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Abstract

Trends towards consolidation and higher-density comput-
ing configurations make the problem of heat management
one of the critical challenges in emerging data centers.
Conventional approaches to addressing this problem have
focused at the facilities level to develop new cooling tech-
nologies or optimize the delivery of cooling. In contrast to
these approaches, our paper explores an alternate dimen-
sion to address this problem, namely a systems-level so-
lution to control the heat generation through temperature-
aware workload placement.

We first examine a theoretic thermodynamic formulation
that uses information about steady state hot spots and cold
spots in the data center and develop real-world scheduling
algorithms. Based on the insights from these results, we
develop an alternate approach. Our new approach lever-
ages the non-intuitive observation that the source of cool-
ing inefficiencies can often be in locations spatially un-
correlated with its manifested consequences; this enables
additional energy savings. Overall, our results demon-
strate up to a factor of two reduction in annual data cen-
ter cooling costs over location-agnostic workload distri-
bution, purely through software optimizations without the
need for any costly capital investment.

1 Introduction

The last few years have seen a dramatic increase in the
number, size, and uses of data centers. Large data cen-
ters contain up to tens of thousands of servers and support
hundreds or thousands of users. For such data centers, in
addition to traditional IT infrastructure issues, designers
increasingly need to deal with issues of power consump-
tion, heat dissipation, and cooling provisioning.

∗This work is supported in part by HP Labs, and the U.S. National
Science Foundation (EIA-9972879, ANI-0330658, and ANI-0126231).

These issues, though traditionally the domain of facili-
ties management, have become important to address at
the IT level because of their implications on cost, relia-
bility, and dynamic response to data center events. For
example, the total cooling costs for large data centers
(30,000 ft2) can run into the tens of millions of dollars.
Similarly, brownouts or cooling failures can lead to a re-
duced mean time between failure and service outages, as
servers that overheat will automatically shut down. Fur-
thermore, increases in server utilization [7, 16] or the fail-
ure of a CRAC unit can upset the current environment in
a matter of minutes or even seconds, requiring rapid re-
sponse strategies, often faster than what is possible at a
facilities level. These conditions will accelerate as proces-
sor densities increase, administrators replace 1U servers
with blades, and organizations consolidate multiple clus-
ters into larger data centers.

Current work in the field of thermal management explores
efficient methods of extracting heat from the data cen-
ter [23, 27]. In contrast, our work explores temperature-
aware workload placement algorithms. This approach fo-
cuses on scheduling workloads in a data center — and
the resulting heat the servers generate — in a manner that
minimizes the energy expended by the cooling infrastruc-
ture, leading to lower cooling costs and increased hard-
ware reliability.

We develop temperature-aware workload placement algo-
rithms and present the first comprehensive exploration of
the benefits from these policies. Using simple methods of
observing hot air flow within a data center, we formulate
two workload placement policies: zone-based discretiza-
tion (ZBD) and minimize-heat-recirculation (MINHR).
These algorithms establish a prioritized list of servers
within the data center, simplifying the task of applying
these algorithms to real-work systems.

The first policy leverages a theoretic thermodynamic for-
mulation based on steady-state hot spots and cold spots in
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the data center [27]. The second policy uses a new formu-
lation based on the observation that often the measured
effects of cooling inefficiencies are not located near the
original source of the heat; in other words, heat may travel
several meters through the data center before arriving at a
temperature sensor. In both cases, our algorithms achieve
the theoretical heat distribution recommendations, given
discrete power states imposed by real-world constraints.
We show how these algorithms can nearly halve cooling
costs over the worst-case placement for a simple data cen-
ter, and achieve an additional 18% in cooling savings be-
yond previous work. Based on these improvements we
can eliminate more than 25% of the total cooling costs.
Such savings in the 30,000 ft2 data center mentioned ear-
lier translate to a a $1 – $2 million annual cost reduction.
Furthermore, our work is complementary to current ap-
proaches; given a fixed cooling configuration, we quantify
the cost of adding load to specific servers. A data center
owner can use these costs to maximize the utilization per
Watt of their compute and cooling infrastructure.

The rest of this paper is organized as follows. Sec-
tion 2 elaborates the motivation for this work and dis-
cusses the limitations of conventional facilities-only ap-
proaches. Section 3 describes the goals of temperature-
aware workload placement and discusses the algorithms
that we propose — ZBD and MINHR — as well as three
baseline algorithms provided for comparison. Sections 4
and 5 present our results and discuss their implications.
Section 6 concludes the paper.

2 Motivation

As yesterday’s clusters grow into today’s data centers, in-
frastructure traditionally maintained by a facilities man-
agement team — such as cooling and the room’s power
grid — are becoming an integral part of data center de-
sign. No longer can data center operators focus solely on
IT-level performance considerations, such as selecting the
appropriate interconnect fiber or amount of memory per
node. They now need to additionally evaluate issues deal-
ing with power consumption and heat extraction.

For example, current-generation 1U servers consume over
350 Watts at peak utilization, releasing much of this en-
ergy as heat; a standard 42U rack of such servers con-
sumes over 8 kW. Barroso et al estimate that the power
density of the Google data center is three to ten times
that of typical commercial data centers [10]. Their data
center uses commodity mid-range servers; that density is
likely to be higher with newer, more power-hungry server
choices. As data centers migrate to bladed servers over
the next few years, these numbers could potentially in-
crease to 55 kW per rack [21].

2.1 Thermal Management Benefits

A thermal management policy that considers facilities
components, such as CRAC units and the physical layout
of the data center, and temperature-aware IT components,
can:

Decrease cooling costs. In a 30,000 ft2 data center with
1000 standard computing racks, each consuming 10 kW,
the initial cost of purchasing and installing the computer
room air conditioning (CRAC) units is $2 – $5 million;
with an average electricity cost of $100/MWhr, the an-
nual costs for cooling alone are $4 – $8 million [23]. A
data center that can run the same computational workload
and cooling configuration, but maintain an ambient room
temperature that is 5◦C cooler, through intelligent ther-
mal management can lower CRAC power consumption
by 20% – 40% for a $1 – $3 million savings in annual
cooling costs.

Increase hardware reliability. A recent study [28] indi-
cated that in order to avoid thermal redlining, a typical
server needs to have the air temperature at its front inlets
be in the range of 20◦C – 30◦C. Every 10◦C increase over
21◦C decreases the reliability of long-term electronics by
50%. Other studies show that a 15◦C rise increases hard
disk drive failure rates by a factor of two [6, 13].

Decrease response times to transients and emergencies.
Data center conditions can change rapidly. Sharp transient
spikes in server utilization [7, 16] or the failure of a CRAC
unit can upset the current environment in a matter of min-
utes or even seconds. With aggressive heat densities in the
data center, such events can result in potentially disruptive
downtimes due to the slow response times possible with
the mechanical components at the facilities level.

Increase compaction and improve operational efficien-
cies. A high ratio of cooling power to compute power lim-
its the compaction and consolidation possible in data cen-
ters, correspondingly increasing the management costs.

2.2 Existing Approaches

Data centers seek to provision the cooling adequately to
extract the heat produced by servers, switches, and other
hardware. Current approaches to data centers cooling pro-
visioning are done at the facilities level. Typically, a data
center operator will add the nameplate power ratings of
all the servers in the data center — often with some ad-
ditional slack for risk tolerance — and design a cooling
infrastructure based on that number. This can lead to an
excessive, inefficient cooling solution. This problem is
exacerbated by the fact that the compute infrastructure in
most data centers are provisioned for the peak (bursty)
load requirement. It is estimated that typical operations
of the data center often use only a fraction of the servers,
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leading to overall low server utilization [18]. The com-
pounded overprovisioning of compute and cooling infras-
tructure drives up initial and recurring costs. For every
Watt of power consumed by the compute infrastructure, a
modern data center expends another one-half to one Watt
to power the cooling infrastructure [23, 28].

In addition, the granularity of control provided in current
cooling solutions makes it difficult to identify and elim-
inate the specific sources of cooling inefficiencies. Air
flow within a data center is complex, nonintuitive, and
easy to disrupt [23]. Changes to the heating system —
servers and other hardware — or the CRAC units will take
minutes to propagate through the room, complicating the
process of characterizing air flow within the room.

Past work on data center thermal management falls into
one of two categories. First, optimizing the flow of hot
and cold air in the data center. Second, minimizing
global power consumption and heat generation. The for-
mer approaches evaluate layout of the computing equip-
ment in the data center to minimize air flow inefficien-
cies (e.g., hot aisles and cold aisles) [28] or design intelli-
gent system controllers to improve cold air delivery [23].
The latter approaches focus on location-oblivious, global
system power consumption (total heat load) through the
use of global power management [12, 25], load balanc-
ing [11, 24], and power reduction features in individual
servers [14].

2.3 Temperature-aware Workload Placement

However, these approaches do not address the potential
benefits from controlling the workload (and hence heat
placement) from the point of view of minimizing the cool-
ing costs. Addressing thermal and power issues at the IT
level — by incorporating temperature-related metrics in
provisioning and assignment decisions — is complemen-
tary to existing solutions. The last few years have seen a
push to treat energy as a first-class resource in hardware
and operating system design, from low-power processors
to OS schedulers [29, 31]. A facilities-aware IT compo-
nent operates at a finer granularity than CRAC units. It
can not only react to the heat servers generate, but control
when and where the heat arrives. During normal opera-
tions, a temperature-aware IT component can maintain an
efficient thermal profile within the data center, resulting
in reduced annual cooling costs. In the event of a thermal
emergency, IT-level actions include scaling back on server
CPU utilization, scaling CPU voltages [14], migrating or
shifting workload [22, 11], and performing a clean shut-
down of selected servers.

Figure 1 presents an informal sketch to illustrate the po-
tential of this approach. The cooling costs of a data center
are plotted as a function of the data center utilization —
increased utilization produces larger heat loads, resulting
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Figure 1: Approximate trends in cooling costs as a data cen-
ter’s utilization increases. Workload placement algorithms af-
fect cooling costs by the assignment choices they make. At the
extreme ends — all servers idle and all servers used — there are
no choices. However, at all other times there exists a best and a
worst workload placement strategy.

in higher cooling costs. At any given data center utiliza-
tion, there is a best and worst workload placement strat-
egy. The difference between the two lines indicate the
potential benefits from our approach.

As Figure 1 indicates, the benefits of our approach are
limited at the two end points — a data center at “0%”
utilization or at “100%” utilization does not offer much
scope for workload placement to reduce cooling costs. In
the former, all servers are idle; in the latter, all servers are
in use. In neither case do we have any choice in how to
deploy workload. The benefits from temperature-aware
workload placement exist at intermediate utilization lev-
els when we can choose how we place our workload. Typ-
ical data centers do not maintain 100% utilization for ex-
tended periods of time, instead operating at mid-level uti-
lizations where we can leverage temperature-aware work-
load placement algorithms [18].

The slope and “knee” of each curve is different for each
data center, and reflects the quality of the physical layout
of the data center. For example, a “best placement” curve
with a knee at high utilization indicates a well laid-out
data center with good air flow. However, given the ineffi-
ciencies resulting from the coarse granularity of control in
pure facilities-based approach, we expect most data cen-
ters to exhibit a significant difference between the worst-
case and best-case curves.

3 Workload Placement Policies

At a high level, the goals of any temperature-aware work-
load placement policy are to
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• Prevent server inlet temperatures from crossing a
pre-defined “safe” threshold.

• Maximize the temperature of the air the CRAC units
pump into the data center, increasing their operating
efficiency.

This section provides a brief overview of the thermody-
namics of cooling, how intelligent workload placement
reduces CRAC unit power consumption, and describes
our placement policies.

3.1 Thermodynamics

The cooling cycle of a typical data center operates in the
following way. CRAC units operate by extracting heat
from the data center and pumping cold air into the room,
usually through a pressurized floor plenum. The pressure
forces the cold air upward through vented tiles, entering
the room in front of the hardware. Fans draw the cold air
inward and through the server; hot air exits through the
rear of the server. The hot air rises — sometimes with the
aid of fans and a ceiling plenum — and is sucked back
to the CRAC units. The CRAC units force the hot air
past pipes containing cold air or water. The heat from
the returning air transfers through the pipes to the cold
substance. The now-heated substance leaves the room and
goes to a chiller, and CRAC fans force the now-cold air
back into the floor plenum.

The efficiency of this cycle depends on several factors, in-
cluding the conductive substance and the air flow velocity,
but is quantified by a Coefficient of Performance (COP).
The COP is the ratio of heat removed (Q) to the amount
of work necessary (W ) to remove that heat:

COP =
Q

W

W =
Q

COP

Therefore, the work necessary to remove heat is inversely
proportional to the COP. A higher COP indicates a more
efficient process, requiring less work to remove a constant
amount of heat. For example, a cooling cycle with a COP
of two will consume 50 kW to remove 100 kW of heat,
whereas a cycle with a COP of five will consume 20 kW
to remove 100 kW.

However, the COP for a cooling cycle is not constant, in-
creasing with the temperature of the air the CRAC unit
pushes into the plenum. We achieve cost savings by rais-
ing the plenum supply temperature, moving the CRAC
units into a more efficient operating range. Figure 2 shows
how the COP increases with higher supply temperatures
for a typical water-chilled CRAC unit; this curve is from
a water-chilled CRAC unit in the HP Utility Data Center.
For example, if air returns to the CRAC unit at 20◦C and
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Figure 2: The Coefficient of Performance (COP) curve for the
chilled-water CRAC units at the HP Labs Utility Data Center.
As the target temperature of the air the CRAC pumps into the
floor plenum increases, the COP increases, and the CRAC ex-
pends less energy to remove the same amount of heat.

we remove 10 kW of heat, cooling that air to 15◦C, we
expend 5.26 kW. However, if we raise the plenum supply
temperature to 20◦C, everything in the data center warms
by 5◦C. Cooling the same volume of air, now returning at
25◦C, to 20◦C removes the same 10 kW of heat, but only
expends 3.23 kW. This is a power savings of almost 40%.

Consequently, our scheduling policies attempt to maxi-
mize cooling efficiency by raising the maximum temper-
ature of the air coming from the CRAC units and flowing
into the plenum. Obviously, this has to be done in a man-
ner that maintains prevents the server inlet temperatures
from crossing their redlining thermal threshold.

3.2 Terminology

At a fundamental level, we categorize power allocation
algorithms as either analog or digital. “Analog” algo-
rithms specify per-server power budgets from the contin-
uous range of real numbers [ Poff , Pmax ]. While analog
algorithms provide a detailed per-server budget, they are
hard to implement in practice. It may be possible to meet
these goals — a data center operator may deploy fine-
grained load balancing in a web farm [8], utilize CPU
voltage scaling [14], or leverage virtual machines [1, 9]
for batch workloads — but in practice it is difficult to meet
and maintain precise targets for power consumption.

“Digital” algorithms assign one of several pre-determined
discrete power states to each server. They select which
machines should be off, idle, or in use, particularly for
workloads that fully utilize the processors. They could
also leverage the detailed relationship between server uti-
lization and power consumption to allow few discrete uti-
lization states. Additionally, a well-ordered digital al-
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gorithm will create a list of servers sorted by their “de-
sirability”; the list ordering is fixed for a given cooling
configuration, but does not change for different data cen-
ter utilization levels. Therefore, if data center utilization
jumps from 50% to 60%, the servers selected for use at
50% are a proper subset of those selected at 60% uti-
lization. Well-ordered algorithms simplify the process of
integrating cooling-aware features with existing compo-
nents such as SGE [4] or LSF [3], allowing us to use
common mechanisms such as scheduling priorities. For
example, SGE allows the administrator to define arbitrary
“consumable” resources and simple formulas to force the
scheduler to consider these resources when performing
workload placement; modifying these resource settings is
only necessary after a calibration run.

In this paper, we focus on algorithms that address the
problem of discrete power states. We specifically focus
on compute-intensive batch jobs such as multimedia ren-
dering workloads, simulations, or distributed computation
run for several hours [5]. These jobs tend to use all avail-
able CPU on a server, transforming the per-server power
budgets available to a data center scheduler from a con-
tinuous range of [ Poff , Pmax ] to a discrete set of power
states: { Poff , Pidle, P1, . . ., PN }, where Pj is the power
consumed by a server fully utilizing j CPUs. Addition-
ally, they also provide sufficient time for the thermal con-
ditions in the room to reach steady-state. If additional
power states are considered, Section 5 discusses how our
algorithms scale in a straightforward manner.

3.3 Baseline Algorithms

We use three reference algorithms as a basis for compari-
son.

UniformWorkload and CoolestInlets

The first algorithm is UNIFORMWORKLOAD, an “intu-
itive” analog algorithm that calculates the total power
consumed by the data center and distributes it evenly to
each of the servers. We chose this algorithm because, over
time, an algorithm that places workload randomly will
approach the behavior of UNIFORMWORKLOAD. Each
server in our data center consumes 150 Watts when idle
and 285 Watts when at peak utilization. Thus, a 40% UNI-
FORMWORKLOAD will place ((285−150)·0.40)+150 =
204 Watts on each server.

The second baseline algorithm is COOLESTINLETS, a
digital algorithm that sorts the list of unused servers by
their inlet temperatures. This intuitive policy simply
places workload on servers in the coldest part of the data
center. Such an algorithm is trivial to deploy, given an
instrumentation infrastructure that reports current server
temperatures.

OnePassAnalog
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Figure 3: CDF of server exhaust temperatures for the three ref-
erence workload placement algorithms at 60% utilization. Both
COOLESTINLETS and ONEPASSANALOG base workload place-
ment decisions on data center conditions. However, ONEPAS-
SANALOG has the least variance in server exhaust temperatures
(4◦C) leading to fewer heat buildups in the data center. Less
variance allows us to raise CRAC supply temperatures further,
increasing the COP, without causing thermal redlining.

The last policy is ONEPASSANALOG, an analog repro-
visioning algorithm based on the theoretical thermody-
namic formulation by Sharma et al [27], modified with
the help of the original authors to allocate power on a per-
server basis. The algorithm works by assigning power
budgets in a way that attempts to create a uniform exhaust
profile, avoiding the formation of any heat imbalances or
“hot spots”. A data center administrator runs one calibra-
tion phase, in which they place a uniform workload on
each server and observe each server’s inlet temperature.
The administrator selects a reference { power, outlet tem-
perature } tuple, { Pref , T out

ref }; this reference point can
be one server, or the average server power consumption
and outlet temperature within a row or throughout the data
center. With this tuple, we calculate the power budget for
each server:

Pi =
T out

ref

T out
i

· Pref

A server’s power budget, Pi, is inversely proportional to
its outlet temperature, T out

i . Intuitively, we want to add
heat to cool areas and remove it from warm areas.

It is important to note that ONEPASSANALOG responds
to heat buildup by changing the power budget at the lo-
cation of the observed increase. Intuitively, this is similar
to other approaches — including the motherboard’s ther-
mal kill switch — in that it addresses the observed effect
rather than the cause.

Figure 3 shows the CDF of server exhaust temperatures
for the three reference workload placement algorithms in
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ZONEBASEDDISCRETIZATION(n, V , H , α) {
while selected less than n servers {

Get Si, idle server with max power budget
Pneed = Prun − PSi

WeightNeighbors = α·size(V ) + size(H)
Pshare = Pneed/WeightNeighbors

Poach Pshare from each of the H horizontal neighbors,
(α · Pshare) from each of the V vertical neighbors

}
}

Figure 4: The core of the ZBD algorithm. n is the number
of servers we want, V is the set of neighbors along the vertical
axis, H is the set of neighbors along the horizontal axis, and α

is the ratio of power borrowed per-vertical to power borrowed
per-horizontal. Prun is the amount of power necessary to run
one server at 100% utilization; PSi is the amount of power the
ONEPASSANALOG algorithm allocates to server i. In general,
Prun ≥ PSi .

a data center at 60% utilization. A data center that em-
ploys ONEPASSANALOG scheduling has less variance in
its server’s exhaust temperatures; UNIFORMWORKLOAD
and COOLESTINLETS have server exhaust temperatures
that vary by as much as 9◦C – 12◦C, whereas ONEPAS-
SANALOG varies by less than 4◦C; this indicates fewer
localized “hot spots” and heat imbalances.

3.4 Zone-Based Discretization (ZBD)

Our first approach is based on the theoretical formulation
behind ONEPASSANALOG [27]. This formulation assigns
heat inversely proportional to the server’s inlet tempera-
ture. However, it suffers from the drawback that it is ana-
log; it does not factor in the specific discrete power states
of current servers: { Pidle, . . ., PN }. Therefore, the chal-
lenge is to discretize the recommended analog distribu-
tion to the available discrete power states. Our research
showed that conventional discretization approaches —
ones that are agnostic to the notion of heat distribution
and transfer — that simply minimize the absolute error,
can result in worse cooling costs.

The key contribution of ZBD is that, in addition to min-
imizing the discretization error over the entire data cen-
ter, it minimizes the differences between its power distri-
bution and ONEPASSANALOG at coarse granularities, or
geographic zones.

ZBD chooses servers by using the notions of proximity-
based heat distributions and poaching. When selecting
a server on which to place workload, the chosen server
borrows, or “poaches” power from its zone of immediate
neighbors whose power budget is not already committed.

Within these two-dimensional zones, the heat produced
by ZBD is similar to that produced by ONEPASSANA-
LOG. Therefore, ZBD is an effective discretization of
ONEPASSANALOG by explicitly capturing the underlying
goal of ONEPASSANALOG: creating a uniform exhaust
profile that reduces localized hot spots. A discretization
approach that does not take this goal into account loses
the benefits of ONEPASSANALOG.

Figure 4 describes the core of the ZBD discretization al-
gorithm. ZBD allows us to define a variable-sized set
of neighbors along the horizontal and vertical axes — H
and V — and α, the ratio of power taken from the ver-
tical to horizontal directions. These parameters enable
us to mimic the physics of heat flow, as heat is more
likely to rise than move horizontally. Consequently, “re-
alistic” poaching runs set α larger than zero, borrowing
more heavily vertically from servers in their rack.

Table 1 shows the operation of ZBD at a micro level, bor-
rowing power from four vertical and two horizontal neigh-
bors, giving the center server enough of a power budget
to operate. The total amount of power and heat within
the fifteen-server group remains the same, only shifted
around slightly.

3.5 Minimizing Heat Recirculation (MinHR)

Our second approach is a new power provisioning policy
that minimizes the amount of heat that recirculates within
a data center: MINHR. Heat recirculation occurs for sev-
eral reasons. For example, if there is not enough cold air
coming up from the floor, a server fan can suck in air from
other sources, usually hot air from over the top or around
the side of racks. Similarly, if the air conditioning units
do not pull the hot air back to the return vents or if there
are obstructions to the air flow, hot air will mix with the
incoming cold air supply. In all these cases, heat recircu-
lation leads to increases in cooling energy.

Interestingly, some of these recirculation effects can lead
to situations where the observed consequence of the inef-
ficiency is spatially uncorrelated with its cause; in other
words, the heat vented by one machine may travel sev-
eral meters before arriving at the inlet of another server.
We assert that an algorithm that minimizes hot air recir-
culation at the data center level will lead to lower cooling
costs. Unlike ZBD, which reacts to inefficiencies by low-
ering the power budget at the site where heat recirculation
is observed, MINHR focuses on the cause of inefficien-
cies. That is, it may not know how to lower the inlet
temperature on a given server, but it will lower the total
amount of heat that recirculates within the data center.

Therefore, unlike ZBD, we make no effort to create a uni-
form exhaust profile. The goals are to

• minimize the total amount heat that recirculates be-
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184.61 216.77 207.15
184.44 216.80 207.41
186.24 216.88 207.66
189.25 216.86 207.82
193.41 216.82 207.89

(a) ONEPASSANALOG budgets.

184.61 216.77 207.15
184.44 216.80 207.41
186.24 216.88 207.66
189.25 216.86 207.82
193.41 216.82 207.89

(b) Select Si and its neighbors.
Pneed = 68.12 Watts.

184.61 203.67 207.15
184.44 203.70 207.41
178.38 285.00 199.80
189.25 203.76 207.82
193.41 203.72 207.89

(c) Poach. Pshare = 7.86 Watts,
(α · Pshare) = 13.10 Watts.

Table 1: The first iteration of ZBD with n = 6, size(H) = 2,
size(V ) = 4, and α = 5

3
. The server with the highest power bud-

get “poaches” power from its immediate neighbors. The total
power allotted to these fifteen servers remains constant, but we
now have a server with enough power to run at 100% utiliza-
tion. At the end of this iteration, one server has enough power to
run a full workload; after another n − 1 iterations, we will have
selected our n servers.

fore returning to the CRAC units.

• maximize the power budget — and therefore the po-
tential utilization — of each server.

First, we need a way to quantify the amount of hot air
coming from a server or a group of servers that recircu-
lates within the data center. We define δQ as

δQ =
n∑

i=1

Cp · mi · (T in
i − Tsup)

Here, n is the number of servers in the data center, Cp is
the specific heat of air (a thermodynamic constant mea-
sured with units of W ·sec

kg·K ), mi is the mass flow of air

through server i in kg
sec , T in

i is the inlet temperature for

Pod ∆δQj HRFj
HRFj

SRF Powerj δQj

1 1000 2 0.050 250 125
2 400 5 0.125 625 125
3 250 8 0.200 1000 125
4 80 25 0.625 3125 125

Table 2: Hypothetical MINHR calibration results and workload
distribution for a 40U rack of servers divided into four pods of
10 servers each. ∆Qref during calibration is 2 kW; the final
workload is 5 kW.

server i, and Tsup is the temperature of the cold air sup-
plied by the CRAC units. In a data center with no heat
recirculation — δQ = 0 — each T in

i will equal Tsup.

Our workload placement algorithm will distribute power
relative to the ratio of heat produced to heat recirculated:

Pi ∝ Qi

δQi

We run a two-phase experiment to obtain the heat recircu-
lation data. This experiment requires an idle data center,
but it is necessary to perform this calibration experiment
once and only when there are significant changes to the
hardware within the data center; for example, after the
data center owner adds a new CRAC unit or adds new
racks of servers. The first phase has the data center run a
reference workload that generates a given amount of heat,
Qref ; we also measure δQref , the amount of heat recir-
culating in the data center. For the sake of simplicity, our
reference state has each server idle.

The second phase is a set of sequential experiments that
measure the heat recirculation of groups of servers. We
bin the servers into pods, where each pod contains s ad-
jacent servers; pods do not overlap. We define pods in-
stead of individual servers to minimize calibration time
and to ensure that each calibration experiment generates
enough heat to create a measurable effect on temperature
sensors in the data center. In each experiment, we take
the next pod, j, and maximize the CPU utilization of all
its servers simultaneously, increasing the total data center
power consumption and heat recirculation. After the new
data center power load and resulting heat distribution sta-
bilize, we measure the new amount of heat generated, Qj ,
and heat recirculating, δQj . With these, we calculate the
Heat Recirculation Factor (HRF) for that pod, where

HRFj =
Qj − Qref

δQj − δQref

=
∆Qj

∆δQj

Once we have the ratio for each pod, we use them to dis-
tribute power within the data center. We sum the HRF
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Figure 5: Layout of the data center. The data center contains
1120 servers in 28 racks, arranged in four rows of seven racks.
The racks are arranged in a standard hot-aisle/cold-aisle config-
uration [28]. Four CRAC units push cold air into a floor plenum,
which then enters the room through floor vents in aisles B and
D. Servers eject hot air into aisles A, C, and E.

from each pod to get the Summed Recirculation Factor
(SRF). To calculate the per-pod power distributions, we
simply multiply the total power load by that pod’s HRF ,
divided by the SRF . This power budget distribution sat-
isfies both of our stated goals; we maximize the power
budget of each pod — maximizing the number of pods
with enough power to run a workload — while minimiz-
ing the total heat recirculation within the data center. With
this power distribution, each pod will recirculate the same
amount of heat.

As before, we need to discretize the analog recommenda-
tions based on the HRF values for the power states in the
servers. The scheduler then allocates workloads based on
the discretized distribution. Note that the computed HRF
is a property of the data center and is independent of load.

Table 2 shows an example of MINHR for a 40U rack of
1U servers divided into four pods. The resulting power
budgets leads to identical amounts of heat from each pod
recirculating within the data center. Although we could
budget more power for the bottom pod to further mini-
mize heat recirculation, but that would reduce the power
budgets for other pods and lessen the number of available
servers. Additionally, it is likely that the bottom pod has
enough power to run all 10 servers at 100% utilization; in-
creasing its budget serves no purpose, and instead reduces
the amount of power available to other servers.

4 Results

This section presents the cooling costs associated with
each workload placement algorithm.

4.1 Data Center Model

Given the difficulties of running our experiments on a
large, available data center, we used Flovent [2], a Com-
putational Fluid Dynamics (CFD) simulator, to model
workload placement algorithms and cooling costs of the
medium-sized data center shown in Figure 5. This
methodology has been validated in prior studies [27].

The data center contains four rows with seven 40U racks
each, for a total of 28 racks containing 1120 servers. The
data center has alternating “hot” and “cold” aisles. The
cold aisles, B and D, have vented floor tiles that direct
cold air upward towards the server inlets. The servers
eject hot air into the remaining aisles: A, C, and E. The
data center also contains four CRAC units, each having
the COP curve depicted in Figure 2. Each CRAC pushes
air chilled to 15◦C into the plenum at a rate of 10,000
ft3

min . The CRAC fans consume 10 kW each.

The servers are HP Proliant DL360 G3s; each 1U DL360
has a measured power consumption of 150W when idle
and 285W with both CPUs at 100% utilization. The total
power consumed and heat generated by the data center is
168 kW while idle and 319.2 kW at full utilization. Per-
cent utilization is measured as the number of machines
that are running a workload. For example, when 672 of
the 1120 servers are using both their CPUs at 100% and
the other 448 are idle, the data center is at 60% utiliza-
tion. To save time configuring each simulation, we mod-
eled each pair of DL360s as a 2U server that consumed
300W while idle and 570W while at 100% utilization.

Calculating Cooling Costs

At the conclusion of each simulation, Flovent provides
the inlet and exhaust temperature for each object in the
data center. We calculate the cooling costs for each run
based on a maximum safe server inlet temperature, T in

safe,
of 25◦C, and the maximum observed server inlet temper-
ature, T in

max. We adjust the CRAC supply temperature,
Tsup, by Tadj , where

Tadj = T in
safe − T in

max

If Tadj is negative, it indicates that a server inlet exceeds
our maximum safe temperature. In response, we need to
lower Tsup to bring the servers back below the system
redline level.

Our cooling costs can be calculated as

C =
Q

COP (T = Tsup + Tadj)
+ Pfan

where Q is the amount of power the servers consume,
COP (T = Tsup + Tadj) is our COP at Tsup + Tadj ,
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Figure 6: ONEPASSANALOG is consistently low, indicating
a potential “best” cooling curve described in Figure 1. UNI-
FORMWORKLOAD performs well at low utilizations, but lacks
the ability to react to changing conditions at higher utilizations.
COOLESTINLETS performs well at higher utilizations, but is
more expensive at low-range and mid-range utilization.

calculated from the curve in Figure 2, and Pfan is the
total power consumed by the CRAC fans. Currently we
assume a uniform Tsup from each CRAC due to the com-
plications introduced by non-uniform cold air supply; we
discuss these complications, proposed solutions, and on-
going work in Section 5.

4.2 Baseline Algorithms

Figure 6 shows the cooling costs for our three baseline
algorithms. UNIFORMWORKLOAD performs well at low
utilization by not placing excessive workload on servers
that it shouldn’t. At high utilization, though, it places
workload on all servers, regardless of the effect on cool-
ing costs. In contrast, we see that ONEPASSANALOG per-
forms well both at high and low data center utilization. It
reacts well as utilization increases, scaling back the power
budget on servers whose inlet temperatures increase. This
avoids creating hot spots in difficult-to-cool portions of
the room that would otherwise cause the CRAC units to
operate less efficiently. COOLESTINLETS does well at
high and mid-range utilization for this data center, but
is about 10% more expensive than ONEPASSANALOG at
low and moderate utilization.

4.3 ZBD

Parameter Selection

For ZBD to mimic the behavior of ONEPASSANALOG,
we need to select parameters that reflect the underlying
heat flow. Heat rises, so we set our α to be greater than 1,
and our vertical neighborhood to be larger than our hori-
zontal neighborhood. Our simulated servers are 2U high;

Zone Size Avg Power UW CoV ZBD CoV
2U 462 0.009 0.008
4U 924 0.012 0.009
8U 1848 0.018 0.006

10U 2310 0.020 0.006

Table 3: Coefficient of variance (CoV) of differences in zonal
power budgets between ONEPASSANALOG and the UNIFORM-
WORKLOAD (UW) and the ZBD algorithms at 60% utilization.
Small coefficients indicate a distribution that mimics ONEPAS-
SANALOG closely, creating a similar exhaust profile.

therefore our servers are 8.89cm (3.5in) tall and 60.96cm
(24in) wide. Since heat intensity is inversely proportional
to the square of the distance from the source, it makes lit-
tle sense to poach two servers or more (greater than one
meter) in either horizontal direction. Noting that our rows
are 20 servers high and 7 across, we maintain this ratio
both in poaching distance and poaching ratio. We set our
vertical neighborhood to be three servers in either direc-
tion, and our α to 20

7 . These parameters are simple ap-
proximations; in section 5 we discuss methods of improv-
ing upon ZBD parameter selection.

Results

The next question is whether we met our goals of match-
ing the high-level power allocation behavior of ONEPAS-
SANALOG. In order to quantify the similarity of any two
algorithms’ power distributions, we break each 40U rack
into successively larger zones; zones are adjacent and do
not overlap. We sum the servers’ power allocations to
get that zone’s budget. Table 3 shows the per-pod vari-
ance between the ONEPASSANALOG zone budgets those
of UNIFORMWORKLOAD and ZBD power distributions
are to the ONEPASSANALOG power budgets at different
granularities. Unsurprisingly, UNIFORMWORKLOAD has
the largest variance at any zone size; it continues to al-
locate power to each server, regardless of room condi-
tions. However, ZBD closely mirrors the power distri-
bution budgeted by ONEPASSANALOG.

Figure 7 shows the relative costs of ZBD against our three
baseline algorithms as we ramp up data center utiliza-
tion. Like ONEPASSANALOG, ZBD performs well both
at low and high utilizations. Most importantly, we see that
ZBD mimics the behavior and resulting cooling costs of
ONEPASSANALOG within two percent. Even with intu-
itive parameter selection and the challenge of discretizing
the analog distribution, we met or exceeded the savings
available using the theoretical best workload assignment
algorithm from previously published work.
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Figure 7: ZBD compared to our baseline algorithms. ZBD also
works well at high and low utilizations, staying within +

− 3% of
ONEPASSANALOG.

4.4 MinHR

Calibration

The performance of MINHR depends on the accuracy of
our calibration experiments. Our goals in selecting cal-
ibration parameters for MINHR, such as pod sizes and
our Qref , were to allow for a reasonable calibration time
and a reasonable degree of accuracy. If pod sizes are too
small, we may have too many pods and an unreasonably
long real-world calibration time — approximately twenty
minutes per pod — and the ∆δQi may to too small to cre-
ate any observable change. Since calibration times using
Flovent are significantly longer than in real life — one to
two hours per pod — we chose a pod size of 10U. This
translates to a 1.35 kW ∆Qi, as we increase each server
from 150W to 285W. While smaller pods may give us
data at a finer granularity, the magnitude of δQ may be
too small to give us an accurate picture of how that pod’s
heat affects the data center.

Figure 8 demonstrates the importance of locating the
sources of heat recirculation. It shows the warmest 10%
of server inlets for our calibration phase and for the recir-
culation workload at the top pod of a rack on the end of
row 4. Even though we increase the total power consump-
tion of the servers by only 0.80% (1.35 kW), the cooling
costs increase by 7.56%. A large portion of the hot ex-
haust from these servers does not return to a CRAC unit,
instead returning to the servers. Inlets at the top of row 4
increase by over 1◦C, and servers at the same end of row
3 see an increase in inlet temperature of over 2

3

◦C.

With MINHR, unlike ONEPASSANALOG, it was not nec-
essary to perform any form discretization on the analog
power budgets from. Figure 9 shows the CDF of server
power budgets while our data center is at 60% utilization.
In ONEPASSANALOG, of the 1120 servers, only 84 fall
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Figure 8: CDF of the warmest ten percent of server inlets for
the MINHR phase-one calibration workload, and after adding a
total of 1.35 kW to ten servers during a phase-two recirculation
workload. A 1◦C increase in the maximum server inlet tem-
perature results in 10% higher cooling costs. This phase-two
workload was at the top corner of row 4.

outside the operating range of our DL360s, thus necessi-
tating the use of ZBD.

However, MINHR assigns power budgets between 13 and
3876 Watts per 1U server, with only 160 falling within
the operating range; we chose simply to sort the servers
by their power budget and chose the X% with the highest
budgets, where X is our target utilization. We define
ANALOGMINHR as the original, unrealistic power dis-
tribution, and the sort-and-choose as DIGITALMINHR.
For the sake of clarity, we define DIGITALMAXHR as
DIGITALMINHR in reverse; we start at the bottom of the
list, using the worst candidates and moving up.

Results

Figure 10(a) compares our four previous algorithms
against DIGITALMINHR and DIGITALMAXHR. At mid-
range utilization, DIGITALMINHR saves 20% over
ONEPASSANALOG, 30% over UNIFORMWORKLOAD,
and nearly 40% over DIGITALMAXHR. The costs of each
algorithm are related to the heat recirculation behaviors
they cause. At low utilization, DIGITALMAXHR quickly
chooses servers whose exhaust recirculates extensively,
whereas DIGITALMINHR does not save much over
ONEPASSANALOG; this indicates that initially ONEPAS-
SANALOG also minimizes heat recirculation. As uti-
lization increases, however, all algorithms except DIGI-
TALMINHR end up placing load on servers that recircu-
late large amounts of heat; DIGITALMINHR knows ex-
actly which servers to avoid. At near-peak utilizations,
however, DIGITALMINHR has run out of “good” servers
to use, driving up cooling costs.
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(a) Cooling costs for our baseline algorithms, ZBD, and best and
worst heat-recirculation-based algorithms.
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(b) The amount of heat recirculating. Note that the increase in
heat recirculation closely mirrors the increase in cooling costs.

Figure 10: At mid-range utilizations, DIGITALMINHR costs 20% less than ONEPASSANALOG, 30% less than UNIFORMWORK-
LOAD and almost 40% less than the worst possible workload distribution.
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Figure 9: CDF of ONEPASSANALOG and ANALOGMINHR
budgets at 60% utilization. ONEPASSANALOG budgets fall
within the DL360’s operating range; this facilitates ZBD’s zone-
based discretization. The minimum and maximum ANALOG-
MINHR budgets are more than an order of magnitude outside
this range, eliminating the need for or effectiveness of any dis-
cretization algorithm.

Figure 10(b) graphs δQ for each algorithm. DIGI-
TALMINHR achieves its goal, minimizing recirculation
and cooling costs until there are no “good” servers
available. Conversely, DIGITALMAXHR immediately
chooses “bad” servers, increasing power consumption by
30.2 kW and heat recirculation by 18.1 kW. Note that
cooling costs are closely related to the amount of heat re-
circulating within the data center.

4.5 ZBD and MinHR Comparison

At a glance, DIGITALMINHR provides significant sav-
ings over all other workload placement algorithms. It di-
rectly addresses the cause of data center cooling ineffi-
ciencies, and is constrained only by the physical air flow
design of the data center. Unfortunately, the calibration
phase is significantly longer than the one ZBD requires.
A real-world calibration of our model data center would
take 56 hours; this is not unreasonable, as the entire cali-
bration run would complete between Friday evening and
Monday morning. However, a calibration run is necessary
whenever the physical layout of the room changes, or after
a hardware or cooling upgrade. Conversely, ZBD is con-
sistent and the best “reactive” digital algorithm. It only
requires one calibration experiment; for our data center,
this experiment would complete within a half-hour.

Ultimately, the data center owner must decide between
long calibration times and savings in cooling costs. If the
cooling configuration or physical layout of the data cen-
ter will not change often, then a MINHR-based workload
placement strategy yields significant savings.

5 Discussion

Additional Power States

Our previous experiment assumes the computer infras-
tructure only had two power states: idle and used. How-
ever, many data center management infrastructure compo-
nents — such as networked power switches, blade control
planes, and Wake-On-LAN-enabled Ethernet cards — al-
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# Off Power (kW) Cooling (kW) % Savings
56 273.0 156.9 16.54

112 264.6 142.9 23.96
168 256.2 134.4 28.51
224 247.8 126.00 32.96

Table 4: We leverage MINHR’s sorted list of server “desir-
ability” to select servers to turn off during 75% utilization. We
reduce the power consumed by the computer infrastructure by
12%, yet reduce cooling costs by nearly one-third.

low us to consider “off” as another power state. Both the
algorithms can leverage additional power states to allow
them to more closely match the analog power budgets.

To demonstrate the potential for increased improvements,
we focus on some experiments using the best algorithm
from the last section. DIGITALMINHR’s per-pod HRF
values allow us to sort servers by heat recirculation and
power down or fully turn off the “worst” servers. Ta-
ble 4 presents the results of turning 5, 10, and 15% of
the “worst” servers off during 75% utilization while using
the DIGITALMINHR placement algorithm. Initially the
computer infrastructure was consuming 281.4 kW, and
expending 187.9 kW to remove this heat. Turning off only
56 servers, 8.4 kW of compute power, reduces cooling
costs by nearly one-sixth. MINHR with an “off’ option
reduces cooling costs by nearly another third by turning
off 20% of the servers.

When compared to the savings achieved by ONEPAS-
SANALOG over UNIFORMWORKLOAD, this approach
represents a factor of three increase in those cooling sav-
ings, reducing UNIFORMWORKLOAD cooling costs by
nearly 60%. These long-term savings may be reduced,
however, by the decreased hardware reliability caused by
power-cycling servers.

How far to perfection?

In this section, we compare our results to the absolute
theoretical minimum cost of heat removal, as defined by
physics. It is possible to calculate the absolute mini-
mum cooling costs possible, given the COP curve of our
CRAC units. Assume we formulate the perfect workload
placement algorithm, one that eliminates hot air recircula-
tion. In that case, we have the situation described in Sec-
tion 3.5: CRAC supply temperatures equal the maximum
safe server inlet temperatures. Plugging the data from the
COP curve in figure 2, we obtain Woptimal = Q

4.728 .

Figure 11 compares all our workload placement algo-
rithms against the absolute minimum costs, as governed
by the above equation. It should be noted that the absolute
minimum represents a realistically unobtainable point as
is evident from the benefits it can obtain even at the 100%
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Figure 11: Cooling costs for all workload placement algo-
rithms, ANALOGMINHR, and the absolute minimum costs for
our data center.

data point where there is no slack in workload place-
ment. However, in spite of this, for our simple data cen-
ter at mid-range workloads, DIGITALMINHR achieves
over half the possible savings as compared to UNIFORM-
WORKLOAD. These savings are through changes a data
center administrator can make entirely at the IT level in
software, such as modifying a batch queue or other server
assignment scheduler. Furthermore, as discussed earlier,
these changes are complementary to other facilities ap-
proaches, including improved rack locations and cooling
configurations.

Instrumentation and Dynamic Control

The work discussed in this paper assumes an instrumen-
tation infrastructure in the data center such as Splice [19]
that provides current temperature and power readings to
our algorithms. Related work in the data instrumenta-
tion space includes PIER [15], Ganglia [26] and Astro-
labe [30]. Additionally, algorithms such as ONEPAS-
SANALOG, ZBD, and MINHR include calibration phases
based on past history. These phases could poten-
tially be sped by systematic thermal profile evaluations
through a synthetic workload generation tool such as
sstress [20]. A moderately-sized data center of 1000
nodes will take about two days to calibrate fully. At the
end of the calibration phase, however, which we will have
the power budgets for that data center. These budgets are
constant unless the cooling or computational configura-
tion changes, such as by adding or removing servers.

Further, the work discussed in this paper pertains to static
workload assignment in a batch scheduler to reduce cool-
ing costs from a heat distribution perspective. We as-
sume that the cooling configuration is not being optimized
concurrently; in other words, CRAC units may not vary
their supply temperatures individually, or change their fan
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speeds at all. However, some data centers exist where
aggressive cooling optimizations could concurrently vary
the cooling configurations.

For these scenarios, we are currently exploring the pos-
sibility of using system identification techniques from
control theory [17] to “learn” how the thermal profile
of the data center changes as cooling settings change.
These identification tools will reveal the relationships be-
tween cooling parameters and heat recirculation obser-
vations, allowing us to expand the uses of temperature-
aware workload placement to include such features as
emergency actions in the event of CRAC unit failure. For
the time being, however, a data center owner could per-
form one calibration phase with each CRAC unit off to
simulate the failure of that unit and obtain the relative
power budgets and server ordering.

6 Conclusion

Cooling and heat management are fast becoming the key
limiters for emerging data center environments. As data
centers grow during the foreseeable future, we must ex-
pand our understanding of cooling technology and how
to apply this knowledge to data center design from an IT
perspective. In this paper, we explore temperature-aware
resource provisioning to control heat placement from a
systems perspective to reduce cooling costs.

We explore the physics of heat transfer, and present meth-
ods for integrating it into batch schedulers. To capture the
complex thermodynamic behavior in the data center, we
use simple heuristics that use information from steady-
state temperature distribution and simple cause-effect ex-
periments to calibrate sources of inefficiencies. To cap-
ture the constraints imposed by real-world discrete power
states, we propose location-aware discretization heuristics
that capture the notion of zonal heat distribution, as well
as recirculation-based placement. Our results show that
these algorithms can be very effective in reducing cool-
ing costs. Our best algorithm nearly halves cooling costs
when compared to the worst-case scenario, and represents
a 165% increase in the savings available through previ-
ously published methods. All these savings are obtained
purely in software without any additional capital costs.
Furthermore, our results show that these improvements
can be larger with more aggressive use of power states, as
is likely in future systems.

Though we focus mainly on cooling costs in this pa-
per, our algorithms can also be applied to other scenar-
ios such as graceful degradation under thermal emergen-
cies. In these cases, compared to longer timescales asso-
ciated with the more mechanical-driven facilities control,
temperature-aware workload placement can significantly
improve the response to failures and emergencies. Simi-

larly, the principles underlying our heuristics can be lever-
aged in the context of more complex dynamic control al-
gorithms as well.

In summary, as future data centers evolve to include ever
larger number of servers operating in increasingly denser
configurations, it will become critical to have heat man-
agement solutions that go beyond conventional cooling
optimizations at the facilities level. We believe that ap-
proaches like ours that straddle the facilities and sys-
tems management boundaries to holistically optimize for
power, heat, and cooling, will be an integral part of future
data center solutions to address these challenges.
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