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The designers of clustered file systems, storage resource
management software and storage virtualization devices
are trying to provide the necessary planning functionality Actions
in their products to facilitate the invocation of the appro-
priate corrective actions in order to satisfy user specified Throting
service level objectives (SLOs). However, most exist- @ Migration
ing approaches only perform planning for a single type wotod| New Hardware
of action such as workload throttling, or data migration, Demands
or addition of new resources. As will be shown in this 5 days optimization window
paper, single .'flCtIOIl based plans are not always cost ef- Ao  month piizaion vinon
fective. In this paper we present a framework SMART
that considers multiple types of corrective actions in an 3 months optinization window
integrated manner and generates a combined corrective

action schedule. Furthermore, often times, the best cost-
effective schedule for a one-week lookahead could be
different from the best cost-effective schedule for a one-
year lookahead. An advantage of the SMART framework
is that it considers this lookahead time window in coming
up with its corrective action schedules. Finally, another
key advantage of this framework is that it has a built-in
mechanism to handle unexpected surges in workloads.
We have implemented our framework and algorithm as
part of a clustered file system and performed various ex-
periments to show the benefits of our approach.

1 Introduction

With an increase in the number of applications, the
amount of managed storage, and the number of policies
and best practices, system administrators and designers
are finding it extremely difficult to generate cost effec-
tive plans that can satisfy the storage needs of the stor-
age applications. Typically, system administrators over
provision their storage resources due to lack of proper
storage management tools. Thus, the vendors of file sys-
tems, storage resource management software and stor-
age virtualization boxes are trying to have the ability to

(b)

Figure 1: Planning Issues

automatically monitor resource utilization and workload
SLOs, analyze the source of the problem, plan a correc-
tive action, and invoke corrective actions to make the nec-
essary changes.

Research prototypes and products that perform the
above tasks are beginning to appear. However, these
tools suffer from the following two key drawbacks with
respect to the planning aspect of the solution:

Single Action Based: Existing effort has focused
on using a single type of corrective action such as
workload throttling, data migration, or adding more
resources to correct SLO violations. These tools lack
the ability to combine the different types of corrective
actions to provide better cost trade-off points. When the
SLO for a workload gets violated there will be situations
where a combination of actions would provide the most
optimum cost savings. For example, in Figure 1 (a),
upon the violation of the SLO, it is desirable to throttle
the workload until the data associated with the workload
can be migrated to a less contended array rank, and if
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necessary can be eventually migrated to a new rank that
is part of a newly provisioned array. Thus, there is a need
for a planning tool that can advise the administrators
to take the right action or a combination of actions
at the right time. Currently, the storage management
eco-systems from various vendors provide good domain
specific planning tools such as network planning, storage
controller planning, migration planning etc. However,
most of these tools are not integrated with each other.
For example, capacity planning (typically considered a
long term action) is not well integrated with throttling
planning (an instantaneous action). Lack of proper
integration between the planning tools transfers the
responsibility of integration to a system administrator.
As discussed above, this becomes difficult as the system
size scales up. Typically this results in solutions that
are either grossly over-provisioned with excess capacity
or under-provisioned to meet service level agreements
(SLOs).

Single time-window based optimization: Another
drawback of existing tools is that they take a “one-size
fits all” approach to the problem. For example, the so-
lution (workload throttling) that is the most cost effec-
tive for one week might be different from the solution
(adding new hardware) that is the most optimum for one
year. Time is an important aspect and often overlooked
part of the planning process. That is, cost-wise different
solutions could be optimal during different observation
windows. Currently, most storage planning tools do not
allow administrators to evaluate plans for different obser-
vation time windows. This results in the administrators
not taking the right action at the right time. For example,
as shown in Figure 1 (b), different solutions are optimal
for different time windows: (1) If the optimization time
window is five days, throttling is the most optimal solu-
tion. (2) If the optimization time window is one month,
data migration is the most cost effective solution. (3) If
the optimization time window is three months, addition
of new hardware is the most cost effective solution.

In this paper, we propose an action schedule framework
called SMART. The key contributions of SMART are:
Integrated multi-action planning: We provide an ac-
tion scheduling algorithm that allows combining seem-
ingly disparate storage management actions such as
workload throttling, data migration, and resource provi-
sioning into an integrated framework.
Multi-granularity temporal planning: Our algorithm
allows for the specification of optimization time win-
dows. For example, one could indicate that they want
the solution that is the most cost effective for either one
day or one year.

Action selection for unexpected workload variations:

Our core algorithm (contribution number 1) can deter-
mine whether the surge in the I/O requests is an unknown
workload spike or a known trend and select corrective ac-
tions accordingly.

Deployment of the framework in a file-system: In or-
der to validate the benefits described above, we have im-
plemented our framework and algorithm as part of the
GPFS: a scalable shared-disk file system [21]. GPFS
performs its own logical volume management. We have
evaluated our implementation and the results are pre-
sented in the experiment section. It is to be noted that
the framework and algorithm are general enough to be
deployed as part of storage resource management and
storage virtualization software.

2 Framework for SMART
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Figure 2: Architecture of Action Scheduler

This section describes the framework of SMART
(shown in Figure 2). SMART can be deployed in file
systems, storage resource management software and
storage virtualization boxes (details of the file system
deployment are given in Section 4). The key components
of SMART are:

Input modules: They include sensors monitoring the
system state S, specifications for administrator-defined
business-level constraints (budget constraints and opti-
mization window), SLOs, utility functions, time-series
forecasting of workload request-rate, and component
models for the storage devices. Here, the system state
represents the run-time details of the system and is de-
fined as a triplet S = (C, W, M), where C is the set of
components in the system, WV is the workloads and M is
the current mapping of workloads to the components.
Utility evaluator: It calculates the overall utility value
in a given system state. It uses component models to
interpolate the IO performance values which in turn map
to the utility delivered to the workloads.

Single action tools: They decide the optimal invocation
parameters for a corrective action in a given system state.
SMART can leverage existing tools for individual cor-
rective actions namely throttling [25, 9, 17], migration
[10, 16], and provisioning [5, 3].
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Action Advisor: This is the core of SMART that aims to
improve storage system utility for a given optimization
window and business-level constraints. It interacts with
the single action tools and generates a time-based action
schedule with details of what action to invoke, when to
invoke and how to invoke. This is accomplished by feed-
ing the action tools with different system states and col-
lecting individual action options. The Action Advisor
then analyzes the selected action invocation parameters
using the Utility Evaluator (details of the algorithm are
presented in Section 3). The Action Advisor can operate
both reactively (when SLO has been violated) as well as
proactively (before SLO violation happens).

This section covers the details of the framework. We
will present the details of the algorithm for the Action
Advisor in the next section.

2.1 Input modules

For the input modules described below, there are several
different techniques that are available — the focus of this
paper is to demonstrate how these building blocks work
together to solve the problem, rather than their internal
details.

Time-series Forecasting

The forecasting of future workload demands is based on
extracting patterns and trends from historical data. There
are several well-known approaches for time series analy-
sis of historic data such as ARIMA [24] and Neural Net-
work [8]. The general form of time-series functions is as
follows:

Yern = 9(Xe,0) + €14 (1)
where: y; is the variable(s) vector to be forecast. ¢ is the
time when the forecast is made. X, are predictor vari-
ables, which usually includes the observed and lagged
values of y, till time ¢. 6 is the vector of parameter of the
function g and €, , is the prediction error.

Utility functions

The concept of utility function has been introduced to
evaluate the degree of user’s satisfaction. There are sev-
eral different techniques to specify utility functions. For
SMART, the utility function associates workloads perfor-
mance with a utility value, which reflects the user’s de-
gree of satisfaction. The utility function for each work-
load can be (1) provided by the administrators; (2) de-
fined in terms of priority value and SLOs; or (3) defined
by associating a dollar value to the level of service de-
livered, e.g., $1000/GB if the latency is less than 10ms,
otherwise $100/GB.

Component models
A component model predicts values of a delivery metric

as a function of workload characteristics. SMART can in
principle accommodate models for any system compo-
nent. In particular, the model for a storage device takes
the form:

Response_time = ¢(req_size, req_rate, rw_ratio,
random/sequential, cache _hit rate)

Creating component models is an area of active ongo-
ing research. Models based on simulation or emulation
[12, 29] require a fairly detailed knowledge of the sys-
tem’s internals; analytical models [22, 19] require less,
but device-specific information must still be taken into
account to obtain accurate predictions. Black-box [4, 26]
models are built by recording and correlating inputs and
outputs to the system in diverse states, without regarding
its internal structure. Since SMART needs to explore a
large candidate space in a short time, simulation based
approaches are not feasible due to the long prediction
overhead. Analytical models and black box approaches
both work with SMART. For the SMART prototype, we
use a regression based approach to bootstrap the models
and refine models continuously at run time.

2.2 Utility Evaluator

As the name suggests, the Utility Evaluator calculates
the overall utility delivered by the storage system in a
given system state. The calculation involves getting the
access characteristics of each workload, and using the
component models to interpolate the average response-
time of each workload. The Utility Evaluator uses the
throughput and response-time for each workload to cal-
culate the utility value delivered by the storage system:

N
Uss = »_UF;(Thruy, Lat;) )
j=1

where IV is the total number of workloads, UF} is the
utility function of workload j, with throughput T'hru;
and latency Lat;.

In addition, for any given workload demands D, the
system maximum utility value UM ax s is defined as
the “ideal” maximum utility value if the requests for all
workloads are satisfied. Utility loss U L, is the differ-
ence between the maximum utility value and the current
system utility value. They can be calculated as follows:

N
UMazsys = Y UF;(D;,SLOu,)
j=1
ULsys - UMaxsys - Usys (3)

where the SLO,,;; is the latency requirement of work-
load j. In addition, cumulative utility value for a given
time window refers to the sum of the utility value across
the time window.
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2.3 Single Action Tools

These tools automate invocation of a single action. A few
examples are Chameleon [25], Facade [17] for throttling;
QoSMig [10], Aqueduct [16] for migration; Ergastulum
[6], Hippodrome [5] for provisioning. Each of these tools
typically includes the logic for deciding the action invo-
cation parameter values, and an executor to enforce these
parameters.

The single action tools take the system state, perfor-
mance models and utility functions as input from the Ac-
tion Advisor and outputs the invocation parameters. For
example, in the case of migration, it decides the data to
be migrated, the target location, and the migration speed.
Every action has a cost in terms of the resource or budget
overhead and a benefit in terms of the improvement in the
performance of the workloads. The action invocation pa-
rameters are used to determine the resulting performance
of each workload and the corresponding utility value.

2.4 Action Advisor

The Action Advisor generates the corrective action
schedule — the steps involved are as follows (details of
the algorithm are covered in the next section):

o Generate and analyze the current state (Sp) as well
as lookahead states (S1, S, ...) according to the
forecasted future.

e Feed the system states along with the workload util-
ity functions and performance models to the single
action tools and collect their invocation options

o Analyze the cost-benefit of the action invocation op-
tions — this is accomplished using the Utility Evalu-
ator module.

e Prune the solution space and generate a schedule of
what actions to invoke, when to invoke, and how to
invoke.

3 Algorithm for Action Advisor in SMART

Action Advisor is the core of SMART: it determines an
action schedule consisting of one or more actions (what)
with action invocation time (when) and invocation pa-
rameters (how). The goal of Action Advisor is to pick
a combination of actions that will improve the overall
system utility or, equivalently, reduce the system utility
loss. In the rest of this section, we will first intuitively
motivate the algorithm and give the details after that.
The Action Advisor operates in two different modes
depending on whether the corrective actions are being
invoked proactively in response to forecasted workload
growth, or reactively in response to unexpected varia-
tions in the workloads. The former is referred to as the
normal mode, while the later is the unexpected mode.

In the normal mode, SMART uses an approach similar
to the divide-and-conquer concept. It breaks the opti-
mization window into smaller unequal sub-windows and
uses a recursive greedy with look-back and look-forward
approach to select actions within each sub-window.The
motivation of divide-and-conquer is to reduce the prob-
lem complexity and to treat the near-term fine-grained
prediction periods differently from the long-term coarse-
grained prediction periods. The action selection for each
sub-window is performed in a sequential fashion, i.e.,
the resulting system state of one sub-window acts as
the starting state for the next consecutive window. The
divide-and-conquer approach reduces the problem com-
plexity at the cost of optimality: the sum of local optimal
actions for each sub-window may not lead to the global
optimal.

The unexpected mode selects actions defensively. It
tries to avoid invoking expensive actions since the work-
load variation could go away soon after the action in in-
voked, making the overhead wasted. However this needs
to be balanced with the potential risk of the high work-
load persisting and thus incurring continuous utility loss
which may add up over time. We formulate this analy-
sis as a decision-making problem with unknown future
and apply the “ski-rental” online algorithm [15] to select
actions.

Action Advisor uses a primitive mechanism to tran-
sition between normal and unexpected modes. It con-
tinuously compares the observed values against the pre-
dicted values (using any chosen predictor model, for ex-
ample, ARIMA). If the difference is large then it moves
into the defensive unexpected workload mode. While in
that mode, it continuously updates its predictor function
based on the newly observed values. When the predicted
values and observed values are close enough for a suffi-
ciently long period, it transitions to the normal mode.

In the rest of this section, we first present action se-
lections for normal mode and unexpected mode respec-
tively. After that, we discuss the risk modulation which
deals with the future uncertainty and action invocation
overhead.

3.1 Normal Mode: Greedy Pruning with
Look-back and Look-forward

The Action Advisor takes as input the current system
state, the workload prediction, the utility functions, the
available budget B for new hardware and the length of
the optimization window. The action selection begins by
breaking the specified optimization window into smaller
unequal sub-windows. For instance, a one year optimiza-
tion window is split into sub-windows of 1 day, 1 month,
and 1 year; The number and length of the sub-windows
can be configured by the administrator. Within each sub-
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window [T}, Tj+1], the goal is to find actions that max-
imize the cumulative system utility in the sub-window.
This process is formulated as a tree-construction algo-
rithm (Figure 3) as described below.

X :Pruned Action Candidates

Left Branch: LOOK BACK

Right Branch: LOOK FORWARD

3] I

Figure 3: Tree Based Action Schedule Generation

In the tree-based representation, the root corresponds
to the entire sub-window, [T}, Tk1]. The branches orig-
inating from the root represent the candidate actions re-
turned by single action tools. For m possible action op-
tions there will be m branches. The resulting node ¢ for
each action has the following information:

e The selected action and its invocation parameters.

e The action invocation time and finish time
[invoke;, finish;].

e The decision window start and end time
[start;,end;]. For nodes originating from the
root, the value is [Tk, Tk+1]-

e The initial S; and resulting state ;1.

e The predicted cumulative utility loss U L;, defined
as the sum of system utility loss from start; to end;
if action ¢ is invoked.

Greedy Pruning: Using the basic greedy approach,
the Action Advisor selects a first-level node in the tree
that has the lowest utility loss U L; and prunes the other
m — 1 branches (circles crossed out in Figure 3). In
addition, a threshold is introduced to ensure that the
action gives sufficient improvement. The selected action
will only be scheduled if the improvement exceeds the
threshold. The threshold is configurable such that a
higher value leads to more aggressive pruning. This
greedy pruning procedure is referred to as function
GreedyPrune in the pseudocode described later.

Lookback and Lookforward Optimization: In
real-world systems, it may be required to invoke more
than one action concurrently. For example, if data
migration is selected, it might be required to additionally
throttle the lower priority workloads until all data are
migrated. The Action Advisor uses the Look-back and

Look-forward Optimization to improve the action plan.
The look-back and look-forward are with reference to the
selected action’s finish time finish;. Look-back seeks
action options in the time window [start;, finish;]
(before the selected action finishes). Look-forward
examines possible actions in the window [finish;, end;]
(after the selected action finishes). Time finish; is
chosen as the splitting point because (1) the system state
is permanently changed after the action finishes, making
the cost-benefit of action options changed and (2) any
action scheduled before the selected action finishes
need to satisfy the no-conflict constraint (described
later). Essentially, the look-back and look-forward
optimization splits the time window recursively and
seeks actions to improve the system utility further. In the
tree-construction, the action candidates for look-back
and look-forward are represented as left and right
children (marked as solid circles in Figure 3). The
pruning-lookback-lookforward procedure is recursively
performed to construct an action schedule until the
GreedyPrune finds no action option. The pseudocode
for look-forward and look-back optimization is given in
function Lookback and Lookforward respectively.

Function Lookback (i) {

Foreach (Corrective_actions) {

If (! (Conflict(Existing actions)) {
Find action option in (start_i,
Add to Left_Children (i) ;

}

}

GreedyPrune (Left_Children(i)) ;

If (Left_Children (i) !=NULL) {
Lookback (Left_Children(i)) ;
Lookforward (Left_Children(i)) ;

}

}

Function Lookforward (i) {
Foreach (Corrective_actions) {
Find action option in (finish i, end_i);
Add to Right_Children (i) ;
}
GreedyPrune (Right_Children (1)
If (Right_Children (i) !=NULL) {
Lookback (Right_Children (i) ) ;

Lookforward (Right_Children(i)) ;

When considering actions to be scheduled before an-
other action finishes (in lookback phase), the actions
should not conflict with existing selected actions. Two
actions conflict if one of the following is true:

o If they depend on the same resource.

e If action j overlaps with an action k already in the
schedule, and action j violates the precondition for
action k. For example, migration action 1 of mov-
ing data A from LU N; to LU N5 will invalidate ac-

finish 1) ;
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tion 2 of moving data A from LU N to LU N3 be-
cause the pre-condition of action 2 that data A was
on LU Ny is no longer true.

In summary, the Action Advisor generates the sched-
ule of corrective actions using a recursive approach (the
pseudocode is given below). The final action sched-
ule for each sub-window is obtained by sorting the un-
pruned nodes (solid circles in Figure 3) in the tree ac-
cording to their action invocation time (invoke;).

Function TreeSchedule() {
Foreach (Corrective_actions) {
Find action option in [T_k, T {k+1}];
Add to Children (root) ;
}
GreedyPrune (Children (root)) ;
If (Children(root) !=NULL) {
Lookback (Children (root)) ;
Lookforward (Children (root)) ;

Finally, each sub-window is processed sequentially,
i.e., the resulting system state of sub-window [T}, Tj+1]
is the starting state of sub-window [Tj1,Tk+2], and
the action schedules are composed into the final action
schedule according to the action invocation time.

3.2 Unexpected Mode: Defensive Action

Selection

Optimizing for the unexpected workload mode is chal-
lenging since it is difficult to predict the duration for
which workload variation will persist. The Action Ad-
visor uses a strategy similar to the one used in on-line
decision making scenarios such as the “ski rental: to rent
or to buy” [15]. There the choice of whether to buy (at
cost say $150) or rent a ski (at cost say $10 per trip) has
to be made without the knowledge of the future (how
many times one might go skiing). If one skis less than 15
times, then renting is better, otherwise buying is better.
In the absence of the knowledge of the future, the com-
monly used strategy is “to keep renting until the amount
paid in renting equals the cost of buying, and then buy.”
This strategy is always within a factor of two of the opti-
mal, regardless of how many times one goes skiing, and
is provably the best possible in the absence of knowledge
about the future.

The Action Advisor follows a similar online strategy.
It selects the least costly action until the cumulative util-
ity loss for staying with that action exceeds the cost of
invoking the next expensive action. When SMART is in
the unexpected mode, the Action Advisor first finds all
action candidates under the assumption that the system
state and workload demands will remain the same. For

each candidate A;, the cost is initialized as the extra util-
ity loss and hardware cost (if any) paid for the action
invocation (shown in Equation 4):

leadtime(A;)

2

=0
—Usys(A;_ongoing,t)) + HW _Cost(A;)

Cost(A;) =

(Usys(no.action, t)

“)

Where Us,ys(noaction,t) is the system utility value
at time ¢ if no corrective action is taken and
Usys(A;-ongoing, t) is the system utility at time ¢ if A;
is ongoing. For example, for throttling, Cost(A;) will
be zero because the leadtime is zero. For migration, the
Cost(A;) is the total utility loss over leadtime(A;) due
to allocating resources to move data around.

Action Advisor selects the action with minimum cost
and invokes it immediately. Over time, the cost of each
action candidate (including both the selected one and un-
chosen ones) is updated continuously to reflect the utility
loss experienced if A; had been invoked. Equation (5)
gives the value of Coost(A;) after ¢ intervals:

t
Cost(A;) = Cost(A;) + Y UL(Ai, j) ®)
7=0

This cost updating procedure continues until following
situations happen:

e Another action k£ has a lower cost than the previ-
ously invoked action. Action Advisor invokes ac-
tion k immediately and continues the cost updating
procedure. For example, if the system experiences
utility loss with throttling, but has no utility loss af-
ter migration, the cost for throttling action will con-
tinuously grow and the cost of migration will stay
same over time. At some point, the cost of throttling
will exceed the cost of migration and the migration
option will be invoked by then.

e System goes back to a good state for a period of
time. The Action Advisor will stop the action se-
lection procedure (exception has gone).

e The system collects enough new observations and
transitions back to normal mode.

3.3 Risk Modulation

In our previous discussion, action selection has been
made based on the cumulative utility loss UL;. The
accuracy of UL; depends on the accuracy of future
workload forecasting, performance prediction and cost-
benefit effect estimation of actions. Inaccurate estima-
tion of UL; may result in decisions leading to reduced
overall utility. To account for the impact of inaccurate in-
put information, we perform risk modulation on the U L;
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for each action option. Here, risk captures both the prob-
ability that the utility gain of an action will be lost (in
the future system-states) as a result of volatility in the
workload time-series functions (e.g., the demand for W;
was expected to be 10K IOPS after 1 month, but it turns
out to be 5K, making the utility improvement of buying
new hardware wasted) and the impact of making a wrong
action decision (e.g., the impact of a wrong decision to
migrate data when the system is 90% utilized is higher
than that of when the system is 20% loaded).

There are several techniques for measuring risk. Ac-
tions for assigning storage resources among workloads
are analogous to portfolio management in which funds
are allocated to various company stocks. In economics
and finance, the Value at Risk (VaR) [11] is a technique
used to estimate the probability of portfolio losses based
on the statistical analysis of historical price trends and
volatilities in trend prediction. In the context of SMART,
VaR represents the probability with a 95% confidence,
that the workload system will not grow in the future,
making the action invocation unnecessary.

VaR(95% confidence) = —1.650 x VT (6)

where, o is the standard deviation of the time-series
request-rate predictions and 7" is the number of days in
the future for which the risk estimate holds. For differ-
ent sub-windows, the prediction standard deviation may
be different: a near-term prediction is likely to be more
precise than a long-term one.

The risk value RF'(A;) of action i is calculated by:

RF(A;))=—(1+a)*xVaR @)

where « reflects the risk factors of an individual action
(based on its operational semantics) and is defined as fol-
lows:

atpr = 0
bytes_moved

Omig x Sys_Utilization

total _bytes_on_source
hardware_cost

1 — Sys Utilizati
total budget * (1 — Sys_Utilization)

Qhw =

Where Sys_Utilization is the system utilization
when the action is invoked.

For each action option returned by single action tools,
the Action Advisor calculates the risk factor RF'(A;) and
scales the cumulative utility loss U L; according to Equa-
tion 8 and the action selection is performed based on the
scaled UL} (For example, in GreedyPrune).

UL = (1+ RF(4;)) x UL; (8)
4 Experiments

SMART generates an action schedule to improve system
utility. To evaluate the quality of its decision, we imple-

mented SMART in both a real file system GPFS [21] and
a simulator. System implementation allows us to ver-
ify if SMART can be applied practically while simula-
tor provides us a more controlled and scalable environ-
ment, which allows us to perform repeatable experiments
to gain insights on the overhead and sensitivity to input
information errors.

The experiments are divided into three parts: First,
sanity check experiments are performed to examine the
impact of various configuration parameters on SMART’S
decision. Secondly, feasibility experiments evaluate the
behavior of two representative cases in the sanity check
using the GPFS prototype. Third, sensitivity test first ex-
amines the quality of the decisions with accurate com-
ponent models and future prediction over a variety of
scenarios using simulator. It then varies the error rate
of the component models and time series prediction re-
spectively and evaluates their impact on SMART’s qual-
ity. In addition, SMART is designed to assist the adminis-
trators to make decisions. However, in order to examine
the quality of SMART’s decision (for example, what will
happen if the administrator follows SMART’s advice), se-
lected actions are automatically executed in the experi-
ments.

In the rest of this section, we first describe our GPFS
prototype implementation and then present the experi-
mental results of three tests.

4.1 GPFS Prototype Implementation

The SMART prototype is implemented on GPFS: a com-
mercial high-performance distributed file-system [21].
GPFS manages the underlying storage systems as pools
that differ in their characteristics of capacity, perfor-
mance and availability. The storage systems can be ac-
cessed by any clients nodes running on separate physical
machines transparently.

The prototype implementation involved sensors for
monitoring the workloads states, actuators for execut-
ing corrective actions and an Action Advisor for decision
making.

Sensors: They collect information about the run-time
state of workloads. The monitor daemon in each GPFS
client node tracks the access characteristics of the work-
load and writes it to a file, which can be analyzed period-
ically in a centralized fashion. Workloads are the unit of
tracking and control — in the prototype implementation,
a workload is defined manually as a collection of PIDs
assigned by the OS. The monitoring daemon does book-
keeping at the GPFS read/write function call invoked af-
ter the VFS translation.

Action actuators: Although the long term goal of the
prototype is to support all corrective actions, as a proof of
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concept, we first implemented action actuators for three
most commonly used corrective actions: throttling, mi-
gration and adding new pools.

e The IO throttling is enforced at the GPFS client
nodes using a token-bucket algorithm. The
decision-making for throttling each workload is
made in a centralized fashion, with the token-issue
rate and bucket size written to a control file
that is then periodically (20ms) checked by the node
throttling daemon.

o Similarly, the control file for the migration daemon
consists of entries of the form <file name, source
pool, the destination pool> and the migration speed
is controlled by throttling the migration process.
The migration daemon thread runs in the context
of one of the client nodes and periodically checks
for updates in the control file and invokes the GPFS
built in function mmchattr to migrate files.

e Because the addition of hardware normally requires
human intervention, we mimic the effect of adding
new hardware by pre-reserving storage devices and
forbidding the access to them until SMART decides
to add them into the system. In addition, the stor-
age devices are configured with different leadtime
to mimic the overhead of placing orders and instal-
lation.

In addition, the daemon threads for throttling and migra-
tion run at the user-level and invoke kernel-level ioctls
for the respective actions.

Action Advisor Integration: The SMART action advi-
sor is implemented using techniques described in Sec-
tion 3. The time-series forecasting is done in an off-line
fashion, where the monitored access characteristics for
each workload are periodically fed to the ARIMA mod-
ule [24] for refining the future forecast. Similarly, the
performance prediction is done by bootstrapping the sys-
tem for the initial models and refining the models as more
data are collected. Once the Action Advisor is invoked,
it communicates with individual action decision-making
boxes and generates an action schedule. The selected ac-
tions are on hold by the action advisor until the action
invocation time (determined by SMART) is due. At that
time, the control files for corresponding action actuators
are updated according to SMART’s decision.

Without access to commercial decision tools, we im-
plemented our own throttling, migration and provision-
ing tools. Throttling uses simulated annealing algorithm
[20] to allocate tokens for each workload; the migration
plan is generated by combining optimization, planning
and risk modulation. It decides what and where to mi-
grate, when to start migration and migration speed. The

provisioning decision is done by estimating the overall
system utility for each provisioning option, which con-
siders the utility loss before the hardware arrives, in-
troduced by the load balancing operation (after the new
hardware comes into place) and the financial cost of buy-
ing and maintaining the hardware.

4.2 Sanity Check

As a sanity check, the action advisor in the GPFS pro-
totype is given the initial system settings as input, while
the configuration parameters are varied to examine their
impact on SMART’s action schedule. The initial system
setting for the tests is as follows:

Workload| Request| Rd/ Seq/ | Foot- | ON/OFF| ON/OFF
size wrt rnd print phase [Tops]
[KB] ratio ratio [GB] [Hour]

Wrrend | 16 0.7 0.8 60 12/12 150/100

WBackud 16 1 1 600 8/16 250/0

Wphase | 8 0.8 0.9 6 14/10 150/100

Table 1: Access characteristics of workloads
Workloads: There are four workload streams: one is a
2 month trace replay of HP’s Cello99 traces [18]. The
other three workloads are synthetic workload traces with
the following characteristics: 1) Wryeng is a workload
with a growth trend — the ON phase load increases by
100 IOPS each day while the OFF phase load increases
by 50 IOPS; 2) Wpj,ase is a workload with periodic ON-
OFF phases; 3) Wgackup simulates a backup load with
its ON-phase as an inverse of the phased workload. The
access characteristics of these workloads are summarized
in Table 1. Figure 5 (a) shows the IO rate of these work-
loads as a function of time. The default utility func-
tion for violating and meeting the SLO latency goals are
shown in Figure 4 unless specified otherwise.
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Figure 4: (a) Utility functions for violating SLO latency goals
(b) Utility functions for meeting SLO latency goals

Components: There are three logical volumes: POOL1
and POOL2 are both RAID 5 arrays with 16 drives each,
while POOL3 is a RAID 0 with 8 drives. POOLS3 is
originally off-line, and is accessible only when SMART
selects hardware provisioning as a corrective action.
The initial workload-to-component mapping is: [HP:
POOL1], [Trend: POOL1], [Phased: POOL2] and
[Backup: POOL2].

Miscellaneous settings: The optimization window is set
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to one month; the default budget constraint is $20,000
and the one day standard deviation of the load for risk
analysis is configured as 10% unless otherwise specified.
The provisioning tool is configured with 5 options, each
with different buying cost, leadtime and estimated per-
formance models. For these initial system settings, the
system utility loss at different time intervals without any
corrective action is shown in Figure 5 (b).

3500

— T T
Q L HP (POOL1) ------- i
& 300 Trend (POOLY)
< 2500 | Backup (POOL2) —— 7
§ 2000 | Phase (POOL2) E
@ 1500
§ 1000
T 500 | - i L N
& o e theidapto b ek Cle bbbt e

0 500 1000 1500 2000 2500 3000

Time (minutes)
T T T T
60000 [~ Utility Loss 1
% 50000 |- B
S 40000 - 5
g 30000 |- E:
S 20000
oo | LU N
0 1 Al
0 500 1000 1500 2000 2500 3000

Time (minutes)

Figure 5: (a) Workload Demands (b) utility loss if no correc-
tive action is invoked

An ideal yardstick to evaluate the quality of SMART’s
decisions is by comparing it with existing automated al-
gorithms or with decisions made by an administrator.
However, we are not aware of any existing work that con-
siders multiple actions; also, it is very difficult to quan-
tify decisions of a representative administrator. Because
of this, we take an alternative approach of comparing the
impact of SMART’s decisions with the maximum theo-
retical system utility (upper bound, Equation 3) and the
system utility without any action (lower bound).

In the rest of this section, using the system settings de-
scribed above, we vary the configuration parameters that
affect SMART’s scheduling decisions namely the utility
function values (test 1); the length of optimization win-
dow (test 2), budget constraints (test 3), risk factor (test
4). In test 5, we explore how SMART handles unexpected
case. For each of these tests, we present the corrective ac-
tion schedule generated by SMART, and the correspond-
ing predicted utility loss as a function of time (depicted
on the x-axis).

Test 1: Impact of Utility Function

SMART selects actions that maximize the overall sys-
tem utility value, which is driven by the utility func-
tions for individual workloads using the storage system.
In this test, we vary W, .nq’s utility function of meet-
ing the SLO latency goal from the default 20 x T'hru to
540 * log(Thru + 1). As shown in Figure 6(a), the de-
fault utility assignment for Wr,..,,q causes a fast grow-
ing overall utility loss — SMART selects to add new hard-
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Figure 6: Action Invocation for different utility functions as-
signed to Wiyena (@) Results for high utility value U Firend =
20 * T'hru (default configuration) (b) Results for low utility
value assignment U Fy,eng = 540 * log(Thru + 1)

ware. However, for the low value utility assignment, the
latency violation caused by the increasing load results in
a much slower growth in the utility loss. As a result, the
cost of adding new hardware cannot be justified for the
current optimization window and hence SMART decides
to settle for throttling and migration. Note that as the util-
ity loss slowly approaches to the point where the cost of
adding new hardware can be justified, SMART will sug-
gest invoking hardware provisioning as needed.

Test 2: Impact of Optimization Window
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Figure 7: Action Invocation for different optimization win-
dows (a) Results for 2 days optimization window (b) Results
for 1 week optimization window

SMART is designed to select corrective actions that
maximize the overall utility for a given optimization win-
dow. In this test, we vary the optimization window to 2
days, 1 week and 1 month (default value) — compared
to the schedule for 1 month in Figure 6 (a), Figure 7
shows that SMART correctively chooses different action
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schedules for the same starting system settings. In brief,
for a short optimization window (Figure 7 (a) and (b)),
SMART correctly selects action options with a lower cost,
while for a longer optimization window (Figure 6 (a)),
it suggests higher cost corrective options that are more
beneficial in the long run.

Test 3: Impact of Budget Constraints
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Figure 8: Action Invocation for different budget constraints
(a) no budget available (b) low budget ($5000)

Test 3 demonstrates how SMART responds to various
budget constraints. As shown in Figure 8, SMART set-
tles for throttling and migration if no budget is available
for buying new hardware. With $5000 budget, SMART
opts for adding a hardware. However, compared to the
hardware selected for the default $20,000 budget (shown
in Figure 6 (a)), the hardware selected is not sufficient to
solve the problem completely, and additionally requires
a certain degree of traffic regulation.

Test 4: Impact of Risk Modulation
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Figure 9: Action Invocation for different risk factor. (a) Avail-
able migration option involves 20GB data movement (b) Avail-
able migration involves 1000GB data movement

SMART uses risk modulation to balance between the
risk of invoking an inappropriate action and the corre-
sponding benefit on the utility value. For this experiment,
the size of the dataset selected for migration is varied,
changing the risk value (Equation 7) associated with the
action options. SMART will select the high-risk option
only if its benefit is proportionally higher. As shown in
Figure 9, SMART changes the ranking of the corrective
options and selects a different action invocation schedule
for the two risk cases.

Test 5: Handling of Unexpected Case
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Figure 10: Action Invocation for unexpected case (a) Work-
loads Demands (b) Result for a “short”spike (c) results for a
“long”’spike

This test explores SMART’s ability to handle the un-
expected workload demands. Figure 10 (a) shows the
sending rate of the workload demands. From minute 60
to minute 145, Wy .enq sends at 1500 IOPS instead of the
normal 250 IOPS. The difference between the predicted
value 250 IOPS and the observed value 1500 IOPS ex-
ceeds the threshold and SMART switches to unexpected
mode. For both cases, SMART invokes throttling directly.
But for case 1, the migration option involves a 1000 GB
data movement and is never invoked because the spike
duration is not long enough to reach to a point where the
migration invocation cost is less than the utility loss of
staying with throttling. For case 2, a lower cost migra-
tion option is available (§GB data) and after 5 minutes,
the utility loss due to settling for throttling already ex-
ceeds the invocation cost of migration. The migration
option is invoked immediately as a result.
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4.3 Feasibility Test Using GPFS Prototype

In these tests, SMART is run within the actual GPFS de-
ployment. The tests serve two purposes: (1) to verify
if the action schedule generated by SMART can actually
help reduce system utility loss; (2) to examine if the util-
ity loss predicted by SMART matches the observed utility
loss. We run two tests to demonstrate the normal mode
and unexpected mode operation.

Test 1: Normal Model
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Figure 11: (a) cumulative utility loss comparison of with-
out action and with SMART’s decision (b) observed utility loss
(c) difference in Utility Loss (after filtering): Observed value-
Predicted

The setting for the experiment are the same as those
used in the sanity check tests with two exceptions: the
footprint size, and the leadtime of hardware addition. To
reduce the experiment running time, the IO features are
changed to run 60 times faster (every minute in the fig-
ure corresponds to one hour in the trace), and the foot-
print size is shrunk by a factor of 60, and the leadtime
of adding hardware is set to 55 minutes (that maps to the
original of 55 hours).

SMART evaluates the information and decides that the
best option is to add a new pool. Because it takes 55 min-
utes to come into effect, SMART looks back to seek for
solutions that can reduce the utility loss for time window
[0, 55]. It chooses to migrate the H P workloads from
POOL1 to POOL?2 and throttle workloads until the new
pool arrives. After POOLS3 joins, the load balance oper-
ation decides to migrate the T'rend workload to POOL3
and H P back to POOL1. The final workload to compo-

nent mapping is: H P on POOL1, Backup and Phased
on POOL2 and T'rend on POOL3.

As shown in Figure 11 (a), compared to without any
action, SMART’s action schedule eliminates about 80%
of the original utility loss and also grows at a much
slower rate. Before time 20, the no action utility loss
is slightly lower than with SMART because the SMART
schedule is paying extra utility loss for invoking the mi-
gration operation.

It can be observed from Figure 11 (b) that there is a
negative utility loss. This is because the maximum utility
is calculated based on the planned workload demands,
while the observed utility value is calculated based on the
observed throughput. Due to the lack of precise control
in task scheduling, the workload generator can not pre-
cisely generate 1/O requests as specified. For example:
the workload generator for the HP traces is supposed to
send out requests at a rate of 57.46 IOPS at time 33 while
the observed throughput is actually 58.59 IOPS. As a re-
sult, the observed utility value is actually higher than the
maximum value and results in a negative utility loss. For
a similar reason, the observed utility loss fluctuates very
frequently around zero utility loss.

SMART schedules actions and predicts the utility loss
to be close to zero. However, the observed utility loss
(shown in Figure 11 (b)) has non-zero values. In order to
understand the cause of this, we filter out the amount of
observed utility loss due to imprecise workload genera-
tion (described above), and plot the remaining utility loss
in Figure 11 (c). As we can see, the predicted and ob-
served values match at most times except for two spikes
at time 2 and time 58. Going into the log of the run-
time performance, we found several high latency spikes
(+60ms compared to the normal 10ms) on the migrated
workload during migration. This is because the migra-
tion process will lock 256 KB blocks for consistency
purposes; hence if the workload tries to access these
blocks, it will be delayed until the lock is released. The
performance models fail to capture this scenario and we
observe a mismatch between the predicted and observed
utility values. However, these are only transient behav-
ior in the system and will not affect the overall quality of
SMART’s decision.

Test 2: Unexpected Case

Similar to the sanity check test (Figure 10 (a)), we
intentionally create a load surge from time 10 to time
50. SMART invokes throttling immediately and waits for
about 3 minutes (time 13) till the utility loss to invoke
migration is lower than the loss due to throttling. The
migration operation executed from time 13 to 17 and the
system experienced no utility loss once it was done. Sim-
ilar to the previous test, the temporarily lesser utility loss
without any action (shown in Figure 12) is due to the ex-
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Figure 12: Spike Case: Cumulative Utility loss with migration
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tra utility loss for data movement. We skip other figures
due to a lack of new observations for predicted and ob-
served utility values.

4.4 Sensitivity Test

We test the sensitivity of SMART on the errors of
performance prediction and future prediction in various
configurations. This test is based on a simulator because
it provides a more controlled and scalable environment,
allowing us to test various system settings in a shorter
time. We developed a simulator that takes the original
system state, future workload forecasting, performance
models and utility functions as input and simulates
the execution of SMART’s decisions. We vary the
number of workloads in the system from 10 to 100. For
each workload setting, 50 scenarios are automatically
generated as follows:

Workload features: The sending rate and footprint size
of each workload are generated using Gaussian mixture
distribution: with a high probability, the sending rate
(or footprint-size) is generated using a normal distribu-
tion with a lower mean value and a low probability, it is
generated using another normal distribution with a larger
mean value. The use of Gaussian mixture distribution is
to mimic the real world behavior: a small number of ap-
plications contributes a majority of the system load and
accesses the majority of data. Other workload character-
istics are randomly generated.

Initial data placement: the number of components is
proportional to the number of flows. For our tests, it is
randomly chosen to be 1/10 of the number of flows. In
addition, we intentionally create an un-balanced system
(60% of the workloads will go to one component and the
rest is distributed to other components randomly). This
design is to introduce SLO violations and therefore, util-
ity loss such that corrective actions are needed.
Workload trending: In addition, to mimic workload
changes, 30% of workloads increases and 30% de-
creases. In particular, the daily growing step size is gen-
erated using a random distribution with mean of 1/10 of
the original load and the decreasing step size is randomly
distributed with mean of 1/20 of the original load.
Utility functions: The utility function of meeting the

SLO requirement for each workload is assumed to be a
linear curve and the coefficients are randomly generated
according to a uniform distribution ranging from 5 to 50.
The utility function of violating the SLO requirement is
assumed to be zero for all workloads. The SLO goals
are also randomly generated with considerations of the
workload demands and performance.

For a three month optimization window, the 500 sce-
narios experienced utility loss in various degrees ranging
from 0.02% to 83% of the maximum system utility (the
CDF is shown in Figure 13).
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Figure 13: CDF of percentage of overall utility loss

For this test, we assume both the performance predic-
tion and the future prediction are accurate. The Cumu-
lative Distribution Functions of the percentage of utility
loss (defined as #m) for both with and with-
out corrective actions are shown in Figure 13. Compar-
ing the two curves, with actions selected by Action Ad-
visor, SMART is very close to the maximum utility. More
than 80% scenarios have a utility loss ratio less than 2%

and more than 93% have a ratio less than 4%.

Test 2: With Performance Model Errors
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Figure 14: Impact of Model Errors (a) Observed_Utility Loss
/ Predicted_Utility_loss (b) CDFs of Observed_Utility Loss /
Utility_Loss_Without_Action

Our previous analysis is based on the assumption that
perfectly accurate component models are available for
extrapolating latency for a given workload. However,
this is not always true in real-world systems. To un-
derstand how performance prediction errors affect the
quality of the decision, we perform the following exper-
iments: (1) we generate a set of synthetic models and
make decisions based on them. The latency calculated
using these models is used as the “predicted latency”
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and the corresponding utility loss is the “predicted utility
loss”. (2) For the exact settings and action parameters,
the “real latency” is simulated by adding errors on top of
the “predicted latency” to mimic the real system latency
variations. Because the residual normally grows with the
real value, we generate a random scaling factor rather
than the absolute error. For example, if the predicted la-
tency is 10ms and the random error is 0.2, the real latency
is simulated as 10¥(1+0.2) = 12ms. The “real utility” is
estimated based on this.

Figure 14 (a) shows the ratio of ;fj;::;if;ﬁgllﬁi,
which reflects the degree of mismatch between the pre-
dicted and observed utility loss due to performance pre-
diction errors. As we can see, there is significant dif-
ference between them — for a 20% model error, the av-
erage observed_utility_loss is 6 times of the predicted
value. Next, we examine how does this difference af-
fect the quality of the decision? Figure 14(b) plots the
CDF of the remaining percentage of utility loss, defined
as et atliglos ¢ grows as the model er-
ror increases. But even with a 100% model error, on
average, the action selected by Action Advisor removes
nearly 88% of the utility loss.

Test 3: With Time Series Prediction Errors
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Figure 15: Impact of Future Forecasting Errors (a) Ob-
served_Ultility Loss / Predicted_Utility_loss (b) CDFs of Ob-
served_Ultility Loss / Utility _Loss_Without_Action

The future forecasting error is introduced in a simi-
lar fashion: the workload demands forecasting is gener-
ated first. Based on that, the “real” workload demands
is generated by scaling with a random factor following
a normal distribution, with the future forecasting error
as the standard deviation. The predicted utility loss is
calculated based on the “forecasted” demands and the
observed utility loss is calculated based on the “real”
workload demands. Note that, for this set of tests, we
restrict the Action Advisor only operating in the normal
mode because otherwise, Action Advisor will automati-
cally switch to the unexpected mode.

Figure 15 (a) shows the ratio of the
observed_utility loss to the predicted_utility_loss.
It is much bigger than that of the model error: 560
vs 75 with 100% error. This is because the future
forecasting error has a larger scale. For example, an
error of under-estimating 10% of the future demands
may lead to 100 IOPS under-estimated, which may

offset the performance prediction even more than the
one caused directly by model errors. Figure 15 (b) shows
the CDF of remaining utility loss after invoking Action
Advisor’s action schedule. It shows that as the future
forecasting error grows, the probability that the Action
Advisor’s decision is helpful reduces very quickly. It can
even result in a utility loss higher than doing nothing.
This confirms our design choice: when the difference
between the future prediction and observed values are
high, we should apply a defensive strategy rather than
operating in the normal mode.

Comparing the results of model and future forecast-
ing errors, the quality of the decision is more sensitive
to future forecasting accuracy than to model accuracy. In
addition, we have used the ARIMA algorithm to perform
time-series analysis on HP’s Cello99 real world trace and
the results show that more than 60% of the predictions
falls within 15% of the real value and more than 80%
falls within 20%.

5 Related Work

Storage virtualization can be host based [7], network
based [23] or storage controller based [28]. Storage vir-
tualization can be at file level abstraction [13] or block
level abstraction [14]. These storage virtualization so-
lutions provide support for automatically extending vol-
ume size. However, these virtualization solutions do not
offer multi-action based SLO enforcement mechanism
and only recently single action based (workload throt-
tling) SLO enforcement mechanisms are being combined
with storage virtualization solutions [9]. SLO enforce-
ment can also be performed by storage resource manage-
ment software such as control centerer from EMC [1] and
total productivity centerer from IBM [2]. These manage-
ment software frameworks provide sensor and actuator
frameworks, and they also have started to provide prob-
lem analysis and solution planning functionality. How-
ever, the current versions of these products do not have
the ability to combine multiple SLO enforcement mech-
anisms.

Research prototypes that provide single action based
solutions to handle SLO violations exist for a range of
storage management actions. Chameleon [25], SLE-
DRunner [9], and Facade [17] prototypes provide work-
load throttling based SLO enforcement solutions. Qos-
Mig [10] and Aqueduct [16] provide support for data mi-
gration based SLO enforcement solutions. Ergastulum
[6], Appia [27] and Minerva [3] are some capacity plan-
ning tools that can be used to either design a new infra-
structure or extend an existing deployment in order to
satisfy SLOs.

Hippodrome [5] is a feedback based storage manage-
ment framework from HP that monitors system behavior
and comes up with a strategy to migrate the system from
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the current state to the desired state. Hippodrome focuses
on migrating data and re-configuring the system to trans-
form it from its current state to the new desired state.

6 Conclusion and Future Work

SMART generates a combination of corrective actions.
Its action selection algorithm considers a variety of in-
formation including forecasted system state, action cost-
benefit effect estimation and business constraints, and
generates an action schedule that can reduce the system
utility loss. It also can generate action plans for dif-
ferent optimization windows and react to both expected
load surges and unexpected ones. SMART’s prototype
has been implemented in a file system. Our experiments
show that the system utility value is improved as pre-
dicted. Experimental results show that SMART’s action
decision can result in less than 4% of utility loss. Finally,
it is important to note that this framework can also be de-
ployed as part of storage resource management software
or storage virtualization software. Currently, we are de-
signing a robust feedback mechanism to handle various
uncertainties in production systems. We are also devel-
oping pruning techniques to reduce the decision making
overhead, making SMART applicable in large data center
and scientific deployments.
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