoding two compressed
Þles by encoding their uncompressed versions
and compressing the result (if needed) has the
potential for signiÞcant gains. Since zip can
store an arbitrarily large number of Þles and
directories as a single compressed Þle, com-
paring its contents individually and zip-ing
the results into a single zip Þle can have simi-
lar beneÞts. One might assume that tar need
not be handled specially, since it concatenates
its input without compression. We Þnd below
that this hypothesis is incorrect for the three
delta-encoding programs we tried. For all
these datatypes, however, the overall effects
depend on the mix of data: in practice, the
number and size of compressed Þles that can
beneÞt from this approach may be dwarfed by
all the other data.

Delta-encoding algorithm and parameters
There are a few possible delta-encoding
programs. We did not Þnd signiÞcant dif-
ferences in output sizes among the available
programs; therefore, following the approach
of delta-encoding in HTTP [16], we report
numbers using Korn and VoÕs vcdiff [13].

Delta-encoding versus compression We vary a
parameter that speciÞes how much smaller a
delta must be than simply compressing a Þle
before the delta is used. If no delta is small
enough, of the Þles used as potential base
versions, the compressed version is used in-
stead. We use vcdiff for compression (delta-
encoding a Þle against /dev/null), due
to historical reasons. Its data reduction is
comparable to gzip, though typically slightly
worse.

Identical files When an identical Þle appears mul-
tiple times in a dataset, it can be trivially en-
coded against another instance through the
use of hash functions such as MD5. Past stud-
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ies have investigated the prevalence of mirrors
on the web [4] and techniques for suppressing
duplicate payloads [12]. We chose to suppress
duplicates from consideration in our analysis,
since they are trivially handled through other
means, except when a Þle contained in a zip
archive is duplicated (since two zip Þles may
have many identical Þles and some changed
content, and our unzip-rezip procedure would
match up the identical Þles).

3 Datasets

We separate our analyses into two types of data: web
pages and Þles in a Þle system. We lump email into the
latter category, since in general we expect the beneÞts
to be greater for static encoding (space reduction) than
network transmission. Note that not all the datasets we
analyzed are discussed further in this paper, but we in-
clude them in the tables to give a sense of the variability
of the results.

3.1 Web Data

Ideally, to analyze the beneÞts of DERD for the web,
one would study a live implementation over an extended
time, and/or use full content traces to simulate an imple-
mentation. The latter approach was used effectively to
study delta-encoding based on identical URLs [16], but
such traces are difÞcult to obtain.

Instead, we used the w3get program to download a
small set of root web pages, and recursively the pages
linked from them, up to two levels. We speciÞcally ex-
cluded Þle sufÞxes that suggested image data, such as
JPG and GIF, focusing instead on the base pages. This is
partly because delta-encoding has already been demon-
strated to be ineffective across two different image Þles,
even having the same name [16], and partly because im-
ages change more slowly than HTML [9] and are more
likely to be cached in the Þrst place.

While periodic downloads of speciÞc web pages have
been used in the past to evaluate delta-encoding [13],
cross-page comparisons require a single snapshot of a
large number of pages. We believe these pages, and the
results obtained from them, demonstrate a high degree
of overlap in content between pages on the same site;
this has been observed in other research due to the high
use of ÒtemplatesÓ for creating dynamic pages [3, 23].

Table 1 lists the sites accessed, all between 24-26 July
2002, with the number of pages and total size. Note
that in the case of Yahoo!, the download was aborted af-
ter about 27 Mbytes were downloaded, as that offered
sufÞcient data to perform an analysis, and it was un-
clear how much additional data would be retrieved if left
unchecked.

3.2 File Data

We used two types of Þle data, which are summarized
in Table 2. First, we scanned the entire /usr direc-
tory in a nearly unmodiÞed Redhat Linux 7.1 distribu-
tion, totaling just under 2 Gbytes of data in over 100K
Þles. Second, we examined email from several users
and in several formats. Much of our analysis used over
500 Mbytes of one userÕs UNIX-based email, which is
stored individually in separate Þles by the MH mail sys-
tem. The remaining data came from Lotus Notes, which
stores message bodies and attachments as separate ob-
jects in a ßat-Þle document database. We studied the
attachments of Þve users and the message bodies of two.

4 Experiments

As described in Section 2.2, we varied a number of pa-
rameters in the delta-encoding and resemblance detec-
tion process. Our general goals were to determine how
much more data could be eliminated by using deltas
rather than just compression, and how sensitive that re-
sult would be to this set of parameters. In particular, we
wanted to estimate the minimal work a system might do
to get a reasonable beneÞt (i.e., the point of diminishing
returns).

In general, we Þxed the parameters to a common set.
We then varied each parameter to evaluate its effect.
Table 3 lists these parameters, with a brief description
of each one, the default value in boldface, and other
tested parameters. The parameters are clustered into two
sets: the Þrst controls the pass over the data to compute
the features, and the second controls the comparison of
those features and computation of the deltas.

In some cases, due to space constraints, we do not
present additional details about variations in parameters
that did not signiÞcantly affect results; these are denoted
by italic text. Additional descriptions of many of the
parameters were given above in Section 2.2. Note that
min features ratio is special, in that it is possi-
ble to compute the savings for each number of matching
features and then compute a cumulative beneÞt for each
number of matches in a later stage, as demonstrated in
Section 5.1.

4.1 Implementation Details

Most of the work to encode differences based on simi-
larity is performed by a pair of Perl scripts. One of these
recursively descends over a set of directories and invokes
a Java program to compute the features. Each computa-
tion is a separate invocation of Java, though that could be
optimized. Once a ÞleÕs features have been computed,
they are cached in a separate Þle.

The other script takes the precomputed set of Þle-
names and features, and for each Þle determines which
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Name Files From... Files Size (Mbytes) Delta% Comp%
Yahoo yahoo.com 3,755 27.55 8 34
IBM ibm.com 177 3.21 19 36
Masters masters.com 192 3.19 9 35
CNN cnn.com 73 2.53 15 29
Wimbledon wimbledon.com 190 2.40 10 35

Table 1: Web datasets evaluated. Delta and compression percentages refer to the size of the encoded dataset relative to the
original.

Name Files From...
Files Size

(Mbytes) Delta% Comp%
Included Excluded

/usr /usr 102,932 1,250 1,964.16 36 45
MH one userÕs MH directory 87,005 565.69 34 54
User1 Bod User 1Õs Notes mail bodies 3,097 5.97 29 60
User1 Att User 1Õs Notes mail attach. 189 81.29 71 75
User2 Bod User 2Õs Notes mail bodies 445 1.18 42 56
User2 Att User 2Õs Notes mail attach. 1,078 417.35 32 37
User3 Att User 3Õs Notes mail attach. 140 36.18 52 61
User4 Att User 4Õs Notes mail attach. 1,982 991.45 53 66

Table 2: File datasets evaluated. Excluded Þles are explained in the text. Delta and compression percentages refer to the size of
the encoded dataset relative to the original.

other Þles have the maximum number of matching fea-
tures. Currently this is done by identifying which fea-
tures a Þle has, and incrementing counters for all other
Þles with a given feature in common, using the value
of the feature as a hash key. This records the most
features in common at any point, � . After all fea-
tures are processed, any Þles that have at least one fea-
ture in common are sorted by the number of matching
features. Typically, only the Þles that match exactly

� features are considered as base versions, up to the
max comparisons parameter, but if the best matches
fail to produce a small enough delta, poorer matches are
considered until the maximum is reached. There are
methods to optimize this comparison by precomputing
the overlap of Þles, as well as through estimation [22],
which we intend to integrate at a later date.

Delta-encoding is performed by one of a set of pro-
grams, all written in C. Once a pair of Þles has been so
encoded, the size of the output is cached. Occasionally,
the delta-encoding program might generate a delta that
is larger than the compressed Þle, or even larger than the
original Þle. In those cases, the minimum of the other
values is used.

For a given dataset, the results are reported by list-
ing how many Þles have a maximum features match
for a given number of features, with statistics aggre-
gated over those Þles: the original size, the size of the
delta-encoded output, and the size of the output using vc-

diff compression (delta-encoding against /dev/null,
comparable to gzip). Table 4 is an example of this out-
put. The rows at the top show dissimilar Þles, where
deltas made no difference, while the rows at the bottom
had the greatest similarity and the smallest deltas. The
BestDelta and AvgDelta columns show that, in general,
there was at most a 1% difference in size (relative to the
original Þle) between the best of up to ten matching Þles
and the average of all ten. This characteristic was com-
mon to all the datasets. Correspondingly, in all the Þg-
ures, the curves for the savings for delta-encoding depict
the average cases.

There are two apparent anomalies in Table 4 worth
noting. First, there is a substantial jump in size at
the complete 30/30 features match, despite a consistent
number of Þles, showing a much higher average Þle size.
This is skewed by a large number of nearly identical
Þles, resulting from form letters attaching manuscripts
for review; if each manuscript was sent to three persons
and the features in the large common data were all se-
lected by the minimization process, they all match in
every feature. (This is a desirable behavior, but may
not be typical of all datasets.) Second, the Þles with
0—2 out of 30 features matching have a dramatically
worse compression ratio than the other data. We be-
lieve these are attributable to types of data that neither
match other Þles to a great extent nor exhibit particu-
larly good compressibility from internally repeated text
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Processing
Stage

Parameter Description Values

Preprocessing

shingle size
Number of bytes in a Þngerprinted
shingle

20, 30

num features Number of features compared 30, 100

min size
Minimum size of an individual Þle to
include in statistics

128, 512 bytes

unzip
Should zip Þles be unzipped before
comparison

yes, no

gunzip
Should gz Þles be unzipped before
comparison

yes, no

Encoding

static files
Whether encoding A against B pre-
cludes encoding B against A

web=no, Þles=yes

program Program to perform delta-encoding vcdiff

exhaustive search
Whether to compare against all Þles,
or just best matches

no, yes

max comparisons
Maximum number of Þles to compare
against, with equal maximal matching
features

10, 1, 5

min features ratio
What fraction of features must match
to compute a delta?

0-1 (cumulative
distribution)

improvement
threshold

What is the maximum size of a delta,
relative to simple compression, for it
to be used?

25%, 50%, 75%,
100%

Table 3: Parameters evaluated. Boldface represents defaults, and italics represent evaluated cases not reported here.

Matches Files Size (Mbytes) BestDelta (%) AvgDelta (%) Compressed (%)
0 230 4.37 65 65 65
1 2634 95.09 64 65 65
2 3308 63.87 58 58 60
3 3927 30.86 39 40 45
4 4284 32.53 31 32 39
5 4710 22.86 35 36 46

...
27 294 2.85 4 4 46
28 227 3.09 2 2 44
29 174 9.39 0 0 43
30 224 91.38 0 0 48

All 87005 565.69 34 34 54

Table 4: Delta-encoding and compression results for the MH directory. Percentages are relative to original size, e.g. 34% means
deltas save about two-thirds of the original size. Boldfaced numbers are explained in the text. This table corresponds to the
graphical results in Figure 1.

strings. MIME-encoded compressed data would have
this attribute, when the same compressed Þle does not
appear in multiple messages.

To analyze the beneÞts of unzipping Þles, encoding
them, and zipping the results, we take two approaches.
Zip Þles can contain entire directory hierarchies, while
gzip Þles compress just one Þle. Therefore, for zip

Þles, we create a special ZIPDIR directory, into which
the contents are unzipped before features are calculated.
We assume there are no additional beneÞts to compres-
sion, since zip has already taken care of that. For deltas,
we delta-encode each Þle in this directory, storing the
results in a second temporary directory, and then zip the
results. For gzip Þles, we gunzip the Þles, compute
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the features, and discard the uncompressed output. Each
time we delta-encode a gzipped Þle, either as the refer-
ence or the version, we uncompress it on the ßy (the
most recent uncompressed version Þle is then cached
and reused for each encoding). Section 5.4 discusses the
added beneÞts of these two approaches.

In some cases, the features for all the Þles in a single
dataset, with other run-time state, resulted in a virtual
memory image that exceeded the 512 Mbytes of physical
memory on the machine performing the comparisonsÑ
this is an artifact of our Perl-based prototype, and not
inherent to the methodology, as evidenced by the scale
of the search engines that use resemblance detection to
suppress duplicates [6]. For the usr and MH datasets, we
preprocessed the data to separate them into manageable
subdirectories, then merged the results. This would re-
sult in Þles in different partitions not being compared:
for example, a Þle in Mail/conferences would
not be compared against a Þle in Mail/projects.
In general, spatial locality would suggest that the best
matches for a Þle in Mail/conferences would be
found in Mail/conferences. (We subsequently
validated this theory by rerunning the script on all MH
directories at once, using a more capable machine, with
no signiÞcant difference in the overall beneÞts.) Also,
since partitions were based on subdirectories of a single
root such as /usr, it also would result in some partitions
having too few Þles to perform meaningful comparisons;
we skipped any subdirectories with fewer than 100 Þles,
resulting in a small fraction of Þles being omitted (listed
in Table 2).

5 Results
Here we present our analyses. We start with overall ben-
eÞts for different types of data, then describe how vary-
ing certain parameters impacts the results.

5.1 Overall Benefits
Our overall goal is to reduce Þle sizes and to evaluate
how sensitive this reduction is to different data types,
the amount of effort expended, and other considerations.
Table 4 gives a sense of these results, in tabular form,
for a dataset that is particularly conducive to this ap-
proach; Figure 1 shows the same data graphically. Fig-
ure 1(a) plots compressed sizes and delta-encoded sizes,
as well as the original total Þle sizes, against the num-
ber of matching features. For each possible number of
matching features from 0—30, we plot the total data of
Þles having that number of matching features as their
maximum match. As we expected, the more features
match, the smaller the delta size. The cumulative ef-
fect is shown in Figure 1(b). In this graph (as well as
several subsequent ones with the same label on the X-
axis), a point (� , � ) shows that the total data size ob-

tained using a particular technique such as compression
or delta-encoding is � if all Þles with at least � maxi-
mal matching features are encoded. For instance, the Y-
value of the point on the Compressed curve with X-value
15 is the percent of the total data size obtained if all Þles
matching at least one other Þle in at least 15 features are
compressed. Figure 1(b) shows that the most beneÞt is
derived from including all Þles, even with zero matches,
although in those cases these beneÞts come from com-
pression rather than deltasÑrecall that the size of a delta
is never larger than delta-encoding it against the empty
Þle, i.e., compressing it.

Figure 2(a) shows the cumulative beneÞts of deltas
and compression for two of the static datasets: usr, and
the MH data. Figure 2(b) does the same for two of the
web datasets, IBM and Yahoo. Both graphs are limited
to two datasets in order to avoid cluttering them with
many overlapping lines, but the bottom-line savings for
the other datasets were reported in Table 2 and Table 1,
respectively. In each, the different datasets show differ-
ent beneÞts, due to the amount of data being compared
and the nature of the contents. SpeciÞcally, the graphs
have very different shapes because many more Þles in
the web datasets have high degrees of overlap.

5.2 Contributions of Large Files
The graphs presented thus far have emphasized the effect
of statistics such as the number of features that match.
Another consideration is the skew in the savings: do a
small number of files contribute most of the benefits of
delta-encoding? In the case of the MH dataset, such a
skew was suggested by the statistics in Table 4, which
showed 91 of the 566 Mbytes matching in all 30 features
and delta-encoding to virtually nothing.

We visualize an answer to this question by consider-
ing every Þle in a particular dataset, sorting by the most
bytes saved for any delta obtained for it, and plotting the
cumulative distribution of the savings as a function of
the original Þles. Figure 3(a) plots the cumulative sav-
ings of the MH dataset (as a fraction of the original data)
against the fraction of files used to produce those sav-
ings or the fraction of bytes in those Þles. In each case
the savings for DERD and strict compression are shown
as separate curves. Finally, points are plotted on a log-
log scale to emphasize the differences at small values,
and note that the Comp by byte% curve starts at just
over 2% on the � -axis.

The results for this dataset clearly show signiÞcant
skew. For example, for deltas, 1% of the Þles account
for 38% of the total 65% saved; encoding 25% of the
bytes will save 22% of the data. Compression also shows
some skew, since some Þles are extremely compressible.
If one compressed the best Þles containing 25% of the
bytes, one would save 17% of the data. This degree of
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Figure 1: Effect of matching features, for the MH data. These Þgures graphically depict the the data in Table 4.
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Figure 2: Effect of matching features, cumulative, for several datasets.

skew suggests that heuristics for intelligently selecting
a subset of potential delta-encoded pairs, or compressed
Þles, could be quite beneÞcial.

5.3 Effects of File Blocking
Section 2.2 referred to an impact on size reduction from
rounding to Þxed block sizes. In some workloads, such
as Þle backups, this is a non-issue, but in others it can
have a moderate impact for small blocks and a substan-
tial impact for large ones.

Figure 3(b) shows how varying the blocksize affects
overall savings for the MH dataset. Like Figure 3(a), it
plots the cumulative savings sorted by contribution, but
it accounts for block rounding effects. A 1-Kbyte min-

imum blocksize, typical for many UNIX systems with
fragmented Þle blocks, reduces the total possible ben-
eÞt of delta-encoding from around 66% (assuming no
rounding) to 61%, but a 4-Kbyte blocksize brings the
beneÞt down to 40% since so many messages are smaller
than 4 Kbytes.

5.4 Handling Compressed and Tarred
Files

Section 2.2 provided a justiÞcation for comparing the
uncompressed versions of zip and gzip Þles, as well as
a hypothesis that tar Þles would not need special treat-
ment. For some workloads this is irrelevant, since for
example the MH repository stored all messages with full
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Figure 3: Cumulative savings from MH Þles, sorted in order of contribution to total savings.

bodies, uncompressed. An attachment might contain
MIME-encoded compressed Þles, but these would be
part of the single Þle being examined, and one would
have to be more sophisticated about extracting these at-
tachments. In fact, there was no single workload in our
study with large numbers of both zip and gzip Þles, and
overall beneÞts from including this feature were only 1-
2% of the original data size in any dataset. For example,
the User4 Attach workload, which had the most zip
Þles, only saved an additional 2% over the case without
special handling. Even though the zip Þles themselves
were reduced by about a third, overall storage was dom-
inated by other Þle types.

We expected directly delta-encoding one tar Þle
against a similar tar Þle to generate a small delta if in-
dividual Þles had much overlap, but this was not the
case in some limited experiments. Vcdiff generated a
delta about the size of the original gzipped tar Þle, and
two other delta programs used within IBM performed
similarly. We tried a sample test, using two email tar
Þle attachments unpacked into two directories, and then
using DERD to encode all Þles in the two directories.
We selected the delta-encoded and compressed sizes of
the individual Þles in the smaller of the tar Þles, and
found delta-encoding saved 85% of the bytes, compared
to 71% for simple compression of individual Þles and
79% when the entire tar Þle was compressed as a whole.
Depending on how this extends to an entire workload,
just as with zip and gzip, these savings may not justify
the added effort.

5.5 Deltas versus Compression

By default, our experiments assumed that if a delta is
at all smaller than just using compression, the delta is

used. There are reasons why this might not be desir-
able, such as a web server using a cached compressed
version rather than computing a specialized delta for a
given request. As another example, consider a Þle sys-
tem backup that would require both a base Þle and a
delta to be retrieved before producing a saved Þle: if
the compressed version were 25% larger than the delta,
it would consume that extra storage, but restoring the Þle
would involve retrieving 125% of the deltaÕs size rather
than the delta and a base version that would undoubtedly
be much larger than that 25%.

We varied the threshold for using a delta to be 25—
100% of the compressed size, in increments of 25%.
Figure 4 shows the result of this experiment on the MH
dataset. There is a dramatic increase in the relative size
of the delta-encoded data at higher numbers of match-
ing features, because in some cases, there is no longer a
usable match at a given level. The most interesting met-
ric is the overall savings if all Þles are included, since
that no longer suffers from this shift; the relative size in-
creases from about 35% to about 45% as the threshold is
reduced.

5.6 Shingle Size

Unlike some of the other parameters, the choice of shin-
gle sizeÑwithin reasonÑseems to have minimal effect
on overall performance. As an example, Figure 5 shows
how the size reduction varies when using shingle sizes
of 20 versus 30 bytes. If all Þles are encoded, even for
minimal matches, the total size reduction is about the
same. If a higher value of min features ratio is
used, the 20-byte shingles produce smaller deltas for the
same threshold within a reasonable range (10-15 of 30
features matching).
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5.7 Number of Features

The number of features used for comparisons represents
a tradeoff between accuracy of resemblance detection
and computation and storage overheads. In the extreme
case, one could use ManberÕs approach of computing
and comparing every feature, and have an excellent es-
timate of the overlap between any two Þles. The other
extreme is to use no resemblance detection at all or have
just a handful of features. Since we have found a fair
amount of discrimination using our default of 30 fea-
tures, we have not considered fewer features than that,
but we did compute the savings for the MH dataset from
using 100 features instead of 30. The results were virtu-
ally indistinguishable in the two casesÑleading to the
conclusion that 30 features are preferable, due to the
lower costs of storing and comparing a given number
of features.

Broder has described a way to store the features even
more compactly, such as 48 bytes per Þle, by treating the
features as aggregates of multiple features computed in

the ÒtraditionalÓ method [6]. For one such meta-feature
to match, all of some subset of the regular features must
match exactly, suggesting a higher degree of overlap
than we felt would be appropriate for DERD.

6 Resource Usage
A system using our techniques to efÞciently delta en-
code Þles and web documents could compute features
for objects when it Þrst becomes aware of them. The
cost for determining features is not that high, and it
could be amortized over time. The system could also be
tuned to perform delta-encoding when space is the criti-
cal resource and to store things in a conventional manner
when CPU resources are the bottleneck.

Using 30 features of 4 bytes apiece, the space over-
head per Þle is around 120 bytes. For large Þles, this is
insigniÞcant. Once the features for a Þle have been de-
termined, it requires � � 
 � operations to determine the
maximum number of matching features with existing
Þles where 
 is the total number of Þles. However, to
get a reasonably good number of matching features, it
is not always necessary to examine features for all of the
existing Þles. A reasonable number of matching features
can often be determined by only examining a fraction of
the objects when the number of objects is large. That
way, the number of comparisons needed for performing
efÞcient delta-encoding can be bounded.

Delta-encoding itself has been made extremely efÞ-
cient [1], and it should not usually be a bottleneck except
in extremely high-bandwidth environments. Early work
demonstrated its feasibility on wireless networks [11]
and showed that processors an order of magnitude
slower than current machines could support deltas over
HTTP over network speeds up to about T3 speeds [16].
More recent systems like rsync [26] and LBFS [17], and
the inclusion of the Ajtai delta-encoding work in a com-
mercial backup system, also support the argument that
DERD will not be limited by the delta-encoding band-
width.

7 Related Work
Mogul, et al., analyzed the potential beneÞts of compres-
sion and delta-encoding in the context of HTTP [16].
They found that delta-encoding could dramatically re-
duce network trafÞc in cases where a client and server
shared a past version of a web page, termed a Òdelta-
eligibleÓ response. When a delta was available, it re-
duced network bandwidth requirements by about an or-
der of magnitude. However, in the traces evaluated in
that study, responses were delta-eligible only a small
fraction of the time: 10% in one trace and 30% in the
other, but the one with 30% excluded binary data such
as images. On the other hand, most resources were com-
pressible, and they estimated that compressing those re-
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sources dynamically would still offer signiÞcant savings
in bandwidth and end-to-end transfer timesÑfactors of
2-3 improvement in size were typical.

Later, Chan and Woo devised a method to increase the
frequency of delta-eligible responses by comparing re-
sources to other cached resources with similar URLs [7].
Their assumption was that resources ÒnearÓ each other
on a server would have pieces in common, something
they then validated experimentally. They also described
an algorithm for comparing a Þle against several other
Þles, rather than the one-on-one comparison typically
performed in this context. However, they did not ex-
plain how a server would select the particular related
resources in practice, assuming that it has no speciÞc
knowledge of a clientÕs cache. We believe there is an im-
plicit assumption that this approach is in fact limited to
Òpersonal proxiesÓ with exact knowledge of the clientÕs
cache [11, 2], in which case it has limited applicability.

Ouyang, et al., similarly clustered related web pages
by URL, and tried to select the best base version for
a given cluster by computing deltas from a small sam-
ple [18]. While they were not focused on a caching
context, and are more similar to the general applications
described herein, they did not initially use the more ef-
Þcient resemblance detection methods of Manber and
Broder to best select the base versions. Subsequently,
they applied resemblance detection techniques to scale
the technique to larger collections [19]. This work,
roughly concurrent with our own, is similar in its gen-
eral approach. However, the largest dataset they ana-
lyzed was just over 20,000 web pages, and they did not
consider other types of data such as email. Another pos-
sibly signiÞcant distinction is that they used shingle sizes
of only 4 bytes, whereas we used 20-30 bytes. (We did
not obtain this paper in time to repeat our analyses with
such a small shingle size.)

Spring and Weatherall [24] essentially generalized
Chan and WooÕs work by applying it to all data sent
over a speciÞc communication channel, and using re-
semblance detection to detect duplicate sequences in a
collection of data. This was done by computing Þnger-
prints of shingles, selecting those with a predetermined
number of zeroes in the low-order bits (deterministically
selecting a fraction of features), and scanning before and
after the matching shingle to Þnd the longest duplicate
data sequence. Like Chan and WooÕs work, this sys-
tem worked only with a close coupling between clients
and servers, so both sides would know what redundant
data existed in the client. In addition, the communica-
tion channel approach requires a separate cache of pack-
ets exchanged in the past, which may compete with the
browser cache and other applications for resources.

In some cases, the suppression of redundancy is at a
very coarse level, for instance identifying when an en-

tire payload is identical to an earlier payload [12], or
when a particular region of a Þle has not changed. Exam-
ples of system taking this approach include rsync [26], a
popular protocol for remote Þle copying, and the Low-
bandwidth File System (LBFS) [17]. However, there are
applications for which identifying an appropriate base
version is difÞcult and the available redundancy is ig-
nored. For instance, LBFS exploits similarities not only
between different versions of the same Þle but across
Þles. To identify similar Þles, it hashes the contents
of blocks of data, where a block boundary is (usu-
ally) deÞned by a subset of featuresÑlike the Spring &
Wetherall approach, except that the features determine
block boundaries rather than indices for the data being
compared. Variable block boundaries allow a change
within one block not to affect neighboring blocks. (The
Venti archival system [20] and the Pastiche peer-to-peer
backup system [8] are two more recent examples of the
use of content-deÞned blocks to identify duplicate con-
tent; we use LBFS here as the ÒcanonicalÓ example of
the technique.)

Similarly, it is not always possible to ensure that both
sides of a network connection share a single common
base version. Rsync allows the two communicating par-
ties to ascertain dynamically which blocks of a Þle are
already contained in a version of the Þle on the receiving
side.

LBFS and rsync are well suited to compressing large
Þles with long sequences of unchanged bytes, but if the
granularity of change is Þner than their block bound-
aries, they get no beneÞt. Most delta-encoding algo-
rithms remove redundancy if it is large enough to amor-
tize the overhead of the pointers and other meta-data that
identify the redundancy. A resemblance detection pro-
cedure should therefore be suited to the delta-encoding
algorithm, and the size and contents of the data. Our
work demonstrates that Þne-grained deltas work well in
a variety of environments, but a head-to-head compari-
son with LBFS and rsync in these environments will help
determine which approach is best in which context.

8 Conclusions and Future Work
Delta-encoding has been used in a number of applica-
tions, but it has been limited to two general contexts: en-
coding a Þle against an earlier version of the same Þle, or
encoding against other Þles (or data blocks) where both
sides of a communication channel have a consistent view
of the cached data. We have generalized this approach in
the web context to use features of web content to iden-
tify appropriate base versions, and quantiÞed the poten-
tial reductions in transfer sizes of such a system. We
have also extended ManberÕs use of this technique on a
single server [14], and quantiÞed potential beneÞts in a
general Þle system and speciÞc to email.
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For web content, we have found substantial overlap
among pages on a single site. This is consistent with
Chan and Woo [7], Ouyang, et al. [19], and recent work
on automatic detection of common fragments within
pages [23]. For the Þve web datasets we considered,
deltas reduced the total size of the dataset to 8—19% of
the original data, compared to 29—36% using compres-
sion. For Þles and email, there was much more variabil-
ity, and the overall beneÞts are not as dramatic, but they
are signiÞcant: two of the largest datasets reduced the
overall storage needs by 10—20% beyond compression.
There was signiÞcant skew in at least one dataset, with
a small fraction of Þles accounting for a large portion of
the savings. Factors such as shingle size and the number
of features compared do not dramatically affect these re-
sults. Given a particular number of maximal matching
features, there is not a wide variation across base Þles in
the size of the resulting deltas.

A new Þle will often be created by making a small
number of changes to an older Þle; the new Þle may
even have the same name as the old Þle. In these cases,
the new Þle can often be delta-encoded from the old Þle
with minimal overhead. For the most part, our datasets
did not consider these scenarios. For situations where
this type of update is prevalent, the beneÞts from delta-
encoding are likely to be higher.

Now that we have demonstrated the potential savings
of DERD, in the abstract, we would like to implement
underlying systems using this technology. The smaller
deltas for web data suggest that an obvious approach is
to integrate DERD into a web server and/or cache, and
then use a live system over time. However, supporting
resemblance-based deltas in HTTP involves extra over-
heads and protocol support [10] that do not affect other
applications such as backups. We are also interested in
methods to reduce storage and network costs in email
systems, and hope to implement our approach in com-
monly used mail platforms. As the system scales to
larger datasets, we can add heuristics for more efÞcient
resemblance detection and feature computation. We
can also evaluate additional application-speciÞc meth-
ods, such as encoding individual elements of tar Þles,
and compare the various delta-based approaches against
other systems such as LBFS and rsync in greater depth.
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