
CHAMELEON: a self-evolving, fully-adaptive resource arbitrator
for storage systems

Sandeep Uttamchandani† Li Yin‡ Guillermo A. Alvarez†

John Palmer† Gul Agha∗
† IBM Almaden Research Center

‡University of California, Berkeley
∗ University of Illinois at Urbana-Champaign

{sandeepu,alvarezg,jdp}@us.ibm.com, yinli@eecs.berkeley.edu, agha@cs.uiuc.edu

Abstract

Enterprise applications typically depend on guar-
anteed performance from the storage subsystem,
lest they fail. However, unregulated competi-
tion is unlikely to result in a fair, predictable ap-
portioning of resources. Given that widespread
access protocols and scheduling policies are
largely best-effort, the problem of providing per-
formance guarantees on a shared system is a
very difficult one. Clients typically lack accu-
rate information on the storage system’s capa-
bilities and on the access patterns of the work-
loads using it, thereby compounding the problem.
CHAMELEON is an adaptive arbitrator for shared
storage resources; it relies on a combination of
self-refining models and constrained optimiza-
tion to provide performance guarantees to clients.
This process depends on minimal information
from clients, and is fully adaptive; decisions are
based on device and workload models automat-
ically inferred, and continuously refined, at run-
time. Corrective actions taken by CHAMELEON

are only as radical as warranted by the current
degree of knowledge about the system’s behav-
ior. In our experiments on a real storage system
CHAMELEON identified, analyzed, and corrected
performance violations in 3-14 minutes—which
compares very favorably with the time a human
administrator would have needed. Our learning-
based paradigm is a most promising way of de-
ploying large-scale storage systems that service
variable workloads on an ever-changing mix of
device types.

1 Introduction

A typical consolidated storage system at the
multi-petabyte level serves the needs of inde-

pendent, paying customers (e.g., a storage ser-
vice provider) or divisions within the same or-
ganization (e.g., a corporate data center). Con-
solidation has proven to be an effective remedy
for the low utilizations that plague storage sys-
tems [10], for the expense of employing scarce
system administrators, and for the dispersion of
related data into unconnected islands of stor-
age. However, the ensuing resource contention
makes it more difficult to guarantee a portion of
the shared resources to each client, regardless of
whether other clients over- or under-utilize their
allocations—guarantees required by the prevalent
utility model.

This paper addresses the problem of allocat-
ing resources in a fully automated, cost-efficient
way so that most clients experience predictable
performance in their accesses to a shared, large-
scale storage utility. Hardware costs play a dwin-
dling role relative to managing costs in current
enterprise systems [10]. Static provisioning ap-
proaches are far from optimal, given the high
burstiness of I/O workloads and the inadequate
available knowledge about storage device ca-
pabilities. Furthermore, efficient static alloca-
tions do not contemplate hardware failures, load
surges, and workload variations; system adminis-
trators must currently deal with those by hand,
as part of a slow and error-prone observe-act-
analyze loop. Prevalent access protocols (e.g.,
SCSI and FibreChannel) and resource scheduling
policies are largely best-effort; unregulated com-
petition is unlikely to result in a fair, predictable
resource allocation.

Previous work on this problem includes man-
agement policies encoded as sets of rules [13,
27], heuristic-based scheduling of individual
I/Os [7, 12, 15, 19], decisions based purely on
feedback loops [17, 18] and on the predictions of

2005 USENIX Annual Technical Conference USENIX Association 75

Effectiveness (Accuracy)

Time

e.g. Hardware Failures
Significant System Variation

Heuristic−Based
−Coarse−grained Optimization
−Constant Step Size
−Bootstrapping of Models

Model + Heuristic Based
−Variable Step Size
−Evolution of Models

−Fine−grained Optimization
−One Step

Model−Based

Figure 1: CHAMELEON moves along the line ac-
cording to the quality of the predictions gener-
ated by the internally-built models at each point
in time.

models for system components [1, 2, 3]. The re-
sulting solutions are either not adaptive at all (as
in the case of rules), or dependent on models that
are costly to develop, or ignorant of the system’s
performance characteristics as observed during
its lifetime.

This paper’s main contribution is a novel tech-
nique for providing performance guarantees in
shared storage systems, based on a combination
of performance models, constrained optimiza-
tion, and incremental feedback. CHAMELEON is
a framework in which clients whose negotiated
Service Level Agreement (SLAs) are not being
met get access to additional resources freed up by
throttling (i.e., rate-limiting) [7, 17] competing
clients. Our goal is to make more accurate throt-
tling decisions as we learn more about the charac-
teristics of the running system, and of the work-
loads being presented to it. As shown in Figure 1,
CHAMELEON operates at any point in a contin-
uum between decisions made based on relatively
uninformed, deployment-independent heuristics
on the one hand, and blind obedience to mod-
els of the particular system being managed on the
other hand.

CHAMELEON can react to workload changes
in a nimble manner, resulting in a marginal num-
ber of quality of service (QoS) violations. In our
experiments on a real storage system using real-
world workload traces, CHAMELEON managed
to find the set of throttling decisions that yielded
the maximum value of the optimization function,
while minimizing the amount of throttling re-
quired to meet the targets and while maximizing
the number of clients whose QoS requirements
are satisfied. Since our approach does not depend
on pre-existing device or workload models, it can

be easily deployed on heterogeneous, large-scale
storage systems about which little is known. Our
ultimate vision, of which CHAMELEON is just a
part, is to apply a variety of corrective actions to
solve a variety of systems management problems
while operating on incomplete information [25].

Section 2 presents the architecture of
CHAMELEON. We then proceed to describe
the main components: the models (Section 3),
the reasoning engine (Section 4), the base
heuristics (Section 5), and the feedback-based
throttling executor (Section 6). Section 7 de-
scribes our prototype and experimental results.
Section 8 reviews previous research in the field;
we conclude in Section 9.

2 Overview of CHAMELEON

CHAMELEON is a framework for providing pre-
dictable performance to multiple clients access-
ing a common storage infrastructure, as shown in
Figure 2. Multiple hosts connect to storage de-
vices in the back end via interconnection fabrics.
CHAMELEON can monitor, and optionally delay,
every I/O processed by the system; this can be
implemented at each host (as in our prototype), or
at logical volume managers, or at block-level vir-
tualization appliances [9]. Each workload j has a
known SLAj associated with it, and uses a fixed
set of components—its invocation path—such as
controllers, logical volumes, switches, and logi-
cal units (LUNs). When SLAs are not being met,
CHAMELEON identifies and throttles workloads;
when it detects unused bandwidth, it unthrottles
some of the previously-throttled workloads.

Our SLAs are conditional: a workload will
be guaranteed a specified upper bound on aver-
age I/O latency, as long as its I/O rate (i.e., the
throughput) is below a specified limit. An SLA
is violated if the rate is below the limit, but la-
tency exceeds its upper bound. If workloads ex-
ceed their stated limits on throughput, the sys-
tem is under no obligation of guaranteeing any
latency. Obviously, such rogue workloads are
prime candidates for throttling; but in some ex-
treme cases, well-behaved workloads may also
need to be restricted. CHAMELEON periodically
evaluates the SLAs, i.e., the average latency and
throughput value of each workload; depending on
how much the workload is being throttled, it re-
ceives tokens (one per I/O) for flow control using
a leaky bucket protocol [24]. The periodic inter-
val for SLA evaluation has to be large enough to
smooth out bursty intervals, and small enough for

2005 USENIX Annual Technical Conference USENIX Association76

Controller ControllerControllerController

Interconnection
Fabric 1

Interconnection
Fabric 2

LUNS

. . .

.

. . .

. . .

. . .Host 1 Host 2 Host n

Chameleon

Figure 2: System model.

the system to be reasonably responsive; we em-
pirically set this interval to 60 s. in our prototype
implementation.

The core of CHAMELEON consists of four
parts, as shown in Figure 3:

• Knowledge base: by taking periodic per-
formance samples on the running sys-
tem, CHAMELEON builds internal black-box
models of system behavior without any hu-
man supervision. Models get better as time
goes by, for CHAMELEON refines them au-
tomatically.

• Reasoning engine: CHAMELEON employs
optimization techniques, informed by the
black-box models. It computes throttle val-
ues, and quantifies the statistical confidence
of its own decisions.

• Designer-defined policies: As a fallback
mechanism, we maintain a set of fixed
heuristics specified by the system designer
for system-independent, coarse-grained re-
source arbitration.

• Informed feedback module: The general
guiding principle is to take radical correc-
tive action as long as that is warranted by the
available knowledge about the system. If the
confidence value from the solver is below a
certain threshold (e.g., during bootstrapping
of the models), CHAMELEON falls back on
the fixed policies to make decisions.

3 Knowledge base

CHAMELEON builds models in an automatic, un-
supervised way. It uses them to characterize the
capabilities of components of the storage system,
the workload being presented to them, and its ex-
pected response to different levels of throttling.

Models based on simulation or emulation re-
quire a fairly detailed knowledge of the sys-
tem’s internals; analytical models require less,
but device-specific optimizations must still be
taken into account to obtain accurate predic-
tions [26]. Black-box models are built by record-
ing and correlating inputs and outputs to the sys-
tem in diverse states, without regarding its inter-
nal structure. We chose them because of prop-
erties not provided by the other modeling ap-
proaches: black-box models make very few as-
sumptions about the phenomena being modeled,
and can readily evolve when it changes. Be-
cause of this, they are an ideal building block
for an adaptive, deployment-independent man-
agement framework that doesn’t depend on pre-
existing model libraries.

At the same time, the black-box models used
in CHAMELEON are less accurate than their an-
alytical counterparts; our adaptive feedback loop
compensates for that. The focus of this paper is
to demonstrate how several building blocks can
work together in a hybrid management paradigm;
we do not intend to construct good models, but
to show that simple modeling techniques are ad-
equate for the problem. CHAMELEON’s mod-
els are constructed using Support Vector Ma-
chines (SVM) [16], a machine-learning technique
for regression. This is similar to the CART [29]
techniques for modeling storage device perfor-
mance, where the response of the system is mea-
sured in different system states and represented as
a best-fit curve function. Table-based models [2],
where system states are exhaustively recorded in
a table and used for interpolation, are not a vi-
able solution as they represent the model as a very
large lookup table instead of the analytic expres-
sions that our constraint solver takes as input.

Black-box models depend on collecting exten-
sive amounts of performance samples. Some of
those metrics can be monitored from client hosts,
while others are tallied by each component—and
collected via proprietary interfaces for data col-
lection, or via standard protocols such as SMI-
S [20].

A key challenge is bootstrapping, i.e., how to
make decisions when models have not yet been
refined. There are several solutions for this: run
a battery of tests in non-production mode to gen-
erate baseline models, or run in a monitor-only
mode until models are sufficiently refined, or start
from a pre-packaged library (e.g., a convenient
oversimplification such as an M/M/1 queueing
system.) We follow different approaches for dif-

2005 USENIX Annual Technical Conference USENIX Association 77

Model Refinement

Re−trigger

Piecewise

Knowledge−Base Reasoning Engine

Models

Models
Action
Models

Workload Models

Current
States

Throttling Step Size
Incremental

Feedback Module

Linear
Throttling Values

Designer−defined
Policies

Storage System

Component

Programming

Figure 3: Architecture of CHAMELEON.

ferent model types.

3.1 Component models

 0

 5

 10

 15

 20

 25

 1000 2000 3000 4000 5000 6000 7000

la
te

nc
y

(m
s)

IO/s at the controller

Component Model

Figure 4: Component model.

A component model predicts values of a de-
livery metric as a function of workload char-
acteristics. CHAMELEON can in principle ac-
commodate models for any system compo-
nent. In particular, the model for the re-
sponse time of a storage device i takes the
form: ci(req size, req rate, rw ratio, ran-
dom/sequential, cache hit rate). Function ci is
inherently non-linear, but can be approximated as
piecewise linear with a few regions; a projection
of a sample ci is shown in Figure 4. Another
source of error is the effect of multiple work-
loads sending interleaved requests to the same
component. We approximate this nontrivial com-
putation by estimating the wait time for each
individual stream as in a multi-class queueing
model [14]; more precise solutions [5] incorpo-
rate additional workload characteristics. The ef-
fects of caching at multiple levels (e.g., hosts, vir-
tualization engines, disk array controllers, disks)

also amplify errors.
We took the liberty of bootstrapping compo-

nent models by running off-line calibration tests
against the component in question: a single, un-
changing, synthetic I/O stream at a time, as part
of a coarse traversal of ci’s parameter space.

3.2 Workload models

Representation and creation of workload mod-
els has been an active area of research [6]. In
CHAMELEON, workload models predict the load
on each component as a function of the request
rate that each workload injects into the system.
For example, we denote the predicted rate of re-
quests at component i originated by workload j

as wi,j(workload request ratej). In real scenar-
ios, function wi,j changes continuously as work-
load j changes or other workloads change their
access patterns (e.g., a workload with good tem-
poral locality will push other workloads off the
cache). To account for these effects, we represent
function wi,j as a moving average [23] that gets
recomputed by SVM every n sampling periods.

2000

2500

3000

1500 1700 1900 2100 2300

C
om

po
ne

nt
 L

oa
d

Workload Request Rate

SPC
linear regression

Figure 5: Workload model for SPC.

Figure 5 shows the workload models for the

2005 USENIX Annual Technical Conference USENIX Association78

SPC web-search trace [21] accessing a 24-drive
RAID 1 LUN on an IBM FAStT 900 storage con-
troller. From the graph, a workload request rate
of 1500 IOPS in SPC translates to 2000 IOPS at
the controller.

In practical systems, reliable workload data
can only be gathered from production runs. We
therefore bootstrap workload models by collect-
ing performance observations; CHAMELEON re-
sorts to throttling heuristics in the meantime, until
workload models become accurate enough.

3.3 Action models

In general, action models predict the effect of cor-
rective actions on workload requirements. The
throttling action model computes each work-
load’s average request rate as a function of
the token issue rate, i.e., aj(token issue ratej).
Real workloads exhibit significant variations in
their I/O request rates due to burstiness and to
ON/OFF behaviors [5]. We model a as a lin-
ear function: aj(token issue ratej) = θ ×
token issue ratej where θ = 1 initially for
bootstrapping. This simple model assumes that
the components in the workload’s invocation path
are not saturated.

Function aj will, in general, also deviate from
our linear model because of performance-aware
applications (that modify their access patterns de-
pending on the I/O performance they experience)
and of higher-level dependencies between appli-
cations that magnify the impact of throttling.

4 Reasoning engine

The reasoning engine computes the rate at which
each workload stream should be allowed to is-
sue I/Os to the storage system. It is imple-
mented as a constraint solver (using piecewise-
linear programming [8]) that analyzes all possible
combinations of workload token rates and selects
the one that optimizes an administrator-defined
objective function, e.g., “minimize the number
of workloads violating their SLA”, or “ensure
that highest priority workloads always meet their
guarantees”. Based on the errors associated with
the models, the output of the constraint solver is
assigned a confidence value.

It should be noted that the reasoning engine is
not just invoked upon an SLA violation to decide
throttle values, but also periodically to unthrot-
tle the workloads if the load on the system is re-
duced.

4.1 Intuition

The reasoning engine relies on the component,
workload, and action models as oracles on which
to base its decision-making. Figure 6 illustrates
a simplified version of how the constraint solver
builds a candidate solution: 1) for each compo-
nent used by the underperforming workload (i.e.,
the one not meeting its SLA), use the compo-
nent’s model to determine the change in request
rate at the component required to achieve the
needed decrease in component latency; 2) query
the model for each workload using that compo-
nents, to determine which change in the work-
load’s I/O injection rate is needed to relieve the
component’s load; 3) using the action model, de-
termine the change in the token issue rate needed
for the sought change in injection rate; 4) record
the value of the objective function for the can-
didate solution. Then repeat recursively for all
combinations of component, victim workload,
and token issue rates. The reasoning engine is
actually more general: it considers all solutions,
including the ones in which the desired effect
is achieved by the combined results of throttling
more than one workload.

4.2 Formalization in CHAMELEON

We formulate the task of computing throttle val-
ues in terms of variables, objective function, and
constraints as follows.
Variables: One per workload, representing its to-
ken issue rate: t1, t2, . . .

Objective function: Workloads are pigeonholed
into one of four regions as in Figure 7, ac-
cording to their current request rate, latency,
and SLA goals. Region names are mostly self-
explanatory—lucky workloads are getting a
higher throughput while meeting the latency goal,
and exceededworkloads get higher throughput
at the expense of high latency.

Many objective functions can be accom-
modated by the current CHAMELEON proto-
type (e.g., all linear functions); moreover, it
is possible to switch them on the fly. For our
experiments, we minimized

∑

i6∈failed

∣

∣

∣

∣

Pquadi
PWi

SLAWi − ai(ti)

SLAWi

∣

∣

∣

∣

where PWi are the workload priorities, Pquadi

are the quadrant priorities (i.e., the probability
that workloads in each region will be selected as
throttling candidates), and ai(ti) represents the

2005 USENIX Annual Technical Conference USENIX Association 79

Total Request Rate

Workload N

Workload 2

Workload 1

Component Model Tables

Request Size = 4KB
Read Write Ratio = 0
Random Sequential Ratio = 0

...

.........
Request Rate

New Request Rate
New Throughput

L
at

en
cy

Current latency

SLA latency

Need to be Throttled

R
eq

ue
st

 R
at

e

Throughput Token Issue Rate

T
hr

ou
gh

pu
t

New Token Rate

Figure 6: Overview of constrained optimization.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

La
te

nc
y(

F
ra

ct
io

n)

IOps (Fraction)

failed

meet

exceeded

lucky

Figure 7: Workload classification. Region limits
correspond to the 100% of the SLA values.

action model for Wi. Table 1 provides some in-
sight into this particular choice.
Constraints: Constraints are represented as in-
equalities: the latency of a workload should
be less than or equal to the value specified in
the SLA. More precisely, we are only interested
in solutions that satisfy latencyWj

≤ SLAWj

for all workloads Wj running in the system.
We estimate the contribution of component i

to the latency of Wj by composing our mod-
els in the knowledge base, i.e., latencyi,j =
ci(wi,j(aj(tj))).

For example, the latency constraint for a single
workload W1 running in the system with its I/O
requests being served by a storage controller fol-
lowed by physical disks is

ccontroller(wcontroller,1(a1(t1)))

+cdisks(wdisks,1(a1(t1))) ≤ SLA1

In a more general example, workloads W1, W5

share the storage controller:

Intuition How it is captured
The lower a
workload’s
priority, the
higher its
probability
of being
throttled

The solver minimizes the
objective function; violat-
ing the SLA of a higher
priority workload will re-
flect as a higher value for
PWi

SLAWi−ai(ti)
SLAWi

Workloads
in the
lucky or
exceeded
region have
a higher
probability
of being
throttled

This is ensured by the Pquadi

variable in the objective func-
tion; it has higher values
for lucky and exceeded
(e.g., Pmeet = 1, Pexceed =
8, Plucky = 32). It is also
possible to define Pquadi

as a
function.

Workloads
should op-
erate close
to the SLA
boundary

By definition of the objective
function; it is also possible
to add a bimodal function, to
penalize workloads operating
beyond their SLA.

Table 1: Internals of the objective function.

total reqcontroller = wcontroller,1(a1(t1))

+wcontroller,5(a5(t5));

total reqdisks = wdisks,1(a1(t1))

+wdisks,5(a5(t5));

ccontroller(total reqcontroller)

+cdisks(total reqdisks) ≤ SLA1

2005 USENIX Annual Technical Conference USENIX Association80

4.3 Workload unthrottling

CHAMELEON invokes the reasoning engine pe-
riodically, to re-assess token issue rates; if the
load on the system has decreased since the last
invocation, some workloads may be unthrottled
to re-distribute the unused resources based on
workload priorities and average I/O rates. If a
workload is consistently wasting tokens issued
for it (because it has less significant needs), un-
used tokens will be considered for re-distribution;
on the other hand, if the workload is using all
its tokens, they won’t be taken away from it,
no matter how low its priority is. CHAMELEON

makes unthrottling decisions using the same ob-
jective function with additional “lower-bound”
constraints such as not allowing any I/O rate to
become lower than its current average value.

4.4 Confidence on decisions

There are multiple ways of capturing statistical
confidence values [14]. CHAMELEON uses the
following formula to capture both the errors from
regression and from residuals (i.e., models being
used on inputs where they were not trained):

Sp = S

√

1 +
1

n
+

(xp − x)2
∑

x2 − nx2

where S is the standard error, n is the num-
ber of points used for regression, and x is the
mean value of the predictor variables used for re-
gression. Sp represents the standard deviation
of the predicted value yp using input variable
xp. In CHAMELEON, we represent the confi-
dence value CV of a model as the inverse of its
Sp, and we define the overall confidence on the
reasoning engine’s decisions as CVcomponent ×
CVworkload × CVaction.

5 Designer-defined policies

The system designer defines heuristics for coarse-
grained throttling control. Heuristics are used
to make decisions whenever the predictions of
the models cannot be relied upon—either during
bootstrapping or after significant system changes
such as hardware failures. Sample heuristics in-
clude “if system utilization is greater than 85%,
start throttling workloads in the lucky region”,
or “if the workload-priority variance is less than
10%, uniformly throttle all workloads sharing the
component”.

These heuristics can be expressed in a variety
of ways such as Event-Condition-Action (ECA)
rules or hard-wired code. In any case, fully speci-
fying corrective actions at design time is an error-
prone solution to a highly complex problem [25],
especially if they are to cover a useful fraction
of the solution space and to accommodate pri-
orities. It is also very hard to determine ac-
curate threshold values to differentiate different
scenarios, in the absence of any solid quantita-
tive information about the system being built. In
CHAMELEON, the designer-defined heuristics are
implemented as simple hard-wired code which
is a modified version of the throttling algorithm
used in Sleds [7]:

1. Determine the compList of components be-
ing used by the underperforming workload.

2. For each component in the compList, add
the non-underperforming workloads using it to
the candidateList.

3. Sort the candidateList first by current op-
erating quadrant: lucky first, then exceed,
then meet. Within each quadrant, sort by work-
load priority.

4. Traverse the candidateList and throttle
each workload, either uniformly or proportion-
ally to its priority (the higher the priority, the less
significant the throttling).

6 Informed feedback module

The feedback module (Figure 8) incrementally
throttles workloads based on the decisions of ei-
ther the reasoning engine or the system-designer
heuristics. If CHAMELEON is following the rea-
soning engine, throttling is applied at incremen-
tal steps whose size is proportional to the confi-
dence value of the constraint solver; otherwise,
the throttling step is a small constant value.

After every m throttling steps, the feedback
module analyzes the state of the system. If any of
the following conditions is true, it re-invokes the
reasoning engine; otherwise it continues apply-
ing the same throttling decisions in incremental
steps:

• Latency increases for the underperforming
workload (i.e., it moves away from the
meet region).

• A non-underperforming workload moves
from meet or exceed to lucky.

• Any workload undergoes a 2X or greater
variation in the request rate or any other ac-

2005 USENIX Annual Technical Conference USENIX Association 81

Confidence_val <
threshold

Y

Continue
throtting

Executing the reasoning
engine output with step−size
proportional to confidence
value

Incremental throttling

N

Re−calculate
throttle values

Analyze the system state
after m throttling steps

step−size
policies with constant
Executing system−designer

Reasoning engine invoked

Figure 8: Operation of the feedback module.

cess characteristic, compared to the values
at the beginning of throttling.

• There is a 2X or greater difference between
predicted and observed response times for a
component.

7 Experimental evaluation

The experimental setup consists of a host ma-
chine generating multiple I/O streams on a shared
storage infrastructure. The host is an IBM
x-series 440 server (2.4GHz 4-way Intel Pen-
tium 4 with 4GB RAM running Redhat Server
Linux, 2.1 kernel); the back-end storage is a 24-
drive RAID 1 LUN created on a IBM FAStT
900 storage controller with 512MB of on-board
NVRAM, and accessed as a raw device so that
there is no I/O caching at the host. The host
and the storage controller are connected using a
2Gbps FibreChannel (FC) link.

The key capability of CHAMELEON is to reg-
ulate resource load so that SLAs are achieved.
The experimental results use numerous combina-
tions of synthetic and real-world request streams
to evaluate the effectiveness of CHAMELEON.
As expected, synthetic workloads are easier to
handle compared to their real-world counterparts
that exhibit burstiness and highly variable access
characteristics.

7.1 Using synthetic workloads

The synthetic workload specifications used in this
section were derived from a study done in the

context of the Minerva project [1]. Since the
workloads are relatively static and controlled, our
action and workload models have small errors as
quantified by the correlation coefficient r [14]. In
general, the closer r is to 1, the more accurate
the models are; in this experiment, the compo-
nent model has r = 0.72, and the workload and
action models have r > 0.9.

These tests serve two objectives. First, they
evaluate the correctness of the decisions made by
the constraint solver. Throttling decisions should
take into account each workload’s priority, its
current operating point compared to the SLA, and
the percentage of load on the components gener-
ated by the workload. Second, these tests quan-
tify the effect of model errors on the output val-
ues of the constraint solver and how incremental
feedback helps the system converge to an optimal
state.

Workload Request
size
[KB]

Rd/wrt
ratio

Seq/rnd
ratio

Foot-
print
[GB]

W1 27.6 0.98 0.577 30
W2 2 0.66 0.01 60
W3 14.8 0.641 0.021 50
W4 20 0.642 0.026 60

Table 2: Synthetic workload streams.

We report experimental results by showing
each workload’s original and new (i.e., post-
throttling) position in the classification chart, as
defined in Figure 7.

Case 1: Effect of workload and quadrant pri-
orities

Figure 9 compares the direct output of the con-
straint solver with priority values for the work-
loads (W1 = 8, W2 = 8, W3 = 2, W4 = 8)
and the SLA quadrant priorities (failed = 16,
meet = 2, exceed=8 , lucky=8). In compari-
son to the no priority scenario, W3 and W2 are
throttled more when priorities are assigned for
the workloads and quadrants respectively. This
is because the constraint solver optimizes the ob-
jective function by throttling the lower priority
workloads more aggressively before moving on
to the higher priority ones.

Case 2: Usage of the component by the work-
load

This test is a sanity check with workload W5 op-
erating primarily from the controller cache (2KB

2005 USENIX Annual Technical Conference USENIX Association82

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

F
ra

ct
io

n)

IOps(Fraction)
 (t1=0,t2=0,t3=33.87%,t4=29.17%)

w1

w2

w3
w4

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

F
ra

ct
io

n)

IOps(Fraction)
 (t1=0,t2=0,t3=65.98%,t4=10.02%)

w1

w2

w3
w4

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

F
ra

ct
io

n)

IOps(Fraction)
 (t1=0,t2=64.18%,t3=33.86%,t4=10.01%)

w1

w2 w3
w4

(a) Equal priority (b) Workload priorities (c) Quadrant priorities

Figure 9: Effect of priority values on the output of the constraint solver.

sequential read requests). Because W5 does not
consume disk bandwidth, the reasoning engine
should not attempt to solve solve the SLA vio-
lation for W1 by throttling W5 even if W5 has
the lowest priority. As shown in Figure 10, the
reasoning engine selects W2 and W3.

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

L
a

te
n

c
y
(F

ra
c
ti
o

n
)

IOps(Fraction)
 (t1=0,t2=42.94%,t3=4.68%,t5=0%)

w1

w2
w3

w5

Figure 10: Sanity test for the reasoning engine
(workload W5 operating from controller cache.)

7.2 Replaying real-world traces

For these experiments, we replay the web-search
SPC trace [21] and HP’s Cello96 trace [11]. Both
are block-level traces with timestamps recorded
for each I/O request. We use approximately 6
hours of SPC and one day of Cello96. To gen-
erate a reasonable I/O load for the storage infras-
tructure, SPC was replayed 40 times faster and
Cello96 was replayed 10 times faster.

In addition to the traces, we used a phased,
synthetic workload was used; this workload was
assigned the highest priority. In an uncontrolled
case i.e. without throttling, with three workloads
running on the system, one or more of them vi-
olate their SLA. Figure 11 shows the throughput
and latency values for uncontrolled case. For all
the figures in this subsection, there are four parts
(ordered vertically): the first plot represents the
throughput for the SPC, Cello96, and the syn-
thetic workload. The second, third, and fourth

plots represent the latency for each of these work-
loads respectively.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

IO
P

S

time (minute)

Cello96
SPC
SYN

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

n
cy

 (
m

s)

time (minute)

Cello96
Cello SLA

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30 35 40 45 50

la
te

n
cy

 (
m

s)

time (minute)

SPC
SPC SLA

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

n
cy

 (
m

s)

time (minute)

SYN
SYN SLA

Figure 11: Uncontrolled throughput and latency
values for real-world workload traces.

The aim of the tests is to evaluate the follow-
ing:

• The throttling decisions made by
CHAMELEON for converging the workloads
towards their SLA.

• The reactiveness of the system with throt-
tling and periodic unthrottling of workloads

2005 USENIX Annual Technical Conference USENIX Association 83

(under reduced system load).

• The handling of unpredictable variations in
the system that cause errors in the model
predictions, forcing CHAMELEON to use
the sub-optimal but conservative designer-
defined policies.

For these experiments, the models were rea-
sonably accurate (component r = 0.68, work-
load r = 0.7, and action r = 0.6).In addition, the
SLAs for each workload are: Cello96 1000 IOPS
with 8.2ms latency, SPC 1500 IOPS with 6.5 ms
latency and 1600 IOPS with 8.6ms latency for the
synthetic workload unless otherwise specified.

Case 1: Solving SLA violations using throt-
tling

The behavior of the system is shown in figure 12.
To explain the working of CHAMELEON, we di-
vide the time-series into phases (shown as dotted
vertical line in the figures) described as follows:

Phase 0 (t=0 to t=5 min): Only the SPC and
Cello96 traces are running on the system; the la-
tency values of both these workloads are signifi-
cantly below the SLA.

Phase 1 (t= 5 min to t= 13 min): The phased
synthetic workload is introduced in the system.
This causes an SLA violation for the Cello96 and
synthetic traces. CHAMELEON triggers the throt-
tling of the SPC and Cello96 workloads (Cello96
is also throttled because it is operating in the ex-
ceeded region, means it is sending more than it
should. Therefore, it is throttled even if its SLA
latency goal is not met.) The system uses a feed-
back approach to move along the direction of the
output of the constraint solver. In this experi-
ment, the feedback system starts from 30% of the
throttling value and uses step size is 8% (30% and
8% are decided according to the confidence value
of the models). It took the system 6 minutes to
meet the SLA goal and stop the feedback.

Phase 2 (t=13 min to t= 20 min): The sys-
tem stabilizes after the throttling and all work-
loads can meet their SLAs.

Phase 3 (t=20 min to t= 25 min): The syn-
thetic workload enters the OFF phase. During
this time, the load on the system is reduced, but
the throughput of Cello96 and SPC remains the
same.

Phase 4 (beyond t= 25 min): The system is sta-
ble, with all the workloads meeting their SLAs.
As a side note, around t=39 min the throughput

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

IO
P

S

time (minute)

Cello96
SPC
SYN

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45

la
te

n
cy

 (
m

s)

time (minute)

Cello96
Cello SLA

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30 35 40 45
la

te
n

cy
 (

m
s)

time (minute)

SPC
SPC SLA

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45

la
te

n
cy

 (
m

s)

time (minute)

SYN
SYN SLA

Figure 12: Throughput and latency values for
real-world workload traces with throttling (with-
out periodic unthrottling.)

of Cello96 decreases further; this is because of
characteristics of the trace.

Figure 12 shows the effectiveness of the throt-
tling: all workloads can meet their SLA after
throttling. However, because the lack of an un-
throttling scheme, throttled workloads have no
means to increase their throughput even when to-
kens are released by other workloads. Therefore,
the system is underutilized.

Case 2: Side-by-side throttling and unthrot-
tling of workloads

The previous experiment demonstrates the effec-
tiveness of throttling. Figure 13 shows throttling
combined with unthrottling of workloads during
reduced system load. Compared to Figure 12,
the key differences are: 1) SPC and Cello96 in-
crease their request-rate when the system load is
reduced (t=17min to t=27 min), improving over-
all system utilization; 2) the system has a non-

2005 USENIX Annual Technical Conference USENIX Association84

zero settling time when the synthetic workload is
turned on (t=27 min to t=29 min). In summary,
unthrottling allows for better system utilization,
but requires a non-zero settling time for recover-
ing the resources.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40 45 50

IO
P

S

time (minute)

Cello96
SPC
SYN

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

n
cy

time (minute)

Cello96
Cello96 SLA

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30 35 40 45 50

la
te

n
cy

time (minute)

SPC
SPC SLA

 0
 2
 4
 6
 8

 10
 12
 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

n
cy

time (minute)

SYN
SYN SLA

Figure 13: Throughput and latency values for
real-world workload traces with throttling and
periodic unthrottling.

Case 3: Handling changes in the confidence
value of models at run-time

This test demonstrates how CHAMELEON han-
dles changes in the confidence values of the mod-
els at run-time; these changes can be due to un-
predictable system variations (hardware failures)
or un-modeled properties of the system (such
as changes in the workload access characteris-
tics that change the workload models). It should
be noted that refining the models to reflect the
changes will not be instantaneous; in the mean-
time, CHAMELEON should have the ability to de-
tect decreases in the confidence value and switch

to a conservative management mode (e.g., using
designer-defined policies, or generate a warning
for a human administrator).

Figure 14 show the reaction of the sys-
tem when the access characteristics of the SPC
and Cello96 workloads are synthetically changed
such that the cache hit rate of Cello96 increases
significantly (in reality, a similar scenario arise
due to changes in the cache allocation to individ-
ual workload streams sharing the controller) and
the SPC is doing more random access (sequential
random ratio increases from 0.11 to 0.5). In the
future, we plan to run experiments with hardware
failures induced on the RAID 1 logical volume.

The SLAs used for this test are: Cello96 has
a SLA with 1000 IOPS with 7ms latency, SPC is
2000 IOPS with 8.8ms latency and the synthetic
workloads has a SLA with 1500 IOPS and 9ms
latency.

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20

IO
P

S

time (minute)

Cello96
SPC
SYN

 0
 2
 4
 6
 8

 10

 5 10 15 20

la
te

n
cy

 (
m

s)

time (minute)

Cello96
Cello96 SLA

 0
 2
 4
 6
 8

 10
 12

 5 10 15 20

la
te

n
cy

 (
m

s)

time (minute)

SPC
SPC SLA

 0
 2
 4
 6
 8

 10
 12

 5 10 15 20

la
te

n
cy

 (
m

s)

time (minute)

SYN
SYN SLA

Figure 14: Handling a change in the confidence
value of the models at run-time.

Phase 0 (at t= 3 mins): The synthetic work-
load violates its latency SLA. In response,

2005 USENIX Annual Technical Conference USENIX Association 85

CHAMELEON decides to throttle the Cello96
workload (using the original workload model).
The output of the reasoning engine as a confi-
dence value of 65%

Phase 1 (t= 3 min to t = 13 min): The feedback
module continues to throttle for 3 consecutive in-
crements; since the latency of the synthetic work-
load does not change, it re-invokes the reason-
ing engine. The output of the reasoning engine is
similar to the previous invocation (since the mod-
els haven‘t changed), but its confidence value is
lower (because of the higher differences between
predicted and observed model values). This re-
peats for consecutive invocations of the reasoning
engine after which the feedback module switches
to use the designer-defined policies.

Phase 2 (t= 13 min to t=17 min): A simple de-
signer policy the CHAMELEON uses is to throttle
all the non-violating workloads uniformly (uni-
form pruning). Both SPC and Cello96 are throt-
tled in small steps (5% of their SLA IOPS) till
the latency SLA of the synthetic workload is sat-
isfied.

Phase 3 (beyond t= 17min): All workloads are
meeting their SLA goals and the system is stabi-
lized.

8 Related work

Most storage management frameworks (includ-
ing all commercial tools, e.g., BMC Patrol [4])
encode policies as ECA rules [27, 13] that fire
when some precondition is satisfied—typically,
when one or more system metrics cross prede-
termined thresholds. Rules are a clumsy, error-
prone programming language; they front-load all
the complexity into the work of creating them at
design time, in exchange for simplicity of exe-
cution at run time. Administrators are expected
to account for all relevant system states, to know
which corrective action to take in each case, to
specify useful values for all the thresholds that
determine when rules will fire, and to make sure
that the right rule will fire if preconditions over-
lap. Moreover, simple policy changes can trans-
late into modifications to a large number of rules.
Rule-based systems are only as good as the hu-
man who wrote the rules; they can just provide
a coarse level of control over the system. Some
variations rely on case-based reasoning [28] to
iteratively refine rules from a tabula rasa initial
knowledge base. This approach does not scale
well to real systems, because of the exponential
size of the search space that is explored in an un-

structured way. In contrast, CHAMELEON relies
on constrained optimization to steer the search in
the full space of throttle values, and uses its dy-
namically refined models in lieu of fixed thresh-
olds.

Feedback-based approaches use a narrow win-
dow of the most recent performance samples
to make allocation decisions based on the dif-
ference between the current and desired system
states. They are not well-suited for decision-
making with multiple variables [22], and can os-
cillate between local optima. Façade [19] con-
trols the queue length at a single storage device;
decreasing the queue length is equivalent to throt-
tling the combination of all workloads, instead
of (as in CHAMELEON) selectively throttling only
the workloads that will minimize the objective
function. Triage [17] keeps track of which perfor-
mance band the system is operating in; it shares
Façade’s lack of selectivity, as a single QoS vi-
olation may bring the whole system down to a
lower band (which is equivalent to throttling ev-
ery workload). Sleds [7] can selectively throttle
just the workloads supposedly responsible for the
QoS violations, and has a decentralized architec-
ture that scales better than Façade’s. However,
its policies for deciding which workload to throt-
tle are hard-wired and will not adapt to changing
conditions. Hippodrome [3] iteratively refines the
data placement; each of its data migrations can
take hours. It is a solution to longer-term prob-
lems than CHAMELEON, that is more appropriate
for reacting in minutes to problems requiring im-
mediate attention. Hippodrome can take a long
time to converge (due to the high cost of migrat-
ing data) and can get stuck in local minima, for it
relies on a variation of hill-climbing.

Scheduling-based approaches establish rela-
tive priorities between workloads and individ-
ual I/Os. Jin et al. [15] compared different
scheduling algorithms for performance isolation
and resource-usage efficiency; they found that
scheduling is effective but cannot ensure tight
bounds on the SLA constraints (essential for
high-priority workloads). Stonehenge [12] uses
a learning-based bandwidth allocation mecha-
nism to map SLAs to virtual device shares dy-
namically; although it allows more general SLAs
than CHAMELEON, it can only arbitrate accesses
to the storage device, not to any other bottleneck
component in the system. In general, schedul-
ing approaches are designed to work well for the
common case, not being effective in handling ex-
ception scenarios such as hardware failures.

2005 USENIX Annual Technical Conference USENIX Association86

Model-based approaches make decisions
based on accurate models of the storage system.
The main challenge is to build them, far from
trivial in practical systems; system administrators
very rarely have that level of information about
the devices they use. Minerva [1] assumes
that such models are given. CHAMELEON and
Polus [25] (an extension of this vision) build
those models on the fly, without supervision.

9 Conclusions

An ideal solution for resource arbitration in
shared storage systems would adapt to changing
workloads, client requirements and system con-
ditions. It would also relieve system administra-
tors from the burden of having to specify when
to step in and take corrective action, and what ac-
tions to take—thus allowing them to concentrate
on specifying the global objectives that maximize
the storage utility’s business benefit, and having
the system take care of the details. No existing
solution satisfies these criteria; prior approaches
are either inflexible, or require administrators to
supply up-front knowledge that is not available to
them.

Our approach to identifying which client work-
loads should be throttled is based on constrained
optimization. Constraints are derived from the
running system, by monitoring its delivered per-
formance as a function of the demands placed
on it during normal operation. The objective
function being optimized can be defined, and
changed, by the administrator as a function of
organizational goals. Given that the actions pre-
scribed by our reasoning engine are only as good
as the quality of the models used to compute
them, CHAMELEON will switch to a conservative
decision-making process if insufficient knowl-
edge is available. CHAMELEON’s approach
to model building requires no prior knowledge
about the quantitative characteristics of work-
loads and devices—and makes good decisions in
realistic scenarios like those involving workloads
with relative priorities. We replayed traces from
production environments on a real storage sys-
tem, and found that CHAMELEON makes very
accurate decisions for the workloads examined.
CHAMELEON always made the optimal throttling
decisions, given the available knowledge. The
times to react to and solve performance problems
were in the 3-14 min. range, which is quite en-
couraging.

Areas for future work include component and

workload models that incorporate additional rel-
evant parameters, more general (non-linear) opti-
mizers to accommodate the resulting, more accu-
rate problem formulations, and even some degree
of workload prediction using techniques related
to ARIMA [23].
Acknowledgments: We wish to thank Randy
Katz, Jai Menon, Kaladhar Voruganti and Hon-
esty Young for their inputs on the direction of this
work and valuable comments on earlier versions
of this paper. We also thank Lucy Cherkasova for
her excellent shepherding. Finally, we thank the
HP Labs Storage Systems Department for mak-
ing their traces available to the general public.

References

[1] Guillermo A. Alvarez, Elizabeth Borowsky,
Susie Go, Theodore H. Romer, Ralph Becker-
Szendy, Richard Golding, Arif Merchant, Mir-
jana Spasojevic, Alistair Veitch, and John
Wilkes. Minerva: An automated resource provi-
sioning tool for large-scale storage systems. ACM
Transactions on Computer Systems, 19(4):483–
518, 2001.

[2] E. Anderson. Simple table-based modeling of
storage devices. Technical Report HPL-SSP-
2001-4, HP Laboratories, July 2001.

[3] Eric Anderson, Michael Hobbs, Kimberly Kee-
ton, Susan Spence, Mustafa Uysal, and Alistair
Veitch. Hippodrome: Running circles around
storage administration. In Proc. of Symposium
on File and Storage Technologies (FAST), pages
175–188, January 2002.

[4] BMC Software. Patrol for Storage Networking,
2004.

[5] E. Borowsky, R. Golding, P. Jacobson, A. Mer-
chant, L. Schreier, M. Spasojevic, and J. Wilkes.
Capacity planning with phased workloads. In
Proceedings of the first international workshop
on Software and performance, pages 199–207.
ACM Press, 1998.

[6] Maria Calzarossa and Giuseppe Serazzi. Work-
load characterization: A survey. Proc. IEEE,
81(8):1136–1150, 1993.

[7] D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav,
J. Xu, R. Menon, and T. Lee. Performance virtu-
alization for large-scale storage systems. In Pro-
ceedings of the 22nd Symposium on Reliable Dis-
tributed Systems, pages 109–118, October 2003.

[8] Free Software Foundation, Inc.,
http://www.gnu.org/ software/ glpk/ glpk.html.
GLPK (GNU Linear Programming Kit), 2003.

[9] J.S. Glider, C. Fuente, and W.J. Scales. The soft-
ware architecture of a san storage control system.
IBM Systems Journal, 42(2):232–249, 2003.

2005 USENIX Annual Technical Conference USENIX Association 87

[10] Gartner Group. Total Cost of Storage
Ownership—A User-oriented Approach. Re-
search note, 2000.

[11] Hewlett-Packard Laboratories, http://
tesla.hpl.hp.com/ public software. Publicly-
available software and traces, 2004.

[12] Lan Huang, Gang Peng, and Tzi-cker Chi-
ueh. Multi-dimensional storage virtualization.
SIGMETRICS Perform. Eval. Rev., 32(1):14–24,
2004.

[13] IETF Policy Framework Working Group.
IETF Policy Charter. http://www.ietf.org/
html.charters/ policy-charter.html.

[14] Raj Jain. The Art of Computer System Perfor-
mance Analysis. Wiley, 1991.

[15] Wei Jin, Jeffrey S. Chase, and Jasleen Kaur. In-
terposed proportional sharing for a storage ser-
vice utility. SIGMETRICS Perform. Eval. Rev.,
32(1):37–48, 2004.

[16] T. Joachims. Making large-scale SVM learning
practical. MIT Press, Cambridge, USA, 1998.

[17] M. Karlsson, C. Karamanolis, and X. Zhu.
Triage: Performance isolation and differentiation
for storage systems. In Proc. of the 12th. Int’l
Workshop on Quality of Service, June 2004.

[18] Chenyang Lu, Guillermo A. Alvarez, and John
Wilkes. Aqueduct: online data migration with
performance guarantees. In Proceedings of Con-
ference on File and Storage Technologies (FAST),
pages 175–188, January 2002.

[19] C. Lumb, A. Merchant, and G. A. Alvarez.
Faç ade: virtual storage devices with performance
guarantees. In Proc. 2nd Conf. on File and Stor-
age Technologies (FAST), pages 131–144, April
2003.

[20] Storage Networking Industry Association,
http://www.snia.org. SMI Specification version
1.0, 2003.

[21] Storage Performance Council,
http://www.storageperformance.org. SPC
I/O traces, 2003.

[22] David Sullivan. Using probabilistic reasoning to
automate software tuning. PhD thesis, Harvard
University, September 2003.

[23] Nancy Tran and Daniel A. Reed. ARIMA time
series modeling and forecasting for adaptive i/o
prefetching. In Proceedings of the 15th inter-
national conference on Supercomputing, pages
473–485. ACM Press, 2001.

[24] J. Turner. New directions in communications.
IEEE Communications, 24(10):8–15, October
1986.

[25] S. Uttamchandani, K. Voruganti, S. Srinivasan,
J. Palmer, and D. Pease. Polus: Growing storage

QoS management beyond a 4-year old kid. In
FAST04, March 2004.

[26] M. Uysal, G. A. Alvarez, and A. Merchant. A
modular, analytical throughput model for mod-
ern disk arrays. In Proc. of the 9th Intl. Symp.
on Modeling, Analysis and Simulation on Com-
puter and Telecommunications Systems, pages
183–192, August 2001.

[27] D. Verma. Simplifying network administration
using policy-based management. IEEE Network
Magazine, 16(2), March 2002.

[28] D. Verma and S. Calo. Goal Oriented Policy
Determination. In Proc. 1st Workshop on Algo-
rithms and Architectures for Self-Managing Sys.,
pages 1–6. ACM, June 2003.

[29] Mengzhi Wang, Kinman Au, Anastassia Aila-
maki, Anthony Brockwell, Christos Faloutsos,
and Gregory R. Ganger. Storage device perfor-
mance prediction with CART models. SIGMET-
RICS Perform. Eval. Rev., 32(1):412–413, 2004.

2005 USENIX Annual Technical Conference USENIX Association88

