
Securing Web Service by Automatic Robot Detection

KyoungSoo Park, Vivek S. Pai
Princeton University

Kang-Won Lee, Seraphin Calo
IBM T.J. Watson Research Center

Abstract
Web sites are routinely visited by automated agents
known as Web robots, that perform acts ranging from the
beneficial, such as indexing for search engines, to the ma-
licious, such as searching for vulnerabilities, attempting
to crack passwords, or spamming bulletin boards. Previ-
ous work to identify malicious robots has relied on ad-hoc
signature matching and has been performed on a per-site
basis. As Web robots evolve and diversify, these tech-
niques have not been scaling.

We approach the problem as a special form of the Tur-
ing test and defend the system by inferring if the traf-
fic source is human or robot. By extracting the implicit
patterns of human Web browsing, we develop simple
yet effective algorithms to detect human users. Our ex-
periments with the CoDeeN content distribution network
show that 95% of human users are detected within the first
57 requests, and 80% can be identified in only 20 requests,
with a maximum false positive rate of 2.4%. In the time
that this system has been deployed on CoDeeN, robot-
related abuse complaints have dropped by a factor of 10.

1 Introduction
Internet robots (or bots) are automated agents or scripts
that perform specific tasks without the continuous in-
volvement of human operators. The enormous growth
of the Web has made Internet bots indispensable tools
for various tasks, such as crawling Web sites to popu-
late search engines, or performing repetitive tasks such
as checking the validity of URL links.

Unfortunately, malicious users also use robots for var-
ious tasks, including (1) harnessing hundreds or thou-
sands of compromised machines (zombies) to flood Web
sites with distributed denial of service (DDoS) attacks,
(2) sending requests with forged referrer headers to au-
tomatically create “trackback” links that inflate a site’s
search engine rankings, (3) generating automated “click-
throughs” on online ads to boost affiliate revenue, (4) har-
vesting e-mail addresses for future spamming, and (5)
testing vulnerabilities in servers, CGI scripts, etc., to com-
promise machines for other uses.

In this paper, we describe our techniques for automat-
ically identifying human-generated Web traffic and sep-
arating it from robot-generated traffic. With this infor-
mation, we can implement a number of policies, such
as rate-limiting robot traffic, providing differentiated ser-

vices, or restricting accesses. Such identification can help
protect individual Web sites, reduce the abuse experienced
by open proxies, or help identify compromised computers
within an organization.

Distinguishing between humans and robots based on
their HTTP request streams is fundamentally difficult, and
reminiscent of the Turing test. While the general prob-
lem may be intractable, we can make some observations
that are generally useful. First, we observe that most
Web browsers behave similarly, and these patterns can
be learned, whereas the behaviors of specialized robots
generally deviate from normal browsers. Second, the be-
havior of human users will be different from robots –
for example, human users will only follow visible links,
whereas crawlers may blindly follow all the links in a
page. Third, most human users browse Web pages using
the mouse or keyboard, whereas robots need not generate
mouse or keyboard activity. From these observations, we
propose two effective algorithms for distinguishing hu-
man activities from bots in real time: (1) human activity
detection, and (2) standard browser detection.

In our study, we test the effectiveness of these algo-
rithms on live data by instrumenting the CoDeeN open-
proxy-based content distribution network [9]. Our exper-
iments show that 95% of human users can be detected
within the first 57 requests, 80% can be identified within
20 requests, and the maximum false positive rate is only
2.4%. Four months of running our algorithms in CoDeeN
indicates that our solution is effective, and reduces robot-
related abuse complaints by a factor of 10.

2 Approach
In this section, we describe how to identify human-
originated activity and how to detect the patterns exhib-
ited by Web browsers. We implement these techniques
in Web proxy servers for transparency, though they could
also be implemented in firewalls, servers, etc. We use the
term “server” in the rest of this paper to designate where
the detection is performed.

2.1 Human Activity Detection
The key insight behind this technique is that we can infer
that human users are behind the Web clients (or browsers)
when the server gets the evidence of mouse movement or
keyboard typing from the client. We detect this activity
by embedding custom JavaScript in the pages served to
the client. In particular, we take the following steps:

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 255

<html>
...
<script language="javascript"
src="./index_0729395150.js"></script>

<body onmousemove="return f();">
<script>
function getuseragnt()
{ var agt = navigator.userAgent.toLowerCase();

agt = agt.replace(/ /g, "");
return agt;

}
document.write("<link rel=\’stylesheet\’"

+ "type=\’text/css\’"
+ "href=http://www.example.com/"
+ getuseragnt() + ">");

</script>
...
</body>
...
</html>

<!-- ./index_0729395150.js -->

var do_once = false;
function f()
{
if (do_once == false) {

var f_image = new Image();
do_once = true;
f_image.src = ’http://www.example.com/0729395160.jpg’;
return true;

}
return false;

}

Figure 1: Modified HTML and its linked JavaScript code. <script>...</script> and “onmousmove=...” is dynamically added in
the left HTML. The second <script>..</script> sends the client’s browser agent string information back to the server.

1. When a client requests page ‘foo.html’, the server
generates a random key, k ∈ [0, . . . , 2128 − 1] and
records the tuple <foo.html, k> in a table indexed
by the client’s IP address. The table holds multiple
entries per IP address.

2. The server dynamically modifies ‘foo.html’ and de-
livers it to the client. It includes JavaScript that
has an event handler for mouse movement or key
clicks. The event handler fetches a fake em-
bedded object whose URL contains k, such as
http://example.com/foo html k.jpg. Suppose the
correct URL is U0. To prevent smart robots from
guessing U0 without running the script, we obfuscate
the script with additional entries such that it contains
m(>0) similar functions that each requests U1, ...,
Um, where Ui replaces k with some other random
number ki(6= k). Adding lexical obfuscation can fur-
ther increase the difficulty in deciphering the script.

3. When the human user moves the mouse or clicks a
key, the event handler is activated to fetch U0.

4. The server finds the entry for the client IP, and checks
if k in the URL matches. If so, it classifies the session
as human. If the k does not match, or if no such
requests are made, it is classified as a robot. Any
robot that blindly fetches embedded objects will be
caught with a probability of m−1

m
.

Figure 1 shows an example of dynamic HTML modifi-
cation at www.example.com. For clarity of presentation,
the JavaScript code is not obfuscated. To prevent caching
the JavaScript file at the client browser, the server marks it
uncacheable by adding the response header line “Cache-
Control: no-cache, no-store”.

The sample code shows the mouse movement event
handler installed at the <body> tag, but one can use other

tags that can easily trigger the event handler, such as a
transparent image map (under the <area> tag) that cov-
ers the entire display area. Other mouse related events
such as “mouseup” and “mousedown” can also be used
as well as keyboard events. Alternatively, one can make
all the links in the page have a mouse click handler. For
example, the following code

Follow me

will call the function f() when a human user clicks the
“Follow me” link. The function f() contains

f_image.src
=‘http://www.example.com/0729395160.jpg’;

which has the side effect of fetching the image, so the
server will receive the mouse movement evidence with k
= 0729395160 in the URL. The server can respond with
any JPEG image because the picture is not used. The pa-
rameter k in the URL prevents replay attacks, so the server
should choose k at random for each client/page.

The script below the <body> tag in Figure 1 sends
the client’s browser string to the server. This embed-
ded JavaScript tells the server whether the client enables
JavaScript or not. If the client executes the code, but does
not generate the mouse event, the server can infer that it
is a robot capable of running the JavaScript code.

2.2 Browser Testing
In practice, a small fraction of users (4 − 6% in our
study) disable JavaScript on their browsers for security
or other reasons. To avoid penalizing such users, we em-
ploy browser detection techniques based on the browsing
patterns of common Web browsers. The basic idea be-
hind this scheme is that if the client’s behavioral pattern
deviates from that of a typical browser such as IE, Fire-
fox, Mozilla, Safari, Netscape, Opera, etc., we assume

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association256

it comes from a robot. This can be considered a sim-
plified version of earlier robot detection techniques [6],
and allows us to make decisions on-line at data request
rates. Basically, we collect request information within a
session and try to determine whether a given request has
come from a standard browser. This provides an effective
measure without overburdening the server with excessive
memory consumption. An obvious candidate for browser
detection, the “User-Agent” HTTP request header, is eas-
ily forged, and we find that it is commonly forged in prac-
tice. As a result, we ignore this field.

On the other hand, we discover that many specialized
robots do not download certain embedded objects in the
page. Some Web crawlers request only HTML files, as
do email address collectors. Referrer spammers and click
fraud generators do not even need to care about the con-
tent of the requested pages. Of course, there are some ex-
ceptions like off-line browsers that download all the pos-
sible files for future display, but the goal-oriented robots
in general do not download presentation-related informa-
tion (e.g., cascading style sheet (CSS) files, embedded im-
ages), or JavaScript files because they do not need to dis-
play the page or execute the code.

We can use this information to dynamically modify ob-
jects in pages and track their usage. For example, we can
dynamically embed an empty CSS file for each HTML
page and observe if the CSS file gets requested.

<LINK REL="stylesheet" TYPE="text/css"
HREF="http://www.example.com/2031464296.css">

Since CSS files are only used when rendering pages,
this technique can catch many special-purpose robots that
ignore presentation-related information. We can also use
silent audio files or 1-pixel transparent images for the
same purpose. Another related but inverse technique is
to place a hidden link in the HTML file that is not visible
to human users, and see if the link is fetched.

Because the link is placed on a transparent image which
is invisible to human users, humans should not fetch it.
However, some crawlers blindly follow all the links, in-
cluding the invisible ones.

3 Experimental Results
To evaluate the effectiveness of our techniques in a real
environment, we have implemented them in the CoDeeN
content distribution network [9]. CoDeeN consists of
400+ PlanetLab nodes and handles 20+ million requests
per day from around the world. Because CoDeeN nodes
look like open proxies, they unintentionally attract many
robots that seek to abuse the network using the anonymity

Description # of Sessions Percentage(%)

Downloaded CSS 268,952 28.9
Executed JavaScript 251,706 27.1
Mouse movement detected 207,368 22.3
Passed CAPTCHA test 84,924 9.1
Followed hidden links 9,323 1.0
Browser type mismatch 6,288 0.7
Total sessions 929,922 100.0

Table 1: CoDeeN Sessions between 1/6/06 and 1/13/06

provided by the infrastructure. While our previous work
on rate limiting and privilege separation [9] prevented
much abuse, we had to resort to manual pattern detection
and rule generation as robots grew more advanced.

3.1 Results from CoDeeN Experiments
We instrumented the CoDeeN proxies with our mecha-
nisms and collected data during a one-week period (Jan 6
- 13, 2006), with some metrics shown in Table 1. For this
analysis, we define a session to be a stream of HTTP re-
quests and responses associated with a unique <IP, User-
Agent> pair, that has not been idle for more than an hour.
To reduce the noise, we only consider sessions that have
sent more than 10 requests.

Of the 929,922 sessions total, 28.9% retrieved the
empty CSS files we embedded, indicating that they may
have used standard browsers. On the other hand, we have
detected mouse movements in 22.3% of the total sessions,
indicating that they must have human users behind the IP
address. Considering that some users may have disabled
JavaScript on their browsers, this 22.3% effectively is a
lower bound for human sessions.

We can gain further insight by examining the sessions
that have executed the embedded JavaScript, but have not
shown any mouse movement – these definitely belong to
robots. We can calculate the human session set SH by:

SH = (SCSS ∪ SMM) − (SJS − SMM)

where SCSS are sessions that downloaded the CSS file,
SMM are sessions with mouse movement, and SJS are
sessions that executed the embedded JavaScript. We con-
sider the sessions with CSS downloads and mouse move-
ments to belong to human users except the ones that have
executed JavaScript without reporting mouse movement.
We label all other sessions as belonging to robots. Us-
ing the data collected from CoDeeN, we calculate that
225,220 sessions (24.2% of total sessions) belong to SH .

Note that the above equation gives us an upper bound
on the human session set because this set has been ob-
tained by removing from the possible human sessions any
that clearly belong to robot sessions. However, the dif-
ference between the lower bound (22.3%) and the up-
per bound (24.2%) is relatively tight, with the maximum
false positive rate(# of false positives/# of negatives) =
1.9%/77.7% = 2.4%.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 257

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

Number of Requests Required to Detect

CSS files
Javascript files
Mouse events

Figure 2: CDF of # of Requests Needed to Detect Humans

Our mouse detection scheme relies on the widespread
use of JavaScript among the users. To understand how
many users have disabled JavaScript on their browsers,
we employed a CAPTCHA test [8, 1] during the data col-
lection period. Users were given the option of solving
a CAPTCHA with an incentive of getting higher band-
width. We see that 9.1% of the total sessions passed the
CAPTCHA, and we consider these human users.1 Of
these sessions, 95.8% executed JavaScript, and 99.2% re-
trieved the CSS file. The difference (3.4%) are users who
have disabled JavaScript in their browsers, which is much
lower than previously reported numbers (∼10%). This
can explain the gap between the lower bound and the up-
per bound of human sessions in our experiment. We also
note that most standard browsers request CSS files, sug-
gesting that our algorithm based on CSS file downloads is
a good indicator for fast robot detection.

Figure 2 shows how many requests are needed for our
schemes to classify a session as human or robot. 80%
of the mouse event generating clients could be detected
within 20 requests, and 95% of them could be detected
within 57 requests. Of clients that downloaded the em-
bedded CSS file, 95% could be classified within 19 re-
quests and 99% in 48 requests. The clients who down-
loaded JavaScript files show similar characteristics to the
CSS file case. Thus, the standard browser testing is a
quick method to get results, while human activity detec-
tion will provide more accurate results provided a reason-
able amount of data. We revisit this issue in Section 4
when we discuss possible machine learning techniques.

3.2 Experience with CoDeeN’s Operation
During the four months this scheme has been deployed
in CoDeeN, we observed that the number of complaints
filed against CoDeeN has decreased significantly. Fig-

1While some CAPTCHA tests can be solved by character recogni-
tion, this one was optional, and active only for a short period. We saw
no abuse from clients passing the CAPTCHA test, strongly suggesting
they were human.

 0

 2

 4

 6

 8

 10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

of

 C
oD

ee
N

 A
bu

se
 C

om
pl

ai
nt

s

Months in the year 2005

Robot
Human

Figure 3: # of CoDeeN Complaints Excluding False Alarms

ure 3 presents the number of complaints filed against the
CoDeeN project in 2005. In February, we expanded the
deployment of CoDeeN on PlanetLab, from 100 US-only
nodes to over 300 total nodes worldwide. As CoDeeN
became widely used, the number of complaints started
to rise (peaking in July, when most of the complaints
were related to referrer spam and click fraud). In late
August, we deployed the standard browser test scheme
on CoDeeN, and enforced aggressive rate limiting on the
robot traffic. After we classify a session to belong to a
robot, we further analyzed its behavior (by checking CGI
request rate, GET request rate, error response codes, etc.),
and blocked its traffic as soon as its behavior deviated
from predefined thresholds. After installing this mecha-
nism, we observed the number of complaints related to
robot activities have decreased dramatically, to only two
instances over four months. During this period, the other
complaints were related to hackers, who tried to exploit
new PHP or SQL vulnerabilities through CoDeeN. The
mouse movement detection mechanism was deployed in
January 2006, and we have not received any complaints
related to robots as of April 17th.

We also investigate how much additional overhead
these schemes impose, and we find it quite acceptable.
A fake JavaScript code of size 1KB with simple obfusca-
tion is generated in 144 µseconds on a machine with a 2
GHz Pentium 4 processor, which would contribute to lit-
tle additional delay in response. The bandwidth overhead
of fake JavaScript and CSS files comprise only 0.3% of
CoDeeN’s total bandwidth.

4 Discussions and Future Work
In this section, we discuss limitations of our current sys-
tem and possible improvements using machine learning.

4.1 Limitations of Our Approach
Our proposed detection mechanism is not completely im-
mune to possible countermeasures by the attackers. A se-
rious hacker could implement a bot that could generate

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association258

 90

 91

 92

 93

 94

 95

 96

 20 40 60 80 100 120 140 160

A
cc

ur
ac

y(
%

)

Number of Requests at Which the Classifier is Built

Training set
Test set

Figure 4: Machine Learning Performance to Detect Robots

mouse or keystroke events if he or she knows that a human
activity detection mechanism has been implemented by a
site. Although we are not aware of any such intelligent
bots today, we may need to address such issues in the fu-
ture. One possible way to address the problem is to utilize
a trusted underlying computer architecture to guarantee
that the events have been truly generated by the physical
devices [7]. A more practical solution may combine mul-
tiple approaches in a staged manner – making quick de-
cisions by fast analysis (e.g., standard browser test), then
perform a careful decision algorithm for boundary cases
(e.g., AI-based techniques). Our goal in this paper was to
design a fast and effective robot detection algorithm that
could be deployed in CoDeeN to effect practical benefits,
which we seem to have achieved. However, we do not feel
the work is complete; on the contrary, it has just started.

4.2 Detection by Machine Learning
From the above discussion, the following question natu-
rally follows: “How effective is a machine learning-based
technique, and what is the trade-off?” The main forte of
machine learning is that if we can characterize the typi-
cal features of human browsing, we can easily detect un-
wanted traffic by robots. Conceivably, it is very hard to
make a bot that behaves exactly like a human.

To test the effectiveness of a detection algorithm us-
ing machine learning, we collected data by running
CAPTCHA tests on CoDeeN for two weeks, and classi-
fied 42,975 human sessions and 124,271 robot sessions
using 12 attributes shown in Table 2. We then divided
each set into a training set and a test set, using equal num-
bers of sessions drawn at random. We built eight clas-
sifiers at multiples of 20 requests, using the training set.
For example, the classifier at the request number 20 means
that the classifier is built calculating the attributes of the
first 20 requests, and the 40-request classifier uses the first
40 requests, etc. We used AdaBoost [5] with 200 rounds.

Figure 4 shows the accuracy of classification with re-
spect to the number of requests. The result shows the clas-

Attribute Explanation

HEAD % % of HEAD commands
HTML% % of HTML requests
IMAGE % % of Image(content type=image/*)
CGI % % of CGI requests
REFERRER % % of requests with referrer
UNSEEN REFERRER % % of requests with unvisited referrer
EMBEDDED OBJ % % of embedded object requests
LINK FOLLOWING % % of link requests
RESPCODE 2XX % % of response code 2XX
RESPCODE 3XX % % of response code 3XX
RESPCODE 4XX % % of response code 4XX
FAVICON % % of favicon.ico requests

Table 2: 12 Attributes used in AdaBoost

sification accuracy ranges from 91% to 95% with the test
set, and it improves as the classifier sees more requests.
From our experiment, RESPCODE 3XX%, REFERRER
% and UNSEEN REFERRER % turned out to be the most
contributing attributes. Basically, robots do not frequently
make requests that result in redirection; many bot requests
do not have a valid referrer header field; and finally, refer-
rer spam bots frequently trip the unseen referrer trigger.

Although this approach is promising, it has a few draw-
backs. First, it requires significant amount of computa-
tion and memory, which may make the server susceptible
to DoS attacks. Second, in order to make accurate deci-
sions, it needs a relatively large number of requests, mak-
ing it difficult to apply in a real-time scenario (in our ex-
periment, it takes 160 requests to achieve 95% accuracy).
Third, the human browsing pattern may change with the
introduction of a new browser with novel features. Fi-
nally, attribute selection must be done carefully. In the-
ory, the learning algorithm can automatically determine
the most effective attributes, but in practice, bad choices
can decrease the effectiveness of the classifier.

5 Related Work
Despite the potential significance of the problem, there
has been relative little research in this area, and much of it
is not suitable for detecting the robots in disguise. For ex-
ample, Web robots are supposed to adhere to the robot
exclusion protocol [4], which specifies easily-identified
User-Agent fields, with contact information. Before
crawling a site, robots should also retrieve a file called
“robots.txt”, which contains the access permission of the
site defined by the site administrator. Unfortunately, this
protocol is entirely advisory, and malicious robots have
no incentive to follow it.

Tan et al. investigated the navigational pattern of Web
robots and applied a machine learning technique to ex-
clude robot traces from the Web access log of a Web
site [6]. They note that the navigational pattern of the
Web crawlers (e.g., type of pages requested, length of a
session, etc.) is different from that of human users, and

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 259

these patterns can be used to construct the features to be
used by a machine learning algorithm. However, their so-
lution is not adequate for real-time traffic analysis since it
requires a relatively large number of requests for accurate
detection. Robertson et al. tried to reduce administrators’
effort in handling the false positives from learning-based
anomaly detection by proposing the generalization (deriv-
ing anomaly signatures to group similar anomalies) and
characterization (to give concrete explanation on the type
of the attacks) techniques [3]. Using generalization, one
can group similar anomalies together, and can quickly dis-
miss the whole group in the future if the group belongs to
false positives. In contrast to these approaches, our tech-
niques are much simpler to implement yet effective in pro-
ducing accurate results for incoming requests at real time.
Moreover, our proposed solution is robust since it does
not have any dependency on specific traffic models or be-
havior characterizations, which may need to change with
the introduction of more sophisticated robots.

CAPTCHA (Completely Automated Public Turing test
to tell Computers and Humans Apart) is a test consisting
of distorted images or sounds, sometimes with instructive
description, that are designed to be difficult for robots to
decipher [8]. These tests are frequently used by com-
mercial sites which allow only human entrance or limit
the number of accesses (e.g. concert ticket purchasing).
Kandula et al., used CAPTCHA tests to defend DDoS
attacks by compromised robots that mimic the behavior
of flash crowds [2]. They optimize the test serving strat-
egy to produce better goodput during the attack. Although
CAPTCHA tests are generally regarded as a highly effec-
tive mechanism to block robots, it is impractical in our
scenario, since human users do not want to solve quiz ev-
ery time they access a Web page. In comparison, our tech-
niques do not need explicit human interaction, and can be
used on every page, while producing highly accurate re-
sults. Also we are more concerned in providing a better
service under a normal operation rather than special situ-
ations such as during denial of service attacks.

6 Conclusion
While Web robots are an important and indispensable part
of the modern Web, the subset of malicious robots poses a
significant and growing concern for Web sites, proxy net-
works, and even large organizations. We believe the first
step to deal with this is to accurately classify the traffic
source, and we present two novel techniques for discrim-
inating humans from robots.

Our experience with CoDeeN shows that our solution
is highly effective in identifying humans and robots. 95%
of humans are detected within 57 requests with less than a
2.4% false positive rate. The integration of the techniques
in CoDeeN’s operation also greatly reduced the number
of abuse complaints caused by robots. Furthermore, we

believe that our solution is quite general – not only does it
apply to the safe deployment of open proxies, but it can be
used to identify streams of robot traffic in a wide variety
of settings. We believe that this approach can be applied
both to individual Web sites, and to large organizations
trying to identify compromised machines operating inside
their networks.

Acknowledgments
We thank Felix Holderied and Sebastian Wilhelmi [1]
for providing the CAPTCHA image library, and Peter
Kwan for useful discussion and feedback. This work was
supported in part by NSF Grants ANI-0335214, CNS-
0439842, and CNS-0520053.

References
[1] captchas.net.

http://www.captchas.net/.

[2] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-sale: Sur-
viving organized ddos attacks that mimic flash crowds. In Proceed-
ings of the 2nd Symposium on Networked Systems Design and Im-
plementation(NSDI ’05), 2005.

[3] W. Robertson, G. Vigna, C. Krugel, and R. A. Kemmerer. Us-
ing generalization and characterization techniques in the anomaly-
based detection of web attacks. In Proceedings of The 13th Annual
Network and Distributed System Security Symposium(NDSS ’06),
2006.

[4] Robot Exclusion Protocol.
http://www.robotstxt.org/wc/exclusion.html.

[5] R. Schapire. The boosting approach to machine learning: An
overview. Nonlinear Estimation and Classification, 2003.

[6] P.-N. Tan and V. Kumar. Discovery of web robot sessions based on
their navigational patterns. Data Mining and Knowledge Discovery,
6:9–35, 2002.

[7] Trusted Computing Group.
http://www.trustedcomputinggroup.org/.

[8] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA:
Using hard AI problems for security. In Proceedings of Eurocrypt,
pages 294–311, 2003.

[9] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability and
security in the CoDeeN content distribution network. In Proceed-
ings of the USENIX Annual Technical Conference, 2004.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association260

