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Abstract

In recent years the volume of junk email (spam, virus
etc.) has increased dramatically. These unwanted mes-
sages clutter up users’ mailboxes, consume server re-
sources, and cause delays to the delivery of mail. This
paper presents an approach that ensures that non-junk
mail is delivered without excessive delay, at the expense
of delaying junk mail.

Using data from two Internet-facing mail servers, we
show how it is possible to simply and accurately predict
whether the next message sent from a particular server
will be good or junk, by monitoring the types of mes-
sages previously sent. The prediction can be used to
delay acceptance of junk mail, and prioritize good mail
through the mail server, ensuring that loading is reduced
and delays are low, even if the server is overloaded.

The paper includes a review of server-based anti-spam
techniques, and an evaluation of these against the data.
We develop and calibrate a model of mail server perfor-
mance, and use it to predict the performance of the pri-
oritization scheme. We also describe an implementation
on a standard mail server.

1 Introduction

In recent years the volume of junk mail (spam, virus,
etc.) has increased dramatically. According to Message-
Labs, the volume of spam increased by 77% in 2003,
and virus-carrying emails increased by 84% [18]. This
increase in volume taxes the resources of servers respon-
sible for routing mail, and increases the transit time of
emails. During virus/worm attacks these delays can in-
crease to unacceptable levels [2]. This paper presents

an approach that ensures that most of the “good” mail
is processed quickly, at the expense of larger delays for
junk mail.

Unfortunately, this problem is only going to get worse.
The volume of email traffic increases over time [34], but
the volume of spam increases much faster. Messagel abs
predict that in 2004 70% of all messages will be spam,
as compared to (only) 55% as of November 2003 [17].
There are other reasons why it is getting worse. First
is the convergence of viruses and spam, where virus-
infected machines are being sold and used as spam re-
lays [37]. Secondly, sites that offer blacklists (lists of IP
addresses used by spammers) have been subject to denial
of service attacks [28], some launched from viruses [30].
Thirdly, there is a continual arms race between spam and
content filtering programs, with filtering always behind
and missing some spam [20, 11].

Our approach is to enable good mail to reach the desktop
without delay, in contrast to most existing approaches
to the problem of spam, which concentrate on prevent-
ing junk mail from reaching the desktop. Some of
the prevention mechanisms reduce server load (and so
reduce delays), for example the use of blacklists and
other heuristics to refuse connections from spamming
servers. Others increase server load, for example con-
tent checking and filtering at the server. As users are
intolerant of any mistakes in classification (particularly
false positives—Ilegitimate mail classed as spam), and
as spammers seek to evade the filters, spam checking
becomes more computationally intensive, resulting in
overloaded servers and increased delays.

Our aim is to provide good quality of service for “good”
mail in spite of the volumes of junk. The idea is not to
stop mail that is identified as junk from reaching users,
but to delay it, by delaying its acceptance into the mail
server and giving it low priority access to the content
scanner or other bottlenecks in the mail system. This



means that false positives of our detection algorithm are
not disastrous, because they do not prevent the (even-
tual) delivery of good email.

We present data collected from two heavily used
Internet-facing mail servers from a large corporation,
and show that it is relatively simple to predict whether
the next message from a particular server will be junk
or not. The prediction is based on the types of mes-
sages (good/junk) that the server has previously sent,
and is fairly accurate (approximately 74-80% of good
messages and 93-95% of junk messages are recognized
accurately). This prediction can be used to reduce
server load by delaying acceptance of messages (using
SMTP temporary failures [21]) and to prioritize mes-
sages through the mail server. This latter response al-
lows good messages to be processed with minimal delay,
even when the server is overloaded.

Using a model of the performance of a mail server, cali-
brated against our data, we show the effectiveness of this
prioritization scheme. For a variety of loading condi-
tions and server performances, the model predicts very
low delays (small numbers of seconds) for good mail,
compared to the (small numbers of hours) delays ob-
served for a system without prioritization. This not only
improves the quality of service, but also means that mail
servers will no longer have to grow in processing power
at the rate that junk mail increases.

The rest of the paper includes a review of server-based
approaches to spam, and an evaluation of these re-
sponses given our data. The following sections then de-
scribe the prediction method, describe the performance
model, and present results for mail transit times. The fi-
nal sections describe a practical implementation, present
initial results, and draw conclusions.

2 Related work

In the SMTP protocol [21] there is a defined point at
which the receiving server takes responsibility for de-
livery of the message. This point is after all the data
has been received and acknowledged. Responses to
spam at the server can be divided into those before this
point (pre-acceptance) and after (post-acceptance). Pre-
acceptance responses are preferable, as by stopping the
mail they reduce server load. Once the mail has been
accepted the server is obliged to do work to deliver it.

Pre-acceptance responses can be divided into three

types: blocking, delaying and tempfailing. Blocking
means refusing to accept mail from a particular server,
usually identified by IP address (because it is the only
part of the SMTP opening dialog that is not easy to
forge). Mail is not accepted if it is found on various
lists or matches a number of heuristic rules designed
to combat spam. For example, a Real-time Blacklist
(RBL) is a maintained list of spamming IP addresses,
provided by a variety of organizations, and generally
accessed over DNS [27]. There are also lists of open
relays (poorly configured or compromised machines on
the Internet that relay mail indiscriminately), as well as
dialup blocks. Other heuristics used include whether the
sender’s domain is correct, whether the server accepts
incoming mails, or whether the sender’s address matches
the sending domain [29]. Other blocks may be more re-
ceiver specific, for example Tantalus [9] blocks a server
if it sends too many undeliverable messages.

Blocking is generally accepted and used, and while it is
still vulnerable to false positives, there are well known
mechanisms to deal with these (e.g.[16]). Unfortunately
it takes time to add an address to a blacklist, during
which the spammer can send many emails. In addition,
our data will show that these blocks are only partially
effective, mainly because it is easy for spammers to con-
form to the heuristics and change their IP address fre-
quently.

The response of delaying is a more direct attack on the
resources of the sender of junk mail. Teergrubing [8]
is the practice of slowing down the SMTP conversation
if a sender tries to send a message to too many recipi-
ents (or if the sender’s address is on a maintained list).
This consumes spammers’ resources, but unfortunately
also consumes resources on the server. There are many
variants on this idea, e.g. more sophisticated teergrubing
algorithms (SpamThrottle [38]), and various rate limit-
ing mechanisms built into mail servers, e.g. rate limiting
in Postfix [35]. Some delaying tactics work by analyz-
ing the data in the message as it is loading, and slowing
the connection if the message looks like spam (e.g. Tar
Proxy [32]), and some are like honeypots for spam (e.g.
Jackpot Mailswerver [5], an open relay that talks slowly
to spammers that attempt to use it).

Delaying is a form of rate limiting, and the above tech-
niques limit the number of messages per SMTP connec-
tion, or the number of recipients per message. A rate
limit on the number of messages per sender is also pos-
sible, as offered by IronPort [13], who offer a rating of
the trustworthiness of senders, so allowing servers to im-
plement rate limits.



Most of these mechanisms assume that incoming spam
is detectable because it is sent at a high rate, and that
slowing it down will reduce the amount of spam re-
ceived. While it is possible for spam to arrive at a high
rate, e.g. during a dictionary attack [1, 14] where a spam-
mer bombards a server with messages addressed to ran-
dom email addresses, our data will show that this gener-
ally is not the case. Most spam that is received by our
servers is sent by servers from which only small num-
bers of messages are received, and those messages are
not received at particularly high rates. This shows that
rate-limiting mechanisms are unlikely to be effective.

The last pre-acceptance response is tempfailing. This is
an SMTP control code that means “my server is tem-
porarily unavailable, please try again later” to the send-
ing server [21]. Well-configured mail servers will retry
the mail later, but currently most spamming software and
email-based viruses do not attempt retries. This is the
premise of Greylisting [12], in which a server keeps a
list of triples consisting of the sending host’s IP address,
sender’s email address and recipient’s email address, and
tempfails mail that would generate new triples for some
period of time. Since spamming software does not retry,
this vastly reduces the amount of spam accepted by a
server running Greylisting, while normal mail is subject
to some delay. The weakness of this approach is that if
(and when) spammers implement retries, this technique
will become less effective.

Tempfailing is a useful strategy when used in combina-
tion with blacklists. It forces the spammer to maintain
the IP address for longer, and reduces the rate that the
spammer can send mails. This reduces the number of
mails that are sent before the address is added to a black-
list.

Although tempfailing is a useful tool in the fight against
spam, our data shows that the Greylisting approach is
rather inefficient, delaying a large proportion of good
mail, and requiring rather large numbers of triples. We
suggest that evidence of spamming can be better ob-
tained by looking at the history of mail sent by a par-
ticular server, and that this combined with tempfailing
can be effective.

The main post-acceptance response is to look at the con-
tent of the mail message, scan it for viruses and examine
the text for evidence of spam. Spam filtering can be ac-
complished by a variety of means, including collections
of simple rules [25], Bayesian reasoning [22], and col-
laborative filtering [6]. It can also be implemented on
the client, but is increasingly implemented on the server,
often as an add-on to existing scanning for viruses.

None of these filtering mechanisms are infallible, and all
suffer from the problem of false positives or incorrectly
classified mail. In addition, the filters must be continu-
ally updated, as spammers develop new means to evade
them [11, 20]. Moreover scanning mechanisms cause
extra loading at the server, resulting in delays when the
server is heavily loaded.

In this paper we introduce a new post-acceptance re-
sponse, that of prioritizing the flow of good mail through
the mail server, and processing mail suspected of being
junk (virus, spam, or undeliverable) at reduced priority.
The aim is that in times of heavy system load there will
be prompt delivery of good mail, at the expense of de-
lays to other mail.

3 Characteristics of email traffic

To evaluate existing responses and develop new ones, we
collected data from the logfiles of two Internet-facing
email servers in a large corporation, as detailed in Ta-
ble 1. Serverl and server?2 are the primary and secondary
server for a single email domain. These servers ran a
virus checker (Sophos [26]), and a spam filter (Spam As-
sassin [25]), using MailScanner [33], so for each SMTP
transaction it is possible to discover from the log files
whether received mail contained viruses or was flagged
as spam. Serverl and server2 did not store mail for read-
ing or check the addresses of recipients, but forwarded
mail to other servers. Undeliverable mail was thus in-
dicated by a failure to deliver to these servers, and was
recorded in the logs. The logs also included records from
incoming mail blocked because of real-time blacklists
and other heuristics. This data gives a good picture of a
server’s-eye view of spam.

These servers are listed in public MX lookups, but also
receive some mail from other mail servers within the
corporation (they are part of an internal mail routing
chain). Because the intent of this work was to com-
bat spam entering a corporation, we removed the data
corresponding to this “indirect” mail, leaving only the
“direct” messages—interactions with other mail servers
over the Internet.

Both servers subscribed to real-time blacklists, and per-
formed other checks on the sender’s address before ac-
cepting messages. These mechanisms rejected around
34-36% of incoming messages (see Table 2). How-
ever this is only partially effective at reducing spam, as



Table 1: Details of the data collected.

server  length number number
(days) of messages of recipients

serverl 69 855,228 1,229,459

server2 69 755,565 1,097,169

Table 2: Effectiveness of real-time blacklists and other
blocking responses. While blacklists and other checks
block around 34-36% of incoming messages, the ac-
cepted mail is still mostly junk, as shown in Table 3.

type serverl server2
number % number %
rol 256,700 19 207,144 18
open relay 119,161 9 95,536 8
other checks 112,555 8 81,170 7
total blocked 488,416 36 383,850 34
total accepted 855,228 64 755,565 66

total attempts 1,344,960 100 1,139,415 100

Table 3: Breakdown of mail messages by type for each
server. The percentages for spam, undeliverable and
virus do not sum to 100%, as messages can fall into mul-
tiple types. The last two rows show totals of accepted
good mail and accepted junk mail, where junk mail is
any one of virus, spam or undeliverable.

type serverl server2
number %  number %
good 260,348 30 262,941 35
spam 497,554 58 414,234 55
virus 2,749 0.3 2,371 0.3
undeliverable 364,487 43 298,169 39
total accepted good 260,348 30 262,941 35
total accepted junk 594,880 70 492,624 65

around 65-70% of the accepted mail is junk, as shown
in Table 3.

Table 3 shows a breakdown of accepted messages. The
values for spam and virus reflect messages that were
flagged as such in the logs. A message was deemed un-
deliverable if on the first delivery attempt more than half
of the recipients failed. The good messages are those
that are left: not virus, spam or undeliverable. The ta-
ble shows the enormous volume of mail that is junk
(65—70% of all accepted mail). This is consistent with
other measures of the prevalence of spam [15]. What
is also surprising is the number of undeliverable mes-
sages. These appear to be mostly spam—of the 364,487
undeliverable messages for serverl, only 94,735 (26%)
were not classed as spam or virus. A likely cause is
“trolling” [12, 1], where spammers send messages to
automatically-generated usernames at known domains,
hoping that these correspond to genuine email addresses.
This figure is far too high to be explained by mistyped
addresses, corrupted mailing lists or servers that are of-
fline. Assuming that nearly all of the undeliverable mes-
sages are spam suggests that a significant proportion are
not being classified correctly by the spam filter. This in
turn suggests that the measure for “good” in the table
is optimistic: it includes some spam messages. Overall
these figures are alarming, as they show how many re-
sources are wasted in passing junk emails through the
email system.

Table 4 shows the number of servers that send (only)
good mail, (only) junk mail, and a mixture, together
with the number of messages sent. A small proportion of
servers (11%) send only good mail, and these are respon-
sible for a similar proportion of the messages (11%). By
contrast, the overwhelming majority of servers send only
junk mail (79%) but generate a relatively small propor-
tion of the messages (48%), implying that each server
sends few messages. The mixed class contains data for
servers that sent at least one good and one junk mail.
This includes those that send mostly good with the oc-
casional junk (e.g. a mistyped address, a false positive
spam detection), or those that send mostly junk with the
occasional good (e.g. a spammer whose spam occasion-
ally evades spam detection), or a more even mixture that
might be obtained from an aggregating mail server (e.g.
an ISP). This class is a small proportion of the servers,
but generates a large proportion of the messages.

Figure 1 shows the same effect, but broken down by how
many messages each server has sent. The figure was
constructed by counting how many messages of each
type (good/junk) each server sent, and plotting the cu-
mulative percentage of total messages against the num-



Table 4: Number of sending servers and the number
of messages that they sent, classified into three groups:
those sending only good mail, only junk mail, and a mix-
ture.

type SErvers messages
number % number %

serverl

good 24,407 11 97,553 11

junk 178,762 79 413,725 48

mixture 23,416 10 343,950 40

server2

good 20,508 10 80,082 11

junk 157,467 80 344,669 46

mixture 18,390 9 330,814 44

ber of messages per server. There are three lines, for
good, junk and the total.

The line for junk mail shows that most of the junk mail
comes from servers that send fewer than 100 messages.
In fact 45% of junk mail comes from servers that send
fewer than 10 messages. On the other hand, good mail
is more likely to come from servers that send many mes-
sages. The “total” line is a combination of these two
effects, and is more influenced by the junk mail as that
makes up the bulk of the messages.

These results suggest that the rate of incoming junk
messages from each server is low (it has to be low if
they send few messages—10% of junk mail comes from
servers that send only one message, for which a rate
limit is meaningless). Measurements of local frequency
(number of mails per minute) show that some junk mail
is sent at high rates, but this is a tiny proportion of the
total mail (see Figure 2). There is very little difference
between the rates of good and junk senders for the bulk
of messages.

This result is perhaps surprising and counter-intuitive,
particularly as many of the delaying responses are
geared toward reducing rates. This data suggests that,
with the possible exception of dictionary attacks (which
we did not notice in our data), rate-limiting mechanisms
are not particularly effective against junk mail.

The explanation for the shapes of Figures 1 and 2 is a
combination of two factors. Firstly, spammers are forced
to change their server addresses frequently as addresses
are placed on blacklists, so the volume of mail from
each spamming server is limited. Secondly, each mail
server only sees a sample of the total spam mail sent by
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Figure 1: Cumulative histogram of number of messages
received from each connecting server, subdivided into
number of good, junk, and total. Junk mail tends to be
sent by servers sending small numbers of messages (e.g.
50% of junk mail is sent by servers sending fewer than
20 messages). Good mail also has a high proportion
from servers sending small numbers of messages, but the
effect of large senders is more significant (50% of good
mail is sent by servers sending fewer than 60 messages).
The data is taken from serverl.

any spammer, corresponding to the number of messages
on the spammer’s mailing list that are handled by the
server. This further reduces the number of messages that
are received from each server, and reduces the rate. For
servers that handle mail for large domains (e.g. Yahoo)
this second factor will be less significant.

Even for good mail, a significant proportion comes from
servers that send few messages. This has a bearing on
the effectiveness of Greylisting [12], a technique that
keeps a record of the triple {sender IP address, sender
email address, recipient email address} and only allows
mail through without delay if that triple has been ob-
served before. Table 5 shows an evaluation of Greylist-
ing. These results are for 36 days’ worth of data, the
standard lifetime of a triple. The maximum number of
triples is enormous, but the actual number required to
be stored is likely to be a lot lower—Greylisting only
keeps a triple for 36 days if a mail with that triple is ac-
cepted. Greylisting is very effective against junk mail,
with 98% being delayed. On the other hand, the per-
centage of good mail that is delayed is rather large (40—
51%).

However, the fundamental idea behind Greylisting—that
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Figure 2: Incoming message rates. The top plot shows
the cumulative histogram of incoming message rate, cal-
culated on a per sender basis and normalized. The
graph shows that the message rates for good (*) and
junk (+) mail are very similar, and most of the mail is
sent at a very low rate (92-94% of servers send mes-
sages at 1 message/minute). The lower plot shows the
cumulative histogram of messages, calculated by assum-
ing that each server sends all its messages at its maxi-
mum rate. This is therefore a worst case estimate of the
proportion of mail sent at different rates. The bulk of
both junk and good messages are sent at rates of less
than 10 messages/minute.

Table 5: Results for performance of Greylisting. Greylis-
ing is effective against junk mail, with 98% being de-
layed, but less effective with good mail, with 40-51%
being delayed.

type number %
serverl

triples 619,536

good delayed 84,748 51% of good
junk delayed 444,829 98% of junk
server2

triples 557,314

good delayed 69,227 40% of good

junk delayed 376,532 98% of junk

unusual mail is likely to be junk—is a good one, and we
explore this further in the following section.

4 Using sending history to predict future
mailing behavior

This section develops the idea of using the past history
of types of mail sent (good/junk) in order to predict the
type of the next message from a server before that mail
is accepted. This enables new and interesting responses
both pre- and post-acceptance.

The data in the previous section (particularly Table 4)
shows that mail servers can be classified based on the
mail that they have sent, into those that send junk mails,
good mails, and a mixture. This suggests that looking at
history might be a good way to predict behavior.

One simple way to represent history is to calculate the
proportion of good messages received by the server,
where a good message is one that is not classed as spam
or virus, and one where more than half of the recipients
are delivered on the first delivery attempt. The propor-
tion of good mail P; can be calculated as

o Ngood(i)
PZ B Ntotal(i) (1)

where ¢ is the server indexed by IP address, and Ngq0q
and N, are the number of good and total messages
received from server . When the first message is re-
ceived there is no data to calculate P;, so it is initialized
to zero. As messages are scanned and delivery attempts
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Figure 3: Plot showing the maximum, minimum and av-
erage accuracy of the prediction calculated using dif-
ferent numbers of messages, with » = 0.5. This data
is for all servers that send at least 10 messages. The
best case has all predictions correct, the worst 1 cor-
rect out of 10. The average goes quickly to near 90%.
This result highlights that accuracy improves with his-
tory (from 77% with one message to 90% with 10), and
also that not much history (< 10 messages) is needed to
accurately predict message type.

are made, the values of Nyo0q and Nyotq are updated.
P; can be used to predict whether a server is likely to
send good or junk mail using a simple threshold r, i.e.
if P; > r the message is predicted to be good and vice
versa. As more messages are received, this prediction
becomes more accurate (see Figure 3).

Table 6 shows the overall accuracy of this method when
r = 0.5. It shows that it is important to include all forms
of junk mail in order to get an accurate classification;
just basing the calculation on spam alone does not give
such accurate results. This is most likely due to the fact
that combining spam detection and undeliverable mail
combines two noisy indicators of spam to give greater
accuracy: a proportion of spam evades the spam filter,
and many of the addresses on spam mailing lists are in-
correct.

Table 6 shows that this measure is remarkably accurate
at detecting junk mail (93-95% accuracy), and also good
at detecting good mail (74-80%). Some of the errors are
unavoidable, as the first mail from every sending server
will be predicted to be junk. Although most of the mail
sent by new servers is indeed junk, this results in a small
number of good messages being misclassified. Out of

Table 6: Accuracy of classification when different data
is taken into account. This was calculated by running
through the logs and for each sending server evaluat-
ing P;, classifying the message, and updating P; ready
for the next message. Each line in the table includes the
effect from the lines above, i.e. the line marked undeliv-
erable is performance for spam + virus + undeliverable.
The classification is best when all the types of junk mail
are taken into account.

good junk

number % number %
serverl
spam 242,163 68 462,516 93
virus 239,990 67 464,709 93
undeliverable 192,428 74 565,922 95
server2
spam 250,496 73 377,212 91
virus 248,516 73 379,112 91
undeliverable 209,309 80 459,432 93

855,228 messages on serverl, 226,585 (26%) were the
first message from a new server, and of those 33,021
(15%) were good. The other cases where good messages
are classed as junk appear from a cursory look to mostly
be spam that has evaded the content scanner (for exam-
ple they have implausible sender email addresses). Thus
the errors may be fewer than measured.

The other type of error, where junk messages are classed
as good, occurs for an even smaller group. It is proba-
bly caused by mistyped addresses, cases where the spam
detector over-zealously marks a legitimate mail as spam,
or where a sender that has previously sent good mail gets
infected by a virus.

Figure 4 shows that the prediction accuracy is insensi-
tive to the value of the threshold . Varying r in the range
0.1-0.8 gives around 10% variation in the individual ac-
curacies, and virtually no variation in overall accuracy.

The results in Table 6 used the entire 69-day dataset
to calculate P;, however the probability is still remark-
ably accurate even if only a small part of the history is
maintained. Figure 3 shows how even with a very short
history of a few messages, the probability measure per-
forms well. This is important as it will allow the quick
capture of changes in server behavior, for example if a
previously good server starts sending mail infected by a
virus.

In addition, good performance can be achieved without
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Figure 4: Plot showing the classification accuracy for
different values of the threshold ». The overall accu-
racy is calculated by dividing the total number correct
by the total number of messages. A wide range of val-
ues of r give good performance. It is interesting that
even with » = 0, there is a reasonable prediction accu-
racy. This is because a sender is only classified as good
if Ngood/Ntotar > r. For 100% accuracy for good (0%
for junk)  needs to be less than zero.

maintaining a record for every sending server. Figure 5
shows the effect on accuracy of maintaining a fixed num-
ber of IP records, using a first-in-first-out replacement
policy. The total number of unique senders observed is
indicated by the vertical line. It is only when the number
of addresses stored is around a quarter of the total that
the performance starts to fall off.

To summarize, this prediction method is practical to
calculate on a real mail server. It requires some state
(Ngood, Ntotar) to be maintained for each server, but that
state is either a pair of numbers, or a short (< 10) his-
tory of message types. In addition, state can be main-
tained for a relatively small proportion of the sending
servers without sacrificing performance. The amount of
state required is far smaller than that required for tech-
niques like Greylisting. The state can also be updated
asynchronously as it becomes available. In a real imple-
mentation this information will be delayed, however this
is unlikely to affect the accuracy of the results signifi-
cantly (it will only affect updates during overloading).

This method of predicting good and junk mail is partic-
ularly powerful because it can be calculated before the
message is received. It thus enables both pre- and post-
acceptance responses.
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Figure 5: Prediction accuracy for » = 0.5 as a function
of the number of sender history records maintained, with
the vertical line indicating the total number of unique
senders in the 69-day dataset.

The rate of false positives is too high to use P; for block-
ing mail (in fact if it were used no mail would ever be de-
livered, because the first mail from every server would
be rejected!). It can, however, be used with tempfail-
ing. As mentioned above, the advantage of tempfailing
is that it effectively blocks mail if spammers do not retry,
and increases the efficiency of blacklists if they do. An
example of an appropriate use of tempfailing with the
sending history measure is to not accept any mail from
a new server for a short period of time (e.g. 4 hours),
and from predicted junk-sending servers for a longer pe-
riod (e.g. 12 hours). This technique would help com-
bat email storms caused by mass mailing viruses: when
a previously good machine starts sending the virus, its
value of P; will decrease and eventually its traffic will
be tempfailed, so reducing the load on the server. There
are, however, other more direct mechanisms to deal with
email storms, e.g. [36]. Finally, tempfailing could also
be used when the server is heavily loaded, preferentially
tempfailing junk mail.

The history measure also enables an exciting post-
acceptance response, that of prioritizing good mail
through the bottlenecks in the server (often the
virus/spam scanner). Instead of all mail being treated
equally, good mail can be placed in a high priority queue
for the scanner and SMTP processes. The good mail is
still scanned, but will travel through the server with min-
imal delay, even when the server is very heavily loaded
by spam or virus attack (both of which are increasingly
common).



Table 7: Effect of pre-acceptance responses on good and
junk mail. Data from serverl.

type number  percentage

good delayed by 4 hours 33,021  13% of good
good delayed by 12 hours 34,899  13% of good
junk mails rejected 565,922  95% of junk

5 Testing the responses

This section provides some evidence for how much ef-
fect the responses described above would have on reduc-
ing the amount of spam processed, and on reducing the
effect of the volume of junk mail on the flow of good
mail through a mail server.

Firstly, we consider the effect of tempfailing new servers
and servers predicted to send junk. Unfortunately it is
very difficult to test this just using log data, as the re-
sponse is to request the remote sending server to retry
later, and it is difficult to predict the behavior of the send-
ing server.

A best-case estimate would be to assume that spammers
and virus-infected machines do not retry, but that good
senders do. Thus out of 855,228 messages accepted by
server 1, if a 4 hour delay was used for new senders and
a 12 hour delay for predicted junk mail, the effect would
be as in Table 7. Only 26% of good mail would be de-
layed, and as discussed above, a significant proportion of
this mail is likely to be misclassified junk. If this sort of
system were widely deployed, it is likely that spammers
would implement retries. This would cause the amount
of junk mail rejected to decline considerably.

It is much easier to predict the effect of post-acceptance
responses. We do this by constructing a model of a mail
server that allows us to calculate the time taken to pro-
cess a mail message, under different amounts of loading.
We can then alter that model to incorporate prioritization
schemes and predict the final performance of the system.

The initial model of the system is shown in Figure 6 (a).
This is a generic model of a mail server that includes a
mail scanner or filter. The incoming mail is handled by
an SMTP process that writes the mail to a local disk or
spool gprs, taking time ¢;y. The mail is then loaded,
scanned and placed in a second spool goyr by the
mail scanner, marking the mail accordingly (normally
by writing a header), and taking on average tscan. The
mail is then taken from this second spool and delivered
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Figure 6: (a) Model of basic mail server. Incoming mail
is handled by an SMTP process, before being scanned
for viruses and spam by the mail scanner, and being de-
livered using a second SMTP process. (b) Model of mail
server with prioritization. The incoming process places
mail in one of two queues depending on the predicted
message type. The mail scanner selects messages from
the queues using a scheduling algorithm.

by the outgoing SMTP process, taking toyr. The over-
all time will be t;x + tscan + tour plus the time that
mails spend on the queues waiting to be processed. As
each of the spools is effectively a queue, this system can
be analyzed using Queueing Theory [10].

Prioritization can be implemented by having two queues
for the mail scanner, one for high priority or good mail
(¢ 1) and the other for low priority or junk mail (gro).
When a mail arrives it is classified into good or junk
(this extra processing taking tcrassrry), and placed
into one of these queues. The mail scanner then uses a
simple scheduling algorithm to select which message to
process next. The simplest algorithm is “absolute prior-
ity”, where the scanner always takes from the high pri-
ority queue unless it is empty, when it services the low
priority queue [19]. The scheduling operation is mod-
elled as taking tscpepurLe- As before, the total time
is the sum of the individual times plus the time spent
queuing.

We simulated both models using the DEMOS system
performance modelling tool [4]. This allows synthetic
traffic to be “played” through the model and the system
performance evaluated. The parameters of the model
(the various service times t;n,tscan, tour) Were es-
timated from the log data. These parameters are difficult
to estimate, because the times in the logs include mes-
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Figure 7: Histogram of message delays. The simulation
captures the rough shape of the data, with the bulk of the
messages delivered promptly, and a long “tail” of de-
lays. The three service times were modelled as exponen-
tial distributions with means of t;y = 0.02s,tscan =
7.9s,tour = 0.08s. The incoming message rate was
modelled as a exponential distribution with mean 7.37s
during the day and 11.08s at night.

sages being queued as well as processed. To deal with
this we took a lower bound on the actual measurements,
assuming that the fastest times corresponded to small or
no queues. In addition, we used a facility within DE-
MOS to specify a probability distribution of parameters
rather than a fixed value. The most important parameter
is the time to scan a message. This turned out (somewhat
surprisingly) not to be particularly sensitive to message
size, and was modelled as an exponential distribution.
All the other aspects of the model were taken from the
log data: the rate and ratio of good/junk were taken from
incoming message rates with different rates for day and
night; and the traffic was assigned to different priority
queues using the probabilities in Table 6, i.e. a good
message had an 74% chance of being placed in the high
priority queue.

It is important with any model to calibrate it accurately,
so that it is possible to believe its predictions. Figure 7
shows the distribution of delays for serverl together with
the delays predicted by the model, with parameters as
given in the caption. The figure shows that the model
fits the data reasonably well.

Having calibrated the model, the effect of the prioritiza-
tion can be tested. Figure 8 shows the effect of the same
parameters applied to the model in Figure 6. The ex-
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Figure 8: Average delay against traffic loading for the
original model (o), the good (x) and the junk (+) queue,
with error bars showing standard deviations. The two
vertical lines indicate traffic loading that is normal, and
loading observed during the SoBig.F virus attack. The
average delay for good messages (*) is also shown, but
is not particularly meaningful. Good messages that go
in the good queue have small delays, but those wrongly
placed in the junk queue will have delays similar to real
junk messages. The distribution of delays for good mail
is thus bimodal, and not easy to represent with means
and standard deviations, especially as the differences in
the two distributions are so large, e.g. 6 hours for junk
and ~20 seconds for good at 6s between messages.

tra processing times tcrassrry and tscgepuLE Were
assumed to be small compared to the scan time tscan,
and were neglected. The plot shows the average delay
against the rate of incoming traffic. For low traffic loads
the delays are small, because the server is lightly loaded.
As the load increases, the delays increase sharply if no
prioritization is used. If prioritization is used, the good
mail continues to be processed with small delays, but
the junk mail is heavily delayed. These traffic loads are
common in practice: marked on the diagram are nor-
mal loads and loads sampled during the SoBig.F virus
attack [31]. For example, during the virus attack, using
a conventional arrangement, the mail was delayed by 2.7
hours. With the prioritization scheme, good mail placed
in the high priority queue is delayed by only 22 seconds
on average, with junk mail delayed by over 4 hours.

Different mail servers have different performance ca-
pabilities (different hardware/software configurations),
which affect their ability to process mail. Figure 9 shows
the behavior of the system with a constant traffic load
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Figure 9: Average delay against server performance
(tscan) for the original model (o), good queue (x),
junk queue (+) and average good (*). The top plot cor-
responds to normal and the lower to SoBig traffic load-
ing. With a single queue, a highly rated server is needed
to provide good performance under heavy loading, while
with prioritization good mail has consistently low delays
even for quite slow servers.

but varying server performance. When the server is
over-provisioned the delays are small, but for an under-
powered server good mail is still passed with very small
delays. This means that mail servers can be sized based
on expected normal mail loading, and that their perfor-
mance will be less sensitive to the amount of junk mail
processed. This is a great benefit given the volumes of
spam and virus mail that is processed now, let alone the
volumes being predicted [18].

Of course, some good mail is wrongly classified as junk,
and will have delays similar to the junk mail. However,
this delay is only slightly worse than that experienced in
the original system for all mail, only a small proportion
of mail is affected, and some of that mail should have
been classified as spam anyway. In any case it should
only be the first legitimate mail from any server that will
be heavily delayed.

There are different scheduling schemes that can be used,
for example absolute priority, fair share or weighted fair
share [7]. We modelled several, but found that the choice
of scheduling scheme has little effect on the delivery of
good mail: the main effect is on the length of delays
to junk mail, with absolute priority giving the longest
delays.

To summarize, adding prioritization is extremely effec-
tive at ensuring that the bulk of good email is delivered
promptly, even when the mail server is very heavily bur-
dened by junk mail.

6 Implementation

Figure 10 shows a sketch of how these schemes could be
implemented on an industrial strength mail server. Send-
mail [24, 23] and MailScanner [33] are used as exam-
ples, but the approach can be generalized to other prod-
ucts.

The basic idea is to mark messages as good or junk in the
incoming sendmail process, and dump them in the usual
spool directory. The messages are then moved into two
queues, which are serviced by two copies of the mail
scanner.

When mail is received by the incoming sendmail pro-
cess, it can be intercepted using the Milter interface [39].
This interface allows access to the mail message and
header information, and also allows certain actions like
tempfailing or blocking, as well as writing headers and
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Figure 10: Schematic of implementation on sendmail.
Mail is interrupted using the milter interface, and the
milter queries the history database to determine for each
connection whether to tempfail, or how to mark the mes-
sage. Mail is placed in the spool S as usual, and moved
into the appropriate queue by the MailMover process.
The copied MailScanner then processes the two queues.
Information about the message type is fed back from log
files via the LogMonitor process.

changing the message body. The specific milter code
for this system would grab the IP address of the send-
ing server, and query the history database to determine
the probability that the message was good or junk. The
milter would then implement the action required: ei-
ther to tempfail the request (writing to the database the
time when messages from that server would next be ac-
cepted), or marking the message as good or junk, for
example by writing an extra header into the mail mes-
sage. If the message is accepted, it is written into the
usual mail spool S.

The “MailMover” component runs regularly, scanning
messages in the spool to determine whether they are
good or junk, and moving them into the two queues H I
and LO respectively. Sendmail simply writes the mes-
sages into the spool, so it is safe to move the files. (Other
servers, e.g. postfix [35] and gmail [3], rely on more
complex file information; for these a more sophisticated
system would be needed.) Two copies of the MailScan-
ner then process the two queues. These programs would
be configured so that the one servicing the high priority
queue ran faster than the other.

MailScanner automatically triggers the outgoing SMTP
process when it has processed a (configurable) number
of messages. Any that are undeliverable are saved in
a separate queue, and another sendmail process handles
retries. It would be possible to implement prioritization

for this process too, using another MailMover and two
retry sendmail processes.

Once the scanner has processed the message, informa-
tion about the message is available to update the history
of the sending server. In addition, once the outgoing
sendmail process has attempted to deliver the message,
information about undeliverable messages is also avail-
able. Since this information is written into the normal
syslog, a process that monitors the logs (“LogMonitor”
in Figure 10) can recover this information and update
the history in the database. It does this by keeping track
of message identifiers, and matching the results of the
scan/attempted delivery with the IP address of the origi-
nal sending server.

The database is shown here on a single system; however
there is no reason why the information stored should not
be shared by many servers. Sharing information is likely
to further improve the accuracy of the classification.

7 Preliminary Testing

The system described above was implemented on a
linux machine (1.6GHz RedHat 9.1, Sendmail 8.12.11,
MailScanner 4.26.28, MySQL 3.23.58). The Milter,
MailMover and LogMonitor were all implemented as
separate perl processes.

For testing purposes two otherwise identical ma-
chines were used, one configured to use the prioriti-
zation scheme, and another configured to use a single
MailScanner. Figure 11 shows the results of sending the
same high load of messages to both machines. The fig-
ure clearly shows low delays for good messages even
when the load is large.

8 Conclusion

This paper has considered the problem of unacceptable
delays in sending email due to servers clogged with un-
wanted email messages—viruses, spam and undeliver-
able mail. This is a problem that is significant now, and
is likely to become more significant as the volumes of
spam and virus-carrying email increase.

We have shown, with reference to empirical data, that
existing mechanisms to deal with spam (blacklists, rate
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Figure 11: Delays for messages sent through a single
queue machine, and the good and junk mail sent through
a machine with prioritization. The prioritized good mail
is delivered more promptly than it would have been with-
out prioritization.

limiting, greylisting, content filtering) are only partially
effective. So, we have developed a system to preserve
performance while coping with large volumes of junk
mail.

We have shown that a simple prediction of the type
(good/junk) of the next message received by a server can
be used to delay acceptance of junk mail, and to priori-
tize good mail through the bottlenecks of the server. The
prioritization scheme ensures that most of the good mail
is transmitted with small delays, at the expense of longer
delays for junk mail. This scheme greatly improves on
the performance of current non-prioritized schemes.

We have also argued that this approach is practical,
and sketched an implementation on an industry stan-
dard mail server that requires no modifications to exist-
ing code. Initial tests of this implementation suggest that
it works well in practice.

Not all spam classification occurs at the server, and the
spam classification at the desktop is often more cus-
tomizable and accurate. It would be useful to be able to
feed this information back to the server. The challenge
would be how to achieve this in a practical and secure
way. One possible technique would be to write the orig-
inating server’s IP address in the mail header and allow
client software to “update” the mail server with more ac-
curate spam classifications.

In conclusion, while this approach does not stop junk

mail, it should increase the resilience of the mail sys-
tem, making it better able to cope with overloading from
spam and from virus attacks.
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