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Abstract

Network positioning has recently been demonstrated to
be a viable concept to represent the network distance re-
lationships among Internet end hosts. Several subsequent
studies have examined the potential benefits of using net-
work position in applications, and proposed alternative
network positioning algorithms. In this paper, we study
the problem of designing and building a network posi-
tioning system (NPS). We identify several key system-
building issues such as the consistency, adaptivity and
stability of host network positions over time. We pro-
pose a hierarchical network positioning architecture that
maintains consistency while enabling decentralization, a
set of adaptive decentralized algorithms to compute and
maintain accurate, stable network positions, and finally
present a prototype system deployed on PlanetLab nodes
that can be used by a variety of applications. We believe
our system is a viable first step to provide a network po-
sitioning capability in the Internet.

1 Introduction

Network distance, i.e. round-trip propagation and trans-
mission delay!, is a fundamental property of a net-
work path that affects application performance. Our
initial Internet measurement study [15] and subsequent
measurement-based studies [22][6] have shown that by
knowing the network distances from end hosts to a few,
say 20, other hosts, it is feasible to characterize the end
hosts’ network positions as points in a low-dimensional
Euclidean space model (say 6 dimensions) such that the
Euclidean distance between two end hosts’ network posi-
tions accurately predicts the actual Internet network dis-
tance in most cases. In short, network position is a feasi-
ble concept and can represent Internet network distance
relationships efficiently.
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F30602-99-1-0518, by NSF under grant numbers Career Award NCR-
9624979, ANI-9730105, ITR Award ANI-0085920, and ANI-9814929,
and by the Texas Advanced Research Program under grant No.003604-
0078-2003. Additional support was provided by Intel. Views and con-
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or implied, of DARPA, NSF, Texas ARP, Intel, or the U.S. government.

INote that network distance is a property of the network topology
and routing, and is not dependent on the instantaneous network load,
thus it is easier to model and predict.
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Network position can be very useful for a variety of
wide-area network applications. For example, a CAN
overlay network [18] can use network positions as logi-
cal overlay positions and reduce the average overlay de-
lay compared to an un-optimized structure. A wide-area
service location agent can also use network positions
of clients and servers to direct clients to nearby servers
without measuring the paths between the clients and the
servers. For bandwidth demanding applications, network
positions can be a highly scalable mechanism to select a
small subset of nearby nodes and then bandwidth prob-
ing techniques (e.g. [12]) can be applied to only this sub-
set to achieve higher efficiency. Several recent studies
have examined the benefits of using network position in
wide-area network applications [3][9][24][5]. Alterna-
tive network position computation algorithms have also
been proposed [13][16][20][22][6][5].

In this paper, we study the problem of building a net-
work positioning system (NPS) to provide a positioning
capability in the Internet. To the best of our knowledge,
this is the first study to consider system-building issues
in network positioning. There are two alternatives to de-
ploy an NPS, the first is to integrate an NPS with a par-
ticular application, the second is to deploy an NPS that is
shared by many applications. In this paper, we consider
the latter alternative. This is similar to the deployment
model of the Domain Name System (DNS) which pro-
vides a naming capability that is shared by applications
in the Internet. Like many other systems work, this pa-
per addresses a broad set of issues including identifying
key design issues, system architecture design, algorithms
design, implementation details, system tuning, and to a
limited extent security. We make the following contribu-
tions in this paper:

o ldentify key system-building issues: (1) consistency
of network positions, (2) adapt positions to net-
work topology changes, (3) maintain position sta-
bility when network topology is not changing.

e A hierarchical network positioning architecture that
maintains position consistency while enabling de-
centralization.

o A set of adaptive decentralized algorithms to com-
pute and maintain accurate, stable network posi-
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Figure 1: Basic network positioning method.

tions, even when a minority of malicious nodes may
lie about their positions.

o A functional prototype deployed on PlanetLab [17]
nodes that can be used by a variety of applications.

We believe our system may serve as a first step towards
providing a network positioning capability in the Inter-
net and can benefit existing and emerging applications.
Our system is in a relatively early stage of development.
Operational experience and application experience in the
future will help us better select the system parameters
and guide the evolution of the design of the system.

In the next section, we will describe the network po-
sitioning concept as originally proposed in [15] and out-
line the basic method for simulating network positioning
in an idealized setting. We will also present some ap-
plication examples. In Section 3, we present the detailed
design of the system, including the architecture and algo-
rithms. In Section 4, we describe the implementation of
the system. Results from our experience with the system
on PlanetLab and controlled experiments performed in a
simulator are presented Section 5. We present the related
work in Section 6 and finally conclude in Section 7.

2 Network Positioning

We begin the discussion by describing the concept of
network positioning and the network positioning method
proposed in [15]. The accuracy of the network positions
computed by an idealized simulation of this method will
serve as the target for the NPS to approximate.

Conceptually, network positioning seeks to embed the
Internet network distance relationship into a geometric
space (e.g. an Euclidean space). That is, each Internet
host is assigned a position (a set of coordinates) in a ge-
ometric space model such that the Internet network dis-
tances among the hosts are as well approximated by the
geometric distances in the model as possible.

The network distance between two hosts H; and Ho,
denoted by dy;,3,, is defined as the round-trip propa-
gation delay and transmission delay of the network path
between them. Operationally, it is the minimum observ-
able round-trip time (RTT).

A method to compute an embedding is outlined
in [15]. This method works as follows. N special hosts
called Landmarks, denoted by £, .., L, are deployed
in the Internet and the inter-Landmark distances are mea-
sured. The inter-Landmark distances are transmitted to
a central node. The central node then computes a set
of Landmark coordinates and return the coordinates to
the Landmarks. The Landmark coordinates, denoted by
CLys - CLy, are the result of minimizing the following
objective function:
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The simplex downhill algorithm [14] is used to solve
the optimization problem. The Landmarks’ coordinates
define the bases for the geometric space. To embed an or-
dinary host #, ‘H uses the Landmarks as reference points
and probes all the Landmarks to obtain the Landmarks’
coordinates and the network distances to the Landmarks
(see Figure 1). It then computes its coordinates, ¢y, that
minimize the following objective function:
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An idealized simulation of this network paositioning
method is a centralized computation procedure that takes
static network distance data as input and solves the op-
timization problems to determine a set of network po-
sitions. Using this method with Internet measurements,
it has been shown in [15] that the Internet network dis-
tance relationship is accurately embeddable in a low-
dimensional Euclidean space. In particular, in a 7-
dimensional Euclidean space, 50% of the distance pre-
dictions have less than 10% error, 90% of them have less
than 50% error, and the network positions can be used to
accurately select nearby hosts in the Internet.

Example Applications Network position can be very
useful in wide-area network performance optimization.
We briefly present two straight-forward applications to
illustrate. The first application is the CAN [18] overlay
network. We compare the overlay routing efficiency in
terms of end-to-end delay of a 1000-host 3-dimensional
CAN on a 100-node transit-sub topology [26] when us-
ing random overlay positions versus using network po-
sitions as overlay positions. The network positions are
computed with the method above using 4 randomly cho-
sen Landmarks among the nodes. We find that when us-
ing random overlay positions, the overlay delay is on av-
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Figure 2: Host position inconsistency.

erage 6.5 times the underlying network delay. In con-
trast, when using network positions as overlay positions,
the overlay delay is reduced to only 2.7 times the un-
derlying network delay on average, i.e. a factor of 2.4
improvement.

The second application is closest server selection. We
use the Internet measurement data set collected by [15],
which is available on-line. Following the same setup
in [15], we compute 7-dimensional network positions for
the hosts in the data set, we pick several non-Landmark
host as clients. Then we perform 1000 experiments.
In each experiment, we randomly pick 10 other non-
Landmark hosts as servers and we compute how well the
network positions can select the actual closest server for
the clients. We find that using network positions, on av-
erage the chosen server is only 10% further away than
the optimal choice. On the other hand, picking a ran-
dom server out of 10 is on average 200% further than the
optimal choice.

3 NPSDesign

In this section, we describe the detailed design of the
NPS. We begin by presenting a set of design issues.

3.1 Design Issues

Consistency - An important goal of a NPS is to produce
consistent positions for hosts. What do we mean by con-
sistent positions? The positions of hosts, i.e. their nu-
merical coordinates, can be compared meaningfully only
if they have the same bases. For example, in Figure 2,
it is meaningless to compare the coordinates of .4 and B
since they have different bases. Of course if A and B are
aware of the relationship between their different bases,
they can still correct for the difference. Thus, the posi-
tions of two hosts are said to be inconsistent if they have
different bases and they are unaware of it.

Adaptivity - The Internet is a dynamic environment. At
small time scales, network distance measurements can
be affected by fluctuating queuing delays in the network.
At long time scales, the Internet topology may change,
thus the positions of hosts may need to be updated ac-
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Figure 3: NPS overview.

cordingly to reflect changes in the intrinsic network dis-
tances. A NPS should adapt to these Internet dynamics.
Stability - In an adaptive system, a potential problem is
that network positions may fluctuate even when there is
no change in the network topology, leading to poor ac-
curacy. The stability goal is to minimize the unnecessary
drifting of the positions of hosts, while properly reacting
to network topology changes.

Accuracy - We seek to design a decentralized system
that can compute positions with accuracy that closely ap-
proximates the accuracy of an idealized simulation of the
method outlined in Section 2.

3.2 High-Level Overview

Figure 3 illustrates the high-level operations of the sys-
tem. There are three kinds of nodes in the system: mem-
bership servers, Landmarks, and ordinary hosts. Mem-
bership servers are easily replicable, they store system
configuration parameters and maintain soft state about
some participating hosts. There can be many inde-
pendent membership servers in the system and there is
no need to synchronize their membership information.
Landmark nodes are infrastructure nodes used to define
the bases of the Euclidean space model and can serve
as reference points. Landmarks bootstrap their positions
using a decentralized Landmark positioning algorithm.
Any host in the Internet can run a NPS daemon that
maintains the host’s position. When the NPS daemon is
started, it first contacts a membership server (e.g. picked
by DNS-round robin) to obtain a set of system config-
uration parameters (e.g. the dimensionality of the Eu-
clidean space model) and a list of reference points (steps
1 and 2). Then, the NPS daemon begins probing the ref-
erence points. These probes serve the purpose of obtain-
ing the latest positions of the reference points and the
network distances to the reference points (step 3). Based
on this information, the NPS daemon computes the posi-
tion for the host (step 4). Step 3 and 4 are repeated until
the position of the host is stabilized. At any given time,
an application can query the NPS daemon to obtain the
host’s current position instantaneously (steps 5 and 6).
The exception is when the host has just been booted-up
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Figure 4: Hierarchical network positioning architecture.

and there exists no prior cached position information for
the host. Landmarks and hosts periodically re-compute
their positions to adapt to network topology changes.

3.3 Hierarchical Architecture

Position consistency is an important goal. To ensure that
all host positions are consistent and have the same bases,
a straight-forward solution is to use the positions of a
set of Landmark hosts to define the bases and require
all hosts to use the Landmarks as their reference points.
This is the method outlined in Section 2. Although this
approach guarantees consistency, it has some undesirable
properties. As illustrated in Figure 1, every ordinary host
probes all Landmarks to compute its coordinates. In such
a system, the Landmarks and their network access links
become performance bottlenecks, and there is no obvious
solution to recover gracefully from Landmark failures.

Thus, we seek a decentralized solution that can at the
same time maintain consistency. Our design is a hierar-
chical architecture. In this architecture, Landmarks still
define the bases and can serve as reference points for
hosts in the system. The main departure from the basic
approach is that any host that has determined its position
can be chosen by the membership server to be a reference
point for other hosts. As a result, Landmarks become
much less critical, and temporary Landmark failures will
not halt the entire system. Currently, the membership
server randomly chooses among the eligible hosts as ref-
erence points when the Landmarks are too heavily loaded
or unavailable. However, to ensure consistency, we im-
pose a hierarchical position dependency among the hosts.
Figure 4 illustrates the hierarchical architecture. We say
that host .4 depends on host B if A uses B as one of its
reference points. We also define a notion called layer
number. The layer number of a host is the maximum
number of dependency hops separating it from the Land-
marks. For convenience, the Landmarks are given layer
number 0. We call a system that allows a highest layer
number L an “L + 1 layer system”.

By imposing a position dependency hierarchy, we en-
sure that the positions of all hosts have the same bases
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Figure 5: Host dependency in 2D Euclidean embedding.
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Figure 6: Logical host partitioning in layering experi-
ment.

defined by the Landmarks. Note that if the position de-
pendency is arbitrary, there can be a danger of losing con-
sistency. In general, any dependency cycle can prevent
hosts’ positions from converging since position updates
are propagated through the cycle. An example is shown
in Figure 5(a), where one cluster of hosts is partitioned,
and hosts have cyclic dependencies. Thus the positions
of the two clusters of hosts do not have the same bases,
and some hosts’ positions may not converge.

The hierarchical dependency invariant is easy to main-
tain in the system by checking reference points’ layer
numbers. Landmarks always have layer number 0. When
a NPS daemon starts, it initializes its layer number to be
the highest layer number allowed in the system, L,,,,. (a
static parameter retrieved from the membership server).
To maintain the invariant, each host H with current layer
number L4, simply refuses to depend on any reference
point R that has a layer number Li > Ly, When H
accepts a set of reference points R;, H updates its layer
number to be max;(Lx,) + 1. Figure 5(b) shows a 2-
dimensional example.

3.3.1 How Many Layers?

An important question to ask is, how many layers are
needed and how is accuracy affected? To shed light on
these questions, we have performed idealized simula-
tions on Internet-like synthetic topologies. Figure 6 illus-
trates the methodology. Given a set of hosts, we partition
them into K + 2 different layers. Layer Ly contains Ng



Ni. k=500 | K=0 | K=1 K=2 | K=3 | K=
Inet 3050 42 46 .87 .76 1.01
Inet 6000 .35 41 .69 .66 .83
PLRG 3000 .32 44 .57 .61 .68
PLRG 6000 .35 48 81 72 97

Table 1: 90 percentile relative error (Ng = 40, N1 g =
500, varying K).

K=1 N1 =500 | =1000 | =1500 | = 2000
Inet 3050 .46 45 44 44
Inet 6000 41 41 42 41
PLRG 3000 | .44 44 43 43
PLRG 6000 | .48 A7 46 46

Table 2: 90 percentile relative error (No = 40, K = 1,
varying Np).

Landmarks. For ¢ = 1,.., K, N; randomly chosen hosts
are placed into layer L;. The remaining hosts are placed
in layer Lg 1. In each experiment, fori = 1,.., K + 1,
each host in layer L; randomly picks Ny hosts in layer
L; — 1 as its reference points. After every host has been
embedded, we evaluate the relative error of the distance
predictions among the hosts in layer L 1. The relative
error of the distance prediction between a pair of hosts is
defined as:

|actual — predicted|

min(actual, predicted)

relative error = 4)
By varying K and NNV;, we can study the impact of adding
layers or changing the layer size on embedding accu-
racy. Note that these experiments are centrally simu-
lated under static conditions, no network dynamics are
introduced. We conduct these experiments on 4 differ-
ent synthetic power-law networks. Two are generated
by the Inet 3.0 generator [23] (3050 and 6000 nodes),
two are generated based on the PLRG model [2] (us-
ing the largest connected component, roughly 3000 and
6000 nodes). As usual, nodes are randomly placed in a
square region, and the delay of a link is the Euclidean
distance between the end points of that link. End-to-
end delay is the shortest path delay. For each network,
we choose 5 random sets of 40 Landmarks that are well-
separated. For each configuration, we run 5 experiments,
one per each set of Landmarks. For embedding, an 8-
dimensional Euclidean space is used. The resulting rel-
ative error among hosts in the outer-most layer is com-
puted and the 90 percentile is reported.

Table 1 and Table 2 show the results. Although we
present only the 90 percentile relative errors, note that
the the 50 percentile relative error is less than 0.2 for
all experiments. From Table 1, we see that with K =
1, the relative error is only slightly higher than K = 0
when every host uses the Landmarks as reference points.

However, allowing more layers inflate the relative error,
a sign of error accumulation. Concentratingon K = 1,
from Table 2, we see that the relative error appears to be
independent of the size of layer 1.

Interestingly, we observe that the relative error of the
distance predictions between hosts in layer 1 and layer
2 is better than that among layer 2 hosts. For K = 1
and N; = 2000, the 90 percentile relative error of the
distance predictions between layer 1 and layer 2 hosts
ranges from only 0.23 to 0.28. Thus, prediction accuracy
across layers is still maintained.

3.3.2 The3-Layer System

Based on our findings, we believe a 3-layer system (K =
1) is very promising. First of all, accuracy is only slightly
affected, and secondly under reasonable assumptions and
based on our practical experience with the system, a 3-
layer system can already reach an enormous membership
size. Itis important to note that only a few RTT measure-
ments are needed to perform a position computation, thus
the bandwidth overhead is very low. Assuming a 12-hour
re-computation cycle, each host in our system conserva-
tively generates less than 0.5bps of measurement traffic
to each reference point. Assuming layer 0 Landmarks
have 1Mbps of dedicated bandwidth to support layer 1
hosts, layer 1 hosts dedicate 10kbps to support layer 2
hosts, and 20 reference nodes are used by each node,
layer 1 can reach 2 million nodes, and layer 2 can already
reach 2 billion nodes!

3.4 Ordinary Host Positioning

The ordinary host positioning method at a high level fol-
lows the one described in Section 2 except of course the
reference points used by a host are not necessarily the
Landmarks. However, several types of dynamics need to
be considered when positioning a host in the system: (1)
Variable queuing delay in a network path makes it un-
clear how many RTT samples are needed to decide the
network distance (i.e. minimum RTT) has been mea-
sured. (2) When a host is updating its position, its refer-
ence points could also be simultaneously updating their
positions. (3) Network topology change can increase the
network distance of a path, so always keeping the mini-
mum RTT will not detect this kind of topology change.
To automatically adapt to (1) and (2), we employ an it-
erative positioning procedure that terminates when a sta-
bility heuristic condition is met. More precisely, in each
iteration, a host only requires one probe exchange with
each of its reference points. This provides the host with
one additional RTT sample for each reference point and
the latest position of each reference point. The newest
minimum RTT samples are used to update the network
distances. Based on the latest network distances and ref-



erence point positions, a new embedding position is com-
puted by minimizing Eq. 3. A random wait time of up to
one second is introduced between each iteration. The
heuristic is that if in three consecutive iterations the po-
sition of the host has moved by less than one millisecond
in the Euclidean space, then the procedure is terminated
and stability is declared. In our experience, by initially
setting the position of a host at the origin, stability can
typically be reached in under 15 seconds, including time
spent in pacing network probes. To adapt to topology
changes, re-positioning of a host starting from its current
position will be performed periodically.

To address (3) during re-positioning, the strategy is to
reconsider the current known minimum RTT of a path
based on a set of new RTT measurements. When a host
begins the iterative procedure to re-compute its position,
it has the previously known minimum RTT d,;4 to each
reference point. The host first obtains 10 new RTT sam-
ples to each reference point. Supposed the minimum of
these 10 new samples iS deq- If dyeq differs from dyq
by less than one percent, then we use d,;4 as the initial
network distance and begin the iterative procedure. Oth-
erwise, we use d,,..,. As a result, if the network distance
is increased by less than one percent, it will be ignored.
A decrease in network distance can be discovered even-
tually in the iterative procedure.

3.5 Decentralized Landmark Positioning

In the basic network positioning method described in
Section 2, Landmarks measure their inter-Landmark dis-
tances and ship all the data to a central node to compute
Landmarks’ positions in an Euclidean space that mini-
mize fop;1(-) (EQ.(1)). In contrast, NPS implements a
decentralized method. Observe that 2 x f,p;1(-) can be
expanded as:

2% fobji(Corsmcon) = 3 Edeicy,deic,) +
i1
D Edeiesydeics) +
i2

Y Eldeicy,deicy)
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Thus, the objective function can be decomposed into
N terms, each term corresponds to how one Landmark
relate to the others. We implement a decentralized strat-
egy which in essence randomly chooses one term from
the above equation, for example the term for L2, and
computes the corresponding host’s position that locally
minimizes that chosen term, and then repeats until no
further progress can be made.

More specifically, all Landmarks upon boot-up are ini-
tially positioned at the origin of the Euclidean space.
Each Landmark then uses all the other Landmarks as its
reference points, probes the other Landmarks, retrieves
their latest positions and obtains network distance sam-
ples, and computes a new position for itself. These steps
are in fact very similar to what an ordinary host does
when computing its position. A random pause time of
up to one second is introduced after each computation
step. Then the steps repeat until a convergence heuristic
criterion is met. The criterion again is that convergence is
achieved when in 3 consecutive iterations a Landmark’s
position has not moved by more than one millisecond
in the Euclidean space. Note that all Landmarks need
to roughly simultaneously begin re-considering their po-
sitions. We do this by triggering a Landmark to be-
gin re-considering its position when it is probed by an-
other Landmark, a signal that the other Landmark is re-
considering its position. To make it harder for a spoofed
Landmark to trigger computation, Landmarks exchange
random 32-bit authorization 1Ds when they probe each
other and a node must send the correct authorization ID
to a Landmark to trigger it. In our experience, this ap-
proach can embed 20 Landmarks starting from their ori-
gin positions in approximately one minute and the result-
ing positions are just as accurate as the centralized ap-
proach. Again, to adapt to topology changes, the Land-
marks also need to re-compute their positions periodi-
cally. If the network change is minimal, convergence can
be achieved in a small number of iterations.

3.5.1 Maintaining Stability

The Landmarks’ positions define the bases of the Eu-
clidean space which all other hosts share. If the net-
work topology is changed, then the Landmarks’ posi-
tion should be updated accordingly to reflect the change.
However, if the network topology has not changed, it is
important to minimize unnecessary drifting of the Land-
marks’ positions when they are re-computed. To increase
the stability of the Landmarks’ positions, we apply the
following mechanisms.

First, to get good measures of the current network dis-
tances, before any position re-computation, a Landmark
probes every other Landmark 50 times. In addition, pig-
gybacked in these probes, the Landmarks conduct bi-
directional exchanges of their current known minimum
RTT to synchronize. This is important because two
Landmarks must agree on the same network distance be-
tween them to reduce oscillations in positions. Once the
probings are done, the new minimum RTTs are com-
pared to the previous known minimum RTTs. Again if
the change is less than one percent, the old value is kept
as the initial network distance. Finally, if the network



distances from a Landmark to all other Landmarks have
not been changed by more than one percent, the Land-
mark keeps its old position.

3.6 Congestion Control

Probing from ordinary hosts are congestion controlled in
the system. This is to prevent overwhelming a reference
point if too many hosts are simultaneously probing it. To
implement congestion control, each probe packet carries
a sequence number. By observing the sequence numbers
in the probe reply packets, we can infer packet losses in
the same manner as TCP. The initial probing rate is one
probe per second in the implementation. An additive-
increase-multiplicative-decrease (AIMD) [25] rate ad-
justment procedure is applied when probe reply packets
are received or lost. The increase and decrease factors
can be tuned to be less aggressive than TCP if desired,
but this tuning is out of the scope of this paper. Probing
rate is also upper bounded by a constant (the implemen-
tation uses 10 probes per second as maximum rate).

Note that probing between Landmarks are sent at a
constant rate (10 probes per second) and no congestion
control is applied. This is to ensure no Landmark will
fall far behind in the position computation process.

3.7 Triggered Re-Positioning

Although hosts periodically re-compute their positions,
the setting of the re-computation interval represents a
trade-off between the load on the system and the ac-
curacy of the hosts’ positions. To be conservative, by
default a host re-computes its position only once every
12 hours in the current system. However, we use trig-
gered re-positioning to improve the accuracy and con-
sistency of the system when network topology changes.
When a reference point has undergone a drastic change
in position indicating a large change in network topol-
ogy, the reference point can trigger dependent hosts to re-
compute their positions. The aggressiveness in trigger-
ing dependent hosts is controlled by the reference point
based on the load it can tolerate. To ensure only a ref-
erence point of a host can trigger the host to re-compute
its position, we do the following. Before beginning com-
puting a new position, a host randomly chooses a 32-bit
authorization ID. This ID is included in probe packets
sent to the reference points. A reference point records the
authorization ID for each dependent host. In the current
system, when a reference point’s position has moved by
over 10 milliseconds in the Euclidean space, it triggers a
dependent host to re-compute by sending the correspond-
ing authorization ID to the dependent host. The depen-
dent host re-computes its position if the authorization ID
is valid.

Note that the Landmarks are never triggered by ordi-
nary hosts in the system. They periodically re-compute
their positions. The current period used in the implemen-
tation for Landmarks is 3 hours.

3.8 Detecting Malicious Reference Points

In our system, Landmark nodes are trusted entities, but
ordinary hosts in the system that serve as reference points
for other hosts could potentially lie to their dependents
if they are malicious. They could lie about their actual
positions and/or inflate the network distances by holding
onto probe packets. We separately discuss two types of
lies: (1) continuously changing lies, (2) fixed lies.

First, the damage of continuously changing lies is lim-
ited. This is because a reference point that continuously
changes its position can easily be noticed and be elim-
inated by the dependent. We do this by putting a time
limit on each reference point within which the reference
point’s position must stabilize or else it will be removed.
A time limit is also put on the stabilization of the network
distance (i.e. minimum RTT) to a reference point.

The more damaging lie is the fixed type in which a
malicious reference point consistently reports the same
false position and/or inflated network distance to each
dependent. Such a malicious reference point would ap-
pear to be normal to a dependent and it would be dif-
ficult to find a mechanism that could 100% accurately
identify such a lying reference point. One approach
to coping with this type of lie is to eliminate a refer-
ence point if it fits poorly in the Euclidean space com-
pared to the other reference points. The specific pro-
cedure in the system is as follows. Assume there are
N reference points R; with positions Pg,, and the net-
work distances from a host 4 to them are Dx,. After
‘H computes a position P, based on these N reference
points, for each R;, it computes the fitting error Ex,

as ‘d"““”ce(lzzl"m)*f’n“. Then we decide whether
to eliminate the reference point with the largest Ex,.
The current criterion is that if maz;(Er,) > 0.01 and
maz;(Er,) > C x median;(Ex,), where C is a con-
stant, then the reference point with maz;(Ex;) is elimi-
nated. That is, a reference node is rejected if it has fitting
error significantly larger than the median error among all
reference nodes. We use median error as the criterion
since it is more robust than the average error and cannot
be easily affected by a minority of malicious nodes. In
Section 5, we explore the choice of the constant C'.

4 NPSImplementation

The system is implemented on the Linux platform. It in-
cludes two components: (1) the NPS membership server,
(2) the NPS daemon. The membership server’s main



tasks are to provide basic system configuration informa-
tion and to serve as a rendezvous point for NPS daemon
coordination. Since the membership server does not need
to synchronize dynamically changing information, it can
be replicated easily. All network communications in the
system are implemented with UDP datagrams.

4.1 NPSMembership Server

The key functions of the membership server are to (1)
identify the Landmarks, (2) provide initial configuration
parameters to NPS daemons (i.e. whether the daemon
is a Landmark, the number of reference points a daemon
should use, the geometric space used for embedding, and
the maximum number of layers allowed in the system),
(3) maintain a subset of the current hosts that can po-
tentially serve as reference points, (4) hand out poten-
tial reference points when requested, and (5) control the
number of hosts in each layer. The membership server is
an event-driven process. The global parameters are read
from a text configuration file.

When a NPS daemon is started, it first asks the mem-
bership server for a set of initial configuration parameters
(i.e. item (2) above). If the NPS daemon is identified as
a Landmark, the number of reference points to use is one
less than the number of Landmarks since the other Land-
marks are its reference points. Otherwise, the number of
reference points to use is the number of Landmarks.?.

When a NPS daemon needs reference points to per-
form an embedding computation, it contacts the member-
ship server. If the NPS daemon is a Landmark, the other
Landmarks are always returned as the reference points.
Otherwise, the membership server has some flexibility in
giving out reference points. If the NPS daemon reports it
is currently in layer L, the membership server will avoid
giving out any reference points in layer L or larger be-
cause those reference points will be rejected. Note that
a NPS daemon assumes it is in the highest layer allowed
in the system when it starts. Note also that a NPS dae-
mon will verify the layer number of its reference points
during probing and thus the layer number information
maintained by the membership server does not need to
be precise. The membership server can also select refer-
ence points to roughly adjust the number of hosts in each
layer. For example, it can maintain a limited number
of hosts in layer 1 to ensure that the Landmarks are not
overloaded by measurement traffic. Once that threshold
is reached, it can direct other hosts to layer 2 or higher
by giving them reference points in layer 1 or above.

When a NPS daemon has successfully computed a sta-
ble embedding position, it reports to the membership
server its stable status and its current layer number. This

2|t is possible to use fewer reference points, but this variation is not
considered in this study.

information is kept as soft state at the membership server.
Stale entries are periodically flushed from memory. The
network load on the membership server is quite mini-
mal. In the experiments, a newly started NPS daemon
altogether sends and receives less than 600 bytes of data
between itself and the membership server to boot up, lo-
cate reference points, and report its status. If necessary,
multiple membership servers can be deployed.

4.2 NPSDaemon

The purpose of the NPS daemon is to compute and main-
tain the embedding position of the host which may be
a Landmark or an ordinary host, and cope with the dy-
namics in the network or the system. The NPS daemon
consists of two processes. The parent process imple-
ments the NPS logics and protocols, and the child pro-
cess is a computation engine that solves the optimization
problems in embedding computations using the simplex
downhill algorithm [14]. The two processes are both
event-driven and communicate via a full duplex pipe.
The concurrency is desirable because we want the par-
ent NPS process to remain responsive to various events
while an optimization problem is being solved (which
could last for a few milliseconds).

Once a NPS daemon has configured itself with param-
eters obtained from the membership server, it begins to
compute and maintain its embedding position. At the be-
ginning of an embedding computation cycle, a NPS dae-
mon first declares itself unstable (the precise definition of
stability is discussed in Section 3.4). It then makes sure
it knows a sufficient number of valid reference points, if
not, it asks the membership server for more. The net-
work distance between itself and each reference point is
measured by timing the delay between the sending of a
probe message and the receiving of a reply from the ref-
erence point. When a reference point replies to a probe
message, it piggybacks its current coordinates and its
current layer number onto the message. As soon as a
network distance estimate is obtained for each valid ref-
erence point, the NPS daemon performs the embedding
computation. This process is repeated until the stability
criterion is met. The stable coordinates are stored on disk
so that they can be retrieved after a daemon restart. The
current layer number is then reported to the membership
server, and a re-computation is scheduled. This com-
pletes one embedding computation cycle. If 12 probes
are sent from an ordinary host to a reference point with-
out any reply, the reference point is removed and a new
one is obtained from the membership server. Sequences
of probes to different reference points are started at least
10ms apart. The selection of these constants are not sig-
nificant, they just seem reasonable.
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Figure 7: Positioning convergence time distributions.

4.2.1 NPS Application Programming I nterface

The NPS daemon currently supports a simple application
programming interface for network position queries. An
application can query the NPS daemon by sending it a
UDP query message. The NPS daemon replies with the
dimensionality of the Euclidean space and current nu-
merical coordinates of the host in a UDP reply message.
Currently the coordinates are represented as 32-bit inte-
gers in unit of microsecond.

4.2.2 Workingwith NAT Hosts

Network Address Translation (NAT) [21] is becoming an
increasingly ubiquitous solution to incrementally scale
up the size of the Internet. However, a problem with NAT
is that it can prevent in-bound data connections. The sys-
tem has been carefully designed to work with NAT. First,
the system uses only UDP datagrams for communication,
and a NPS daemon is identified at a membership server
by the IP address and UDP port number carried in the
messages it sends. Thus, NPS daemons behind NAT can
be uniquely identified by the membership server. In addi-
tion, the messages between a NPS daemon behind NAT
and the membership server would establish forwarding
state in the NPS daemon host’s NAT gateway. Under
typical implementations of NAT, another NPS daemon
can communicate with the NPS daemon behind NAT us-
ing this same NAT forwarding state. Thus the system can
work around the in-bound connection problem.

5 Experiments

In this section, we present experience with the system
on PlanetLab. We also present results from controlled
experiments using a simulator.

5.1 PlanetLab Experience

The NPS system is operational on PlanetLab. Here, we
report our experience from a particular 20-hour period of
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Figure 8: Positioning accuracy on PlanetLab.

operation of the system on a weekday from 2am to 10pm.
Note that the PlanetLab is a shared test-bed.

We use 127 PlanetLab nodes. We first collect the 127
x 127 network distances using ping (100 RTT samples
per path), then we apply clustering to select 15 well-
distributed nodes as Landmarks. The remaining 112
hosts serve as ordinary hosts. A membership server is
set up at our institution. The Euclidean space is config-
ured to have 8 dimensions. All the ordinary hosts use
the Landmarks as reference points unless Landmarks are
down. The NPS daemons on Landmarks are started 5
minutes prior to the starts of ordinary hosts. Landmarks
update their positions once every 3 hours. Ordinary hosts
by default update their positions once every 12 hours,
but can also be triggered by a Landmark to update if the
Landmark has moved its position by more than 10 mil-
liseconds. Probing congestion control is also enabled.

5.1.1 Convergence Time

Figure 7 shows the positioning convergence time dis-
tributions during this 20-hour period. The convergence
time is measured starting from the first probe to any ref-
erence point is sent by a host until the host’s position
has not changed by more than one millisecond over 3
consecutive computation iterations. Note that most of
this time is spent in pacing network probes to reference
points. First, consider the distribution for ordinary hosts,
we can see that updating the position of an ordinary host
takes less than 15 seconds in 80% of the cases. As ex-
pected, however, the convergence times for Landmarks
are generally longer since Landmarks simultaneously up-
dates their positions and need more time to agree on their
positions distributedly. We have also computed the time
it takes the last Landmark to converge in each of the 7 up-
date rounds during the 20-hour period. We can see that
in most rounds, all Landmarks converge in less than 160
seconds. In a better provisioned environment, we expect
the convergence times to be reduced.



The convergence times we observe are far shorter than
the time scale at which the Internet topology changes,
which is typically on the order of a day [27], thus the
system is sufficiently agile. When the NPS daemon is
run as a background process, the only occasion an appli-
cation asking for the position of a host needs to wait for
the NPS daemon to converge is when the NPS daemon is
initially started without any prior position information.
In most cases, applications can obtain the position infor-
mation instantaneously.

5.1.2 Position Accuracy Over Time

Figure 8 summarizes the accuracy of the system on Plan-
etLab. The accuracy metric is relative error (Eq.(4)). We
have plotted the cumulative distribution of relative error
for different classes of hosts near the beginning of the
20-hour period and near the end of the 20-hour period.
First, since Landmarks directly use the inter-Landmark
distances in computing positions, not surprisingly, the
resulting Landmark positions approximate the distances
among Landmarks well, achieving a 90 percentile rela-
tive error of roughly 0.25. Comparing the accuracy of
the Landmarks’ positions at the beginning and end of the
20-hour period, we see that the level of accuracy is main-
tained by the system without degradation. This is an im-
portant validation of the system’s ability to maintain po-
sition accuracy over time in a dynamic environment.

For the ordinary hosts, we consider only the position
accuracy for the inter-ordinary-host distances. Note that
these distances are not used in computing the ordinary
hosts’ positions. The level of accuracy achieved by the
system is very good with a 50 percentile relative error of
0.08 and a 90 percentile relative error of 0.52. This ac-
curacy distribution is very similar to previous network
measurement-based results reported in [15] and [22].
The point that we wish to again emphasize is that the
level of accuracy is maintained by the system over time
without degradation.

5.2 Controlled Experiments

To explore specific aspects of the system, we perform
controlled experiments of the system in a simulator. This
allows us to quantify the impact of various designs of
the system under different scenarios, and to allow us to
compare how close the system’s accuracy is to the target
accuracy of an idealized simulation.

Our network simulator is event-driven. It implements
a set of system interfaces to interact with NPS compo-
nents. The important interfaces are get_current_time(),
set_timer(), unsettimer(), send_message(), and
solve_for_coordinates() to compute the coordinates
for the requester. Only one computation engine exists in
the simulator, the real computation time is recorded and
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Figure 9: 2 layer system embedding accuracy under RTT
dynamics.

is used to simulate the computation delay. The NPS dae-
mon and membership server provide an event_handler()
interface to receive either timer events, messages, or
computation results.

The simulator is capable of simulating system dynam-
ics. The underlying network topology can be changed
during simulation. It can also simulate variations in the
network round-trip times. We do this by adding to a net-
work delay d some exponentially distributed noise with
a mean m, and we choose 0 < m < d. Our goal is only
to observe how different aspects of the system function
under noise, and we do not claim that noise generated by
this method is representative of the noise on the Internet.
It has been observed that Internet RTT measurements are
often fairly close to the minimum RTT [1]. In the simu-
lator, 12% of the paths are given the worst case variation
where we set m = d. Intuitively, in this case only one
in 100 RTT measurements is within 1% of the true mini-
mum. For 50% of the paths, m > 0.05d, and for 10% of
the paths, m < 0.005d.

We use a 1044-node PLRG [2] topology for the simu-
lations. As usual, nodes are randomly placed in a square
region, and the delay of a link is the Euclidean dis-
tance between the end points of that link. End-to-end
delay is the shortest path delay. First, a set of 20 well-
separated Landmarks are randomly chosen. We use an 8-
dimensional Euclidean space for the embedding. To gen-
erate an ideal accuracy target, we conduct an idealized
simulation of networking positioning. We use the 90 per-
centile relative error as a point to compare between dif-
ferent experiments. We find that using the 20 Landmarks
as reference points for the entire system, the 90 percentile
relative error achieved is 0.33. This can be considered
a rough lower bound for the 90 percentile relative error
for the system. The goal will be to achieve an accuracy
as close to this possible. In the system simulations, the
Landmarks recompute their positions once every 3 hours.
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Figure 10: 3 layer system embedding accuracy under
RTT dynamics.

The ordinary hosts, on the other hand recompute their
positions once every 12 hours. Triggered re-positioning
are turned on in some experiments. The Landmarks re-
compute more frequently so that any topology change
can be fairly promptly detected by the Landmarks. The
experiments simulate the life of the system for 48 hours.
The Landmarks begin the process of computing their po-
sitions at time zero. Unless otherwise stated, the 1024
ordinary hosts join the system in random order, starting
at the 10 minute mark, with an exponentially distributed
inter-arrival time chosen such that the last host joins the
system at roughly the 12 hour mark. This spreading is
done to expose the embedding accuracy of the system
under asynchronous host computations. To summarize
the performance of the system over time, at every hour
in the simulation, we compute the 90 percentile relative
error for all the network distances among hosts that are
in the system at the moment.

5.2.1 System Accuracy and Effectiveness of Stabil-
ity Control

We first present the result of an experiment under RTT
dynamics (no real topology change) where all hosts use
the Landmarks as their reference points (i.e. a 2 layer
system). In this experiment, the triggered re-positioning
mechanism is turned off. The stability control mecha-
nisms for Landmarks is experimented with. The results
are shown in Figure 9. The accuracy of the idealized
simulation is also plotted as a baseline for comparison.
First, note that without the stability control mecha-
nisms described in Section 3.5.1, we can clearly see that
the accuracy of the system is adversely affected by the
drifting of Landmarks’ positions. The problem is that
as the Landmarks’ positions drift every 3 hours, differ-
ent ordinary hosts are computing their positions based
on different sets of Landmark positions without knowing
it, which leads to a noticeably higher position error. With
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the stability control mechanisms, the system’s accuracy
is stable throughout the 48 hour period. Second, observe
that the system’s accuracy is matching that of the ideal-
ized simulation. The lower error at the beginning is be-
cause hosts are still joining in the dynamic system. Thus,
the system achieves the basic objective of matching the
performance of an idealized simulation.

In the simulated environment, an ordinary host on av-
erage takes 14.8 seconds to converge to a position. The
last Landmark to converge in each round takes on aver-
age 41.2 seconds. These figures are not so different from
those we see on PlanetLab.

Figure 10 shows the result when only 300 hosts are al-
lowed to be at layer 1 and the other 724 hosts are forced
to be at layer 2 and use layer 1 hosts as reference points
(i.e. a 3 layer system). As expected, there is a small ac-
curacy penalty over the 2 layer case. However, what is
gained here is a much larger potential system size and
robustness since hosts do not have to use Landmarks as
reference points. We also observe that the impact of not
having the stability mechanisms is magnified by the de-
centralization (compare to Figure 9). With the stability
mechanisms, the accuracy of the system remains stable.

5.2.2 Effectivenessof Triggered Re-Positioning

In the next set of experiments, we keep the settings the
same as before, except that at the 13th hour into the simu-
lation, we replace the underlying network topology with
a different PLRG. This is done to simulate a drastic and
instantaneous change in the network topology. What we
want to show is that the NPS system can gracefully adapt
to such catastrophic network change and eventually con-
verge to a consistent global embedding. Coincidentally,
the 90 percentile relative error achievable in an idealized
simulation for the second topology is also 0.33. Fig-
ure 11 shows the result for a 2 layer system.

First, notice the sharp jump in relative error at the 13th
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hour due to the topology change. Over time, the system
is able to detect the topology change and adapt. We can
also see the benefits of triggered re-positioning and the
stability mechanisms. Without either of these features,
the system adapts but at a slow pace since hosts do not
recompute their positions for 12 hours, and the system
accuracy still fluctuates after 12 hours due to instability.
With both features, we see that after the 15th hour when
Landmarks have recomputed their positions, other hosts
are triggered to update their positions. By the 16th hour,
all hosts have reached their new positions, the accuracy
of the system is stable and matches that of the ideal case.

Figure 12 presents the result for the same network
topology change scenario but with a 3 layer system
where 300 hosts are in layer 1. First, consider the case
with no triggered re-positioning and stability mecha-
nisms. Because in the 3 layer system there is one level
of indirection between the majority of the hosts and the
Landmarks, it takes roughly one 12 hour period for all
the layer 1 hosts to all move to their new positions, and
roughly another 12 hour period for all the layer 2 hosts to
move to their new positions relative to the layer 1 hosts.
In contrast, with the stability and triggered update fea-
tures, convergence to good performance happens quickly
even with a layer of indirection. The layer 1 hosts are
able to inform layer 2 hosts of the network topology
change and within 1 hour after the Landmarks detect the
topology change, all hosts have converged to their new
positions with high and stable accuracy.

5.2.3 Effectivenessof Malicious Reference Node De-
tection

To see the effects of lying reference points, we conduct
several experiments with a 3 layer system with 300 hosts
in layer 1. First 10% of the ordinary hosts are desig-
nated to be malicious. Each of them randomly chooses
a number between 0 and 1000. It then consistently lies
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about its position and inflate network distances by that
amount (in unit of millisecond). In Figure 13, we show
the effect of these malicious hosts to the system in a 24
hour simulation period. When the malicious reference
node detection mechanism is off, notice the sharp climb
in relative error when layer 2 hosts begin to join the sys-
tem. Without any malicious reference node detection
mechanism, the accuracy of the system is destroyed by
the lying layer 1 hosts. Fortunately, the malicious refer-
ence node detection mechanism is able to dramatically
restore performance to nearly the same level as the “3
layers, no malicious hosts” case. That is, the mechanism
is highly effective at detecting malicious hosts. We have
experimented with several different sensitivity constant
C values to tune the aggressiveness of the mechanism
and found that a conservative value of 4 is sufficient.
Moreover, when there is no malicious hosts in the sys-
tem, the malicious reference node detection mechanism
only slightly affects the system’s overall accuracy.

6 Redated Work

This work is aimed at building a networking position-
ing system that can be used by Internet applications. As
such, this work deals broadly with issues including sys-
tem architecture, algorithms design, implementation de-
tails, system tuning, and to a limited extent security. To
the best of our knowledge, this is the first study to con-
sider system-building issues in network positioning. We
have identified several key system issues such as position
consistency, stability, and adaptivity that are important in
a practical system. While this system is being developed,
many parallel work has explored a variety of issues in
network positioning.

In [20], an optimization method called Big-Bang-
Simulation (BBS) is proposed. This method simulates
the error in an embedding as force fields. It uses a multi-
phase procedure to reduce the error in the embedding it-
eratively. It has been shown that this method is compu-



tationally efficient and has slightly better relative error
performance than the downhill simplex minimization al-
gorithm used in our system. A distributed version of BBS
can potentially be developed and used in NPS.

In [16], a distributed network positioning architec-
ture called Lighthouse and a different positioning math-
ematical framework based on the Gram-Schmidt process
rather than multi-dimensional optimization are proposed.
In the Lighthouse architecture random hosts with com-
puted positions are used to serve as reference points in
the system to enhance scalability, and hosts that use dif-
ferent reference points as bases correct for the differ-
ence by using a position translation matrix. The PIC [5]
study in parallel proposes an architecture similar to that
of Lighthouse, but uses a multi-dimensional optimiza-
tion framework for its robustness. In addition, the PIC
study explores reference point selection algorithms, as
well as proposes a triangle inequality based criterion
for detecting malicious reference nodes. Interestingly,
the PIC malicious reference nodes detection mechanism
works somewhat similarly to our embedding error based
approach. Comparing these distributed architectures to
the hierarchical architecture in NPS, the position depen-
dency structure is not controlled in Lighthouse or PIC,
thus consistency becomes a concern in these designs.
Our work focuses on system issues and does not consider
reference node selection algorithms.

In [6], a highly symmetric, distributed network posi-
tioning architecture called Vivaldi is proposed. In this
architecture, hosts do not need to have computed po-
sitions before serving as reference nodes. Instead, ev-
ery node starts at the origin position and continuously
measures network distances against a small set of ran-
dom reference nodes and update its position to minimize
the locally observed embedding error. The accuracy of
this approach turns out to be very promising compared
to GNP. A significant property of this approach is that
in the steady state, the positions of all hosts are continu-
ously evolving and consistent dependency is not ensured.
It remains to be shown how quickly positions change in
this architecture, how frequent are re-computations re-
quired to maintain accuracy, and how quickly this ap-
proach adapts to network topology changes.

A recent study [22] has shown the potential of us-
ing Lipschitz embedding with dimensionality reduc-
tion based on principal component analysis (PCA) as
a method for network positioning. Moreover, in this
method, it is easy to introduce multiple Landmark sets
for hosts to use to increase scalability and use the trans-
lation matrices between the different sets of Landmarks
to correct for the difference in bases accordingly. This
study also empirically examines the intrinsic dimension-
ality in large network distance data sets and found the

dimensionality to be low. Compared to Euclidean em-
bedding, Lipschitz embedding is much more efficient to
compute and the accuracy is comparable to Euclidean
embedding. A parallel study [13] has also suggested the
use of PCA of Lipschitz embedding to compute network
positions. This study analyzes the difficulty in the non-
linear optimization of Euclidean embedding, and show
that a PCA based scheme is more computationally effi-
cient. This study also explores methods to reduce the
number of Landmarks that need to be probed without
adversely affecting the accuracy. Distributed versions of
these methods however remain to be developed.

Besides network positioning, an alternative way to
provide network topology information to applications is
to supply them with network distance estimates directly.
In particular, the IDMaps [7] service provides network
distance information. IDMaps builds a simplified over-
lay topology map of the Internet based on network mea-
surements performed by Tracer nodes in the network.
Distance predictions are then computed by perform-
ing shortest path routing on this topology map model.
IDMaps supports a general distance query interface such
that an application can query IDMaps servers to find out
the network distance between two hosts. Comparing
to the IDMaps service, NPS is different in that the in-
frastructure nodes (Landmarks and membership servers)
merely enables end hosts to use their own resources to
compute their positions in the Internet and does not di-
rectly interact with any applications. It is up to the ap-
plications running on end hosts to decide how to use the
computed locations. Distance prediction for example can
be computed by end hosts and is a by-product of the po-
sition information. The Isobar [4] project proposes an
efficient overlay network delay monitoring mechanism
that uses clustering techniques to group together hosts
that have similar network distance observations and thus
reduce the amount of monitoring traffic significantly.

There are also other indirect methods for determining
nearby neighbors in the Internet. For example, nearby
Internet hosts can be clustered implicitly based on In-
ternet routing table information [11]. In [19], a Land-
mark distance vector based scheme called Binning is pro-
posed to estimate the proximity between hosts. With
such a scheme, the location of a host would be repre-
sented by the Landmark distance vector. This scheme
however is not aimed at producing actual network dis-
tance estimates. Triangulated heuristic [8] is another so-
lution, where Landmark vectors are also used as loca-
tions, and upper and lower bounds on the network dis-
tance between two locations are estimated. In [10], a
scheme called Beaconing is proposed to find nearby net-
work hosts. The idea is to use the distance from a host to
a Beacon to determine the subset of hosts that lie within



a similar distance from the Beacon. By intersecting the
subsets of hosts provided by multiple Beacons, a set of
nearby hosts can be found.

7 Conclusion

In a very short time, network positioning has developed
into a fascinating research area. This paper, to the best of
our knowledge, is the first to study the system-building
issues in network positioning. We have identified key
issues such as consistency, adaptivity, and stability in
building a network positioning system, and found that
with a carefully designed system, these issues can be ad-
dressed effectively in practice. There has been a lot of
interest in the research community in having access to
a publicly available network positioning system, and we
believe our prototype can be a first step in providing such
a capability. The operational experience will guide the
future evolution of the system. Ultimately, our goal is to
provide a network positioning capability to all hosts in
the Internet.
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