
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using Globus With FreeBSD

Brooks Davis, Craig Lee
The Aerospace Corporation

El Segundo, CA
{brooks,lee}@aero.org

Abstract

After years of development by the high performance
computing (HPC) community, grid computing has
hit the mainstream as one of the hottest buzzwords
in computing technology today. This paper exam-
ines the issues involved in integrating FreeBSD with
the Globus Toolkit, the de facto standard for grid
computing. Particular attention is paid to interac-
tions between Globus and FreeBSD’s package man-
agement system. Ways in which FreeBSD could be
enhanced to make it a more attractive platform for
Globus are also discussed.

1 Introduction

Grid computing has been a hot topic in the high
performance computing (HPC) community for many
years now. From the earliest beginnings with the I-
WAY [DeFanti] at SuperComputing 1995 to today’s
commercial grid products such as Oracle 10g, grid
computing has entered the mainstream. Most major
OS vendors including Sun, Microsoft, and IBM have
grid products.

By now, most people in the computing field have
heard of grid computing, but many may still ask,
what is a grid? Grid computing seems to mean dif-
ferent things to different people. Some people asso-
ciate grid computing with a specific software package
such as the Globus Toolkit [Foster1] or Sun Grid En-
gine [SGE]. Others think of peer-to-peer systems as
their prototypical grid. One early definition is from
The Globus Alliance’s leaders, Ian Foster and Carl
Kesselman: “A computational grid is a hardware
and software infrastructure that provides depend-
able, consistent, pervasive, and inexpensive access

First published in the Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference (FREENIX ’04)
c©2004 The Aerospace Corporation.

to high-end computational capabilities” [Foster3]. A
more recent definition from Wolfgang Gentzsch is “a
Grid is a hardware and software infrastructure that
provides dependable, consistent, and pervasive ac-
cess to resources to enable sharing of computational
resources, utility computing, autonomic computing,
collaboration among virtual organizations, and dis-
tributed data processing, among others” [Gentzsch].

The original concept of computational grids was an
analogy to the electrical power grid. As the power
grid provides transparent access to power from vari-
ous generators run by many different operators, a
computational grid provides access to distributed
computer resources controlled by multiple organiza-
tions. These organizations use grid technologies to
form virtual organizations which share resources to
solve problems. Examples of this sharing might in-
clude computing resources such as clusters or super-
computers, sensors, instruments, or data collections.

While grid computing may have historically started
in the high performance computing community, ad-
dressing the fundamental issues of scalable deploy-
ment for distributed information discovery, resource
management, workflow management, security, fault
tolerance, etc., means that grid technology will ac-
tually be applicable in many areas of the computing
ecosystem. A recent compilation on grid computing
[Berman] provides more information on its origins,
current state, applications, and future directions.

The groundswell of interest in grid computing from
both academia and industry motivated the creation
of the Global Grid Forum (GGF) [GGF], a stan-
dards body modeled after the IETF. In February,
2002, work on the Open Grid Services Architecture
(OGSA) and the Open Grid Services Infrastructure
(OGSI) was announced at GGF. OGSI is a standard
based on web services, specifically “a Grid service is
a Web service that conforms to a set of conventions
(interfaces and behaviors) that define how a client
interacts with a Grid service” [Tuecke]. In January,

2004, work on the Web Service Resource Framework
(WSRF) was announced at GlobusWorld and subse-
quently at GGF in March, 2004 [WSRF]. WSRF is
intended to complete the convergence of grid and
web services started by OGSA, whereby a service
client can explicitly specify the state (resource) used
by a service on any particular invocation. This es-
sentially allows grid/web services to be considered
stateless.

In the remainder of this paper we talk about the
Globus Toolkit and its status under FreeBSD. First,
we give an overview of the Toolkit. We follow this
with a discussion of the state of the Toolkit under
FreeBSD with detailed coverage of the “impedance
mismatches” between the Toolkit and the FreeBSD
Ports Collection. Next comes a discussion of ways
to integrate FreeBSD and Globus more effectively
followed by concluding remarks.

2 The Globus Toolkit

The Globus Toolkit is developed by the Globus Al-
liance (formerly the Globus Project) and is the de
facto standard for grid computing infrastructure in
high performance computing. Two versions of the
Globus Toolkit are currently available with a third
version on the way. The Globus Toolkit 2 (GT2) is
an extended version of the original services. It is im-
plemented in C and uses a combination of standard
protocols such as FTP and LDAP in conjunction
with proprietary protocols. The Globus Toolkit 3
(GT3) is a new implementation of grid services based
on OGSI standards. GT3 services are implemented
in a combination of C and Java. All GT2 services
are included in GT3 as well as new, OGSI-compliant
implementations of some services also provided by
GT2. The Globus Toolkit 4 (GT4) is to be WSRF-
based with a release planned for later this year.

The Globus Toolkit provides some central infrastruc-
ture and a set of orthogonal services. The most vis-
ible component of the central infrastructure is the
Grid Security Infrastructure (GSI), an X.509 certifi-
cate based authentication mechanism [Foster2]. GSI
provides single sign-on access to resources in mul-
tiple independent administrative domains and pro-
vides delegation of credentials via proxy certificates.
On each host (and potentially on a per-service ba-
sis) a mapping is established between distinguished
names and local user accounts. GSI is identical in

the latest releases of GT2 and GT3 and will presum-
ably be so in GT4.

The Globus Toolkit provides job management ser-
vices via the Globus Resource Allocation Manager
(GRAM) service [GRAM]. GRAM provides an in-
terface between users or meta-schedulers and local
resource managers such as Sun Grid Engine (SGE),
the Portable Batch System (PBS), or a trivial fork
manager. The GT2 and GT3 implementations dif-
fer in that GT3 adds a Java-based OGSI-compliant
implementation. The GT4 implementations will be
WSRF-compliant.

File transfer is provided by the GridFTP service.
GridFTP is a set of extensions to the FTP protocol
[Allcock]. These extensions include, GSI security on
control and data channels, parallel transfers, par-
tial file transfers, third-party transfers, and authen-
ticated data channels. Both versions of the Toolkit
use the C implementation.

Resource discovery is handled by the Monitoring and
Discovery Service (MDS) [MDS]. The MDS is com-
posed of two parts: (1) the Grid Resource Infor-
mation Service (GRIS) which provides information
about a resource, and (2) the Grid Index Information
Service (GIIS) which aggregates data from GRISs
to provide support for searching. In GT3, separate
GRIS implementations have been removed because
all OGSI services can function as their own GRIS.
This should be true of the WSRF services as well.

Other services provided by the Toolkit include a
Replicate Location Service and, in GT3, OGSI-
compliant database services.

GT2 supports most of the major HPC platforms in-
cluding AIX, HP-UX, Irix, Linux, and Solaris. It
is also expected to work on most basically POSIX-
like OSes. It consists of over 61 packages, some of
which are open source software such as OpenSSL and
OpenLDAP and some of which are products of the
Globus Alliance and their contributers. The parts
of GT3 that are not GT2 components are primarily
Java-based Web Services.

To address the complexities of building these multi-
ple packages on different platforms, the Grid Packag-
ing Tools (GPT) were developed [Bletzinger]. Like
the FreeBSD ports collection and the Debian pack-
age tools, GPT supports patching and building ap-
plications from source and creating binary packages
for installation on multiple machines.

One unique feature of GPT is the concept of fla-
vors. Flavors encapsulate several coarse-grained
compilations options. An example of a flavor is
gcc32dbgpthr which represents code compiled with
GCC for a 32-bit architecture with debugging en-
abled and POSIX threads used. This is necessary
in HPC environments because users often want to
pick and choose among these options in order to
eke every last bit of performance from their appli-
cation. As a result, site administrators may find it
necessary to install many different variations of par-
allel libraries such as those included with the Globus
Toolkit. GPT facilitates this by naming all programs
and libraries according to their flavor. This allows
each package to be installed multiple times.

3 The FreeBSD Ports Collection

To understand many of the issues with integrat-
ing FreeBSD and Globus, it is necessary to un-
derstand the FreeBSD ports collection [FreeBSD1,
FreeBSD2]. The ports collection is a collection of
the patches and build procedures needed to down-
load, build, and install applications. A dependency
system ensures that any necessary dependences are
installed before building or installing a given soft-
ware package. When a port is installed, the list of
files associated with it is recorded in a packing list.
This list is used to remove the package or to bundle
it up into a binary package. Not all ports can be
packaged for legal or technical reasons, but most of
the more than 10,000 ports have this capability.

Ports can hide much of the complexity involved in
installation a large piece of software like the Globus
Toolkit. This can significantly simplify the process
of installing the software. However, porting large
complex systems like the Globus Toolkit can pose
significant challenges. Many of these are caused by
“impedance mismatches” where the ports collection
and the software being ported have different views
of the way things should work.

One ports related feature that affects the Globus
Toolkit is BSDPAN. BSDPAN causes standard Perl mod-
ules to be integrated with the FreeBSD packaging
system. Any Perl module which uses MakeMaker is
registered as a package. This results in the ability
to upgrade modules which are available as ports via
the usual methods of upgrading ports. It also al-
lows easy removal of unneeded Perl modules via the
package tools.

4 FreeBSD and Globus

FreeBSD is not currently being actively supported
by the Globus Alliance, but GT2 builds on FreeBSD
5.x (except on amd64.) The core client software
works in limited test. The fork job manager and
the GridFTP daemon have been verified to work.
The GRIS is at least partially functional. The cur-
rent lack of information provider scripts for FreeBSD
make the output of the GRIS uninformative at this
point. This problem should be easily remedied by
adding appropriate scripts. A longer lasting solu-
tion to this problem might be for the Toolkit to de-
pend on a standard, external data collector such as
Ganglia for some tasks. That would avoid the need
to write collectors for each OS by pushing the prob-
lem off to someone else. We have not yet tested more
complex uses of Globus such as SGE transfer queues
over Globus [Seed].

We have created a basic port of GT2 and a sup-
porting port of GPT. In creating these ports, we
found a number of conflicts with the ports collection.
Some of these are fundamental philosophical differ-
ences while others are more straightforward conflicts
between Globus Toolkit defaults and the expecta-
tions of the ports collection. Many of the conflicts
are actually with GPT and its assumptions rather
then with the Toolkit itself.

The first few issues with GPT have to do with its
use of Perl modules. In an attempt to reduce the
number of dependencies required to install GPT and
to keep a known baseline of module versions, the
GPT installation tarball includes all the Perl mod-
ules required for operation. From the perspective
of keeping the installation instructions short, this
works well. Unfortunately, it comes into direct con-
flict with the FreeBSD package system.

One of the principles of the ports collection is that
packages should not install a piece of software that
is also available as a separate port. This ensures
that maintenance of each piece is centralized and
that OS specific patches can all be applied in one
place. It also avoids multiple installations of identi-
cal files. To mitigate this, the BSDPAN module makes
any Perl module that is installed the usual way into
a package. This is nice for Perl modules that get
randomly installed by hand because many of them
are already ports so they can be easily upgraded by
just updating the ports collection. Unfortunately,
this leads to weird effects with GPT. GPT installs

standard modules in a non-standard location. On
the next port upgrade cycle where there is a new
version of the modules, they will be removed from
there and installed in the standard location thus de-
feating GPT’s goal of keeping the versions consis-
tent. This probably does not matter much, but it
can cause some confusion with the FreeBSD packag-
ing tools and may result in strange double installa-
tions of some modules.

In the FreeBSD port, we have removed the code to
install these standard modules and added dependen-
cies on ports for those modules. The current solution
involves patching the install scripts. Ideally, GPT
should gain the ability to not install modules that al-
ready exist either based on a test for their existence
or on a command line switch. In addition to in-
stalling standard modules, GPT uses a slightly mod-
ified version of the Archive::Tar Perl module to al-
low it to produce better error messages in the face
of corrupt archives. This causes a number of minor
problems. The problems in the previous paragraph
apply, but are made worse by the fact that the next
upgrade will replace this version of Archive::Tar
with a standard one losing the modifications.

Assuming the modifications to Archive::Tar are
necessary for GPT there are three possible solu-
tions to this problem. One is to get the changes
merged into the official release so it can be used in-
stead of the GPT version. Given the nature of the
changes, this seems unlikely. A second solution is
to install the module under another name such as
under Grid::GPT::Tar where its nonstandard be-
havior will remain intact and will be harmless. A
third solution would be to rewrite GPT to not re-
quire these changes. The third solution would be
best since that would allow the use of a system ver-
sion of Archive::Tar.

In the port of GPT we simply use the system version
of Archive::Tar which seems to work fine. In the
context of ports, corrupt archives are not a signif-
icant issue since both the size and MD5 checksum
of the archives are verified before anything is done.
When built this way, GPT appears to function cor-
rectly.

One final minor issue with GPT and Perl modules
is that GPT installs all Perl modules including its
internal ones in a non-standard location, overriding
any Perl defaults. Specifically, modules are always
installed under $GPT LOCATION/lib/perl/. This is
fine if $GPT LOCATION isn’t the same prefix as the

Perl install, but when it is, this is less than ideal
as the system can end up with extra parallel Perl
module trees. It isn’t a serious problem, but it would
be nice if GPT could be told to let MakeMakerinstall
the modules where it wants to instead of under a
hardwired location. We currently ignore this issue
in the port.

Another, less fundamental, GPT issue is caused by
the use of bundles. Bundles are a set of packages
that generally have no external dependencies. They
are used because GPT does not provide the sort
of automatic dependency installation that the ports
collection does. Without this sort of dependency
management, installing Globus would almost cer-
tainly be too difficult if administrators had to in-
stall it from packages as they would have to install
as many of 61 packages in a specific order. The prob-
lem presented by the bundles is that while they are
a reasonable breakdown of the functionality of GT2,
they all contain some packages such as globus core.
Since each file in the system must be managed by
at most one port, the bundles can not be separate
ports.

The simplest way to work around this is to use a
single port that installs all the bundles. This is the
approach we took in the current port. Another ap-
proach would be to use the ports collection’s depen-
dency management system to install the individual
packages as individual ports. This should be a feasi-
ble approach. Meta ports could be used to represent
the bundles easing upgrading in the face of security
advisories and allowing more selective inclusion of
Globus tools. One concern with this approach is
dealing with packages that install binaries in bin,
sbin, or libexec and must be configured with more
than one flavor. Some method of insuring that only
one flavor installs the primary executable will need
to be determined or both flavors will always have to
be installed. Adding a feature to the ports system
that allowed ports to depend on other ports with
specific build options enabled would be very helpful
here.

Flavors may be another point of contention. Support
for third-party compilers such as Intel’s icc would
be useful, but the ports collection does not handle
this sort of thing well. Currently an option could
be used to control the base flavor but if there was a
desire to install multiple compiler flavors, the only
option would be to create slave ports for other com-
pilers leading to an explosion of ports. This solution
would be time consuming and unsatisfying. In this

regard GPT is superior to most existing build and
packaging systems including the ports collection.

On a more philosophical level the Globus Toolkit’s
practice of providing its own version of standard li-
braries such as OpenSSL and SASL is not in keeping
with the policy of the ports collection that the ports
or base system version of a library be used where
ever possible. Using a single version of a library sim-
plifies maintenance of FreeBSD specific patches and
reduces the overall size of the system by avoiding du-
plication. Unfortunately, in the case of the Globus
Toolkit, this is likely to be impossible, primarily due
to GPT’s use of flavors.

5 Future Work

At this point, what Globus needs most on FreeBSD
is more user testing and small bits of cleanup. Most
of the existing problems are not particularly serious,
but may require time consuming work. For exam-
ple writing GRIS data collectors is mostly simple
shell scripting, but the shell scripts have somewhat
strange interfaces so there is a learning curve.

In addition to these sorts of cleanup tasks, more
work could be done to make FreeBSD an attractive
platform for grid computing. There are two direct
ways to attack this problem. One is to improve the
integration of Globus with the system by making it
easier to install and making it easier for base services
such as SSH and FTP to take advantage of enhance-
ments such as GSI authentication and the GridFTP
extensions. Much of this can be accomplished by
adding or improving existing ports. Adding sup-
port or improving existing support for GSSAPI in
applications in the base system could enable those
applications to use GSI authentication [RFC2743].

The second way is to enhance Globus to take advan-
tage of unique operating system features. One idea
would be to investigate adding sendfile support to
GridFTP. If it were possible to do GridFTP parallel
transfers via a zero-copy mechanism, performance
could be significantly improved. This might re-
quire enhancing sendfile or building a new GridFTP
client/server. Another option would be adding sup-
port for using Name Service Switch (NSS) to de-
termine the mapping between local user names and
x.509 distinguished names for use in GSI authen-
tication. With the current file based approach,
maintaining those mappings across a cluster of ma-

chines is a potentially time consuming task. Adding
network database support via NSS is something
FreeBSD (and other OSes with a NetBSD derived
NSS implementation) are uniquely capable of do-
ing because NetBSD had the foresight to include
external access to NSS databases via the nsdis-
patch() function. Having a NSS replacement for
/etc/grid-security/grid-mapfile could signifi-
cantly decrease administrative overhead in clusters
of grid enabled machines.

A third, less direct method of making FreeBSD more
attractive to grid users is to work towards solving
problems that are high priorities in the grid com-
puting community. For example, many grid projects
have to deal with transferring huge amounts of data
over long distances. Research into improved TCP
congestion control techniques such as HSTCP and
XCP (and into methods to ease that research) could
pay big dividends in terms of attracting these types
of users [Floyd, RFC3649, Falk]. Other areas to look
at include trusted computing [Watson] and storage
technologies.

6 Conclusions

FreeBSD clients should be able to interact with any
GT2-based grid as first class citizens. Most services
also seem to work, but further testing is warranted
and GRIS support needs some work. GT3 programs
are expected to generally work, but have not yet
been tested. While there are still significant rough
edges, FreeBSD shows promise as a platform for
Globus-based grid computing that should continue
with GT4.

References

[Allcock] W. Allcock, GridFTP: Protocol Exten-
sions to FTP for the Grid, GFD-R.020, GGF.
http://www.ggf.org/documents/GWD-R/
GFD-R.020.pdf

[Berman] F. Berman and G. Fox and A. Hey (eds.),
Grid Computing: Making the Global Infrastruc-
ture a Reality, Wiley, 2003.

[Bletzinger] M. Bletzinger, A User Guide to
the Grid Packaging Tools, National Center
for Super Computing Applications (NCSA)
University of Illinois, 2003. http://www.
gridpackagingtools.com/book.html

[DeFanti] T. DeFanti, I. Foster, M. Papka,
R. Stevens, and T. Kuhfuss, Overview of the
I-WAY: Wide area visual supercomputing, In-
ternational Journal of Supercomputer Applica-
tions, 10(2):123– 130, 1996.

[Falk] A. Falk, D. Katabi, ”XCP Protocol Spec-
ification”, unpublished draft, February 12,
2004. http://www.isi.edu/isi-xcp/docs/
xcp-spec-04.txt

[Floyd] S. Floyd, S. Ratnasamy, and S. Shenker,
Modifying TCP’s Congestion Control for High
Speeds, Rough draft, May 2002. http://www.
icir.org/floyd/papers/hstcp.pdf

[FreeBSD1] The FreeBSD Handbook, The
FreeBSD Documentation Project, 2004.
http://www.freebsd.org/doc/en_US.
ISO8859-1/books/handbook

[FreeBSD2] The FreeBSD Porter’s Handbook,
The FreeBSD Documentation Project,
2004. http://www.freebsd.org/doc/en_
US.ISO8859-1/books/porters-handbook

[Foster1] I. Foster and C. Kesselman, Globus: A
Metacomputing Infrastructure Toolkit, Proceed-
ings of the Workshop on Environments and
Tools for Parallel Scientific Computing, SIAM,
Lyon, France, August 1996.

[Foster2] I. Foster, C. Kesselman, G. Tsudik, and S.
Tuecke, A Security Architecture for Computa-
tional Grids, Proceedings of the Fifth Confer-
ence on Computer and Communications Secu-
rity, San Francisco, CA, 1998, pp. 83–92.

[Foster3] I. Foster and C. Kesselman (eds.), The
Grid: Blueprint for a New Computing Infras-
tructure, Morgan Kaufmann, San Fransisco,
1999

[Foster4] I.Foster, What is the Grid? A Three
Point Checklist, Grid Today, 2002. http://
www.gridtoday.com/02/0722/100136.html

[Gentzsch] W. Gentzsch, Response to Ian Foster’s
”What is the Grid?”, Grid Today, 2002. http:
//www.gridtoday.com/02/0805/100191.html

[GGF] http://www.globalgridforum.org

[GRAM] http://www-unix.globus.org/
developer/resource-management.html

[MDS] http://www.globus.org/mds/

[RFC2743] J. Linn, Generic Security Service Appli-
cation Program Interface, Version 2, Update 1,
RFC2743, IETF, 2000. http://www.ietf.org/
rfc/rfc2743.txt

[RFC3649] S. Floyd, HighSpeed TCP for Large Con-
gestion Windows, RFC3649, IETF, 2003. http:
//www.ietf.org/rfc/rfc3649.txt

[Seed] T. Seed, Transfer-queue Over Globus
(TOG): How To, EPCC, 2003. http:
//gridengine.sunsource.net/download/
TOG/tog-howto.pdf

[SGE] http://gridengine.sunsource.net

[Tuecke] S. Tuecke, K. Czajkowski, I. Foster, J.
Frey, S. Graham, C. Kesselman, T. Maquire,
T. Sandholm, D. Snelling, and P. Vanderbilt,
Open Grid Services Infrastructure (OGSI) Ver-
sion 1.0, GFD-R-P.15, GGF. http://www.ggf.
org/documents/GWD-R/GFD-R.015.pdf

[Watson] R. Watson, W. Morrison, C. Vance,
B. Feldman, The TrustedBSD MAC
Framework: Extensible Kernel Access
Control for FreeBSD 5.0, Proceedings
of USENIX ’04: FREENIX, USENIX,
June, 2003. http://www.trustedbsd.org/
trustedbsd-usenix2003freenix.pdf.gz

[WSRF] http://www.globus.org/wsrf

