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Abstract

We present Group Ratio Round-Robin (G R?), the first pro-
portional share scheduler that combines accurate propor-
tional fairness scheduling behavior with O(1) scheduling
overhead on both uniprocessor and multiprocessor systems.
GR? uses a simple grouping strategy to organize clients
into groups of similar processor allocations which can be
more easily scheduled. Using this strategy, G R® combines
the benefits of low overhead round-robin execution with a
novel ratio-based scheduling algorithm. G'R? introduces a
novel frontlog mechanism and weight readjustment algo-
rithm to operate effectively on multiprocessors. G R* pro-
vides fairness within a constant factor of the ideal general-
ized processor sharing model for client weights with a fixed
upper bound and preserves its fairness properties on multi-
processor systems. We have implemented GR? in Linux
and measured its performance. Our experimental results
show that GR? provides much lower scheduling overhead
and much better scheduling accuracy than other schedulers
commonly used in research and practice.

1 Introduction

Proportional share resource management provides a flexible
and useful abstraction for multiplexing processor resources
among a set of clients. Proportional share scheduling has a
clear colloquial meaning: given a set of clients with asso-
ciated weights, a proportional share scheduler should allo-
cate resources to each client in proportion to its respective
weight. However, developing processor scheduling mech-
anisms that combine good proportional fairness scheduling
behavior with low scheduling overhead has been difficult to
achieve in practice. For many proportional share scheduling
mechanisms, the time to select a client for execution grows
with the number of clients. For server systems which may
service large numbers of clients, the scheduling overhead of
algorithms whose complexity grows linearly with the num-
ber of clients can waste more than 20 percent of system re-
sources [3] for large numbers of clients. Furthermore, little
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work has been done to provide proportional share schedul-
ing on multiprocessor systems, which are increasingly com-
mon especially in small-scale configurations with two or
four processors. Over the years, a number of scheduling
mechanisms have been proposed, and much progress has
been made. However, previous mechanisms have either su-
perconstant overhead or less-than-ideal fairness properties.

We introduce Group Ratio Round-Robin (GR?), the
first proportional share scheduler that provides constant
fairness bounds on proportional sharing accuracy with O(1)
scheduling overhead for both uniprocessor and small-scale
multiprocessor systems. In designing GR3, we observed
that accurate, low-overhead proportional sharing is easy to
achieve when scheduling a set of clients with equal pro-
cessor allocations, but is harder to do when clients require
very different allocations. Based on this observation, GR?
uses a simple client grouping strategy to organize clients
into groups of similar processor allocations which can be
more easily scheduled. Using this grouping strategy, GR3
combines the benefits of low overhead round-robin execu-
tion with a novel ratio-based scheduling algorithm.

G R? uses the same basic uniprocessor scheduling al-
gorithm for multiprocessor scheduling by introducing the
notion of a frontlog. On a multiprocessor system, a client
may not be able to be scheduled to run on a processor be-
cause it is currently running on another processor. To pre-
serve its fairness properties, G R® keeps track of a frontlog
per client to indicate when the client was already running
but could have been scheduled to run on another processor.
It then assigns the client a time quantum that is added to its
allocation on the processor it is running on. The frontlog
ensures that a client receives its proportional share alloca-
tion while also taking advantage of any cache affinity by
continuing to run the client on the same processor.

GR? provides a simple weight readjustment algo-
rithm that takes advantage of its grouping strategy. On
a multiprocessor system, proportional sharing is not fea-
sible for some client weight assignments, such as having
one client with weight 1 and another with weight 2 on a
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two-processor system. By organizing clients with similar
weights into groups, GR? adjusts for infeasible weight as-
signments without the need to order clients, resulting in
lower scheduling complexity than previous approaches [7].

We have analyzed GR? and show that with only O(1)
overhead, G R® provides fairness within O(g?) of the ideal
Generalized Processor Sharing (GPS) model [16], where g,
the number of groups, grows at worst logarithmically with
the largest client weight. Since g is in practice a small con-
stant, GR? effectively provides constant fairness bounds
with only O(1) overhead. Moreover, we show that GR3
uniquely preserves its worst-case time complexity and fair-
ness properties for multiprocessor systems.

We have implemented a prototype GR® processor
scheduler in Linux, and compared it against uniproces-
sor and multiprocessor schedulers commonly used in prac-
tice and research, including the standard Linux sched-
uler [2], Weighted Fair Queueing (WFQ) [11], Virtual-Time
Round-Robin (VTRR) [17], and Smoothed Round-Robin
(SRR) [9]. We have conducted both simulation studies and
kernel measurements on micro-benchmarks and real ap-
plications. Our results show that GR? can provide more
than an order of magnitude better proportional sharing ac-
curacy than these other schedulers, in some cases with more
than an order of magnitude less overhead. These results
demonstrate that GR? can in practice deliver better propor-
tional share control with lower scheduling overhead than
these other approaches. Furthermore, G R? is simple to im-
plement and easy to incorporate into existing scheduling
frameworks in commodity operating systems.

This paper presents the design, analysis, and evalua-
tion of GR3. Section 2 describes the uniprocessor schedul-
ing algorithm. Section 3 describes extensions for multipro-
cessor scheduling, which we refer to as G R3MP. Section 4
analyzes the fairness and complexity of GR?. Section 5
presents experimental results. Section 6 discusses related
work. Finally, we present some concluding remarks and
directions for future work.

2 G R? Uniprocessor Scheduling

Uniprocessor scheduling, the process of scheduling a time-
multiplexed resource among a set of clients, has two basic
steps: 1) order the clients in a queue, 2) run the first client in
the queue for its time quantum, which is the maximum time
interval the client is allowed to run before another schedul-
ing decision is made. We refer to the units of time quanta
as time units (tu) rather than an absolute time measure such
as seconds. A scheduler can therefore achieve proportional
sharing in one of two ways. One way, often called fair
queueing [11, 18, 28, 13, 24, 10] is to adjust the frequency
that a client is selected to run by adjusting the position of
the client in the queue so that it ends up at the front of the
queue more or less often. However, adjusting the client’s
position in the queue typically requires sorting clients based

on some metric of fairness, and has a time complexity that
grows with the number of clients. The other way is to ad-
just the size of a client’s time quantum so that it runs longer
for a given allocation, as is done in weighted round-robin
(WRR). This is fast, providing constant time complexity
scheduling overhead. However, allowing a client to mo-
nopolize the resource for a long period of time results in ex-
tended periods of unfairness to other clients which receive
no service during those times. The unfairness is worse with
skewed weight distributions.

GR? is a proportional share scheduler that matches
with O(1) time complexity of round-robin scheduling but
provides much better proportional fairness guarantees in
practice. At a high-level, the GR? scheduling algorithm
can be briefly described in three parts:

1. Client grouping strategy: Clients are separated into
groups of clients with similar weight values. The
group of order k is assigned all clients with weights
between 2% to 25+1 — 1, where k& > 0.

2. Intergroup scheduling: Groups are ordered in a list
from largest to smallest group weight, where the group
weight of a group is the sum of the weights of all
clients in the group. Groups are selected in a round-
robin manner based on the ratio of their group weights.
If a group has already been selected more than its pro-
portional share of the time, move on to the next group
in the list. Otherwise, skip the remaining groups in
the group list and start selecting groups from the be-
ginning of the group list again. Since the groups with
larger weights are placed first in the list, this allows
them to get more service than the lower-weight groups
at the end of the list.

3. Intragroup scheduling: From the selected group, a
client is selected to run in a round-robin manner that
accounts for its weight and previous execution history.

Using this client grouping strategy, GR> separates
scheduling in a way that reduces the need to schedule enti-
ties with skewed weight distributions. The client grouping
strategy limits the number of groups that need to be sched-
uled since the number of groups grows at worst logarithmi-
cally with the largest client weight. Even a very large 32-bit
client weight would limit the number of groups to no more
than 32. The client grouping strategy also ensures that all
clients within a group have weight within a factor of two.
As a result, the intragroup scheduler never needs to sched-
ule clients with skewed weight distributions. GR® groups
are simple lists that do not need to be balanced; they do not
require any use of more complex balanced tree structures.

2.1 GR? Definitions

We now define the state GR® associates with each
client and group, and describe in detail how GR3 uses
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C; Client j. (also called "task’ j)
oc The weight assigned to client C.

oy Shorthand notation for ¢¢, .

D¢ The deficit of C.

N The number of runnable clients.

g The number of groups.

G; 7’th group in the list ordered by weight.
|G| The number of clients in group G.
G(C) | The group to which C belongs.

[Ye The group weight of G: Y., dc-
b, Shorthand notation for @, .
oG The order of group G.
<t Lower bound for client weights in G: 296,

min
we The work of client C.
w; Shorthand notation for wc; .

Wa The group work of group G.
W; Shorthand notation for W, .

Pr Total weight: Z;VZI o =>9_, 9,
Wr Total work: Zivzl wj =9 W,

ec Service error of client C: we — W i—i
Eq Group service error of G: Wg — WT%
ec,g Group-relative service error of client C' with

respect to group G: w¢g — ngﬁ—i

Table 1: GR? terminology

that state to schedule clients. Table 1 lists terminology
we use. For each client, GR® maintains the following
three values: weight, deficit, and run state. Each client re-
ceives a resource allocation that is directly proportional to
its weight. A client’s deficit tracks the number of remaining
time quanta the client has not received from previous allo-
cations. A client’s run state indicates whether or not it can
be executed. A client is runnable if it can be executed.

For each group, GR? maintains the following four
values: group weight, group order, group work, and current
client. The group weight is the sum of the corresponding
weights of the clients in the group run queue. A group with
group order k contains the clients with weights between 2*
to 281 — 1. The group work is the total execution time
clients in the group have received. The current client is the
most recently scheduled client in the group’s run queue.

GR? also maintains the following scheduler state:
time quantum, group list, total weight, and current group.
The group list is a sorted list of all groups containing
runnable clients ordered from largest to smallest group
weight, with ties broken by group order. The fotal weight is
the sum of the weights of all runnable clients. The current
group is the most recently selected group in the group list.

2.2 Basic GR? Algorithm

We initially only consider runnable clients in our dis-
cussion of the basic GR? scheduling algorithm. We dis-

cuss dynamic changes in a client’s run state in Section 2.3.
We first focus on the G R? intergroup scheduling algorithm,
then discuss the GR? intragroup scheduling algorithm.

The GR? intergroup scheduling algorithm uses the
ratio of the group weights of successive groups to deter-
mine which group to select. The next group to schedule
is selected using only the state of successive groups in the
group list. Given a group G; whose weight is x times larger
than the group weight of the next group G, in the group
list, GR? will select group G; x times for every time that it
selects GG;+1 in the group list to provide proportional share
allocation among groups.

To implement the algorithm, G R* maintains the to-
tal work done by group G, in a variable W;. An index ¢ to
tracks the current group and is initialized to 1. The schedul-
ing algorithm then executes the following simple routine:

INTERGROUP-SCHEDULE()

1 C < INTRAGROUP-SCHEDULE(G;)

2 Wi —W;+1

3 ifi<gand ity > g (1)
4 theni «— ¢ +1

5 else ¢ — 1

6 return C'

Let us negate (1) under the form:

Wi+1<Wi+1+1
o,

Qi1 @
We will call this relation the well-ordering condition of two
consecutive groups. GR? works to maintain this condition
true at all times. The intuition behind (2) is that we would
like the ratio of the work of GG; and G, 1 to match the ratio
of their respective group weights after GR? has finished se-
lecting both groups. Recall, ®; > ®,, ;. Each time a client
from G, 1 is run, GR? would like to have run ®;/®; 4
worth of clients from G;. (1) says that GR> should not run
a client from G; and increment G;’s group work if it will
make it impossible for G;41 to catch up to its proportional
share allocation by running one of its clients once.

To illustrate how intergroup scheduling works, Fig-
ure 1 shows an example with three clients Cy, Co, and
Cs5, which have weights of 5, 2, and 1, respectively. The
GR? grouping strategy would place each C; in group G,
ordering the groups by weight: G1, G2, and G3 have or-
ders 2, 1 and O and weights of 5, 2, and 1 respectively.
In this example, each group has only one client so there
is no intragroup scheduling. G R? would start by selecting
group (i1, running client C'y, and incrementing 1. Based
on (1), %;ﬁ =2 < i—; = 2.5, so GR3 would select
(G1 again and run client C;. After running C, G1’s work
would be 2 so that the inequality in (1) would hold and GR?
would then move on to the next group G2 and run client Cs.

Based on (1), %ﬁﬁ =2< g—i = 2, so GR? would reset
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Figure 1: GR? intergroup scheduling. At each time step,
the shaded box contains the pair @ | W + 1 for the group
G before it is selected.

the current group to the largest weight group GG; and run
client C;. Based on (1), C; would be run for three time
quanta before selecting G2 again to run client Cy. After
running C the second time, W5 would increase such that
%ﬁ)ﬁ =3 > g—i = 2, so GR® would then move on to
the last group G'3 and run client Cs. The resulting schedule
would then be: Gl, Gl, GQ, Gl, Gl, Gl, GQ, G3. Each
group therefore receives its proportional allocation in ac-
cordance with its respective group weight.

The G R? intragroup scheduling algorithm selects a
client from the selected group. All clients within a group
have weights within a factor of two, and all client weights
in a group G are normalized with respect to the minimum
possible weight, <, = 27¢, for any client in the group.
GR? then effectively traverses through a group’s queue
in round-robin order, allocating each client its normalized
weight worth of time quanta. G R? keeps track of subuni-
tary fractional time quanta that cannot be used and accumu-
lates them in a deficit value for each client. Hence, each
client is assigned either one or two time quanta, based on
the client’s normalized weight and its previous allocation.

More specifically, the G R? intragroup scheduler con-
siders the scheduling of clients in rounds. A round is one
pass through a group G’s run queue of clients from begin-
ning to end. The group run queue does not need to be sorted
in any manner. During each round, the G R? intragroup al-
gorithm considers the clients in round-robin order and exe-
cutes the following simple routine:

INTRAGROUP-SCHEDULE(G)

1 C«— Gk > k is the current position in the round
2 ifDc<1

3 then k& — (k + 1) mod |G|

4 C — Gk

5 D¢ — D¢ + éc/¢Sin

6 Do+« Dc—1

7 returnC

For each runnable client C, the scheduler determines
the maximum number of time quanta that the client can be
selected to run in this round as | %~ + Do(r—1)]. De(r),

¢S}in
the deficit of client C' after round r, is the time quantum
fraction left over after round r: D¢ (r) = ch + D¢ (r —

1)— [ #%+De(r—1)J, with De(0) = %~ Thus, ineach
round, C'is allotted one time quantum plnllllg any additional
leftover from the previous round, and D¢ (r) keeps track of
the amount of service that C' missed because of rounding
down its allocation to whole time quanta. We observe that
0 < D¢(r) < 1 after any round r so that any client C'
will be allotted one or two time quanta. Note that if a client
is allotted two time quanta, it first executes for one time
quantum and then executes for the second time quantum
the next time the intergroup scheduler selects its respective
group again (in general, following a timespan when clients
belonging to other groups get to run).

To illustrate how GR3 works with intragroup
scheduling, Figure 2 shows an example with six clients
C; through Cg with weights 12, 3, 3, 2, 2, and 2, re-
spectively. The six clients will be put in two groups G
and G2 with respective group order 1 and 3 as follows:
G = {CQ, Cs3,C4, Cs, 06} and Gy = {Cl} The weight
of the groups are ®; = &5 = 12. GR? intergroup schedul-
ing will consider the groups in this order: Gi, G2, G1,
GQ, Gl, GQ, Gl, GQ, Gl, GQ, Gl, GQ. G2 will sched-
ule client C every time G is considered for service since
it has only one client. Since qﬁg}n = 2, the normalized
weights of clients Cy, C3, Cy4, Cs, and Cg are 1.5, 1.5, 1,
1, and 1, respectively. In the beginning of round 1 in G,
each client starts with O deficit. As a result, the intragroup
scheduler will run each client in G for one time quantum
during round 1. After the first round, the deficit for Cs, Cs,
Cy, Cs, and Cg are 0.5, 0.5, 0, 0, and 0. In the beginning of
round 2, each client gets another ¢,/ qbf]iln allocation, plus
any deficit from the first round. As a result, the intragroup
scheduler will select clients Cs, C3, Cy, Cs, and Cg to run
in order for 2, 2, 1, 1, and 1 time quanta, respectively, dur-
ing round 2. The resulting schedule would then be: C5, C,
Cs, C1, Cy, C1, Cs, C1, Cg, C1, Oy, C1, Oy, Ch, Cs, Ch,
Cs, C4, Cy, C1, Cs, C1, Cg, Cf.

2.3 GR? Dynamic Considerations

We now discuss how GR? allows clients to be
dynamically created, terminated, or change run state.
Runnable clients can be selected for execution by the sched-
uler, while clients that are not runnable cannot. With no loss
of generality, we assume that a client is created before it can
become runnable, and a client becomes not runnable before
it is terminated. As a result, client creation and termination
have no effect on the GR? run queues.

When a client C' with weight ¢ becomes runnable,
it is inserted into group G = G(C') such that ¢¢ is between
296 and 2°¢+! — 1. If the group was previously empty, a
new group is created, the client becomes the current client
of the group, and g, the number of groups, is incremented.
If the group was not previously empty, GR? inserts the
client into the respective group’s run queue right before the
current client; it will be serviced after all of the other clients
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Figure 2: G R? intragroup scheduling. At each time step, the shaded box contains the deficit of the client before it is run.

in the group have first been considered for scheduling. The
initial deficit D¢ will be initialized to 0.

When a newly runnable client C' is inserted into its
respective group G, the group needs to be moved to its new
position on the ordered group list based on its new group
weight. Let this new position be k. The corresponding
group work and group weight of G need to be updated and
the client’s deficit needs to be initialized. The group weight
is simply incremented by the client’s weight. We also want
to scale the group work of GG such that the work ratio of
consecutive groups will continue to be proportional to their
weight ratio:

|(Wia + gtz | =1 ifk<yg
W =

[(Wor+ )| =1 it k=g

1

We will motivate these equations when analyzing the fair-
ness of the algorithm in Section 4, but intuitively, we want
to preserve the invariants that result from (2).

When a client C' with weight ¢ becomes not
runnable, we need to remove it from the group’s run queue.
This requires updating the group’s weight, which poten-
tially includes moving the group in the ordered group list, as
well as adjusting the measure of work received according to
the new processor share of the group. This can be achieved
in several ways. GR? is optimized to efficiently deal with
the common situation when a blocked client may rapidly
switch back to the runnable state again. This approach is
based on “lazy” removal, which minimizes overhead asso-
ciated with adding and removing a client, while at the same
time preserving the service rights and service order of the
runnable clients. Since a client blocks when it is running,
we know that it will take another full intragroup round be-
fore the client will be considered again. The only action
when a client blocks is to set a flag on the client, marking it
for removal. If the client becomes runnable by the next time
it is selected, we reset the flag and run the client as usual.
Otherwise, we remove the client from G(C). In the lat-
ter situation, as in the case of client arrivals, the group may
need to be moved to a new position on the ordered group list
based on its new group weight. The corresponding group
weight is updated by subtracting the client’s weight from
the group weight. The corresponding group work is scaled

by the same rules as for client insertion, depending on the
new position of the group and its next neighbor. After per-
forming these removal operations, GR3 resumes schedul-
ing from the largest weight group in the system.

Whenever a client C' blocks during round r, we set

De(r) = min(De (r — 1) + ¢ /o5 — [w], 1), where w
is the service that the client received during round 7 until it
blocked. This preserves the client’s credit in case it returns
by the next round, while also limiting the deficit to 1 so that
a client cannot gain credit by blocking. However, the group
consumes 1 tu (its work is incremented) no matter how long
the client runs. Therefore, the client forfeits its extra credit
whenever it is unable to consume its allocation.

If the client fails to return by the next round, we may
remove it. Having kept the weight of the group to the old
value for an extra round has no adverse effects on fairness,
despite the slight increase in service seen by the group dur-
ing the last round. By scaling the work of the group and
rounding up, we determine its future allocation and thus
make sure the group will not have received undue service.
We also immediately resume the scheduler from the first
(largest) group in the readjusted group list, so that any mi-
nor discrepancies caused by rounding may be smoothed out
by a first pass through the group list.

3 GR? Multiprocessor Extensions (GR>M P)

We now present extensions to G R? for scheduling a P-way
multiprocessor system from a single, centralized queue.
This simple scheme, which we refer to as GR3MP, pre-
serves the good fairness and time complexity properties of
GR? in small-scale multiprocessor systems, which are in-
creasingly common today, even in the form of multi-core
processors. We first describe the basic GR3M P schedul-
ing algorithm, then discuss dynamic considerations. Table
2 lists terminology we use. To deal with the problem of in-
feasible client weights, we then show how G R M P uses its
grouping strategy in a novel weight readjustment algorithm.

3.1 Basic GR>M P Algorithm

GR3M P uses the same G R? data structure, namely
an ordered list of groups, each containing clients whose
weights are within a factor of two from each other. When a

USENIX Association

2005 USENIX Annual Technical Conference 341



P Number of processors.

oF Processor k.

C(p) | Client running on processor (.
Feo Frontlog for client C.

Table 2: GR3M P terminology

processor needs to be scheduled, GR3 M P selects the client
that would run next under G R3, essentially scheduling mul-
tiple processors from its central run queue as G R? sched-
ules a single processor. However, there is one obstacle to
simply applying a uniprocessor algorithm on a multipro-
cessor system. Each client can only run on one processor
at any given time. As a result, GR3M P cannot select a
client to run that is already running on another processor
even if GR? would schedule that client in the uniproces-
sor case. For example, if GR3 would schedule the same
client consecutively, GR3M P cannot schedule that client
consecutively on another processor if it is still running.

To handle this situation while maintaining fairness,
GR?M P introduces the notion of a frontlog. The front-
log F¢ for some client C' running on a processor p* (C' =
C(p*)) is defined as the number of time quanta for C' accu-
mulated as C gets selected by GR? and cannot run because
it is already running on p*. The frontlog Fi- is then queued
up on pF.

Given a client that would be scheduled by GR? but
is already running on another processor, GR3 M P uses the
frontlog to assign the client a time quantum now but de-
fer the client’s use of it until later. Whenever a proces-
sor finishes running a client for a time quantum, GR*M P
checks whether the client has a non-zero frontlog, and, if
s0, continues running the client for another time quantum
and decrements its frontlog by one, without consulting the
central queue. The frontlog mechanism not only ensures
that a client receives its proportional share allocation, it also
takes advantage of any cache affinity by continuing to run
the client on the same processor.

When a processor finishes running a client for a time
quantum and its frontlog is zero, we call the processor idle.
GR?>M P schedules a client to run on the idle processor
by performing a GR? scheduling decision on the central
queue. If the selected client is already running on some
other processor, we increase its frontlog and repeat the GR3
scheduling, each time incrementing the frontlog of the se-
lected client, until we find a client that is not currently run-
ning. We assign this client to the idle processor for one time
quantum. This description assumes that there are least P41
clients in the system. Otherwise, scheduling is easy: an idle
processor will either run the client it just ran, or idles un-
til more clients arrive. In effect, each client will simply be
assigned its own processor. Whenever a processor needs to
perform a scheduling decision, it thus executes the follow-
ing routine:

c, ¢, C, C, C, C t

p1 L 2,72,73,72,72, 73, -
S el e RS
14 1 ‘(31/ A N VRN \‘\/C/l A

4 4 = P 4

7 - -7

/ - -
2 €161 6 € 6 Gy

S A
CI

Y-

- F~=0
G

Figure 3: G'R? multiprocessor scheduling. The two pro-
cessors schedule either from the central queue, or use the
frontlog mechanism when the task is already running.

MP-SCHEDULE(p*)

1 C« O(ph) > Client just run
2 ifC=NIL

3 thenif N < P

4 then return NIL > Idle
5 else if Fi >0

6 then FC — FC -1

7 return C

8 C « INTERGROUP-SCHEDULE()

9 while Jps.t. C = C(p)
10 do Fo «+— Fo +1
11 C «— INTERGROUP-SCHEDULE()
12 return C

To illustrate G R3M P scheduling, Figure 3 shows an
example on a dual-processor system with three clients C1,
Cs, and C5 of weights 3, 2, and 1, respectively. C; and
C5 will then be part of the order 1 group (assume C is
before C1 in the round-robin queue of this group), whereas
Cs is part of the order 0 group. The GR? schedule is Cs,
C1, Oy, Cy, C1, C3. o' will then select C5 to run, and p?
selects C;. When ! finishes, according to GR3, it will
select (s once more, whereas pQ selects C'; again. When
@' again selects the next GR? client, which is C1, it finds
that it is already running on p? and thus we set Fo, = 1
and select the next client, which is C'3, to run on pl. When
©? finishes running C for its second time quantum, it finds
Fe, =1, sets Fo, = 0 and continues running C; without
any scheduling decision on the GR? queue.

3.2 GR3M P Dynamic Considerations

GR?M P basically does the same thing as the GR?
algorithm under dynamic considerations. However, the
frontlogs used in GR3*M P need to be accounted for ap-
propriately. If some processors have long frontlogs for their
currently running clients, newly arriving clients may not be
run by those processors until their frontlogs are processed,
resulting in bad responsiveness for the new clients. Al-
though in between any two client arrivals or departures,
some processors must have no frontlog, the set of such
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processors can be as small as a single processor. In this
case, newly arrived clients will end up competing with other
clients already in the run queue only for those few proces-
sors, until the frontlog on the other processors is exhausted.

GR3 M P provides fair and responsive allocations by
creating frontlogs for newly arriving clients. Each new
client is assigned a frontlog equal to a fraction of the to-
tal current frontlog in the system based on its proportional
share. Each processor now maintains a queue of frontlog
clients and a new client with a frontlog is immediately as-
signed to one of the processor frontlog queues. Rather than
running its currently running client until it completes its
frontlog, each processor now round robins among clients
in its frontlog queue. Given that frontlogs are small in prac-
tice, round-robin scheduling is used for frontlog clients for
its simplicity and fairness. GR3M P balances the frontlog
load on the processors by placing new frontlog clients on
the processor with the smallest frontlog summed across all
its frontlog clients.

More precisely, whenever a client C' arrives, and
it belongs in group G(C), GR3M P performs the same
group operations as in the single processor G R? algorithm.
GR®M P finds the processor p* with the smallest front-
log, then creates a frontlog for client C' on E* of length
Fo = FTi—i, where Fr is the total frontlog on all the
processors. Let C’ = C(p*). Then, assuming no further
clients arrive, ¥ will round-robin between C' and C’ and
run C for F and C’ for Fo: time quanta.

When a client becomes not runnable, GR3M P uses
the same lazy removal mechanism used in GR3. If it is
removed from the run queue and has a frontlog, GR>*MP
simply discards it since each client is assigned a frontlog
based on the current state of the system when it becomes
runnable again.

3.3 GR>M P Weight Readjustment

Since no client can run on more than one processor
at a time, no client can consume more than a 1/P fraction
of the processing in a multiprocessor system. A client C
with weight ¢ greater than & /P is considered infeasi-
ble since it cannot receive its proportional share allocation
¢c /P without using more than one processor simultane-
ously. GR3M P should then give the client its maximum
possible service, and simply assign such a client its own
processor to run on. However, since the scheduler uses
client weights to determine which client to run, an infea-
sible client’s weight must be adjusted so that it is feasi-
ble to ensure that the scheduling algorithm runs correctly
to preserve fairness (assuming there are at least P clients).
G R3M P potentially needs to perform weight readjustment
whenever a client is inserted or removed from the run queue
to make sure that all weights are feasible.

To understand the problem of weight readjustment,
consider the sequence of all clients, ordered by weight:

Sin = C1,Cq,..
We call the subsequence Sy n = Cpk, Crt1, ..

feasible, if o < 55N, 6.

,Cn with ¢1 > ¢2 > ... > on.
.,.Cn Q-

Lemma 1. The client mix in the system is feasible if and
only if S1,n is P-feasible.

Proof. If ¢1 > ‘b—PT, (1 is infeasible, so the mix is infea-
sible. Conversely, if ¢; < %, then for any client Cj,
o < 1 < %, implying all clients are feasible. The mix
is then feasible <= ¢; < 22 = 1 Zjvzl ¢;, or, equiva-
lently, S1,n is P-feasible. O

Lemma 2. Sy n is Q-feasible = Spi1n is (Q — 1)-
feasible.

Proof. ¢ < &YX 0Lid; = Qb < ¢ +

Zjvszrl ¢j = ¢ < ﬁzy:kﬂ ¢j. Since ¢pi1 <
o, the lemma follows. 0

The feasibility problem is then to identify the least
k (denoted the feasibility threshold, f) such that Sy n is
(P — k + 1)-feasible. If f = 1, then the client mix is feasi-
ble. Otherwise, the infeasible set S1,s—1 = Cy,...,Cr_1
contains the infeasible clients, whose weight needs to be
scaled down to 1/P of the resulting total weight. The car-
dinality f — 1 of the infeasible set is less than P. However,
the sorted sequence Sy is expensive to maintain, such that
traversing it and identifying the feasibility threshold is not
an efficient solution.

GR3M P leverages its grouping strategy to perform
fast weight readjustment. G R3M P starts with the unmod-
ified client weights, finds the set I of infeasible clients, and
adjust their weights to be feasible. To construct I, the al-
gorithm traverses the list of groups in decreasing order of
their group order o¢, until it finds a group not all of whose
clients are infeasible. We denote by |I| the cardinality of T
and by ®; the sum of weights of the clientsin I, ). ; ¢c.
The G R? M P weight readjustment algorithm is as follows:

WEIGHT-READJUSTMENT()

1 RESTORE-ORIGINAL-WEIGHTS
2 IT—19
3 G « greatest order group
4 while |G| < P — |I| and 2°¢ > $2=71-2¢
5 do/ —TUG
6 G «— next(G) > by group order
7 if |G| < 2(P —|I|)
8 then I «— I UINFEASIBLE(G, P — |I|, &7 — @)
9 BF — Oy — By
10 &p — 5@
11 foreachC e
12 do ¢c — 22
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The correctness of the algorithm is based on Lemma
2. Let some group G span the subsequence S; ; of the se-
quence of ordered clients S7 y. Then 29¢+1 — 1 > ¢; >
... > ¢; > 2°9¢ and itis easy to show:
Dr—B,—d
* 2% > Fom—Tar
infeasible).

= j < f (all clients in S ; are

0 296 < % = j+1> f(allclientsin S 1 N

are feasible).

Once we reach line 7, we know S 1 n is (P — j)-feasible,
andi < f < j+ 1. If |G| > 2(P — |I|), GR3MP can
stop searching for infeasible clients since all clients C' € G
are feasible, and f = i (equivalently, S; v is (P — |I])-
feasible): ¢o < 276+l < Qﬁ@g < P+|I|‘I)G <
P—1|I|((I)T — ®r). Otherwise, if |G| < 2(P — |I|), then
i < f < j+1and GR®>M P needs to search through G
to determine which clients are infeasible (equivalently, find
f). Since the number of clients in G is small, we can sort
all clients in G by weight. Then, starting from the largest
weight client in G, find the first feasible client. A simple

algorithm is then the following:

INFEASIBLE(G, @, ®)

1 IT<90

2 for each C' € G in sorted order
3 do if pc > 27 (P — @)
4 then I — T U {C}

5 else return /

6 return /

GR3MP can alternatively use a more complicated
but lower time complexity divide-and-conquer algorithm to
find the infeasible clients in G. In this case, GR3M P par-
titions GG around its median C into Gg, the set of G clients
that have weight less than ¢~ and G, the set of G clients
that have weight larger than ¢ . By Lemma 2, if C is fea-
sible, Gs U {C} is feasible, and we recurse on G . Other-
wise, all clients in G'g U {C'} are infeasible, and we recurse
on G's to find all infeasible clients. The algorithm finishes
when the set we need to recurse on is empty:

INFEASIBLE(G, Q, )

iftG=10
_ then return ()
C — MEDIAN(G)

(Gs,Gp) < PARTITION(G, ¢ &)
. I
if oo > o) _
then return Gp U {C'}U
INFEASIBLE(Gs,Q — |G| — 1,® — ®¢,, — &)
7 else return INFEASIBLE(G g, @, ®)

AN N AW~

Once all infeasible clients have been identified,
WEIGHT-READJUSTMENT() determines the sum of the

weights of all feasible clients, <I>§1 = & — O;. We can
now compute the new total weight in the system as & =
P—Lﬁéé’ namely the solution to the equation &4+ |1]4 =
x. Once we have the adjusted @7, we change all the weights
for the infeasible clients in I to ‘I’PT . Lemma 6 in Section 4.2
shows the readjustment algorithm runs in time O(P) and is
thus asymptotically optimal, since there can be ©(P) infea-

sible clients.

4 G R? Fairness and Complexity

We analyze the fairness and complexity of GR? and
GR3MP. To analyze fairness, we use a more formal notion
of proportional fairness defined as service error, a measure
widely used [1, 7,9, 17, 18, 19, 25, 27] in the analysis of
scheduling algorithms. To simplify the analysis, we will
assume that clients are always runnable and derive fairness
bounds for such a case. Subsequently, we address the im-
pact of arrivals and departures.

We use a strict measure of service error (equivalent
in this context to the Normalized Worst-case Fair Index [1])
relative to Generalized Processor Sharing (GPS) [16], an
idealized model that achieves perfect fairness: we =
WTfI‘;—i, an ideal state in which each client C' always re-
ceives service exactly proportional to its weight. Although
all real-world schedulers must time-multiplex resources in
time units of finite size and thus cannot maintain perfect
fairness, some algorithms stay closer to perfect fairness than
others and therefore have less service error. We quantify
how close an algorithm gets to perfect fairness using the
client service time error, which is the difference between
the service received by client C' and its share of the total
work done by the processor: ec = we — WTg;—i. A pos-
itive service time error indicates that a client has received
more than its ideal share over a time interval; a negative
error indicates that it has received less. To be precise, the
error ec measures how much time a client C' has received
beyond its ideal allocation. A proportional share scheduler
should minimize the absolute value of the allocation error
of all clients with minimal scheduling overhead.

We provide bounds on the service error of GR? and
GR3M P. To do this, we define two other measures of ser-
vice error. The group service time error is a similar mea-
sure for groups that quantifies the fairness of allocating the
processor among groups: Eg = Wg — WTg—;". The group-
relative service time error represents the service time error
of client C if there were only a single group G = G(C)
in the scheduler and is a measure of the service error of a
client with respect to the work done on behalf of its group:
ec,g = W — ng—g. We first show bounds on the group
service error of the intergroup scheduling algorithm. We
then show bounds on the group-relative service error of the
intragroup scheduling algorithm. We combine these results
to obtain the overall client service error bounds. We also
discuss the scheduling overhead of GR? and GR®*M P in
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terms of their time complexity. We show that both algo-
rithms can make scheduling decisions in O(1) time with
O(1) service error given a constant number of groups. Due
to space constraints, most of the proofs are omitted. Further
proof details are available in [5].

4.1 Analysis of GR?

Intergroup Fairness For the case when the weight ratios
of consecutive groups in the group list are integers, we get
the following:

f-f eEN, 1< j<g then—-1< Eg, <

Lemma 3. If 5 -

(g — k)g—:’;for any group Gy.

Proof sketch: If the group currently scheduled is Gy,
then the work to weight ratio of all groups G, j < k, is
the same. For j > k‘,% < %7 < %—%asa
consequence of the well-ordering condition (2). After some
rearrangements, we can sum over all j and bound W, and
thus E¢, above and below. The additive 4%- will cause the
g — 1 upper bound.

In the general case, we get similar, but slightly weaker

bounds.

Lemma 4. For any group Gy, _W% -1<
EGk, <g-1

The proof for this case (omitted) follows reasoning similar
to that of the previous lemma, but with several additional
complications.

It is clear that the lower bound is minimized when
setting k£ = 1. Thus, we have

Corollary 1. —Wg—g — 1< Eg <g—1 forany
group G.

Intragroup Fairness Within a group, all weights are
within a factor of two and the group-relative error is bound
by a small constant. The only slightly subtle point is to deal
with fractional rounds.

Lemma 5. -3 < ec,¢ <4 forany client C € G.

Overall Fairness of GR®> Based on the identity ec =
ec,g + i—gEG which holds for any group G and any client
C € G, we can combine the inter- and intragroup analyses
to bound the overall fairness of GR3.

Theorem 1. —Wg—i —4 <ec < g+3 forany
client C.

The negative error of GR® is thus bounded by O(g*) and
the positive error by O(g). Recall, g, the number of groups,
does not depend on the number of clients in the system.

Dynamic Fairness of GR?> We can consider a client ar-
rival or removal as an operation where a group is first re-
moved from the group list and added in a different place
with a different weight. We argue that fairness is pre-
served by these operations: when group Gy, is removed,
then Gi_1, Gk, and Gy, were well-ordered as defined
in (2), so after the removal, Gx_1 and Gg1, now neigh-
bors, will be well-ordered by transitivity. When a group,
call it G4 (1/2), is inserted between G; and G 1, it can be
proven that the work readjustment formula in Section 2.3
ensures G4 (1/2) and G11 are well-ordered. In the case of
Gi and G (1/2), we can show that we can achieve well-
ordering by running G 1 (1 /2) at most one extra time. Thus,
modulo this readjustment, the intragroup algorithm’s fair-
ness bounds are preserved. An important property of our
algorithm that follows is that the pairwise ratios of work
of clients not part of the readjusted group will be unaf-
fected. Since the intragroup algorithm has constant fairness
bounds, the disruption for the work received by clients in-
side the adjusted group is only O(1).

Time Complexity G R manages to bound its service er-
ror by O(g?) while maintaining a strict O(1) scheduling
overhead. The intergroup scheduler either selects the next
group in the list, or reverts to the first one, which takes con-
stant time. The intragroup scheduler is even simpler, as it
just picks the next client to run from the unordered round
robin list of the group. Adding and removing a client is
worst-case O(g) when a group needs to be relocated in the
ordered list of groups. This could of course be done in
O(log g) time (using binary search, for example), but the
small value of g in practice does not justify a more compli-
cated algorithm.

The space complexity of GR? is O(g) + O(N) =
O(N). The only additional data structure beyond the un-
ordered lists of clients is an ordered list of length g to orga-
nize the groups.

4.2 Analysis of GR3M P

Overall Fairness of GR?>MP  Given feasible client
weights after weight readjustment, the service error for
GR2>M P is bounded below by the GR? error, and above
by a bound which improves with more processors.

Theorem 2. —w;gﬂ)i—i —4 < ec < 29+ 10+

% for any client C.

Time Complexity of GR*M P  The frontlogs create an
additional complication when analyzing the time complex-
ity of GR3M P. When an idle processor looks for its next
client, it runs the simple O(1) GR? algorithm to find a
client C. If C is not running on any other processor, we
are done, but otherwise we place it on the frontlog and then
we must rerun the GR? algorithm until we find a client
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that is not running on any other processor. Since for each
such client, we increase its allocation on the processor it
runs, the amortized time complexity remains O(1). The up-
per bound on the time that any single scheduling decision
takes is given by the maximum length of any scheduling
sequence of GR? consisting of only some fixed subset of
P — 1 clients.

Theorem 3. The time complexity per scheduling decision
in GR3M P is bounded above by (g_k)(%“) + (k+
D(g—k+1)P+1wherel <k<g.

Thus, the length of any schedule consisting of at most
P — 1 clients is O(g2 P). Even when a processor has front-
logs for several clients queued up on it, it will schedule in
O(1) time, since it performs round-robin among the front-
logged clients. Client arrivals and departures take O(g)
time because of the need to readjust group weights in the
saved list of groups. Moreover, if we also need to use
the weight readjustment algorithm, we incur an additional
O(P) overhead on client arrivals and departures.

Lemma 6. The complexity of the weight readjustment al-
gorithm is O(P).

Proof. Restoring the original weights will worst case touch
a number of groups equal to the number of previously in-
feasible clients, which is O(P). Identifying the infeasible
clients involves iterating over at most P groups in decreas-
ing sequence based on group order, as described in Sec-
tion 3.3. For the last group considered, we only attempt
to partition it into feasible and infeasible clients of its size
is less than 2P. Since partitioning of a set can be done in
linear time, and we recurse on a subset half the size, this
operation is O(P) as well. O

For small P, the O(Plog(P)) sorting approach to
determine infeasible clients in the last group considered is
simpler and in practice performs better than the O(P) re-
cursive partitioning. Finally, altering the active group struc-
ture to reflect the new weights is a O(P + g) operation, as
two groups may need to be re-inserted in the ordered list of
groups.

5 Measurements and Results

We have implemented G R? uniprocessor and multiproces-
sor schedulers in the Linux operating system and measured
their performance. We present some experimental data
quantitatively comparing GR? performance against other
popular scheduling approaches from both industrial prac-
tice and research. We have conducted both extensive sim-
ulation studies and detailed measurements of real kernel
scheduler performance on real applications.

Section 5.1 presents simulation results comparing
the proportional sharing accuracy of GR® and GR*M P
against WRR, WFQ [18], SFQ [13], VIRR [17], and

SRR [9]. The simulator enabled us to isolate the impact
of the scheduling algorithms themselves and examine the
scheduling behavior of these different algorithms across
hundreds of thousands of different combinations of clients
with different weight values.

Section 5.2 presents detailed measurements of real
kernel scheduler performance by comparing our prototype
GR? Linux implementation against the standard Linux
scheduler, a WFQ scheduler, and a VTRR scheduler. The
experiments we have done quantify the scheduling over-
head and proportional share allocation accuracy of these
schedulers in a real operating system environment under a
number of different workloads.

All our kernel scheduler measurements were per-
formed on an IBM Netfinity 4500 system with one or two
933 MHz Intel Pentium III CPUs, 512 MB RAM, and 9
GB hard drive. The system was installed with the Debian
GNU/Linux distribution version 3.0 and all schedulers were
implemented using Linux kernel version 2.4.19. The mea-
surements were done by using a minimally intrusive trac-
ing facility that writes timestamped event identifiers into
a memory log and takes advantage of the high-resolution
clock cycle counter available with the Intel CPU, providing
measurement resolution at the granularity of a few nanosec-
onds. Getting a timestamp simply involved reading the
hardware cycle counter register. We measured the times-
tamp overhead to be roughly 35 ns per event.

The kernel scheduler measurements were performed
on a fully functional system. All experiments were per-
formed with all system functions running and the system
connected to the network. At the same time, an effort was
made to eliminate variations in the test environment to make
the experiments repeatable.

5.1 Simulation Studies

We built a scheduling simulator that measures the
service time error, described in Section 4, of a scheduler
on a set of clients. The simulator takes four inputs, the
scheduling algorithm, the number of clients N, the total
sum of weights &1, and the number of client-weight combi-
nations. The simulator randomly assigns weights to clients
and scales the weights to ensure that they add up to ®7.
It then schedules the clients using the specified algorithm
as a real scheduler would, assuming no client blocks, and
tracks the resulting service time error. The simulator runs
the scheduler until the resulting schedule repeats, then com-
putes the maximum (most positive) and minimum (most
negative) service time error across the nonrepeating portion
of the schedule for the given set of clients and weight as-
signments. This process is repeated for the specified num-
ber of client-weight combinations. We then compute the
maximum service time error and minimum service time er-
ror for the specified number of client-weight combinations
to obtain a “worst-case” error range.
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To measure proportional fairness accuracy, we ran
simulations for each scheduling algorithm on 45 different
combinations of N and ®7 (32 up to 8192 clients and
16384 up to 262144 total weight, respectively). Since the
proportional sharing accuracy of a scheduler is often most
clearly illustrated with skewed weight distributions, one
of the clients was given a weight equal to 10 percent of
®1. All of the other clients were then randomly assigned
weights to sum to the remaining 90 percent of ®7. For each
pair (N, ®7), we ran 2500 client-weight combinations and
determined the resulting worst-case error range.

The worst-case service time error ranges for WRR,
WFQ, SFQ, VTRR, SRR, and GR? with these skewed
weight distributions are in Figures 4 to 9. Due to space
constraints, WF2Q error is not shown since the results sim-
ply verify its known mathematical error bounds of —1 and
1 tu. Each figure consists of a graph of the error range for
the respective scheduling algorithm. Each graph shows two
surfaces representing the maximum and minimum service
time error as a function of N and ®1 for the same range
of values of N and ®7. Figure 4 shows WRR’s service
time error is between —12067 tu and 23593 tu. Figure 5
shows WFQ’s service time error is between —1 tu and 819
tu, which is much less than WRR. Figure 6 shows SFQ’s
service time error is between —819 tu and 1 tu, which is
almost a mirror image of WFQ. Figure 7 shows VTRR’s
service error is between —2129 tu and 10079 tu. Figure 8
shows SRR’s service error is between —369 tu and 369 tu.

In comparison, Figure 9 shows the service time er-
ror for GR? only ranges from —2.5 to 3.0 tu. GR? has
a smaller error range than all of the other schedulers mea-
sured except WF?Q. G R has both a smaller negative and
smaller positive service time error than WRR, VTRR, and
SRR. While GR? has a much smaller positive service er-
ror than WFQ, WFQ does have a smaller negative service

Service Error
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Figure 10: GR®*M P error Figure 11: GR3MP over-
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head

time error since it is bounded below at —1. Similarly, GR>
has a much smaller negative service error than SFQ, though
SFQ’s positive error is less since it is bounded above at 1.
Considering the total service error range of each scheduler,
GR?3 provides well over two orders of magnitude better pro-
portional sharing accuracy than WRR, WFQ, SFQ, VTRR,
and SRR. Unlike the other schedulers, these results show
that GR? combines the benefits of low service time errors
with its ability to schedule in O(1) time.

Note that as the weight skew becomes more accentu-
ated, the service error can grow dramatically. Thus, increas-
ing the skew from 10 to 50 percent results in more than
a fivefold increase in the error magnitude for SRR, WFQ,
and SFQ, and also significantly worse errors for WRR and
VTRR. In contrast, the error of GR? is still bounded by
small constants: —2.3 and 4.6.

We also measured the service error of GR3 M P using
this simulator configured for an 8 processor system, where
the weight distribution was the same as for the uniprocessor
simulations above. Note that the client given 0.1 of the total
weight was feasible, since 0.1 < § = 0.125. Figure 10
shows G R3M P’s service error is between —2.5 tu and 2.8
tu, slightly better than for the uniprocessor case, a benefit
of being able to run multiple clients in parallel. Figure 11
shows the maximum number of scheduling decisions that
an idle processor needs to perform until it finds a client that
is not running. This did not exceed seven, indicating that
the number of decisions needed in practice is well below
the worst-case bounds shown in Theorem 3.

5.2 Linux Kernel Measurements

To evaluate the scheduling overhead of GR?, we
compare it against the standard Linux 2.4 scheduler, a WFQ
scheduler, and a VTRR scheduler. Since WF2Q has the-
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Figure 12: Average scheduling overhead

oretically the same time complexity as WFQ (but with
larger constants, because of the complexity of its steps), we
present WFQ as a lower bound for the overhead of WF?Q.
We present results from several experiments that quantify
how scheduling overhead varies as the number of clients
increases. For the first experiment, we measure scheduling
overhead for running a set of clients, each of which exe-
cuted a simple micro-benchmark which performed a few
operations in a while loop. A control program was used to
fork a specified number of clients. Once all clients were
runnable, we measured the execution time of each schedul-
ing operation that occurred during a fixed time duration of
30 seconds. The measurements required two timestamps
for each scheduling decision, so measurement error of 70 ns
are possible due to measurement overhead. We performed
these experiments on the standard Linux scheduler, WFQ,
VTRR, and GR? for 1 to 400 clients.

Figure 12 shows the average execution time required
by each scheduler to select a client to execute. Results for
GR3,VTRR, WFQ, and Linux were obtained on uniproces-
sor system, and results for G R3M P and LinuxMP were ob-
tained running on a dual-processor system. Dual-processor
results for WFQ and VTRR are not shown since MP-ready
implementations of them were not available.

For this experiment, the particular implementation
details of the WFQ scheduler affect the overhead, so
we include results from two different implementations of
WEFQ. In the first, labeled “WFQ [O(N)]”, the run queue
is implemented as a simple linked list which must be
searched on every scheduling decision. The second, labeled
“WFQ [O(log N)]”, uses a heap-based priority queue with
O(log N) insertion time. To maintain the heap-based pri-
ority queue, we used a fixed-length array. If the number
of clients ever exceeds the length of the array, a costly ar-
ray reallocation must be performed. Our initial array size
was large enough to contain more than 400 clients, so this
additional cost is not reflected in our measurements.

As shown in Figure 12, the increase in scheduling
overhead as the number of clients increases varies a great
deal between different schedulers. G R? has the smallest
scheduling overhead. It requires roughly 300 ns to select a
client to execute and the scheduling overhead is essentially
constant for all numbers of clients. While VTRR schedul-
ing overhead is also constant, GR3 has less overhead be-
cause its computations are simpler to perform than the vir-
tual time calculations required by VTRR. In contrast, the
overhead for Linux and for O(N) WFQ scheduling grows
linearly with the number of clients. Both of these sched-
ulers impose more than 200 times more overhead than G R3
when scheduling a mix of 400 clients. O(log N') WFQ has
much smaller overhead than Linux or O(N) WFQ, but it
still imposes significantly more overhead than G R?, with 8
times more overhead than GR? when scheduling a mix of
400 clients. Figure 12 also shows that GR3M P provides
the same O(1) scheduling overhead on a multiprocessor,
although the absolute time to schedule is somewhat higher
due to additional costs associated with scheduling in mul-
tiprocessor systems. The results show that GR3M P pro-
vides substantially lower overhead than the standard Linux
scheduler, which suffers from complexity that grows lin-
early with the number of clients. Because of the impor-
tance of constant scheduling overhead in server systems,
Linux has switched to Ingo Molnar’s O(1) scheduler in the
Linux 2.6 kernel. As a comparison, we also repeated this
microbenchmark experiment with that scheduler and found
that G R3 still runs over 30 percent faster.

As another experiment, we measured the scheduling
overhead of the various schedulers for hackbench [21],
a Linux benchmark used for measuring scheduler perfor-
mance with large numbers of processes entering and leav-
ing the run queue at all times. It creates groups of readers
and writers, each group having 20 reader tasks and 20 writer
tasks, and each writer writes 100 small messages to each of
the other 20 readers. This is a total of 2000 messages sent
per writer, per group, or 40000 messages per group. We
ran a modified version of hackbench to give each reader
and each writer a random weight between 1 and 40. We
performed these tests on the same set of schedulers for 1
group up to 100 groups. Using 100 groups results in up to
8000 processes running. Because hackbench frequently in-
serts and removes clients from the run queue, the cost of
client insertion and removal is a more significant factor for
this benchmark. The results show that the simple dynamic
group adjustments described in Section 2.3 have low over-
head, since O(g) can be considered constant in practice.

Figure 13 shows the average scheduling overhead for
each scheduler. The average overhead is the sum of the
times spent on all scheduling events, selecting clients to run
and inserting and removing clients from the run queue, di-
vided by the number of times the scheduler selected a client
to run. The overhead in Figure 13 is higher than the av-
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Figure 13: Hackbench weighted scheduling overhead

erage cost per schedule in Figure 12 for all the schedulers
measured since Figure 13 includes a significant component
of time due to client insertion and removal from the run
queue. G'R? still has by far the smallest scheduling over-
head among all the schedulers measured. The overhead
for G R? remains constant while the overhead for O(log N)
WFQ, O(N) WFQ, VTRR, and Linux grows with the num-
ber of clients. Client insertion, removal, and selection to run
in GR? are independent of the number of clients. The cost
for GR? is 3 times higher than before, with client selection
to run, insertion, and removal each taking approximately
300 to 400 ns. For VTRR, although selecting a client to run
is also independent of the number of clients, insertion over-
head grows with the number of clients, resulting in much
higher VTRR overhead for this benchmark.

To demonstrate G'R*’s efficient proportional sharing
of resources on real applications, we briefly describe three
simple experiments running web server workloads using
the same set of schedulers: GR3 and GR®M P, Linux
2.4 uniprocessor and multiprocessor schedulers, WFQ, and
VTRR. The web server workload emulates a number of
virtual web servers running on a single system. Each
virtual server runs the guitar music search engine used
at guitarnotes.com, a popular musician resource web site
with over 800,000 monthly users. The search engine is a
perl script executed from an Apache mod-perl module that
searches for guitar music by title or author and returns a
list of results. The web server workload configured each
server to pre-fork 100 processes, each running consecutive
searches simultaneously.

We ran multiple virtual servers with each one hav-
ing different weights for its processes. In the first experi-
ment, we used six virtual servers, with one server having
all its processes assigned weight 10 while all other servers
had processes assigned weight 1. In the second experiment,
we used five virtual servers and processes assigned to each
server had respective weights of 1, 2, 3, 4, and 5. In the

90 100

third experiment, we ran five virtual servers which assigned
arandom weight between 1 and 10 to each process. For the
Linux scheduler, weights were assigned by selecting nice
values appropriately. Figures 14 to 19 present the results
from the first experiment with one server with weight 10
processes and all other servers with weight 1 processes. The
total load on the system for this experiment consisted of
600 processes running simultaneously. For illustration pur-
poses, only one process from each server is shown in the
figures. Conclusions drawn from the other experiments are
the same; those results are omitted due to space constraints.
GR3 and GR3M P provided the best overall propor-
tional fairness for these experiments while Linux provided
the worst overall proportional fairness. Figures 14 to 17
show the amount of processor time allocated to each client
over time for the Linux scheduler, WFQ, VTRR, and GR3.
All of the schedulers except GR? and GR3>M P have a
pronounced “staircase” effect for the search engine process
with weight 10, indicating that CPU resources are provided
in irregular bursts over a short time interval. For the ap-
plications which need to provide interactive responsiveness
to web users, this can result in extra delays in system re-
sponse time. It can be inferred from the smoother curves
of Figure 17 that GR3 and GR3M P provide fair resource
allocation at a finer granularity than the other schedulers.

6 Related Work

Round robin is one of the oldest, simplest and most widely
used proportional share scheduling algorithms. Weighted
round-robin (WRR) supports non-uniform client weights by
running all clients with the same frequency but adjusting the
size of their time quanta in proportion to their respective
weights. Deficit round-robin (DRR) [22] was developed to
support non-uniform service allocations in packet schedul-
ing. These algorithms have low O(1) complexity but poor
short-term fairness, with service errors that can be on the
order of the largest client weight in the system. G R? uses a
novel variant of DRR for intragroup scheduling with O(1)
complexity, but also provides O(1) service error by using
its grouping mechanism to limit the effective range of client
weights considered by the intragroup scheduler.

Fair-share schedulers [12, 14, 15] provide propor-
tional sharing among users in a way compatible with a
UNIX-style time-sharing framework based on multi-level
feedback with a set of priority queues. These schedulers
typically had low O(1) complexity, but were often ad-hoc
and could not provide any proportional fairness guaran-
tees. Empirical measurements show that these approaches
only provide reasonable proportional fairness over rela-
tively large time intervals [12].

Lottery scheduling [26] gives each client a number of
tickets proportional to its weight, then randomly selects a
ticket. Lottery scheduling takes O(log N) time and relies
on the law of large numbers for providing proportional fair-
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Figure 17: G R® uniprocessor

ness. Thus, its allocation errors can be very large, typically
much worse than WRR for clients with smaller weights.

Weighted Fair Queueing (WFQ) [11, 18], was first de-
veloped for network packet scheduling, and later applied to
uniprocessor scheduling [26]. It assigns each client a virtual
time and schedules the client with the earliest virtual time.
Other fair queueing variants such as Virtual-clock [28],
SFQ [13], SPFQ [24], and Time-shift FQ [10] have also
been proposed. These approaches all have O(log V) time
complexity, where N is the number of clients, because the
clients must be ordered by virtual time. It has been shown
that WFQ guarantees that the service time error for any
client never falls below —1 [18]. However, WFQ can allow
a client to get far ahead of its ideal allocation and accumu-
late a large positive service time error of O(N), especially
with skewed weight distributions.

Several fair queueing approaches have been proposed
for reducing this O(NN) service time error. A hierar-
chical scheduling approach [26] reduces service time er-
ror to O(log N). Worst-Case Weighted Fair Queueing
(WF2Q) [1] introduced eligible virtual times and can guar-
antee both a lower and upper bound on error of —1 and
+1, respectively for network packet scheduling. It has also
been applied to uniprocessor scheduling as Eligible Vir-
tual Deadline First (EEVDF) [25]. These algorithms pro-
vide stronger proportional fairness guarantees than other
approaches, but are more difficult to implement and still re-
quire at least O(log N) time.

Motivated by the need for faster schedulers with good
fairness guarantees, one of the authors developed Virtual-
Time Round-Robin (VTRR) [17]. VTRR first introduced
the simple idea of going round-robin through clients but

Figure 18: Linux multiprocessor

Figure 19: GR?M P multiprocessor

skipping some of them at different frequencies without
having to reorder clients on each schedule. This is done
by combining round-robin scheduling with a virtual time
mechanism. GR>’s intergroup scheduler builds on VTRR
but uses weight ratios instead of virtual times to provide bet-
ter fairness. Smoothed Round Robin (SRR) [9] uses a dif-
ferent mechanism for skipping clients using a Weight Ma-
trix and Weight Spread Sequence (WSS) to run clients by
simulating a binary counter. VTRR and SRR provide pro-
portional sharing with O(1) time complexity for selecting a
client to run, though inserting and removing clients from the
run queue incur higher overhead: O(log N) for VTRR and
O(k) for SRR , where k = 1og ¢ax and @pax is the max-
imum client weight allowed. However, unlike GR3, both
algorithms can suffer from large service time errors espe-
cially for skewed weight distributions. For example, we can
show that the service error of SRR is worst-case O(kN).

Grouping clients to reduce scheduling complexity has
been used by [20], [8] and [23]. These fair queueing ap-
proaches group clients into buckets based on client virtual
timestamps. With the exception of [23], which uses expo-
nential grouping, the fairness of these virtual time bin sort-
ing schemes depends on the granularity of the buckets and
is adversely affected by skewed client weight distributions.
On the other hand, GR? groups based on client weights,
which are relatively static, and uses groups as schedulable
entities in a two-level scheduling hierarchy.

The grouping strategy used in GR? was first intro-
duced by two of the authors for uniprocessor scheduling [6]
and generalized by three of the authors to network packet
scheduling [4]. A similar grouping strategy was indepen-
dently developed in Stratified Round Robin (StRR) [19] for
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network packet scheduling. StRR distributes all clients with
weights between 27% and 2~ (=1 into class F}, (F here
not to be confused with our frontlog). StRR splits time into
scheduling slots and then makes sure to assign all the clients
in class F}; one slot every scheduling interval, using a credit
and deficit scheme within a class. This is also similar to
GR3, with the key difference that a client can run for up
to two consecutive time units, while in GR3, a client is
allowed to run only once every time its group is selected
regardless of its deficit.

StRR has weaker fairness guarantees and higher
scheduling complexity than G R3. StRR assigns each client
weight as a fraction of the total processing capacity of the
system. This results in weaker fairness guarantees when the
sum of these fractions is not close to the limit of 1. For ex-
ample, if we have N = 2k 4+ 1 clients, one of weight 0.5
and the rest of weight 2~ (*2) (total weight = 0.75), StRR
will run the clients in such a way that after 251 slots, the
error of the large client is %, such that this client will then
run uniterruptedly for N tu to regain its due service. Client
weights could be scaled to reduce this error, but with addi-
tional O(N) complexity. StRR requires O(g) worst-case
time to determine the next class that should be selected,
where g is the number of groups. Hardware support can
hide this complexity assuming a small, predefined maxi-
mum number of groups [19], but running an StRR processor
scheduler in software still requires O(g) complexity.

GR3 also differs from StRR and other deficit round-
robin variants in its distribution of deficit. In DRR, SRR,
and StRR, the variation in the deficit of all the clients af-
fects the fairness in the system. To illustrate this, consider
N + 1 clients, all having the same weight except the first
one, whose weight is NV times larger. If the deficit of all
the clients except the first one is close to 1, the error of the
first client will be about § = O(IV). Therefore, the deficit
mechanism as employed in round-robin schemes doesn’t al-
low for better than O(NN) error. In contrast, GR? ensures
that a group consumes all the work assigned to it, so that
the deficit is a tool used only in distributing work within a
certain group, and not within the system. Thus, groups ef-
fectively isolate the impact of unfortunate distributions of
deficit in the scheduler. This allows for the error bounds in
GR? to depend only on the number of groups instead of the
much larger number of clients.

A rigorous analysis on network packet scheduling
[27] suggests that O(N) delay bounds are unavoidable with
packet scheduling algorithms of less than O(log N) time
complexity. GR*’s O(g?) error bound and O(1) time com-
plexity are consistent with this analysis, since delay and ser-
vice error are not equivalent concepts. Thus, if adapted to
packet scheduling, GR? would worst-case incur O(NN) de-
lay while preserving an O(g?) service error.

Previous work in proportional share scheduling has
focused on scheduling a single resource and little work has

been done in proportional share multiprocessor scheduling.
WRR and fair-share multiprocessor schedulers have been
developed, but have the fairness problems inherent in those
approaches. The only multiprocessor fair queueing algo-
rithm that has been proposed is Surplus Fair Scheduling
(SES) [7]. SES also adapts a uniprocessor algorithm, SFQ,
to multiple processors using a centralized run queue. No
theoretical fairness bounds are provided. If a selected client
is already running on another processor, it is removed from
the run queue. This operation may introduce unfairness if
used in low overhead, round-robin variant algorithms. In
contrast, GR3M P provides strong fairness bounds with
lower scheduling overhead.

SES introduced the notion of feasible clients along
with a O(P)-time weight readjustment algorithm, which
requires however that the clients be sorted by their original
weight. By using its grouping strategy, G R3M P performs
the same weight readjustment in O(P) time without the
need to order clients, thus avoiding SFS’s O(log N) over-
head per maintenance operation. The optimality of SFS’s
and our weight readjustment algorithms rests in preserva-
tion of ordering of clients by weight and of weight pro-
portions among feasible clients, and not in minimal overall
weight change, as [7] claims.

7 Conclusions and Future Work

We have designed, implemented, and evaluated Group Ra-
tio Round-Robin scheduling in the Linux operating system.
We prove that GR? is the first and only O(1) uniprocessor
and multiprocessor scheduling algorithm that guarantees a
service error bound of less than O(N') compared to an ide-
alized processor sharing model, where IV is the number of
runnable clients. In spite of its low complexity, G R? offers
better fairness than the O(V) service error bounds of most
fair queuing algorithms that need O(log N) time for their
operation. G R? achieves these benefits due to its group-
ing strategy, ratio-based intergroup scheduling, and highly
efficient intragroup round robin scheme with good fairness
bounds. GR? introduces a novel frontlog mechanism and
and weight readjustment algorithm to schedule small-scale
multiprocessor systems while preserving its good bounds
on fairness and time complexity.

Our experiences with GR? show that it is simple to
implement and easy to integrate into existing commodity
operating systems. We have measured the performance
of GR? using both simulations and kernel measurements
of real system performance using a prototype Linux im-
plementation. Our simulation results show that GR3 can
provide more than two orders of magnitude better pro-
portional fairness behavior than other popular proportional
share scheduling algorithms, including WRR, WFQ, SFQ,
VTRR, and SRR. Our experimental results using our G R?
Linux implementation further demonstrate that GR? pro-
vides accurate proportional fairness behavior on real ap-
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plications with much lower scheduling overhead than other
Linux schedulers, especially for larger workloads.

While small-scale multiprocessors are the most
widely available multiprocessor configurations today, the
use of large-scale multiprocessor systems is growing given
the benefits of server consolidation. Developing accurate,
low-overhead proportional share schedulers that scale effec-
tively to manage these large-scale multiprocessor systems
remains an important area of future work.
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