
USENIX Association

Proceedings of the

2009 USENIX Annual Technical Conference

June 14–19, 2009
San Diego, CA, USA

Conference Organizers
Program Co-Chairs
Geoffrey M. Voelker, University of California, San

Diego
Alec Wolman, Microsoft Research

Program Committee
Remzi Arpaci-Dusseau, University of Wisconsin,

Madison
Ranjita Bhagwan, Microsoft Research India
George Candea, EPFL
Ira Cohen, HP Labs, Israel
Landon Cox, Duke University
John Dunagan, Microsoft Research
Nick Feamster, Georgia Institute of Technology
Michael J. Freedman, Princeton University
Garth Goodson, NetApp
Robert Grimm, New York University
Dirk Grunwald, University of Colorado
Jaeyeon Jung, Intel Research
Sam King, University of Illinois at Urbana-Champaign
Geoff Kuenning, Harvey Mudd College
Ed Lazowska, University of Washington

Erich Nahum, IBM T.J. Watson Research Center
Niels Provos, Google, Inc.
Sean Rhea, Meraki, Inc.
Mahadev Satyanarayanan, Carnegie Mellon University
Prashant Shenoy, University of Massachusetts
Marvin Theimer, Amazon.com
Andrew Warfield, University of British Columbia and

Citrix Systems
Yinglian Xie, Microsoft Research Silicon Valley
Ken Yocum, University of California, San Diego

Poster Session Co-Chairs
George Candea, EPFL
Andrew Warfield, University of British Columbia and

Citrix Systems

Invited Talks Program Committee
Dan Klein, USENIX Association
Ellie Young, USENIX Association

The USENIX Association Staff

External Reviewers
Atul Adya
Bhavish Aggarwal
Muneeb Ali
David Becker
Sapan Bhatia
Nilton Bila
Silas Boyd-Wickizer
Luis Ceze
Vitaly Chipounov
Anthony Cozzie
Tim Deegan
Fred Douglis
Jeremy Elson

Cristian Estan
Steve Gribble
Chris Grier
Dan Halperin
Michael Hicks
Wenjun Hu
Hai Huang
Rahul Iyer
Horatiu Jula
Charles Krassic
Arvind Krishnamurthy
Geoffrey Lefebvre
James Lentini

Jie Liu
Susan Martonosi
Trevor Pering
Alkis Polyzotis
Vijayan Prabhakaran
Moheeb Rajab
Charlie Reis
Eric Rescorla
Yaoping Ruan
Stefan Saroiu
Jiri Schindler
Simon Schubert
Vyas Sekar

Hovav Shacham
Neil Spring
Kiran Srinivasan
Radu Stoica
John Strunk
Sai Susarla
Srinivasan Venkatachary
Michael Vrable
Yi Wang
John Zahorjan
Cristian Zamfir
Nickolai Zeldovich
Lintao Zhang

USENIX Association 	 2009 USENIX Annual Technical Conference	 iii

2009 USENIX Annual Technical Conference
June 14–19, 2009

San Diego, CA, USA

Message from the Program Co-Chairs. . vii

Wednesday, June 17
Virtualization
Satori: Enlightened Page Sharing. . 1
Grzegorz Miłoś, Derek G. Murray, and Steven Hand, University of Cambridge Computer Laboratory; Michael
A. Fetterman, NVIDIA Corporation

vNUMA: A Virtual Shared-Memory Multiprocessor. . 15
Matthew Chapman, The University of New South Wales and NICTA; Gernot Heiser, The University of New
South Wales, NICTA, and Open Kernel Labs

ShadowNet: A Platform for Rapid and Safe Network Evolution. . 29
Xu Chen and Z. Morley Mao, University of Michigan; Jacobus Van der Merwe, AT&T Labs—Research

Networking
Design and Implementation of TCP Data Probes for Reliable and Metric-Rich Network Path Monitoring 43
Xiapu Luo, Edmond W.W. Chan, and Rocky K.C. Chang, The Hong Kong Polytechnic University, Hong Kong

StrobeLight: Lightweight Availability Mapping and Anomaly Detection . . 57
James W. Mickens, John R. Douceur, and William J. Bolosky, Microsoft Research; Brian D. Noble, University of
Michigan

Hashing Round-down Prefixes for Rapid Packet Classification . . 71
Fong Pong, Broadcom Corp.; Nian-Feng Tzeng, Center for Advanced Computer Studies, University of
Louisiana at Lafayette

File and Storage Systems
Tolerating File-System Mistakes with EnvyFS. . 87
Lakshmi N. Bairavasundaram, NetApp;Inc.; Swaminathan Sundararaman, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Decentralized Deduplication in SAN Cluster File Systems . . 101
Austin T. Clements, MIT CSAIL; Irfan Ahmad, Murali Vilayannur, and Jinyuan Li, VMware, Inc.

FlexFS: A Flexible Flash File System for MLC NAND Flash Memory. . 115
Sungjin Lee, Keonsoo Ha, Kangwon Zhang, and Jihong Kim, Seoul National University, Korea; Junghwan Kim,
Samsung Electronics, Korea

Layering in Provenance Systems. . 129
Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko, Diana Maclean, Daniel Margo,
Margo Seltzer, and Robin Smogor, Harvard School of Engineering and Applied Sciences

iv	 2009 USENIX Annual Technical Conference	 USENIX Association

Thursday, June 18
Distributed Systems
Object Storage on CRAQ: High-Throughput Chain Replication for Read-Mostly Workloads. 143
Jeff Terrace and Michael J. Freedman, Princeton University

Census: Location-Aware Membership Management for Large-Scale Distributed Systems. 159
James Cowling, Dan R.K. Ports, Barbara Liskov, and Raluca Ada Popa, MIT CSAIL; Abhijeet Gaikwad, École
Centrale Paris

Veracity: Practical Secure Network Coordinates via Vote-based Agreements. . 173
Micah Sherr, Matt Blaze, and Boon Thau Loo, University of Pennsylvania

Kernel Development
Decaf: Moving Device Drivers to a Modern Language. . 187
Matthew J. Renzelmann and Michael M. Swift, University of Wisconsin—Madison

Rump File Systems: Kernel Code Reborn. . 201
Antti Kantee, Helsinki University of Technology

CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems. 215
Daniel Lohmann, Wanja Hofer, and Wolfgang Schröder-Preikschat, FAU Erlangen—Nuremberg; Jochen
Streicher and Olaf Spinczyk, TU Dortmund

Automated Management
Automatically Generating Predicates and Solutions for Configuration Troubleshooting. . 229
Ya-Yunn Su, NEC Laboratories America; Jason Flinn, University of Michigan

JustRunIt: Experiment-Based Management of Virtualized Data Centers. . 243
Wei Zheng and Ricardo Bianchini, Rutgers University; G. John Janakiraman, Jose Renato Santos, and Yoshio
Turner, HP Labs

vPath: Precise Discovery of Request Processing Paths from Black-Box Observations of Thread and Network
Activities. . 259
Byung Chul Tak, Pennsylvania State University; Chunqiang Tang and Chun Zhang, IBM T.J. Watson Research
Center; Sriram Govindan and Bhuvan Urgaonkar, Pennsylvania State University; Rong N. Chang, IBM T.J.
Watson Research Center

Short Papers
The Restoration of Early UNIX Artifacts. . 273
Warren Toomey, Bond University

Block Management in Solid-State Devices . . 279
Abhishek Rajimwale, University of Wisconsin, Madison; Vijayan Prabhakaran and John D. Davis, Microsoft
Research, Silicon Valley

Linux Kernel Developer Responses to Static Analysis Bug Reports . . 285
Philip J. Guo and Dawson Engler, Stanford University

Hardware Execution Throttling for Multi-core Resource Management. . 293
Xiao Zhang, Sandhya Dwarkadas, and Kai Shen, University of Rochester

USENIX Association 	 2009 USENIX Annual Technical Conference	 v

Friday, June 19
System Optimization
Reducing Seek Overhead with Application-Directed Prefetching . . 299
Steve VanDeBogart, Christopher Frost, and Eddie Kohler, UCLA

Fido: Fast Inter-Virtual-Machine Communication for Enterprise Appliances . . 313
Anton Burtsev, University of Utah; Kiran Srinivasan, Prashanth Radhakrishnan, Lakshmi N. Bairavasundaram,
Kaladhar Voruganti, and Garth R. Goodson, NetApp, Inc.

STOW: A Spatially and Temporally Optimized Write Caching Algorithm . . 327
Binny S. Gill and Michael Ko, IBM Almaden Research Center; Biplob Debnath, University of Minnesota; Wendy
Belluomini, IBM Almaden Research Center

Web, Internet, Data Center
Black-Box Performance Control for High-Volume Non-Interactive Systems. . 341
Chunqiang Tang, IBM T.J. Watson Research Center; Sunjit Tara, IBM Software Group, Tivoli; Rong N. Chang
and Chun Zhang, IBM T.J. Watson Research Center

Server Workload Analysis for Power Minimization using Consolidation . . 355
Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi Kothari, IBM India Research Lab

RCB: A Simple and Practical Framework for Real-time Collaborative Browsing . . 369
Chuan Yue, Zi Chu, and Haining Wang, The College of William and Mary

Bugs and Software Updates
The Beauty and the Beast: Vulnerabilities in Red Hat’s Packages. . 383
Stephan Neuhaus, Università degli Studi di Trento; Thomas Zimmermann, Microsoft Research

Immediate Multi-Threaded Dynamic Software Updates Using Stack Reconstruction . . 397
Kristis Makris and Rida A. Bazzi, Arizona State University

Zephyr: Efficient Incremental Reprogramming of Sensor Nodes using Function Call Indirections and Difference
Computation. . 411
Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff, Purdue University

USENIX Association 	 2009 USENIX Annual Technical Conference	 vii

Message from the Program Co-Chairs

Welcome to the 2009 USENIX Annual Technical Conference!

Once again USENIX Annual Tech continues its tradition of high-quality papers that both break new ground and
provide practical insight into modern computer systems. The program committee accepted 32 excellent papers—28
long and 4 short—selected from 191 submissions. The topics range from tolerating file system errors, tracking data
provenance, and reprogramming sensor networks to breathing new life into UNIX artifacts. The program also
features two engaging plenary talks. James Hamilton from Amazon opens the conference with a keynote on the
critical issue of power in large-scale datacenters, and Hugo Award–winning author David Brin closes the confer-
ence with a plenary on new tools for problem solving in the information age and their policy implications in the
near future.

We had an excellent program committee of 26 members drawn from both industry and academia. As with other
conferences receiving a large number of submissions, the PC reviewed the submitted papers in two rounds. In the
first round, every paper received at least three reviews. Based on these reviews, we assigned at least one additional
review for 10 short papers and two additional reviews for 80 long papers. During the process, we also relied upon
the specific expertise of 52 external reviewers. In total, the 191 submitted papers received 743 reviews. The pro-
gram committee then met on March 12, 2009, for a lively full-day discussion that resulted in the final conference
program. The PC shepherded all accepted papers, and the authors produced the polished final papers that constitute
these proceedings.

As program co-chairs, we stand on the shoulders of many who did a tremendous amount of hard work. First, and
most importantly, we thank all of the authors for their creative and compelling research—the conference and the
community around which it forms would not exist without it. We thank the program committee for their diligence
and commitment—each PC member reviewed nearly 30 papers, a dedicated undertaking. We thank our external re-
viewers for contributing much-needed reviews on short notice, Microsoft for hosting the PC meeting in Redmond,
and Eddie Kohler for his tireless efforts supporting the HotCRP conference management software. Finally, we
thank the USENIX staff—Ellie, Jane-Ellen, Devon, Casey, and many others—for all the tremendous behind-the-
scenes work that makes the conference both a success and a reality.

Finally, we would like to thank our industry sponsors for their support in making the 2009 USENIX Annual
Technical Conference possible and enjoyable. In particular we thank VMware, Google, Hewlett-Packard, Microsoft
Research, NetApp, and Berkeley Communications for their generous support.

We hope you enjoy the program and the conference!

Alec Wolman, Microsoft Research
Geoffrey M. Voelker, University of California, San Diego
2009 USENIX Annual Technical Conference Co-Chairs

USENIX Association	 2009 USENIX Annual Technical Conference	 1

Satori: Enlightened page sharing
Grzegorz Miłoś, Derek G. Murray, Steven Hand
University of Cambridge Computer Laboratory

Cambridge, United Kingdom
First.Last@cl.cam.ac.uk

Michael A. Fetterman
NVIDIA Corporation

Bedford, Massachusetts, USA
mafetter@nvidia.com

Abstract
We introduce Satori, an efficient and effective sys-

tem for sharing memory in virtualised systems. Satori
uses enlightenments in guest operating systems to detect
sharing opportunities and manage the surplus memory
that results from sharing. Our approach has three key
benefits over existing systems: it is better able to detect
short-lived sharing opportunities, it is efficient and in-
curs negligible overhead, and it maintains performance
isolation between virtual machines.

We present Satori in terms of hypervisor-agnostic
design decisions, and also discuss our implementation
for the Xen virtual machine monitor. In our evalua-
tion, we show that Satori quickly exploits up to 94%
of the maximum possible sharing with insignificant
performance overhead. Furthermore, we demonstrate
workloads where the additional memory improves mac-
robenchmark performance by a factor of two.

1 Introduction
An operating system can almost always put more mem-
ory to good use. By adding more memory, an OS can ac-
commodate the working set of more processes in physi-
cal memory, and can also cache the contents of recently-
loaded files. In both cases, cutting down on physical I/O
improves overall performance. We have implemented
Satori, a novel system that exploits opportunities for sav-
ing memory when running on a virtual machine monitor
(VMM). In this paper, we explain the policy and archi-
tectural decisions that make Satori efficient and effec-
tive, and evaluate its performance.

Previous work has shown that it is possible to save
memory in virtualised systems by sharing pages that
have identical [23] and/or similar [4] contents. These
systems were designed for unmodified operating sys-
tems, which impose restrictions on the sharing that can
be achieved. First, they detect sharing opportunities by
periodically scanning the memory of all guest VMs. The
scanning rate is a trade-off: scanning at a higher rate de-
tects more sharing opportunities, but uses more of the
CPU. Secondly, since it overcommits the physical mem-
ory available to guests, the VMM must be able to page
guest memory to and from disk, which can lead to poor
performance.

We introduce enlightened page sharing as a collec-
tion of techniques for making informed decisions when
sharing memory and distributing the benefits. Several
projects have shown that the performance of a guest OS
running on a VMM improves when the guest is modified
to exploit the virtualised environment [1, 25]. In Satori,
we add two main enlightenments to guests. We modify
the virtual disk subsystem, to implement sharing-aware
block devices: these detect sharing opportunities in the
page cache immediately as data is read into memory. We
also add a repayment FIFO, through which the guest
provides pages that the VMM can use when sharing is
broken. Through our modifications, we detect the ma-
jority of sharing opportunities much sooner than a mem-
ory scanner would, we obviate the run-time overhead of
scanning, and we avoid paging in the VMM.

We also introduce a novel approach for distributing
the benefits of page sharing. Each guest VM receives
a sharing entitlement that is proportional to the amount
of memory that it shares with other VMs. Therefore,
the guests which share most memory receive the great-
est benefit, and so guests have an incentive to share.
Moreover, this maintains strong isolation between VMs:
when a page is unshared, only the VMs originally in-
volved in sharing the page are affected.

When we developed Satori, we had two main goals:

Detect short-lived sharing: We show in the evaluation
that the majority of sharing opportunities are short-
lived and do not persist long enough for a mem-
ory scanner to detect them. Satori detects sharing
opportunities immediately when pages are loaded,
and quickly passes on the benefits to the guest VMs.

Detect sharing cheaply: We also show that Satori’s
impact on the performance of a macrobenchmark—
even without the benefits of sharing—is insignif-
icant. Furthermore, when sharing is exploited,
we achieve improved performance for some mac-
robenchmarks, because the guests can use the addi-
tional memory to cache more data.

The rest of this paper is organised as follows. We be-
gin by discussing the issues of memory management in
both operating systems and virtualised platforms (Sec-
tion 2). We then survey related systems (Section 3).

2	 2009 USENIX Annual Technical Conference	 USENIX Association

We present Satori in two parts: first, we justify the ma-
jor design decisions that differentiate Satori from other
systems (Section 4), then we describe how we imple-
mented a prototype of Satori for the Xen VMM (Sec-
tion 5). Finally, we perform a thorough evaluation of
Satori’s performance, including its effectiveness at find-
ing sharing opportunities and its impact on overall per-
formance (Section 6).

2 Background
The problem of memory management has a long history
in operating systems and virtual machine monitors. In
this section, we review common techniques for manag-
ing memory as a shared resource (§ 2.1). We then de-
scribe the relevant issues for page sharing in virtual ma-
chine monitors (§ 2.2). Finally, we describe how paravir-
tualisation is used to improve performance in virtualised
systems (§ 2.3).

2.1 Virtual memory management
Physical memory is a scarce resource in an operating
system. If more memory is available, it can be put to
good use, for example by obviating the need to swap
pages to disk, or by caching recently-accessed data from
secondary storage. Since memory access is several or-
ders of magnitude faster than disk access, storing as
much data as possible in memory has a dramatic effect
on system performance.

Memory resource management was first formalised
for operating systems by Denning in 1968, with the in-
troduction of the working set model [3]. The working set
of a process at time t is the set of pages that it has refer-
enced in the interval (t − τ, t). This is a good predictor
of what pages should be maintained in memory. Pages
can then be allocated to each process so that its working
set can fit in memory.

Since it is challenging to calculate the working set and
τ parameter exactly, an alternative approach is to mon-
itor the page fault frequency for each process [16]. If
a process causes too many page faults, its allocation of
pages is increased; and vice versa. This ensures accept-
able progress for all processes.

OS-level approaches are inappropriate for a virtu-
alised system. One of the key benefits of virtualisation
is that it provides resource isolation between VMs. If
the size of a VM’s working set or its page fault rate is
allowed to determine its memory allocation, a malicious
VM can receive more than its fair share by artificially
inflating either measure. Instead, in our approach, we
give a static allocation of physical memory to each VM,
which provides strong performance isolation [1]. As we
describe in § 4.2, our system provides surplus memory
to VMs that participate in sharing. Our approach fol-
lows previous work on self-paging, which required each

application to use its own resources (disk, memory and
CPU) to deal with its own memory faults [5].

2.2 Memory virtualisation and sharing
A conventional operating system expects to own and
manage a range of contiguously-addressed physical
memory. Page tables in these systems translate vir-
tual addresses into physical addresses. Since virtuali-
sation can multiplex several guest operating systems on
a single host, not all guests will receive such a range
of physical memory. Furthermore, to ensure isolation,
the VMM’s and guests’ memory must be protected from
each other, so the VMM must ensure that all updates to
the hardware page tables are valid.

Therefore, a virtualised system typically has three
classes of address. Virtual addresses are the same as
in a conventional OS. Each VM has a pseudo-physical
address space, which is contiguous and starts at address
zero. Finally, machine addresses refer to the physical lo-
cation of memory in hardware. A common arrangement
is for guests to maintain page tables that translate from
virtual to pseudo-physical addresses, and the VMM to
maintain separate shadow page tables that translate di-
rectly from virtual addresses to machine addresses [23].
A more recent approach is to use additional hardware to
perform the translation from pseudo-physical addresses
to machine addresses [10, 19]. Finally, it is also possible
to modify the OS to use machine addresses and commu-
nicate with the VMM to update the hardware page tables
explicitly [1].

Pseudo-physical addresses provide an additional layer
of indirection that makes it possible to share memory
between virtual machines. Since, for each VM, there
is a pseudo-physical-to-machine (P2M) mapping, it is
possible to make several pseudo-physical frame num-
bers (PFNs) map onto a single machine frame number
(MFN). Therefore, if two VMs each have a page with
the same contents, the VMM can update the P2M map-
ping and the shadow page tables to make those pages use
the same machine frame. We discuss how other systems
detect duplicates in Section 3, and the Satori approach
in Section 4.

If two VMs share a page, an attempt to write to it must
cause a page fault. This is achieved by marking the page
read-only in the shadow page table. Such a page fault
is called a copy-on-write fault. When this occurs, the
VMM handles the fault by allocating a new frame and
making a private copy of the page for the faulting guest.
It also updates the P2M mapping and shadow page tables
to ensure that the guest now uses the private copy.

A consequence of page sharing is that the mem-
ory used by a VM can both dynamically decrease
(when a sharing opportunity is exploited) and dynami-
cally increase (when sharing is broken). This presents

USENIX Association	 2009 USENIX Annual Technical Conference	 3

a resource allocation problem for the VMM. A con-
ventional operating system does not have fine-grained,
high-frequency mechanisms to deal with memory being
added or removed at run time (Memory hotplug inter-
faces are unsuitable for frequent, page-granularity ad-
dition and removal [13]). Therefore, one option is to
use a balloon driver in each guest, which pins physi-
cal memory within a guest and donates it back to the
VMM [1, 23]. The “balloon” can inflate and deflate,
which respectively decreases and increases the amount
of physical memory available to a given VM.

However, a balloon driver requires cooperation from
the guest: an alternative is host paging, whereby the
VMM performs page replacement on guests’ pseudo-
physical memory [4, 23]. Host paging is expensive,
because a VM must be paused while evicted pages are
faulted in, and even if the VMM-level and OS-level page
replacement policies are perfectly aligned, double pag-
ing (where an unused page must be paged in by the
VMM when the OS decides to page it out) negatively
affects performance. We deliberately avoid using host
paging, and use a combination of the balloon driver (see
§ 4.2) and volatile pages (see § 4.3) to vary the memory
in each guest dynamically.

Collaborative memory management (CMM) attempts
to address the issue of double paging [14]. This system
was implemented for Linux running on IBM’s z/VM hy-
pervisor for the zSeries architecture. In CMM, the guest
VM provides hints to the VMM that suggest what pages
are being used, and what pages may be evicted with little
penalty. In Satori, we use part of this work for a different
purpose: instead of using hints to improve a host pager,
we use them to specify pages which may be reclaimed
when sharing is broken (see § 5.3).

2.3 Enlightenment
Our approach to memory sharing is based on enlighten-
ments, which involve making modifications to operating
systems in order to achieve the best performance in a vir-
tualised environment; in this paper we use the terms “en-
lightenment” and “paravirtualisation” interchangeably.
Operating systems have been modified to run on VMMs
for almost as long as VMMs have existed: the semi-
nal VM/370 operating system employs handshaking to
allow guests to communicate with the VMM for effi-
ciency reasons [15]. “Paravirtualisation” was coined for
the Denali VMM [25], and Xen was the first VMM to
run paravirtualised commodity operating systems, such
as Linux, BSD and Windows [1]. Xen showed that by
paravirtualising the network and block devices, rather
than relying on emulated physical hardware, it was pos-
sible to achieve near-native I/O speeds.

More extreme paravirtualisation has also been pro-
posed. For example, Pfaff et al. designed Ventana

as a virtualisation-aware file system, to replace virtual
block devices as the storage primitive for one or more
VMs [12]. This design concentrates on adding function-
ality to the file system—for example versioning, isola-
tion and encapsulation—and considers sharing from the
point of view of files shared between users. It does
not specifically address resource management or aim to
improve performance. Our approach is orthogonal to
Ventana, and similar memory sharing benefits could be
achieved with a virtualisation-aware file system. Indeed,
using a system like Ventana would probably make it eas-
ier to identify candidates for sharing, and improve the
overall efficiency of our approach.

Other systems, such as VMware ESX Server [23] and
the Difference Engine [4] have a design goal of sup-
porting unmodified guest OSs. In contrast, we have
concentrated on paravirtualised guests for two reasons.
First, there is an increasing trend towards enlighten-
ments in both Linux and Microsoft Windows operating
systems [18, 20]. Secondly, we believe that where there
is a compelling performance benefit in using enlighten-
ments, the necessary modifications will filter down into
the vanilla releases of these OSs.

3 Related Work
Waldspurger described a broad range of memory man-
agement techniques employed in the VMware ESX
Server hypervisor, including page sharing [23]. In
VMware ESX Server, page sharing opportunities are
discovered by periodically scanning the physical mem-
ory of each guest VM, and recording fingerprints of
each page. When the scanner observes a repeated fin-
gerprint, it compares the contents of the relevant two
pages, and shares them if they are identical. In the
same work, Waldspurger introduced the balloon driver
that is used to alter guest memory allocations. How-
ever, since VMware ESX Server is designed to run un-
modified guest operating systems, it must also support
host paging. In Satori, we avoid host paging because of
its negative performance impact (see § 2.2), and avoid
memory scanning because it does not detect short-lived
sharing opportunities (see § 4.1).

A contemporary research project has added page shar-
ing to the Xen Virtual Machine Monitor. Vrable et al.
began this effort with Potemkin [22], which uses flash
cloning and delta virtualization to enable a large number
of mostly-identical VMs on the same host. Flash cloning
creates a new VM by copying an existing reference VM
image, while delta virtualization provides copy-on-write
sharing of memory between the original image and the
new VM. Kloster et al. later extended this work with a
memory scanner, similar to that found in VMware ESX
Server [7]. Finally, Gupta et al. implemented the Differ-
ence Engine, which uses patching and compression to

4	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 1: Sharing cycle

achieve greater memory savings than sharing alone. We
have implemented Satori on Xen in a parallel effort, but
we use guest OS enlightenments to reduce the cost of
duplicate detection and memory balancing.

The Disco VMM includes some work on transpar-
ent page sharing [2]. In Disco, reading from a special
copy-on-write disk involves checking to see if the same
block is already present in main memory and, if so, cre-
ating a shared mapping to the existing page. We apply
a similar policy for duplicate detection, as described in
§ 4.1. However, we also implement content-based shar-
ing for disk I/O (§ 5.2), so it is not necessary to use copy-
on-write disks, and furthermore we can exploit identical
blocks within the same disk.

4 Design decisions
In this section, we present the major design decisions
that differentiate Satori from previous work on page
sharing [23, 4]. Figure 1 shows the life-cycle of a page
that participates in sharing. This diagram raises three
key questions, which we address in this section:

How are duplicates detected? We use sharing-aware
block devices as a low-overhead mechanism for de-
tecting duplicate pages. Since a large amount of
sharing originates within the page cache, we moni-
tor data as it enters the cache (§ 4.1).

How are memory savings distributed? When n iden-
tical pages are discovered, these can be represented
by a single physical page, and n−1 pages are saved.
We distribute these savings to guest VMs in propor-
tion with their contribution towards sharing (§ 4.2).

What if sharing is broken? Shared pages are neces-
sarily read-only. When a guest VM attempts to
write to a shared page, the hypervisor makes a
writable private copy of the page for the guest. We
require that the guest itself provides a list of volatile
pages that may be used to provide the necessary
memory for private copies. In addition, we obvi-
ate the need for copying in certain cases (§ 4.3).

We have taken care to ensure that our answers to the
above questions are hypervisor-agnostic and may be im-
plemented together or individually. Although our pro-
totype uses the Xen VMM (see Section 5), these tech-
niques should also be useful for developers of other hy-
pervisors. In particular, our duplicate detection and sav-
ings distribution policies could be implemented with-
out modifying core OS components in the guest VMs.
However, by enlightening the guest OS, it is possible
to achieve better performance, and we contend that our
techniques are best implemented as a whole.

4.1 How are duplicates detected?
In order to exploit page sharing, it is necessary to detect
duplicate pages. As described in § 2.2, the most common
approach to this problem is to scan the memory of all
guest VMs periodically, and build up a list of page fin-
gerprints that can be used to compare page contents. In
this subsection, we propose sharing-aware block devices
as a more efficient alternative. We discuss the problems
with the scanning-based approach, and explain why the
block interface is an appropriate point at which to detect
potential sharing.

As we show in § 6.1, many sharing opportunities are
short-lived, and yet these provide a large amount of over-
all sharing when taken as a whole. In principle, the
memory scanning algorithm is exhaustive and all du-
plicates will eventually be found. However, in practise
the rate of scanning has to be capped: in the extreme
case, each memory write would trigger fingerprint re-
computation. For example in VMware ESX Server the
default memory scan frequency is set to once an hour,
with a maximum of six times per hour [21]. Therefore,
the theoretical mean duplicate discovery time for the de-
fault setting is 40min, which means that short-lived shar-
ing opportunities will be missed. (We note that there
are at least three relevant configuration options: the scan
period, scan throughput (in MB per second per GHz of
CPU), and maximum scan rate (in pages per second).
In our evaluation (§ 6.1), the “aggressive” settings for
VMware use the maximum for all three of these param-
eters.)

When an operating system loads data from disk, it
is stored in the page cache, and other researchers have
noted that between 63.8% and 93.0% of shareable pages
between VMs are part of the page cache [8]. For ex-
ample, VMs based on the same operating system will
load identical program binaries, configuration files and
data files. (In these systems, the kernel text will also be
identical, but this is loaded by Xen domain builder (boot-
loader), and does not appear in the page cache. Though
we do not implement it here, we could modify the Xen
domain builder to provide sharing hints.)

The efficacy of sharing-aware block devices relies

USENIX Association	 2009 USENIX Annual Technical Conference	 5

on the observation that, for the purpose of detecting
duplicates, a good image of the page cache contents
can be built up by observing the content of disk reads.
While this approach does not capture any subsequent in-
memory writes, we do not expect the sharing potential
of dirty pages to be high. Since a VMM uses virtual de-
vices to represent block devices, we have a convenient
place to intercept block reads. We describe our imple-
mentation of sharing-aware block devices in § 5.2.

The situation improves further if several guests share
a common base image for their block device. When
deploying a virtualised system, it is common to use a
single substrate disk for several VMs, and store VM-
private modifications in a copy-on-write overlay file. If
a guest reads a block from the read-only substrate disk,
the block number is sufficient to identify it uniquely, and
there is no need to inspect its contents. This scheme has
the additional advantage that some reads can be satisfied
without accessing the underlying physical device.

Previous work on page sharing emphasises zero pages
as a large source of page duplicates. Clearly, these pages
would not be found by block-device interposition. How-
ever, we take a critical view of zero-page sharing. An
abundance of zero pages is often indicative of low mem-
ory utilisation, especially in operating systems which
implement a scrubber. We believe that free page shar-
ing is usually counterproductive, because it gives a false
sense of memory availability. Consider the example of
a lightly loaded VM, in which 50% of pages are zero
pages. If these pages are reclaimed and used to run an-
other VM, the original VM will effectively run with 50%
of its initial allocation. If this is insufficient to handle
subsequent memory demands, the second VM will have
to relinquish its resources. We believe that free mem-
ory balancing should be explicit: a guest with low mem-
ory utilisation should have its allocation decreased. Sev-
eral systems that perform this resource management au-
tomatically have been proposed [26].

4.2 How are memory savings distributed?
The objective of any memory sharing mechanism is to
reuse the reclaimed pages in order to pay for the cost
of running the sharing machinery. A common approach
is to add the extra memory to a global pool, which can
be used to create additional VMs [4]. However, we be-
lieve that only the VMs that participate in sharing should
reap the benefits of additional memory. This creates an
incentive for VMs to share memory, and prevents ma-
licious VMs from negatively affecting the performance
of other VMs on the same host. Therefore, Satori dis-
tributes reclaimed memory in proportion to the amount
of memory that each VM shares.

When Satori identifies n duplicates of the same page,
it will reclaim n − 1 redundant copies. In the common

Figure 2: Sharing entitlement calculation

case of n = 2, our policy awards each of the contributing
VMs with an entitlement of 0.5 pages—or, more gener-
ally, n−1

n pages—for each shared page (Figure 2). For
each page of physical memory, p, we define n(p) ∈ N as
the sharing rank of that page. For VM i, which uses the
set of pages M(i), the total sharing entitlement, s(i), is
calculated as follows:

s(i) =

p∈M(i)

n(p)− 1
n(p)

Satori interrogates the sharing entitlements for each
VM every second, and makes the appropriate amount of
memory available to the VMs.

The sharing rank of a particular page will not neces-
sarily remain constant through the lifetime of the shar-
ing, since additional duplicates may be found, and exist-
ing duplicates may be removed. Therefore, the sharing
entitlement arising from that page may change. Consider
what happens when a new duplicate is discovered for an
already n-way shared page. The VM that provided the
new duplicate will receive an entitlement of n

n+1 pages,
and the owners of the existing n duplicates will see their
entitlement increase by n

n+1 −
n−1
n = 1

n(n+1) for each
copy they own. Similarly, the entitlements must be ad-
justed when a shared page departs.

In Satori, guests claim their sharing entitlement using
memory balloons [23]. When the entitlement increases,
the balloon deflates and releases additional pages to the
guest kernel. In our implementation we set up the guests
to always claim memory as soon as it becomes avail-
able. However, guests can elect to use more complex
policies. For example a guest may refrain from using its
entitlement if it experiences low memory demand, or ex-
pects its shared pages to be short-lived. We have explic-
itly avoided using host paging to deal with fluctuating
memory allocations. As a result, our implementation is
simpler, and we have avoided the well-known problems
associated with host paging. However, without host pag-
ing, we have to guarantee that the hypervisor can recover
memory from the guests when it needs to create private
copies of previously-shared pages. In the next subsec-
tion, we introduce the repayment FIFO, which addresses
this issue.

6	 2009 USENIX Annual Technical Conference	 USENIX Association

4.3 What if sharing is broken?
If two or more VMs share the same copy of a page, and
one VM attempts to write to it, the VMM makes a private
copy of the page. Where does the VMM get memory for
this copy?

Satori obtains this memory from a guest-maintained
repayment FIFO, which contains a list of pages the guest
is willing to give up without prior notification. The size
of a VM’s repayment FIFO must be greater than or equal
to its sharing entitlement. Our approach has three major
advantages: (a) the hypervisor can obtain pages quickly,
as there is no synchronous involvement with the guest,
(b) there is no need for host paging, and (c) there is no
risk that guest will be unable to relinquish resources due
to double copy-on-write faults (i.e. a fault in the copy-
on-write fault handler).

Pages in the repayment FIFO must not contain any
irreplaceable information, because the guest will not
have a chance to save their contents before the hyper-
visor reclaims them. Memory management subsystems
already maintain book-keeping information about each
page, which makes it possible to nominate such volatile
pages without invasive changes.

In Satori the hypervisor uses sharing entitlements to
determine the VM from which to reclaim memory. It
does so by inspecting how much memory each VM drew
from the sharing mechanism, in comparison to its cur-
rent sharing entitlement. Since the sum of sharing enti-
tlements is guaranteed to be smaller or equal to the num-
ber of removed duplicate pages, there will always be at
least one VM with a negative memory balance (i.e. the
VM drew more than its entitlement). Note that only the
VMs which are involved in the broken sharing will be
affected. This is essential to maintain performance iso-
lation, as a malicious VM will be unable to affect any
VMs with which it does not share memory.

A special case of broken sharing is when a page is re-
allocated for another purpose. For example, a guest may
decide to evict a shared page from the page cache, scrub
its content and reallocate it. In a copy-on-write system,
the scrubber would cause a page fault when it begins to
scrub the page, and the VMM would wastefully copy the
old contents to produce a private version of the page. We
use a scheme called no-copy-on-write, which informs
the VMM that a page is being reallocated, and instead
allocates a zero page (from a pre-scrubbed pool) for the
private version.

To the best of our knowledge, Satori is the first system
to address a covert channel created by memory sharing.
An attacker can infer the contents of a page in another
guest, by inducing sharing with that page and measuring
the amount of time it takes to complete a write. (If a
page has been shared, the processing of a copy-on-write
fault will measurably increase the write latency.) For

example, we might want to protect the identity of server
processes running in a guest, because security vulnera-
bilities might later be found in them. We allow guests to
protect sensitive data by specifying which pages should
never be shared. Any attempts to share with these pages
will be ignored by the hypervisor.

5 Implementation
We implemented Satori for Xen version 3.1 and Linux
version 2.6.18 in 11551 lines of code (5351 in the Xen
hypervisor, 3894 in the Xen tools and 2306 in Linux).
We chose Xen because it has extensive support for par-
avirtualised guests [1]. In this section, we describe how
we implemented the design decisions from Section 4.

Our changes can be broken down into three main cat-
egories. We first modified the Xen hypervisor, in order
to add support for sharing pages between VMs (§ 5.1).
Next, we added support for sharing-aware block devices
to the Xen control tools (§ 5.2). Finally, we enlightened
the guest operating system, so that it can take advantage
of additional memory and repay that memory when nec-
essary (§ 5.3).

5.1 Hypervisor modifications
The majority of our changes were contained in the hy-
pervisor. First of all, the upstream version of Xen does
not support transparent page sharing between VMs, so it
was necessary to modify the memory management sub-
system. Once this support was in place, we added a hy-
percall interface that the control tools use to inform the
hypervisor that pages may potentially be shared. Finally,
we modified the page fault handler to deal with instances
of broken sharing.

In § 2.2, we explained that each VM has a contigu-
ous, zero-based pseudo-physical address space, and a
P2M mapping for converting pseudo-physical addresses
to machine addresses. To support transparent page shar-
ing, it is necessary to allow multiple pseudo-physical
pages to map to a single frame of machine memory. Fur-
thermore, the machine frame that backs a given pseudo-
physical page may change due to sharing. Therefore, it
is simplest to use shadow page tables in the guest VMs.
However, regular paravirtualised guests in Xen do not
use shadow page tables, so we ported this feature from
the code which supports fully-virtualised guests. In ad-
dition, we had to modify the reference counting mecha-
nism used in Xen to keep track of page owners. In Xen
each page has a single owner, so we added a synthetic
“sharing domain” which owns all shared pages.

As described in § 5.3, we maintain information about
the state of each (pseudo-)physical page in each guest.
Both the guest and the hypervisor may update this infor-
mation, so it is held in a structure that is shared between
the hypervisor and the guest. The hypervisor uses this

USENIX Association	 2009 USENIX Annual Technical Conference	 7

structure to select which page should be used to satisfy
a copy-on-write fault (either a page from the repayment
FIFO, or, in the no-copy-on-write case, a zero-page).

We export the sharing functionality to the guest
through the hypercall interface. We add three
new hypercalls, named share mfns, mark ro and
get ro ref.

The share mfns hypercall takes two machine
frame numbers (MFNs)—a source MFN and a client
MFN—and informs the hypervisor that all pseudo-
physical pages backed by the client frame should now
use the source frame. The hypercall works as follows:

1. Mark the source and client frame as read-only, if
they are not already.

2. Compare the contents of the source and client
frame. If they are not equal, return an error.

3. Remove all mappings to the client MFN from the
shadow page tables.

4. Update the relevant P2M mappings to indicate that
the source frame should be used in place of the
client frame.

5. Free the client frame for use by the guest VMs.

Note that this hypercall is not guaranteed to succeed.
For example, after the duplicate detector notices that two
pages are the same, but before they are marked read only,
a guest might change the contents of one of the pages.
Therefore, the hypercall may fail, but there is no risk that
the contents of memory will be incorrect: the source and
client frame will continue to be used as before.

For copy-on-write disks, we want to make an early
decision about whether or not physical I/O will be re-
quired. Therefore, we use the mark ro hypercall to en-
force read-only status on all pages that are read from the
read-only substrate. (Technically, we make a page read-
only by treating it as 1-way shared; if the guest writes
to it, the sharing is simply broken by marking the page
as writable and changing the owner to the guest.) The
complementary get ro ref hypercall ensures that the
contents of the frame have not been changed (i.e. that
the MFN is still read-only), and increments the sharing
reference count to prevent it from being discarded. We
describe the copy-on-write disk support in § 5.2.

The final hypervisor component required for page
sharing is a modified page fault handler. We added two
new types of page fault, which Xen must handle differ-
ently. The first is a straightforward copy-on-write fault,
which is triggered when a guest attempts to write to a
shared page. In this case, the handler recalculates the
sharing entitlements for the affected guests, and reclaims
a page from one of the guests that now has claimed more
memory than its entitlement. The handler removes this
page from the appropriate guest’s repayment FIFO and
copies in the contents of the faulting page. We also add

a discard fault, which arises when a guest attempts to
access a previously-volatile page that the VMM has re-
claimed. If so, the handler injects this fault into the
guest, as described in § 5.3.

5.2 Sharing-aware block devices
We implemented duplicate detection using sharing-
aware block devices. Xen provides a high-performance,
flexible interface for block I/O using split devices. The
guest contains a front-end driver, which presents itself to
the guest OS as a regular block device, while the control
VM hosts a corresponding back-end driver. Previous
work has shown how the back-end is a suitable interposi-
tion point for various applications [24], in particular for
creating a distributed storage system [9]. We use the ex-
isting block-tap architecture to add duplicate detection.

The key steps in a block-tap read request are as fol-
lows:

1. The front-end (in the guest) issues a read request to
the back-end through the inter-VM device channel,
by providing a block number and an I/O buffer.

2. The back-end maps the I/O buffer into a user-space
control tool, called tapdisk.

3. tapdisk performs device-specific processing for
the given block number, and returns control to the
back-end driver.

4. The back-end unmaps the I/O buffer and notifies
the front-end of completion.

Since tapdisk is implemented as a user-space pro-
cess and provides access to I/O data, it is simple to add
custom block-handling code at this point. Satori modi-
fies the tapdisk read path in order to record informa-
tion about what data is loaded into which locations in
the guests’ memory. We developed two versions of du-
plicate detection: content-based sharing, and copy-on-
write disk sharing.

For content-based sharing, we hash the contents of
each block as it is read from disk. We use the hash
as the key in a hashtable, which stores mappings from
hash values to machine frame numbers (MFNs). First,
we look for a match in this table, and, if this is success-
ful, the resulting MFN is a candidate for sharing with
the I/O buffer. Note that the MFN is merely a hint: the
contents of that frame could have changed, but since we
have already loaded the data into the I/O buffer, it is ac-
ceptable for the sharing attempt to fail. If the hash is not
present in the hashtable, we invalidate any previous en-
try that maps to the I/O buffer’s MFN, and store the new
hash-to-MFN mapping.

For copy-on-write disk sharing, the process is slightly
different (see Figure 3). The first time a block is read
from the substrate disk, Satori invokes the mark ro
hypercall on that page, and stores a mapping from the

8	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 3: mark ro and get ro ref usage for copy-
on-write disks.

block number to the I/O buffer MFN. (If the guest sub-
sequently writes to the page before it is shared, the
read-only status is removed.) On subsequent reads,
Satori consults the block number-to-MFN mapping to
see if the block is already cached in memory. If it is,
Satori invokes the get ro ref hypercall on the MFN,
which, if it succeeds, ensures that the subsequent call to
share mfns will be successful. If the block number is
not found in the mapping table or if get ro ref fails,
Satori must request physical disk I/O to read the appro-
priate block. At this point, a second look-up could be
used to detect content-based sharing opportunities.

The Xen architecture places each virtual block device
in a separate tapdisk process, to simplify manage-
ment and improve fault isolation. However, we need
to share information between devices, so it was neces-
sary to add a single additional process, called spcctrl
(Shared Page Cache ConTRoLler), which hosts the
mappings between content hashes or block numbers,
and MFNs. The tapdisk processes communicate with
spcctrl using pipes, and our current implementation
of spcctrl is single-threaded.

5.3 Guest enlightenments
In Satori, we have used enlightenments to obtain OS-
level information about guest pages. These extend the
existing paravirtualised Linux guests, which Xen al-
ready supports [1].

For Satori, the most important enlightenment is
adding the repayment FIFO to the guest kernel. Recall
that the repayment FIFO is a list of volatile pages, i.e.
physical pages that the operating system is willing to re-
linquish at any time (in particular, when sharing is bro-
ken and a new frame is needed for a private copy). Since
the guest must relinquish these pages without warning, it
is essential that their contents can be reconstructed from
another source. Hence an obvious source of volatile
pages is the set of clean pages in the page cache. We par-
avirtualised the Linux page cache to provide page hints
about volatile pages.

We based our implementation of volatile pages on
earlier work on Collaborative Memory Management
(CMM) [14]. CMM is, in essence, a memory controller
which relies on page states (especially page volatility)
to dynamically adjust the available (machine) memory

for each guest. CMM is implemented for the IBM
zSeries z/VM hypervisor, but the majority of the code
is architecture-independent, as it deals with page-state
transitions in the Linux page and swap caches. We built
on CMM’s page hinting by adding support for the x86
architecture and the Xen hypervisor.

The major difference between x86 and zSeries (s390)
in the context of volatile pages is the handling of dirty-
ing. The x86 architecture maintains dirty bits for virtual
pages in the PTE, whereas the s390 architecture main-
tains a dirty bit for each machine page. Since a given
page can only become volatile if it is not dirty, we im-
plemented a machine-page-level dirty bit in software for
the x86 architecture. Our approach is more conservative
than is strictly necessary, because we consider the exis-
tence of any writable mapping to dirty the page, even if
there was no actual write.

Satori uses a shared structure between Xen and each
guest to store and modify page states (as discussed in
§ 5.1). The page states read from this structure are used
in the guest page fault handler to distinguish between
“regular” and discard faults. On a discard fault, Linux
uses reverse mappings to remove all references to the
discarded page, effectively removing the page from its
respective cache (page or swap).

We also use the instrumentation in the page allocator,
already present in order to drive page state transitions, to
support the no-copy-on-write policy. Whenever a page is
reallocated, we update the shared page state structure to
reflect this. On a write fault to a shared page, Xen checks
to see whether the page has been reallocated, and, if so,
provides a page from its zero page cache.

In addition, we have added support to guests for spec-
ifying that some pages must not be shared (to avoid the
secret-stealing attack described in § 4.3). At present,
we allow the guest to specify that a set of pseudo-
physical pages must never be shared (i.e. all calls to
share mfns or get ro ref will fail).

6 Evaluation
To characterise Satori’s performance, we have con-
ducted an evaluation in three parts. First, we have pro-
filed the opportunities for page sharing under different
workloads (§ 6.1). In contrast with previous work, we
specifically consider the duration of each sharing oppor-
tunity, as this is crucial to the utility of page sharing. We
then measure the effectiveness of Satori, and show that
it is capable of quickly detecting a large amount of shar-
ing (§ 6.2). Finally, we measure the effect that Satori has
on performance, in terms of the benefit when sharing is
enabled, and the overhead on I/O operations (§ 6.3).

For our tests we used two Dell PowerEdge 1425
servers each equipped with two 2.8 GHz Xeon CPUs,
2.5 GB of RAM and an 80 GB Seagate SATA disk. VMs

USENIX Association	 2009 USENIX Annual Technical Conference	 9

Rank Pages saved Percentage saving
2 1565421 79.7%
3 137712 7.01%
4 59790 3.04%
5 18760 0.96%
6 24850 1.27%
8 10059 0.51%
10 10467 0.53%
14 10218 0.52%

others 126865 6.46%

Table 1: Breakdown of sharing opportunities by rank
(excluding zero-pages).

ran Ubuntu Linux 8.04 in all cases, except for two exper-
iments, for which we state the OS version explicitly.

In the following subsections, we make repeated refer-
ence to several workloads, which we abbreviate as fol-
lows:

KBUILD-256 Vanilla Linux 2.6.24 kernel build
with 256 MB of physical memory.

KBUILD-512 As KBUILD-256, with 512MB.
HTTPERF httperf benchmark [6] run against

Apache web-server with 512 MB of
memory, serving randomly gener-
ated static webpages.

RUBIS RUBiS web auction application with
512MB, serving requests generated
by the default client workload gen-
erator [11].

6.1 Sharing opportunities
The major difference between Satori and contemporary
page sharing schemes is that it can share many identi-
cal pages as soon as they are populated. In this subsec-
tion, we show that a substantial proportion of sharing is
short-lived. Therefore, Satori is much more likely to ex-
ploit this sharing than schemes that rely on periodically
scanning physical memory, looking for identical page
contents [23, 4].

To analyse the sharing opportunities, we ran each of
the KBUILD-256, KBUILD-512, HTTPERF and RUBIS
workloads in two virtual machines for 30 minutes, and
took a memory dump every 30 seconds.

Table 1 shows the number of pages that can be freed
using page sharing, for each rank. (In a sharing of rank
n, n identical pages map to a single physical page.)
The figures are an aggregate, based on the total of 60
memory dumps sampled from pairs of VMs running the
KBUILD-512, HTTPERF and RUBIS workloads. Note
that most sharing opportunities have rank 2: i.e. two
identical pages exist and can be combined into a single
physical page.

Operation Count Total (ms) Avg (µs)
mark ro 127479 5634 44.1

share mfns 61905 474 7.7
get ro ref 69124 64 0.9

Total 258508 6172 —

Table 2: Breakdown of Satori hypercalls during
HTTPERF workload

Figure 4 compares the number of unique shared pages
during the KBUILD-256 and KBUILD-512 workloads.
(By considering only unique shared pages, we underesti-
mate the amount of savings for pages with rank > 2. Ta-
ble 1 demonstrates that the majority of shareable pages
have rank 2, except zero pages, which we address sep-
arately below.) We have divided the sharing opportuni-
ties into four duration ranges. The figures clearly show
that a substantial amount of sharing is short-lived, espe-
cially in a more memory-constrained setup (KBUILD-
256). Also, the amount of sharing for the KBUILD-
512 workload is approximately twice as much as that
for KBUILD-256, because of less contention in the page
cache. Finally, the kernel build process completes 6min-
utes sooner with 512 MB of memory: this makes the
benefits of additional memory clear.

Figure 5 separately categorises shareable non-zero
pages and zero pages into the same duration ranges as
Figure 4. It should be noted that the number of shar-
ing opportunities arising from zero pages (Figures 5(c)
and 5(d)) is approximately 20 times greater than from
non-zero pages (Figures 5(a) and 5(b)). However, more
than 90% of zero-page sharing opportunities exist for
less than five minutes. This supports our argument that
the benefits of zero-page sharing are illusory.

In § 4.1, we stated that, on average, it will take 40
minutes for VMware ESX Server to detect a duplicate
page using its default page scanning options. We ran the
following experiment to validate this claim. Two VMs
ran a process which read the same 256 MB, randomly-
generated file into memory, and Figure 6 shows the num-
ber of shared pages as time progresses. The lower curve,
representing the default settings, shows that half of the
file contents are shared after 37 minutes, which is close
to our predicted value; the acceleration is likely due to
undocumented optimisations in VMware ESX Server.
The higher curve shows the results of the same exper-
iment when using the most aggressive scanning options.
Using the same analysis, we would expect a duplicate
on average to be detected after 7 minutes. In our experi-
ment, half the pages were detected after almost 20 min-
utes, and we suspect that this is a result of the aggressive
settings causing the page hint cache to be flushed more
often.

10	 2009 USENIX Annual Technical Conference	 USENIX Association

�30s �5mins �15mins �30mins

5 10 15 20 25 30
min

2000

4000

6000

8000

10000

12000

14000

�pages

(a) KBUILD-256

5 10 15 20 25 30
min

5000

10000

15000

20000

25000

�pages

(b) KBUILD-512

Figure 4: Sharing opportunities during the execution of workloads KBUILD-256 and KBUILD-512.

�30s 30s � �5mins 5min � �15mins 15min � �30mins surviving

24.5�

46.5�

8.06�
3.91�

17.0�

(a) KBUILD-256

15.9�

16.2�

24.9�

5.51�

37.4�

(b) KBUILD-512

56.8�

37.1�
0.159�

5.99�

(c) KBUILD-256

65.8�

26.0� 0.523�

7.59�

(d) KBUILD-512

Figure 5: Duration of page sharing opportunities for kernel compilation workloads. (a) and (b) show non-zero pages,
(c) and (d) zero pages. The exploded sectors show sharings left at the end of the experiment.

6.2 Satori effectiveness
In the next set of experiments, we measured the amount
of sharing that Satori achieved using sharing-aware
block devices. We also examined how the surplus mem-
ory was distributed between individual virtual machines.

The first experiment used two pairs of virtual ma-
chines. Two VMs each ran the HTTPERF-256 work-
load, i.e. the HTTPERF workload with 256 MB of mem-
ory (rather than 512MB). Because the aggregate amount
of memory was insufficient to cache the entire data set
in memory, the number of shareable pages varied as
data was loaded into and evicted from each VM’s page
cache. The other two VMs each ran the KBUILD-512
workload; however they used Debian Linux rather than
Ubuntu.

Figure 7 shows that the sharing entitlements for the
VMs running KBUILD-512 are unaffected by the highly
variable amount of sharing between the two HTTPERF
workloads. Also, because we used different OSes for
each pair of VMs, the sharing entitlements achieved be-
fore the workloads started (5 to 6 minutes after the mea-
surements began) differ by about 30%.

Next, we ran two instances of a workload in separate

VMs for 30 minutes, and repeated the experiment for
the KBUILD-256, KBUILD-512, HTTPERF and RUBIS
workloads. We ran these experiments under Satori and
measured the number of shared pages, and compared
these to memory dumps using the same methodology as
described in § 6.1.

Figure 8 summarises the amount of sharing that Satori
achieves for each workload. Satori performs best with
the HTTPERF workload, shown in Figure 8(c). In this
case, it achieves 94% of the total sharing opportunities,
which is to be expected since HTTPERF involves serv-
ing a large volume of static content over HTTP, and the
majority of the data is read straight from disk. The RU-
BIS workload performs similarly, with Satori achiev-
ing 91% of the total. The kernel compilation work-
loads, KBUILD-256 and KBUILD-512, perform less
well. KBUILD-512 achieves about 50% of the total shar-
ing opportunities until the very end of the build, when
the kernel image is assembled from individual object
files. KBUILD-256 is more memory-constrained, which
forces the OS to flush dirty (non-shareable) caches.

Finally, we ran two experiments which evaluated
Satori in a more heterogeneous environment. In the

USENIX Association	 2009 USENIX Annual Technical Conference	 11

0 20 40 60 80 100 120
0

10000

20000

30000

40000

50000

60000

Time �min�

A
m
o
u
n
t
o
f
sh
ar
in
g
��pag

es
�

default settings

aggressive scanning

Figure 6: Sharing as time progresses for default and ag-
gressive scanning settings in VMware ESX Server.

�

� � � � � �

� �

�

�

�

� � �
�
�

� �

� �

�

�

� �
�

� �

� �

�

� � � � � � �

�

� � � � � �

� �

�

�

�

� � �
�
�

� �

�
�

�

�

� �
�

� �

� �

�

� � � � � � �

�

�����

��� � �
� � � �

� � � � � � �
� � � � �

� � �
� �������

�

� � � � �

� � � � �
� � � �

� � � � � �
� � � � � �

� �
� �

� � � � � � �

0 10 20 30 40
0

5000

10000

15000

20000

25000

Time �min�

S
h
ar
in
g
en
ti
tl
em
en
ts
��pag

es
� � HTTPERF�1

� HTTPERF�2

� KBUILD�512�1

� KBUILD�512�2

Figure 7: Sharing entitlements for two KBUILD-512 and
two HTTPERF-256 workloads executing simultaneously.

first experiment, two VMs running the same version
of Ubuntu Linux performed the HTTPERF and RUBIS
workloads. In this setup Satori was able to exploit over
70% of the total sharing opportunities. (The remain-
ing 30% was mostly due to the identical kernel images,
which the current version of Satori does not detect.).
In the second experiment, we used the same workloads
with different guest OSs (Ubuntu and Debian respec-
tively). In this setup, 11MB of sharing was theoretically
possible, and only because the two distributions use an
identical kernel. In this case, Satori could only achieve
approximately 1MB of savings (9% of the total).

Although Satori achieves varying results in terms of
memory savings, recall that these results come solely
from using our enlightened block device. These re-
sults show that we can exploit up to 94% (for HTTPERF)
of the total sharing opportunities through this method
alone. The alternative approach, which involves scan-
ning memory, incurs a constant overhead at run-time,
and must be rate-limited to prevent performance degra-
dation [21]. The Difference Engine exhibits an overhead
of up to 7% on some macrobenchmarks, though this in-
cludes the overhead of page compression and sub-page-

level patching [4]. Satori provides a flexible interface for
adding other sharing policies: we are developing a tool
that systemically identifies the source(s) of other sharing
opportunities. We hope that this will lead to additional
enlightenments that improve Satori’s coverage.

In § 4.3, we described an attack on memory shar-
ing that allows a VM to identify sensitive data in an-
other guest. On VMware ESX Server, we were able to
determine the precise version of sshd running in an-
other guest, by loading a page from each of 50 common
distribution-supplied sshd binaries into memory, and
periodically measuring the write latency to these pages.
(On our hardware, we observed a 28-times increase for
the matching page.) In Satori, we were able to protect
the entire sshd address space, and, as a result, this at-
tack failed.

6.3 Performance impact
We initially stated that memory sharing is desirable be-
cause it can improve the overall performance of VMs
running on the same physical machine. In this subsec-
tion, we investigate the performance characteristics of
Satori under various workloads. First, we measure nega-
tive impact: Satori introduces new operations for sharing
memory, and these incur a measurable cost. We mea-
sure the cost of each sharing-related hypercall, and the
overall effect on disk I/O. However, we then show that,
for realistic macrobenchmarks, the overhead is insignif-
icant, and the additional memory can improve overall
performance.

To measure the cost of individual sharing-related op-
erations, we instrumented the Xen hypervisor to record
the number and duration of each hypercall. Table 2
shows the results for a 30-minute HTTPERF workload.
The first thing to note is that Satori-related operations ac-
count for less than 6.2 seconds of the 30-minute bench-
mark. Of the individual operations, mark ro is the
most expensive, as it must occasionally perform a brute-
force search of the shadow page tables for all mappings
of the page to be marked read-only. We could optimise
performance in this case by making the guest VM ex-
change back-reference information with the hypervisor,
but the overall improvement would be negligible.

Satori detects sharing by monitoring block-device
reads, and therefore the majority of its overhead is felt
when reading data from disk. In order to measure this
overhead, and stress-test our implementation, we ran the
Bonnie filesystem benchmark in a guest VM against a
sharing-aware block device. Table 3 shows a breakdown
of read bandwidths. We ran the benchmark in four con-
figurations, and repeated each experiment five times. In
the baseline configuration, we disabled all Satori mecha-
nisms. In successive configurations, we enabled content
hashing, IPC with spcctrl, and finally hash lookup,

12	 2009 USENIX Annual Technical Conference	 USENIX Association

�

��

�
��

�

���
�

�
�
�

�

�
�
�
�

�
�

�

�

�
��
�
�

�
�
���

�

�
�
�

�

���

��
��
��

��
��

�
����

����

�

��

�
��

�
��
��

��
�

�

�����
��

����
����

��
�

�

�
�
���
�
�

��
����

�
���
�
����

����

5 10 15 20 25 30
min

2000

4000

6000

8000

10000

12000

14000

�pages

(a) KBUILD-256

�

��

���

�
��
����

���
�
�
�

�����
���

��
��
���

�

�
�

�
��
�

�

��

�
���������������

�

��

���
�
���
���
���
����

�������

���
����

�

���
���

���

�
���������������

5 10 15 20 25 30
min

5000

10000

15000

20000

25000

�pages

� Ideal
� Satori

(b) KBUILD-512

�

��

�

�

�

�
�

�

�
��

�

�

�
���
��

�

��

�

�

�

�
�

�

�
��

�

�

�
���
��

0 5 10 15 20 25 30
min0

20000

40000

60000

80000

100000
�pages

(c) HTTPERF

�

�

�
�
�
�
�
� �
� � � � �

�
� �
�
� �
� � � � �

�
�
�
� �
� � � � � � � �

� �

�

�

�
�
�
�
�
����

�����������������������������

0 5 10 15 20
min0

5000

10000

15000

20000

25000

30000
�pages

(d) RUBIS

Figure 8: Amount of sharing achieved by Satori for each of the four main workloads (no zero-pages)

in order to isolate the performance impact of each func-
tion. Table 3 reports bandwidth figures for reads using
getc(), and “intelligent reads”, which use a block size
of 16384 bytes.

The first thing to note is that Bonnie performs sequen-
tial reads on a 512 MB file, so the effect of any compu-
tation on the I/O path is amplified. (The impact of Satori
on random reads is negligible.) Therefore, the 34.8%
overhead for chunked reads with Satori fully enabled is
a worst-case figure, and is to be expected. With a realis-
tic workload, the I/O cost is likely to dominate. Never-
theless, it is instructive to consider the individual over-
heads:

• The overhead involved in hashing is relatively con-
stant and less than 0.4%.

• IPC with the spcctrl process is costly. The
present implementation uses UNIX pipes to com-
municate with spcctrl, which involves two ad-
ditional context switches per read request. We plan
to redesign this component to store the hashtable in
a shared memory segment.

• The relative overhead of fully-enabled Satori is
worse in the chunked read case, because less time
is being wasted in making repeated system calls in
the guest VM.

While we are continuing to improve Satori’s perfor-
mance, and eliminate these bottlenecks, we have only
encountered the above issues when running Bonnie. For
example, we ran a stripped-down kernel compilation in a
single VM, which took an average of 780 seconds with
Satori disabled, and 779 seconds with Satori fully en-
abled. Since the standard deviation over five runs was
27 seconds, it is clear that the overhead is statistically
insignificant. In this experiment, the workload ran in iso-
lation, and there were no benefits from sharing. As we
will see next, the advantage of having additional mem-
ory can improve performance for many workloads.

We first ran an experiment to illustrate the benefit of
memory sharing between VMs that share a copy-on-
write disk. We ran a workload that read the contents
of a copy-on-write disk into memory in a pseudorandom
order. Five seconds later (while the first read was on-
going), we started the same workload, reading from the
same disk in the same sequence, in another VM. Figure 9
shows the progress that both VMs achieved as a propor-
tional gradient. VM1 reads at a consistent rate of 4.96
MB/s. When the workload commences in VM2, its ini-
tial rate is 111MB/s, as the data that it reads can be pro-
vided by sharing memory with the page cache in VM1.
After 0.22 seconds, VM2 has read all of the data held

USENIX Association	 2009 USENIX Annual Technical Conference	 13

Mode
Read bandwidth (MB/s)

getc() “Intelligent read”
Min Max Avg Overhead Min Max Avg Overhead

No sharing 26.9 28.2 27.6 — 47.1 47.4 47.4 —
Hashing only 26.1 28.4 27.5 0.4% 47.1 47.4 47.3 0.2%

Hashing + IPC 22.7 23.8 23.2 15.9% 31.8 33.0 32.4 31.6%
Sharing enabled 23.2 24.9 24.2 12.9% 30.7 31.1 30.9 34.8%

Table 3: Results of the Bonnie filesystem benchmark on Satori

Figure 9: Copy-on-write disk read rates

0 50 100 150 200 250
0

50

100

150

200

Time �s�

R
es
p
o
n
se
ra
te
�rsp�s

�

Satori

VMware with Tools

VMware without Tools

Figure 10: Aggregate HTTPERF response rates for the
two VMs running on Satori, VMware, and VMware with
VMware Tools

by VM1, and the two VMs become mutually synchro-
nised, at the original rate, which is limited by the disk
access time. Although this example is artificial, it shows
Satori’s effectiveness at exploiting page cache sharing
for copy-on-write disks. Many recent cloud comput-
ing systems, such as Amazon’s EC2 [17], encourage the
use of standard machine image files, which are natural
candidates for a copy-on-write implementation. Satori
would be particularly effective in this case.

Finally, we ran the HTTPERF workload in two VMs as
a macrobenchmark, to discover how well Satori exploits
the extra memory that is made available through sharing.
We compare Satori to VMware ESX Server—the lead-
ing commercial hypervisor—which uses the techniques
described by Waldspurger to achieve page sharing and
memory overcommitment [23].

Figure 10 shows how the aggregate HTTPERF re-
sponse rate changes over time for Satori and VMware
(with and without VMware Tools). The performance of
Satori can be divided into two phases. First, it achieves
approximately 30 responses per second while the cache
is being loaded, which takes approximately 85 seconds.
The response rate then jumps to between 170 and 200 re-
sponses per second as all subsequent requests can be sat-
isfied from caches. In order to maintain these response
rates, the VMs use their sharing entitlements to increase
their page cache sizes. The physical memory available
to each VM grows to over 770 MB over the first 120
seconds of the experiment.

The results for VMware are interesting. We note first
that it was necessary to install the VMware Tools (which
include a balloon driver) in order to achieve performance
that was comparable to Satori. Without the VMware
Tools, the VMM begins paging after approximately 15
seconds, and throughput drops almost to zero. Once host
paging starts, the throughput only recovers occasionally,
and never to more than 5 responses per second. With
the VMware Tools installed, we observed that balloon
permanently limited each VMs physical memory alloca-
tion to 500 MB. Therefore, the VMs were able to make
progress without host paging, but the data set did not fit
in the cache, and the response rate remained at around
40 responses per second. VMware was unable to estab-
lish sufficient sharing because the lifetime of a page in
either page cache was usually too short for the memory
scanner to find it.

7 Conclusions
We described Satori, which employs enlightenments to
improve the effectiveness and efficiency of page shar-
ing in virtualised environments. We have identified sev-
eral cases where the traditional page sharing approach
(i.e. periodic memory scanning) does not discover or
exploit opportunities for sharing. We have shown that,
by using information from the guest VMs, and making
small modifications to the operating systems, it is possi-
ble to discover a large fraction of the sharing opportuni-
ties with insignificant overhead.

Our implementation has concentrated on sharing-
aware block devices. In the future we intend to add other

14	 2009 USENIX Annual Technical Conference	 USENIX Association

enlightened page sharing mechanisms—such as long-
lived zero-page detection, page-table sharing and kernel
text sharing—which will improve Satori’s sharing dis-
covery rate. We also intend to investigate the application
of our technique to nearly-identical pages [4].

Acknowledgments
We wish to thank members of the Systems Research
Group at the University of Cambridge for the many fruit-
ful discussions that inspired this work. We also wish to
thank our shepherd, Geoffrey Voelker, and the anony-
mous reviewers for their insightful comments and sug-
gestions that improved this paper.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[2] E. Bugnion, S. Devine, and M. Rosenblum. Disco: run-
ning commodity operating systems on scalable multipro-
cessors. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997.

[3] P. J. Denning. The working set model for program be-
havior. In Proceedings of the 1st ACM Symposium on
Operating System Principles, 1967.

[4] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference
engine: Harnessing memory redundancy in virtual ma-
chines. In 8th USENIX symposium on Operating System
Design and Implementation, 2008.

[5] S. M. Hand. Self-paging in the nemesis operating sys-
tem. In Proceedings of the 3rd USENIX symposium on
Operating Systems Design and Implementation, 1999.

[6] Hewlett-Packard Development Company, L.P. httperf
homepage, 2008. http://www.hpl.hp.com/
research/linux/httperf/, accessed 9th Jan-
uary, 2009.

[7] J. F. Kloster, J. Kristensen, and A. Mejlholm. On the
Feasibility of Memory Sharing. Master’s thesis, Aalborg
University, June 2006.

[8] J. F. Kloster, J. Kristensen, and A. Mejlholm. Determin-
ing the use of Interdomain Shareable Pages using Kernel
Introspection. Technical report, Aalborg University, Jan-
uary 2007.

[9] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J.
Feeley, N. C. Hutchinson, and A. Warfield. Parallax: vir-
tual disks for virtual machines. In Proceedings of the 3rd
EuroSys conference on Computer Systems, 2008.

[10] G. Neiger, A. Santoni, F. Leung, D. Rogers, and R. Uh-
lig. Intel R Virtualization Technology: Hardware Sup-
port for Efficient Processor Virtualization. Intel R Tech-
nology Journal, 10(3):167–178, Aug 2006.

[11] ObjectWeb Consortium. RUBiS – Home Page, 2008.
http://rubis.objectweb.org/, accessed 9th
January, 2009.

[12] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualization
aware file systems: Getting beyond the limitations of vir-
tual disks. In Proceedings of the 3rd USENIX sympo-
sium on Networked Systems Design and Implementation,
2006.

[13] J. H. Schopp, K. Fraser, and M. J. Silbermann. Resizing
Memory with Balloons and Hotplug. In Proceedings of
the 2006 Ottawa Linux Symposium, 2006.

[14] M. Schwidefsky, H. Franke, R. Mansell, H. Raj,
D. Osisek, and J. Choi. Collaborative Memory Manage-
ment in Hosted Linux Environments. In Proceedings of
the 2006 Ottawa Linux Symposium, 2006.

[15] L. H. Seawright and R. A. MacKinnon. VM/370 - A
Study of Multiplicity and Usefulness. IBM Systems Jour-
nal, 18(1):4–17, 1979.

[16] A. S. Tanenbaum. Modern Operating Systems, page 122.
Prentice-Hall, 1992.

[17] (Unattributed). Amazon Elastic Compute Cloud (Ama-
zon EC2). http://aws.amazon.com/ec2/, ac-
cessed 5th January, 2009.

[18] (Unattributed). Understanding Full Virtualization, Par-
avirtualization and Hardware Assist. Technical report,
VMWare, Inc., 2007.

[19] (Unattributed). AMD-VTM Nested Paging. Technical re-
port, Advanced Micro Devices, Inc., Jul 2008.

[20] (Unattributed). Performance and capacity require-
ments for Hyper-V, 2008. http://technet.
microsoft.com/en-us/library/dd277865.
aspx, accessed 9th January 2009.

[21] (Unattributed). Resource Management Guide, ESX
Server 3.5, ESX Server 3i version 3.5, VirtualCen-
ter 2.5, page 171. VMware, Inc., 2008. http:
//www.vmware.com/pdf/vi3_35/esx_3/
r35u2/vi3_35_25_u2_resource_mgmt%.pdf,
accessed 9th January, 2009.

[22] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. C. Snoeren, G. M. Voelker, and S. Savage. Scala-
bility, fidelity, and containment in the Potemkin virtual
honeyfarm. In Proceedings of the 20th ACM Symposium
on Operating systems Principles, 2005.

[23] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the 5th USENIX
symposium on Operating Systems Design and Implemen-
tation, 2002.

[24] A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facili-
tating the development of soft devices. In Proceedings of
the 2005 USENIX Annual Technical Conference, 2005.

[25] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. In Proceedings
of the 5th USENIX symposium on Operating Systems De-
sign and Implementation, 2002.

[26] W. Zhao and Z. Wang. Dynamic Memory Balancing for
Virtual Machines. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual Exe-
cution Environments, 2009.

USENIX Association	 2009 USENIX Annual Technical Conference	 15

vNUMA: A Virtual Shared-Memory Multiprocessor

Matthew Chapman∗†

Gernot Heiser∗†‡

∗The University of New South Wales
†NICTA

‡Open Kernel Labs

matthewc@cse.unsw.edu.au

http://ertos.nicta.com.au

Abstract

vNUMA, for virtual NUMA, is a virtual machine that

presents a cluster as a virtual shared-memory multipro-

cessor. It is designed to make the computational power

of clusters available to legacy applications and operating

systems.

A characteristic aspect of vNUMA is that it incorpo-

rates distributed shared memory (DSM) inside the hy-

pervisor, in contrast to the more traditional approach

of providing it in middleware. We present the design

of vNUMA, as well as an implementation on Itanium-

based workstations. We discuss in detail the enhance-

ments to standard protocols that were required or en-

abled when implementing DSM inside a hypervisor, and

discuss some of the tradeoffs we encountered. We ex-

amine the scalability of vNUMA on a small cluster, and

analyse some of the design choices.

1 Introduction

Shared-memory multiprocessor (SMM) systems provide

a simple programming model compatible with a large

base of existing applications and operating systems.

They naturally lend themselves to providing a single sys-

tem image (SSI) running a single operating-system (OS)

instance with a single resource name space.

However, for many compute-intensive applications,

a network of commodity workstations presents a more

cost-effective platform. These systems deliver the same

(theoretical) compute power with much less expensive

hardware, and are easily extensible and re-configurable.

Yet their computing power is much more difficult to har-

ness. Most existing OSes were not designed for clus-

ter environments, and applications designed for shared-

memory systems need to be redesigned for clusters by

using explicit communication over the network.

Previous attempts have been made to bridge the gap

between the ease of programming and legacy support

of SMM systems and the economies of cluster hard-

ware. These include distributed shared memory (DSM)

libraries such as Ivy [23] or Treadmarks [19], which

provide a limited illusion of shared memory to applica-

tions, provided that the programmer uses the primitives

supplied by the library. Other projects have attempted

to retrofit support for cluster-wide process scheduling

and migration into OSes [2, 27, 35]. However, these

approaches require extensive and intrusive OS changes,

which are difficult to keep up to date with the fast pace

of OS development.

This paper explores a different approach: the use of

virtualization to bridge the gap between SMM systems

and workstation clusters. We present vNUMA (“virtual

NUMA”), a virtual shared-memory multiprocessor built

from a cluster of commodity workstations. A hypervisor

runs on each node of the cluster and manages the phys-

ical resources. A single virtualized instance of an OS,

such as Linux, is then started on the cluster. This OS

and its applications executes on a virtual ccNUMA ma-

chine with many virtual CPUs. The virtualization layer

transparently maps the virtual CPUs to real CPUs in the

cluster, and provides DSM using software techniques.

In this way, a single OS instance can be scaled “outside

the box”, utilizing the computing resources of more than

one node. Users gain all of the advantages of such an

SSI multiprocessor, such as a single view of resources

and transparent process scheduling.

The core ideas of vNUMA have been presented in an

earlier short paper [7]. Here we focus on the design

and implementation issues that are critical to making

vNUMA work. We address the problem of constructing

a high-performance virtual NUMA system on commod-

ity hardware by:

• an approach to write sharing which individually in-

tercepts sparse write accesses, while falling back to

a page-based write-invalidate protocol when appro-

priate,

• introducing the technique of write-broadcast with

deterministic incremental merge for providing total

store order, and

• demonstrating an efficient approach for avoidance

of page thrashing.

16	 2009 USENIX Annual Technical Conference	 USENIX Association

Hypervisor

Node 1

(1 CPU, RAM, disk)

Hypervisor

Node 2

(1 CPU, RAM)

Hypervisor

Node 3

(1 CPU, RAM)

Hypervisor

Node 4

(1 CPU, RAM)

�����������������������������������

Operating system and applications

Virtual machine (4 CPUs, RAM, disk)

Figure 1: Example vNUMA system

In the next section we present an overview of the

vNUMA hypervisor and its DSM system, which is de-

signed for a small cluster of commodity workstations.

In Section 3 we discuss a number of enhancements to

established DSM protocols that improve their suitability

for use inside a hypervisor. Section 4 takes a detailed

look at implementation issues, including architecture-

specific optimisations. Section 5 presents an evaluation

of our vNUMA prototype. Related work is summarised

in Section 6.

2 vNUMA Overview

2.1 Approach

In order to minimise overheads, vNUMA is designed as

a Type-I hypervisor, executing on bare hardware with no

host OS. Our prototype was built on Itanium worksta-

tions, which are frequently deployed in clusters for high-

performance computing (HPC) use. While the vNUMA

design is independent of a specific ISA, the implemen-

tation does use processor-specific optimisations.

The majority of previous software DSM systems have

been designed as middleware running on top of an OS.

In vNUMA, the DSM system is integrated with the hy-

pervisor. There are two levels of memory address trans-

lation in a virtualized system. The guest OS maps appli-

cations’ virtual addresses onto a guest-physical address

space, which represents the physical memory of the vir-

tual machine. Then, the hypervisor maps guest physical

addresses to real physical addresses on a host computer.

This lower layer, transparent to the guest OS, is where

the vNUMA DSM system operates. It provides oper-

ating systems with the illusion of a single physical ad-

dress space across multiple host computers, as indicated

in Figure 1.

As a result, the shared address space in vNUMA com-

prises not just some subset of data memory that is known

to be shared, but all of the memory of the virtual ma-

chine. Since our aim is to run unmodified application

binaries (and, ideally, unmodified OSes), vNUMA must

faithfully reproduce the hardware SMP programming

model. Doing this efficiently presents challenges. On

the other hand, vNUMA runs in the processor’s privi-

leged mode, which gives it access to certain techniques

that may be difficult or prohibitively inefficient for a

userspace DSM system. Examples include the efficient

emulation of individual instructions, and the use of the

performance-monitoring unit (PMU) to track the execu-

tion of specific instructions.

2.2 Basic DSM protocol

At the heart of the vNUMA DSM system is a sim-

ple single-writer/multiple-reader write-invalidate proto-

col based on the Ivy protocol [23]. For page lo-

cation, vNUMA implements a fixed distributed man-

ager scheme, whereby the global guest-physical address

space is divided into equal-sized portions; each node acts

as a manager for one of these portions.

vNUMA’s transparency requirements imply that the

concept of a manager node is unknown outside the hy-

pervisor. However, efficiency is improved if the guest

OS has a notion of locality. vNUMA uses the concept of

NUMA node-local memory to ensure that the guest will

favour locally-managed memory when making alloca-

tion decisions, and as such works best with a NUMA-

aware guest OS. While for normal DSM systems the

concept of the manager node is a complication required

for efficiency, for the virtual NUMA system it is actually

a good match.

vNUMA’s DSM algorithm is based on the a version

of the Ivy protocol which the Ivy authors describe as

the “improved” protocol. The improvement keeps the

copyset information (where copies of a page are held)

with a changing page owner rather than the manager.

This helps to minimise the number of messages required,

and to avoid deadlock issues that are a problem with the

basic protocol [13].

3 Enhancements to DSM Protocols

Latency of DSM operations is the crucial limiting fac-

tor for the performance of vNUMA. Whenever a fetch

or invalidation message is sent, consistency requires that

execution on the local processor must stall until the re-

sponse is received. Here we discuss protocol improve-

ments that are designed to minimise the number of stalls

and messages required for DSM operation.

USENIX Association	 2009 USENIX Annual Technical Conference	 17

3.1 Double faults and ownership

In the original Ivy protocol, a page that has been fetched

on a read fault would have to be re-fetched on a subse-

quent write fault in order to ensure consistency. A later

optimisation avoided the double transfer with the help

of version numbers [20]. We use an optimisation that

seems to have been used in Mirage [11]: an owner can

determine whether the page data needs to be sent simply

by consulting the page’s copyset information. This is be-

cause any intervening writes would have invalidated the

faulting node’s read copy and hence removed it from the

copyset.

Another optimisation also goes back to Mirage but is

simplified in vNUMA: as soon as the manager becomes

a member of the copyset, ownership is automatically

transferred to the manager (Mirage required extra mes-

sages for this).

3.2 Addressing sparse data accesses

Minimising the number of communication events in a

distributed shared memory system depends critically on

caching of remote data. Many commonly used data

structures, such as linked lists and trees, tend to have

poor spatial locality, and may result in a processor ac-

cessing many pages. If locally cached copies of these

pages can be accessed, then overheads are small, but if

each of the pages regularly requires a remote fetch, per-

formance will suffer greatly.

In the absence of writes, pages eventually become

read-shared, allowing each processor to access the

cached copy of those pages without any communication.

This is clearly desirable. Now consider that some pro-

cessor occasionally writes a value to a certain page that

is otherwise read-shared. In the Ivy protocol, first the

writer must stall while all of the read copies are invali-

dated, then all of the active readers eventually stall and

re-fetch the entire page data. Clearly it would be more

efficient, for such sparse updates, to propagate the indi-

vidual write to any readers.

3.2.1 Write detection

In any such protocol, writes must be detected and write

update messages sent to other nodes. Write detection

at sub-page granularity is a challenge to implement effi-

ciently. Page diffing, as implemented in Munin [3] and

many later systems, cannot be used by vNUMA, for sev-

eral reasons.

Firstly, by the time that the diffing is performed, in-

formation has been lost about the size of the writes,

which has implications for the outcome of conflicting

writes. For example, assume that a 4-byte integer vari-

able has an initial value of 0. Consider a case where

processor P1 writes 1 to the variable, P2 writes -1, and

then P3 issues a read. The Itanium architecture dictates

that the outcome will be one of 0, -1 or 1 (depending

on which of the writes have been seen at P3). How-

ever, the diff generated at P1 may contain as little as one

byte, since in binary representation only one byte of the

value has changed. The diff generated at P2 contains

four bytes, since all four bytes of the binary representa-

tion have changed (-1 = 0xffffffff in hexadecimal). After

both diffs are applied, the value at P1 may be 0xffffff01,

which is not one of the valid outcomes. Diffing at a

32-bit granularity would solve this problem for 32-bit

values, but there would still be problems with smaller

and larger types. Systems that employ diffing, such as

TreadMarks [19], rely on the programmer to avoid issu-

ing conflicting writes within an interval, and to take care

when using smaller types than the diff granularity. How-

ever, at the ISA level there is no such requirement; in fact

the example above is completely legal if the programmer

does not require a guarantee as to which change is ap-

plied first. This would present problems for legacy code

on vNUMA.

Secondly, the standard diffing approach involves mak-

ing the page freely writable on the first write access, in

order to avoid further write faults. However, if a page is

both readable and writeable, then atomic read-modify-

write instructions such as compare-and-exchange will

freely execute, thus destroying their semantics. User-

level DSM systems that employ diffing schemes can

avoid this issue by stating that the programmer must

use the synchronisation constructs provided by the DSM

system, and not rely on the behaviour of atomic in-

structions to shared memory. This is not practical for

vNUMA.

An alternate approach, software write detection, as

used in Midway [37], relies on compiler support. This

would prevent transparent distribution of legacy applica-

tions, and is therefore also not suitable for vNUMA.

We therefore attempt to intercept writes individually,

a technique we describe as write trapping. While this

is prohibitively expensive for user-level DSM systems,

the overhead can be kept much smaller in a thin hyper-

visor such as vNUMA. The current C language imple-

mentation results in an overhead of around 250 cycles

per write, but this is largely due to compiler limitations;

in theory under 100 cycles should be achievable.

Even so, writes are frequent operations and trapping

every write in the system would be impractical; in-

deed the majority of pages in the system are not ac-

tively write-shared at all. vNUMA uses an adaptive

scheme which changes a page’s mode between this

write-trapping (write-update) mode and the basic write-

invalidate mode, depending on the access pattern.

The adaptation scheme currently implemented is sim-

ilar to the read-write-broadcast (RWB) protocol [31] de-

veloped for hardware cache coherence. The run-length

18	 2009 USENIX Annual Technical Conference	 USENIX Association

P1 ��

P2 ��

P3 ��

fetch

������������������

reply

������������������ ������������������

write w1

���������

����
��

��
��

�

write w2

����������������������

A

B

C

w2 w1

w1

w2

Figure 2: Timeline showing a possible ordering problem

of local writes to a page that are uninterrupted by writes

received from other nodes is tracked with a counter.

If the count exceeds a threshold, trapping of individ-

ual writes ceases and the page is transitioned to write-

invalidate mode, in which we use the conventional Ivy-

like write-invalidate protocol described earlier. This can

reflect two types of access patterns — either one node is

accessing the page exclusively, or one node is making a

large number of updates to the page in a short time —

and in both cases invalidation is likely to perform bet-

ter. The decision is made individually by each node, so

even if one node chooses to acquire the page exclusively,

other infrequent writers continue to intercept writes to

the page and report them back to the exclusive owner

(providing there are no reads).

This scheme makes its decision purely on the basis

of tracking write accesses. Its drawback is that it will

not detect producer-consumer sharing with a single in-

termittent writer and multiple readers. This leads to

periodic invalidation of the readers’ copies and subse-

quent re-faulting, even though the write-update mode

may be better in this case. An improved algorithm might

be one similar to the efficient distributed write proto-

col (EDWP) [1], which tracks both read and write ac-

cesses, and prevents a transition to exclusive mode if

more than one processor is accessing the page. How-

ever, this is considerably more complex (since sampling

read accesses is required) and has not been implemented.

3.2.2 Write propagation

For pages in write-update mode, vNUMA broadcasts

writes to all nodes. While this may seem inefficient, it

has some advantages; it greatly reduces the complexity

of the system and naturally results in total store order

(TSO) consistency. Per-packet overheads are amortized

by batching many writes into a single message (see Sec-

tion 4.3). Certainly this design choice would limit scala-

bility, but vNUMA is designed for optimal performance

on a small cluster.

Each node generally applies any write updates that ap-

ply to pages that it has read copies of, and discards any

irrelevant updates. However, care must be taken when

applying write updates to a page that is being migrated.

A node P2 receiving a page from P1 queues the updates

P1 ��

P2 ��

S=257

��������������������

S=258

��������������������

write X = 1

write X = 2

(X = 2)

(drop: 257 < 258. X = 2)

Figure 3: Coherence problem with write notices, and

its resolution by deterministic merging according to se-

quence numbers.

it receives while the page is in flight. Then, it must apply

the subset of queued writes that have not already been

applied at P1. In other words, P2 must apply exactly

those updates which were received at P1 after P1 sent

the page to P2. An example is shown in Figure 2: write

w1 must be applied, while w2 must be discarded.

Our algorithm for determining which writes to apply

assumes that the network provides causal order deliv-

ery, which is a property of typical Ethernet switches (c.f.

Section 4.5). We provide a brief description here, more

details are available elsewhere [6].

We maintain at each node a counter of writes, and

that counter value is included in a page-fetch reply mes-

sage. As per Figure 2, A denotes the event of P2 send-

ing a fetch message to P1, B the event of P1 receiving

that message and immediately replying to P2, and C the

event of P2 receiving the page. In the figure, the respec-

tive counter values are NA = 0, NB = 1, and NC = 2.

N1 denotes the number of writes from P1 queued at P2

at event C (N1 = 1 in the figure). The algorithm then

becomes:

• discard the N1 messages pending from P1;

• out of the remaining writes, apply the latest NC −
NB (and thus discard the earliest NB − NA − N1

writes).

In the example, the first step will drop w2 and the second

step will apply w1.

3.2.3 Deterministic incremental merge

The write-update algorithm as presented so far is in-

sufficient to guarantee coherence in a strict sense. In

the example shown in Figure 3, where nodes P1 and

P2 simultaneously write to a location X , P1 could ob-

serve X = 1 followed by X = 2 while P2 observes

X = 2 followed by X = 1, in violation of coher-

ence. Two solutions to this problem exist in the litera-

ture [8]: a central sequencer or associating every write

with a globally-unique sequence number. The central

sequencer, while guaranteeing that all nodes converge

on the same value, does not prevent intermediate values

from being observed at a single node, in violation of the

architecture’s specification of memory coherence. It also

presents a bottleneck.

USENIX Association	 2009 USENIX Annual Technical Conference	 19

A globally-unique sequence number can be imple-

mented as a local sequence number — synchronised

on communication — with the node number as a tie-

breaker where no causality relationship exists [8, 21].

However, the conventional deterministic merging ap-

proach [8] would involve waiting to receive write mes-

sages from all nodes before deciding on a final value. As

vNUMA only sends write messages as needed, a partic-

ular node may be quiet for a considerable time, which

would necessitate regular empty write messages to en-

sure coherence.

Note, however, that coherence only requires total or-

dering on a per-location basis. Consider the case where

{w1, w2, .., wn} are a set of writes to the same location,

ordered by their global sequence number. From the point

of view of program semantics, it is not essential to guar-

antee that all of {w1..wn} are observed at any particu-

lar node, as long as the observed subset follows the cor-

rect ordering and culminates in the proper final value.

In other words, observing {w2, w1, wn} is not allowed

since w1 must precede w2, but observing {w1, wn} or

even just {wn} is allowable. Omitted intermediate val-

ues could correspond to the case where a processor was

not fast enough to observe the intervening values.

We make use of this fact to implement a technique

we call incremental deterministic merging. Each incom-

ing write notice is applied immediately, but it is only

applied to a certain location if its sequence number is

greater than that of the last write to that location. Since

every node receives all write notices, the value of that

location always ultimately converges on the write with

the maximum sequence number (wn), with any interme-

diate values respecting the required ordering. Figure 3

shows how this resolves the original problem.

3.3 Atomic operations

The protocol described so far is sufficient for correct-

ness, but highly inefficient for hosting an OS (such as

Linux) that uses atomic instructions (xchg, fetchadd

or cmpxchg) to implement kernel locks. Any of those

operations results in a fall-back to write-invalidate mode,

making kernel locks very expensive. We therefore intro-

duce an extension to the protocol, which we call write-

update-plus (WU+).

An important observation is that, in the Itanium archi-

tecture and other typical processor architectures, there

is no requirement for ordering between an atomic read-

and-write instruction and remote reads. A remote read

can safely return either the value before or after the

atomic operation. Thus, there is no need for invalidation

of read-only copies when an atomic operation is encoun-

tered; the write phase of the operation can be propagated

to readers via the write-update mechanism.

However, in order to guarantee atomicity of the read

P1 ��

P2 ��������������������� �������������������

(owner) fetch-and-add X = 1

write X = 5

(X = 1 or X = 5)

(X = 1 or X = 5)

Figure 4: Simultaneous atomic operation and remote

write. P1 is the owner of X and therefore has permission

to execute atomic operations. According to the Itanium

architecture, the correct result is either 5 or 6, depending

on which operation appears first in the total order. Here,

even with deterministic merging, X = 1 may occur.

and write phases, only one processor at any time can be

allowed to perform an atomic operation to a particular

location. In the WU+ protocol, we enforce that only the

owner of a page can execute atomic operations on that

page. Any other node must first acquire ownership.

In addition, simultaneous atomic operations and re-

mote writes can lead to incorrect results, as shown in

Figure 4. The WU+ protocol therefore enforces a single

writer for pages targeted by atomic operations. Thus,

at any point, a page can be in one of three modes:

write-invalidate, write-update/multiple-writer, or write-

update/single-writer. The transition from multiple- to

single-writer mode occurs when atomic operations to a

page are intercepted; nodes are synchronously notified

that they can no longer generate write updates to the

page without acquiring ownership.

4 Implementation

The implementation of vNUMA is around 10,000 lines

of code. Of this around 4,000 lines constitute a

generic Itanium virtual machine monitor, the DSM sys-

tem is around 3,000 lines, and the remainder deals with

machine-specific initialisation and fault handling. In to-

tal the hypervisor code segment is about 450KiB (Ita-

nium is notorious for low code density).

Besides generic protocol optimisations, we used a

number of implementation techniques to optimise per-

formance, which we discuss in this section. Some of

these are processor-independent, others make use of par-

ticular Itanium features (but similar optimisations can be

made for other ISAs).

4.1 Avoiding thrashing

A naı̈ve DSM implementation suffers from a page

thrashing problem, indicated in Figure 5. If two nodes

simultaneously write to a page, the page may be trans-

ferred back and forth with no useful work done. A

frequently-used solution to this problem is to introduce

an artificial delay to break the livelock. However, this

is non-optimal by design, as there is no easy way to de-

termine an appropriate delay, and the approach increases

20	 2009 USENIX Annual Technical Conference	 USENIX Association

P1 ��

P2 ��

fetch

��

reply
������������

fetch

��

reply

������������
fetch

��

reply
����

��
��

��
�

fetch

��
fault

invalidate & send, fault

receive & send, re-fault

receive & send, re-fault

Figure 5: Timeline demonstrating the page thrashing

problem. Solid lines indicate transfers of ownership.

latency. Instead, we use an approach that guarantees that

at least one instruction is executed before a page is trans-

ferred.

One way to implement this is by putting the machine

into single-step mode after receipt of a page, and not

processing any page requests until the trap that is caused

by the execution of the next instruction is processed (at

which time normal execution mode is resumed).

A cheaper alternative (implemented in vNUMA) is

to consult the performance-monitor register that counts

retired instructions to determine whether progress has

been made since the last page transfer. (Note that check-

ing the instruction pointer is not sufficient, as the code

might be executing a tight loop, which could mask

progress.) If lack of progress is detected, then one could

fall back to the single-step approach. Instead we op-

timistically continue and re-check after a short delay.

While this is similar to the timed-backoff scheme im-

plemented in other DSM systems, vNUMA can use a

very short delay to minimise latency, as the hypervisor

can prevent preemption and thus ensure the opportunity

for progress.

A complication of the chosen scheme is that one in-

struction may access several pages, up to four on the Ita-

nium (an instruction page, a data page and two register-

stack engine pages). This introduces the possibility of a

circular wait condition, and thus deadlock.

We prevent deadlock by applying the anti-livelock al-

gorithm only to pages accessed via explicit data refer-

ences, and not instruction or register stack pages. Since

the data reference is always logically the last reference

made by an instruction — occuring after the instruction

reference, and after any register stack accesses — in-

struction completion is guaranteed once the data page is

obtained, and there is no possibility of deadlock. Indeed

it is not necessary to apply the livelock prevention algo-

rithm for instruction and register stack references, since

instruction accesses are always reads, and the Itanium ar-

chitecture specifies that register-stack pages should not

be simultaneously accessed by multiple CPUs (or unde-

fined processor behaviour could result). Even if a ma-

licious application were to invoke this livelock case, it

would not prevent the operating system from taking con-

trol and the process could be killed. Thus, this strat-

egy prevents livelock in a well-behaved operating sys-

P1 P2

Write wd: (S=1)

XX XX XX XX

��
���

��
��

��
��

��
��

Write wb: (S=2)

.. YY

��
����
��
��
��
��
��
�

Observed:

00 00 00 00

XX XX XX XX

XX XX XX YY

Observed:

00 00 00 00

00 00 00 YY

XX XX XX YY

Figure 6: Combining writes of different sizes. On P2,

write wd appears to modify 3 bytes.

tem while also preventing any possibility of deadlock.

On some other architectures such as x86, this ap-

proach might still result in deadlock, since a single in-

struction may access several data pages. One possibility

would be to release pages after a random period of time,

even if no progress is made. In the worst case, this re-

introduces the problems associated with backoff algo-

rithms, but should perform better in the common case,

while ensuring that a permanent deadlock does not oc-

cur.

4.2 Incremental merging

In Section 3.2.3 we somewhat vaguely referred to “loca-

tions” as the destinations of writes. Given that real ar-

chitectures support writes of different sizes, we need to

understand at which granularity conflict resolution must

be applied. Figure 6 demonstrates that it must be ap-

plied at the byte, not the word level: the 4-byte write wd

at P1 with sequence number S(wd) = 1 logically pre-

cedes the byte-sized write wb at P2 with S(wb) = 2. If

the newer byte-sized write happens to be applied first at

some node, then when the older 4-byte write is received,

it must only appear to modify the top 3 bytes. This set of

observed values is consistent with the Itanium memory

consistency model [16].

This makes efficient implementation a challenge, as

keeping separate sequence numbers for each byte of

memory is clearly prohibitive. As the majority of up-

dates do not conflict, tracking overhead must be min-

imised.

Fortunately, sequence-number information only needs

to be kept for short periods. Once updates with a certain

minimum sequence number are received from all nodes,

all information related to lower sequence numbers can

be discarded.

This observation enables an implementation of se-

quence numbers that is simple and has low overheads.

We use a fixed-size buffer that stores information about

a certain number of preceding writes (Figure 7). Each

write is described by the address of the 64-bit machine

word that it targets and a mask of bytes within that word

(note that we assume that writes never cross a machine-

USENIX Association	 2009 USENIX Annual Technical Conference	 21

address

mask

link

0 1

0x1008

11111111

<invalid>

2 3

0x1008

11110000

1

4

0x1008

00001111

3

5

hashtable

4

address

0x1008��
������

S(w) ��

Figure 7: Data structure for coherence algorithm. The example shows an incoming write with sequence number 3,

address 0x1008 and mask 11111111 (entire 8 bytes); the unshaded fields show the “before” state (but note that entry

4 is originally linked to entry 1). The hash chain is traversed as far back as sequence number 4; since that logically

newer write wrote 00001111 (the lower four bytes), the mask is constrained to 11110000 (the top four bytes). The

appropriate slot for the new write is then updated and linked in place.

word boundary). Writes are directly inserted into the

buffer using the least significant bits of their sequence

number as an index; assuming that sequence numbers

are allocated in a unique and relatively dense fashion,

this mapping is quite efficient. For fast lookup, writes

are then indexed using a hash function of their target

address; writes with the same hash value are linked to-

gether in a chain. This chain is always kept in reverse

sequence number order.

The only operation on this data structure is adding a

new write. While traversing the linked list to insert a

write, all logically newer writes to the same address are

encountered, which are used to constrain the mask of

bytes to be written. Once a link field with an older se-

quence number is reached, traversal stops and the new

write is inserted into the chain. The constrained mask is

returned and used to determine the bytes in memory that

are actually modified.

Since a chain is never traversed past the sequence

number of a newly received write, the chains need never

be garbage-collected. It is sufficient to make the buffer

large enough so that it covers the window of sequence

numbers that can be received from other nodes at any

time. Since each node tracks the last sequence number

received from each other node, a violation of this rule

can be detected and a stall induced if necessary; how-

ever such stalls are clearly undesirable and can be elimi-

nated by ensuring that each node does periodically send

updates.

4.3 Write batching

Write update messages are small, and vNUMA batches

many of them into a single Ethernet message in order

to improve performance. Batching can make use of the

processor’s weak memory ordering model. The Itanium

architecture uses release consistency: normal load and

store instructions carry no ordering guarantees, but load

instructions can optionally be given acquire semantics

(guaranteeing that they become visible prior to subse-

quent accesses), while store instructions can optionally

have release semantics (guaranteeing that they become

visible after preceding accesses).

Acquire semantics require no special care, since the

processor guarantees this behaviour on local operations,

and because operations are never visible remotely before

they are visible locally.

Release semantics require special care, however. Con-

sider an access A that is followed by a write with release

semantics Wrel. A must become visible on all nodes be-

fore Wrel. The processor interprets the release annota-

tion and guarantees that A completes before Wrel. How-

ever, in the case that A is a write, local completion does

not imply remote visibility — writes may be queued by

vNUMA before being propagated to remote nodes. It

is up to vNUMA to guarantee that A is observed before

Wrel.

This is trivial if Wrel is to a write-update page: if A

is to an exclusive page, it becomes visible immediately

and thus necessarily before Wrel; if not, then the DSM

system simply needs to ensure that the writes are sent

in order. The interesting case is where Wrel is to an

exclusive page and A is a queued write to a write-update

page. In this case, the DSM system needs to ensure that

Wrel is propagated before a read response to A.

The challenge is to detect when Wrel is to an

exclusively-held page, as this cannot be made to trap

without making all ordinary writes to the same page fault

as well. Fortunately, the Itanium performance monitor-

ing unit (PMU) provides a counter which can be con-

figured to count releases. When a read request arrives

for an exclusive page, the counter is checked to deter-

mine whether a release occurred on the last interval. If

so, the write buffers are flushed before sending the read

response.

As an additional optimisation, the write queue is ea-

gerly flushed at the time that a write is intercepted, if

a release has been seen (either on that instruction or in

the previous interval) and if the network card transmit

queue is empty. This expedites transmission of writes,

since a release is usually used in the context of data that

is intended to be observed by another processor. If the

transmit queue is not empty, then the flush is scheduled

22	 2009 USENIX Annual Technical Conference	 USENIX Association

to occur after a delay; this rate-limits the update pack-

ets and allows additional writes to accrue while previous

update packets are being transmitted.

4.4 Memory fences

Itanium also provides a memory fence instruction, mf,

that has both acquire and release semantics: loads and

stores cannot pass it in either direction. The PMU counts

mf as a release (as well as an acquire), so the above de-

tection mechanism can be used to ensure that writes are

ordered correctly across a fence. The one case that is

problematic is the ordering between writes and subse-

quent reads. If a write is separated from a subsequent

read by a fence, as in Figure 8, then the strict semantics

of mf would require preventing the read from returning

a cached copy before the write is visible everywhere. In

practice this means that if both both X and Y are ini-

tially zero, at most one processor is allowed to read that

value.

P1

Y = 1

mf

read X

P2

X = 1

mf

read Y

Figure 8: The memory fences prevent that both proces-

sors’ reads return the initial values of the respective vari-

ables.

A strict implementation of the mf semantics would

have severe performance implications in vNUMA. In-

stead, we decided to compromise our goal of full trans-

parency, and require that mf operations are replaced by

atomic operations (equivalent to a lock-based implemen-

tation of mf). Despite the assortment of synchronisation

algorithms implemented in Linux, only one case was

encountered in testing which required a full fence —

the implementation of the wait on bit lock func-

tion — and this was resolved via a simple modification.

4.5 Inter-node communication

vNUMA performance is highly sensitive to communi-

cation latency. This rules out hosting device drivers in-

side a guest OS as done in many modern virtual-machine

monitors. Instead, vNUMA contains, inside the hyper-

visor, latency-optimised drivers for a number of Gigabit

Ethernet chipsets.

We further minimise communication overhead by

defining a very simple protocol at the Ethernet layer. We

use the coalescing feature of Ethernet cards to separate

the headers and payload into different buffers to enable

zero-copy in the common case (in the special case where

a local write occurs while a page is being sent, a shadow

copy is created). Transfers of 4KiB pages either use a

single ‘jumbo’ frame or are broken into four fragments.

Fragmenting the packet is actually preferable to reduce

latency, since the fragments can be pipelined through the

network (this is also why four fragments are preferable

to three, although above this the overheads outweigh the

benefits).

vNUMA also makes extensive use of known prop-

erties of networking hardware, in order to avoid pro-

tocol overhead where possible. Specifically, vNUMA

relies on the network to be (mostly) reliable, to provide

causally-ordered delivery, and ideally to provide sender-

oblivious total-order broadcast. The last requirement

means that if P1 broadcasts m1, and P2 broadcasts m2,

then either all other observers observe m1 before m2,

or all other observers observe m2 before m1. “Sender-

oblivious” means that P1 and P2 do not need to make

any conclusions about the total order; this is an optimi-

sation geared towards Ethernet, where a sender does not

receive its own broadcast.

Causally-ordered delivery is guaranteed by the design

of typical Ethernet switches. Reliability is not guaran-

teed, but packet loss is very rare. vNUMA is therefore

optimised for lossless transmission. Timeouts and se-

quence numbers, combined with a knowledge that the

number of messages in-flight is bounded, are used to

deal with occasional packet loss.

Total-order broadcast usually holds in small switches

but may be violated by a switch that contains several

switch chips connected by a trunk, as a broadcast will

be queued in a local port on one chip before forwarded

over the trunk. It may also be violated when packets are

lost. In this case, remote store atomicity may not hold in

vNUMA. This could potentially be resolved with a more

complex protocol for store atomicity, similar to our ap-

proach to coherence. We did not design such a protocol.

In practice, this limitation is of little significance; many

other processor architectures including x86 also do not

guarantee store atomicity.

4.6 I/O

vNUMA contains support for three classes of virtual de-

vices: network (Ethernet), disk (SCSI) and console.

The network is presented as a single virtual Ether-

net card. As processes arbitrarily and transparently mi-

grate between nodes, and TCP/IP connections are fixed

to a certain IP address, transparency requires a single IP

address for the cluster. Outgoing messages can be sent

from any node, vNUMA simply substitutes the Ether-

net address of the real local network card into outgoing

packets. Incoming packets are all received by a single

node. This has the advantage that the receiving part of

the driver and network stack always runs on a single

node, but the disadvantage that the actual consumer of

the data may well be running on a different node.

The ideal approach for dealing with disks would be

USENIX Association	 2009 USENIX Annual Technical Conference	 23

to connect them to a storage area network (SAN), so

that they can be accessed from any of the nodes. This is

done by Virtual Iron’s VFe hypervisor [34], but is in con-

flict with vNUMA’s objective of employing commodity

hardware. Therefore, the vNUMA virtual machine pro-

vides a single virtual SCSI disk. The present implemen-

tation routes all disk I/O to the bootstrap node, which

contains the physical disk(s). It would be possible to

remove this bottleneck by striping or mirroring across

available disks on other nodes.

The console is only supported for debugging, as users

are expected to access the vNUMA system via the net-

work. All console output is currently sent to the local

console (which changes as processes migrate). Input can

be accepted at any node.

4.7 Other implementation issues

vNUMA virtualizes inter-processor interrupts (IPIs) and

global TLB-purge instructions in the obvious way, by

routing them to the appropriate nodes.

In order to boot up a vNUMA system, all of the nodes

in the cluster must be configured to boot the vNUMA

hypervisor image in place of an operating system kernel.

Then, one of the nodes is selected by the administrator

to be the bootstrap node, by providing it with a guest

kernel image and boot parameters; the other nodes need

no special configuration.

Once the bootstrap node initialises, it uses a discov-

ery protocol to find the other nodes and their resources,

and provides them with information about the rest of the

cluster. It then starts executing the guest kernel. As

part of its normal boot process, the guest OS registers

an SMP startup address and wakes the other nodes by

sending IPIs. The other nodes start executing at the

given address in the globally-shared guest-physical ad-

dress space, thus faulting in the OS image on demand.

4.8 Limitations

Like the ubiquitous x86 architecture, Itanium was orig-

inally not trap-and-emulate virtualizable [24]. While

this has now been mostly remedied by the VT-i exten-

sions [17], a number of challenges [14] remain, partic-

ularly relating to the register stack engine and its inter-

action with the processor’s complex translation modes.

vNUMA utilizes some para-virtualization of the guest

OS, and thus presently only supports Linux guests.

5 Evaluation

We evaluated vNUMA using three types of applications,

which cover some of the most common use scenarios

for large computer systems: computationally-intensive

scientific workloads, software-build workloads, and

database server workloads.

5.1 Test environment

Our test cluster consisted of eight HP rx2600 servers

with 900MHz Itanium 2 processors, connected using a

Gigabit Ethernet via an HP ProCurve 2708 switch. Since

vNUMA does not yet support SMP within a node, only

one CPU was used in each server.

The guest OS was Linux 2.6.16, using default config-

uration settings where possible, including a 16KiB page

size. An exception are the Treadmarks measurements,

which were performed with a 4KiB page size to provide

a fair comparison of DSM performance (since vNUMA

subdivides pages to 4KiB granularity internally).

Pre-virtualization [22] was used to automatically

transform the Linux kernel for execution on vNUMA

(our Itanium machines are not VT-i enabled). Three mi-

nor changes were made manually. Firstly, the Linux

wait on bit lock function was modified as de-

scribed in Section 4.4. Secondly, the clear page

function was replaced with a hypervisor call to al-

low it to be implemented more optimally. Finally,

the kernel linker script was modified to place the

.data.read mostly section on a separate page to

ease read-sharing (the default setup co-allocates this sec-

tion with one which contains locks).

Results presented are a median of the results from at

least ten runs of a benchmark. The median was chosen

as it naturally avoids counting outliers.

5.2 HPC benchmarks

HPC is a main application of compute clusters, and

therefore a natural application domain for vNUMA.

While many HPC applications use an explicit message-

passing paradigm as supported by libraries such as MPI

[26], a significant number rely on hardware-supported

shared memory or DSM, and are therefore well-suited

to execution on vNUMA. We used TreadMarks [19] as

a DSM baseline. While TreadMarks may no longer rep-

resent the state of the art in DSM research, it is one of

the few DSM systems that has been widely used in the

scientific community.

TreadMarks is distributed with an assortment of

benchmark applications, mostly from the Stanford

SPLASH-2 suite [36] and the NAS Parallel Bench-

marks from NASA [10]. To avoid biasing the eval-

uation against TreadMarks, we used the unmodified

TreadMarks-optimised sources, and for vNUMA pro-

vided a stub library that maps TreadMarks APIs to

fork() and shared memory. We also ran the bench-

marks on one of our SMP servers on native Linux to

show best-case scalability (although limited to the two

CPUs available).

Figure 9 shows an overview of results for each bench-

mark. While the ultimate limits of scalability are diffi-

cult to establish without a much larger cluster, vNUMA

24	 2009 USENIX Annual Technical Conference	 USENIX Association

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

Barnes

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

CG

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

FFT

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

Gauss

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

IS

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

MG

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

Raytrace

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

SOR

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

TSP

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

Water

vNUMA
TreadMarks

SMP

Figure 9: HPC benchmark performance summary. Horizontal axes represent number of nodes, vertical axes represent

speed-up.

was designed for optimal performance on a small clus-

ter. As the graphs show, vNUMA scalability is at least

as good as TreadMarks on all benchmarks, and signifi-

cantly better on Barnes, Water, TSP and IS. In abso-

lute terms MG exhibits the poorest scalability, but it is a

benchmark that poses challenges for all DSM systems,

due to the highly irregular sizes of its three-dimensional

arrays.

5.3 Compile benchmark

Large servers and clusters are frequently used for soft-

ware builds. Figure 10 compares vNUMA’s scalability

with distcc [29] when compiling vNUMA. As com-

pilation throughput tends to be significantly affected by

disk performance, we eliminated this factor by building

on a memory file system (RAM disk).

The figure shows that vNUMA scales almost exactly

as well as distcc. The line labelled “Optimal” is

an extrapolation of SMP results, based on an idealised

model where the parallelisable portion of the workload

(86 %) scales perfectly. On 4 nodes, the ideal speed-up

is 2.8, while both vNUMA and distcc achieve 2.3. On

8 nodes, the ideal speed-up is 4.0, while both vNUMA

and distcc achieve 3.1.

In the case of distcc, the overheads stem from the

centralised pre-processing of source files (which creates

a bottleneck on the first node), as well as the obvious

overheads of transferring source files and results over the

network. In the case of vNUMA, the largest overhead is

naturally the DSM system. Of the 15 % overhead ac-

countable to vNUMA in the four node case, DSM stalls

comprise 7 %, the cost of intercepting writes is around

3 %, network interrupt processing around 2 % and other

virtualization overheads also around 2 % (see also Sec-

tion 5.4).

The majority of the DSM stalls originate from the

guest kernel. This is because the compiler processes

do not themselves communicate through shared mem-

ory. Their code pages are easily replicated throughout

the cluster and their data pages become locally owned.

However, inputs and outputs are read from and written to

the file system, which shifts the burden of communica-

tion onto the kernel. In general, the compile benchmark

can be considered representative of an application that

consists of many processes which do not interact directly

 1

 2

 3

 4

 1 2 4 6 8

S
p
ee

d
-u

p

Number of nodes

vNUMA
distcc

Optimal

Figure 10: Compile benchmark performance summary

USENIX Association	 2009 USENIX Annual Technical Conference	 25

Other overhead
Network interrupts
DSM stalls
Idle
Computation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Write−inval Write−update WU+

P
ro

ce
ss

o
r

ti
m

e
(s

)
Processor time breakdown (Compile)

Processor time 97.6s 89.2s 78.0s

Speed-up 1.84 2.02 2.34

DSM stall time 26.0s

(27%)

19.2s

(22%)

5.1s

(7%)

Stalls 420,000 285,000 164,000

Data fetches 276,000 187,000 28,000

Buffered writes 0 435,000 3,284,000

Write notices 0 47,000 496,000

Figure 11: Effect of protocol on compile benchmark

but interact through the filesystem.

Profiling the kernel overheads shows that the largest

communication costs arise from maintaining the page

cache (where cached file data is stored), and acquiring

related locks. Similarly the file system directory en-

try cache (which caches filenames), and related locks,

also feature as major contributors. Nonetheless, consid-

ering that the overall overhead is no greater than that of

distcc— a solution specifically crafted for distributed

compilation — this seems a small price to pay for the

benefits of a single system image.

5.4 Effect of DSM protocol optimisations

To quantify the benefits of the chosen DSM protocols,

we also executed the compile benchmark at three dif-

ferent levels of protocol optimisations: using the ba-

sic Ivy-like write-invalidate protocol, using our write-

update protocol, and using our write-update-plus (WU+)

protocol which intercepts atomic operations as well as

ordinary writes. The results are summarised in Fig-

ure 11.

Performance is improved significantly by the more

advanced protocols, with speed-up on four nodes in-

creasing from 1.84 to 2.02 to 2.34. This is due to

a sharp reduction in the number and latency of stalls.

With the write-invalidate protocol, 420,000 synchronous

stalls are incurred, totalling 26.0 seconds (an average

of 62 µs/stall, which is dominated by the high latency

of fetching page data that is required in 66% of cases).

The write-update protocol reduces the number of syn-

chronous stalls to 285,000, with a proportional decrease

in stall time to 19.2s. However, the write-update-plus

protocol has the most dramatic impact, reducing stall

time to only 5.1s. While the total number of stalls is still

164,000, the majority of these are now ownership trans-

fers, which involve minimum-length packets and there-

fore have low latency (17 µs in the common case). The

number of stalls that must fetch data has decreased to

only 28,000, which shows the effectiveness of this pro-

tocol in enhancing read-caching.

The price of this improved read-caching is that many

more writes must be intercepted and propagated, which

is reflected in higher overheads both for intercepting the

writes (reflected in hypervisor overhead) and at the re-

ceivers of the write notices (reflected in interrupt over-

head). Nonetheless there is still a significant net perfor-

mance improvement.

5.5 Database benchmark

Databases present a third domain where high-end

servers and clusters are used. We benchmarked Post-

greSQL [30], one of the two most popular open source

database servers used on Linux. The open-source na-

ture was important to be able to understand performance

problems. For the same reason — ease of understanding

— simple synthetic benchmarks were employed instead

of a complex hybrid workload such as TPC-C. Two ta-

bles were initialised with 10,000 rows each: one describ-

ing hypothetical users of a system, and the other repre-

senting posts made by those users on a bulletin board. A

pool of client threads then performed continuous queries

on these tables. The total number of queries completed

in 30 seconds (after 5 seconds of warm-up) is recorded.

This is similar in principle to benchmarks like TPC-C,

but utilizes a smaller number of tables and a simpler mix

of transactions.

Four different types of queries were used: SELECT,

which retrieves a row from the users table by matching

on the primary key; SEARCH, which retrieves a row

from the users table by searching a column that is not in-

dexed; AGGREGATE, which sums all entries in a cer-

tain column of the users table, and COMPLEX, which

returns information about the five most prolific posters

(this involves aggregating data in the posts table, and

then performing a ‘join’ with the user table).

The results are summarised in Figure 12. vNUMA

performs well for COMPLEX, which involves a base

throughput of tens of queries a second. However, per-

formance is degraded for the higher-throughput work-

loads, SEARCH and AGGREGATE, and most signif-

icantly so for SELECT, which involves little computa-

tion per query and can thus usually achieve thousands of

queries a second on a single node. SEARCH and AG-

GREGATE barely manage to regain single-node perfor-

mance on 8 nodes, while SELECT does not scale at all.

The cause of this throughput-limiting behaviour is

simple: using multiple distributed nodes suddenly in-

troduces the potential for much larger communication

26	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 2000

 4000

 6000

 1 2 4 8

Q
u

er
ie

s/
se

co
n

d
SELECT

SMP
vNUMA

 0

 100

 200

 300

 1 2 4 8

SEARCH

SMP
vNUMA

 0

 10

 20

 30

 1 2 4 8

COMPLEX

SMP
vNUMA

 0

 100

 200

 300

 1 2 4 8

AGGREGATE

SMP
vNUMA

Figure 12: Database benchmark performance summary. Horizontal axes represent number of nodes.

and synchronisation latencies. If one considers that each

query involves at least a certain number of these high-

latency events, then the maximum query throughput per

node is inversely proportional to the number and cost of

those events.

A breakdown of processor time usage for SELECT

shows that only 14 % of available processor time is used

for user-level computation, which explains why the four

nodes cannot match the performance of a single node.

Another 12 % is spent idle, which occurs when the Post-

greSQL server processes are waiting to acquire locks.

DSM stalls account for 57 % of processor time, with

three-quarters of that being in userspace and specifically

in the PostgreSQL server processes, and the other quar-

ter in the Linux kernel. There is 9 % overhead for log-

ging writes for the write-update protocol, and 2 % vir-

tualization overhead (while SELECT normally experi-

ences high virtualization overheads, the fact that it is

only running 14 % of the time makes the virtualization

overhead insignificant).

Further analysis, using performance counters, con-

firms that the major overheads are related to locking

within PostgreSQL. The system uses multiple layers of

locks: spinlocks, “lightweight” locks built on spinlocks,

and heavyweight locks built on lightweight locks. Im-

portantly, each heavyweight lock does not use its own

lightweight lock, but there are a small number of con-

tiguous lightweight locks which are used for protecting

data about all of the heavyweight locks in the system.

Thus, contention for this small number of lightweight

locks can hamper the scalability of all heavyweight

locks. In addition to this bottleneck, the multi-layer

design substantially increases the potential overheads

when lock contention occurs.

While this result is disappointing for vNUMA, it is

not reasonable to extrapolate from PostgreSQL and as-

sume that all database software will experience such se-

vere locking problems. Since vNUMA can provide high

levels of read replication and caching — and potentially

a large amount of distributed RAM that may be faster

than disk — designs that allow lock-free read accesses

to data, such as via read-copy-update techniques [12,25],

could theoretically provide very good performance. In

this case, kernel performance would again become the

ultimate challenge.

6 Related Work

Ivy [23] is the ancestor of most modern DSM systems.

Ivy introduced the basic write-invalidate DSM protocol

that forms an integral part of vNUMA’s protocol. Mi-

rage [11] moved the DSM system into the OS kernel,

thus improving transparency. It also attempted to ad-

dress the page thrashing problem, which was mentioned

earlier in Section 4.1. Ivy and Mirage were followed by

a large number of similar systems [28].

Munin [5] was the first system to leverage release con-

sistency to allow multiple simultaneous writers. Aside

from release consistency, other systems have also im-

plemented entry consistency (Midway [4]), scope con-

sistency (JIAJIA [9], Brazos [33]) and view-based con-

sistency (VODCA [15]), which further relax the consis-

tency model by associating specific objects with critical

sections. However, all of these systems rely on the pro-

grammer to adhere to a particular memory synchronisa-

tion model, and thus they are not suitable for transparent

execution of unmodified applications.

Recently there has also been much interest in virtual-

ization, with systems such as Xen, VMware ESX Server

and Microsoft Virtual Server making inroads in the en-

terprise. The majority of hypervisors are designed for

the purposes of server consolidation, allowing multi-

ple OS instances to be co-located on a single physical

computer. vNUMA is, in a sense, the opposite, allow-

ing multiple physical computers to host a single OS in-

stance.

Since our initial work [7], three other systems have

emerged which apply similar ideas to vNUMA: Virtual

Iron’s VFe hypervisor [34], ScaleMP’s vSMP [32] and

the University of Tokyo’s Virtual Multiprocessor [18].

While these systems all combine virtualization with dis-

tributed shared memory, they are limited in scope and

performance, and do not address many of the challenges

that this work addresses. In particular, both VFe and

the Tokyo system use simpler virtualization schemes and

distributed shared memory protocols, resulting in severe

performance limitations, especially in the case of Virtual

Multiprocessor. Virtual Iron attempted to address some

of these performance issues by using high-end hardware,

such as InfiniBand rather than Gigabit Ethernet. How-

ever, this greatly increases the cost of such a system,

and limits the target market. Virtual Iron has since aban-

USENIX Association	 2009 USENIX Annual Technical Conference	 27

doned the product for commercial reasons, which largely

seems to stem from its dependence on such high-end

hardware. vNUMA, in contrast, demonstrates how novel

techniques can achieve good performance on commod-

ity hardware.

Little is known about vSMP, other than that it runs

on x86-64 hardware and also relies on InfiniBand. The

company claims scalability to 128 nodes, but only pub-

lishes benchmarks showing the performance of (single-

threaded) SPEC benchmarks. No real comparison with

vNUMA is possible with the information available.

7 Conclusions and Future Work

We have presented vNUMA, a system that uses virtual-

ization to present a small cluster as a shared-memory

multiprocessor, able to support legacy SMP/NUMA

operating-system and multiprocessor applications. This

approach provides a higher level of transparency than

classical software DSM systems. Implementation in the

hypervisor also has the advantage that many operations

can be implemented more efficiently, and can make use

of all the features of the underlying processor architec-

ture. However, a faithful mirroring of the underlying

ISA is required.

The different trade-offs resulted in protocols and im-

plementation choices that are quite different from most

existing DSM systems. Specifically, we developed

a protocol utilizing broadcast of write-updates, which

adaptively transitions between write-update/multiple-

writer, write-update/single-writer and write-invalidate

modes of operation. We also designed a deterministic

incremental merge scheme that can provide true write

coherence.

The evaluation showed that vNUMA scales signifi-

cantly better than TreadMarks on HPC workloads, and

equal to distcc on compiles. Database benchmarks

showed the limitations of vNUMA for workloads which

make extensive use of locks.

At the time this project was commenced (2002), Ita-

nium was envisaged as the commodity system of the

future, a 64-bit replacement of x86. This clearly has

not happened, and as such, hardware supporting the

present vNUMA implementation is not exactly consid-

ered “commodity”, widespread deployment of Itanium

systems in HPC environments notwithstanding. We are

therefore investigating a port of vNUMA to AMD64

platforms. Some optimisations, such as those described

in Section 4.3, will not apply there, but there is scope for

other architecture-specific optimisations.

References

[1] James K. Archibald. A cache coherence approach

for large multiprocessor systems. In 2nd Int. Conf.

Supercomp., pages 337–345, 1988.

[2] Amnon Barak, Oren La’adan, and Amnon Shiloh.

Scalable cluster computing with MOSIX for

Linux. In Proceedings of Linux Expo ’99, pages

95–100, 1999.

[3] John K. Bennett, John B. Carter, and Willy

Zwaenepoel. Munin: Distributed shared mem-

ory based on type-specific memory coherence. In

PPOPP, pages 168–176. ACM, 1990.

[4] Brian N. Bershad and Matthew J. Zekauskas. Mid-

way: Shared memory parallel programming with

entry consistency for distributed memory multi-

processors. Technical Report CMU-CS-91-170,

Carnegie Mellon University, 1991.

[5] John B. Carter. Design of the Munin distributed

shared memory system. J. Parall. & Distr. Com-

put., 29:219–227, 1995.

[6] Matthew Chapman. vNUMA: Virtual Shared-

Memory Multiprocessors. PhD thesis, School

Comp. Sci. & Engin., University NSW, Sydney

2052, Australia, Mar 2009.

[7] Matthew Chapman and Gernot Heiser. Implement-

ing transparent shared memory on clusters using

virtual machines. In 2005 USENIX, pages 383–

386, Anaheim, CA, USA, Apr 2005.

[8] Xavier Defago, Andre Schiper, and Peter Urban.

Total order broadcast and multicast algorithms:

Taxonomy and survey. Comput. Surveys, 36:372–

421, 2004.

[9] M. Rasit Eskicioglu, T. Anthony Marsland, Weiwu

Hu, and Weisong Shi. Evaluation of JIAJIA soft-

ware DSM system on high performance computer

architectures. In 32nd HICSS, 1999.

[10] D. Bailey et al. The NAS parallel benchmarks.

Technical Report RNR-94-007, NASA Ames Re-

search Center, Mar 1994.

[11] Brett D. Fleisch and Gerald J. Popek. Mirage:

A coherent distributed shared memory design. In

12th SOSP, pages 211–223, 1989.

[12] Ben Gamsa, Orran Krieger, Jonathan Appavoo,

and Michael Stumm. Tornado: Maximising local-

ity and concurrency in a shared memory multipro-

cessor operating system. In 3rd OSDI, pages 87–

100, New Orleans, LA, USA, Feb 1999.

[13] Ganesh Gopalakrishnan, Dilip Khandekar, Ravi

Kuramkote, and Ratan Nalumasu. Case studies

in symbolic model checking. Technical Report

UUCS-94-009, Dept of Computer Science, Uni-

versity of Utah, 1994.

[14] Charles Gray, Matthew Chapman, Peter Chubb,

David Mosberger-Tang, and Gernot Heiser. Ita-

nium — a system implementor’s tale. In 2005

28	 2009 USENIX Annual Technical Conference	 USENIX Association

USENIX, pages 264–278, Anaheim, CA, USA,

Apr 2005.

[15] Zhiyi Huang, Wenguang Chen, Martin Purvis, and

Weimin Zheng. VODCA: View-oriented, dis-

tributed, cluster-based approach to parallel com-

puting. In 6th CCGrid, 2001.

[16] Intel Corp. A Formal Specification of Intel Ita-

nium Processor Family Memory Ordering, Oct

2002. http://www.intel.com/design/

itanium2/documentation.htm.

[17] Intel Corp. Itanium Architecture Soft-

ware Developer’s Manual, Jan 2006.

http://www.intel.com/design/

itanium2/documentation.htm.

[18] Kenji Kaneda. Virtual machine monitor for provid-

ing a single system image. http://web.yl.

is.s.u-tokyo.ac.jp/˜kaneda/dvm/.

[19] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas,

and Willy Zwaenepoel. Treadmarks: Distributed

shared memory on standard workstations and op-

erating systems. In 1994 Winter USENIX, pages

115–131, 1994.

[20] R.E. Kessler and Miron Livny. An analysis of dis-

tributed shared memory algorithms. In 9th ICDCS,

pages 498–505, 1989.

[21] Leslie Lamport. Time, clocks, and the ordering of

events in a distributed system. CACM, 21:558–565,

1978.

[22] Joshua LeVasseur, Volkmar Uhlig, Yaowei Yang,

Matthew Chapman, Peter Chubb, Ben Leslie, and

Gernot Heiser. Pre-virtualization: soft layering for

virtual machines. In Y-C Chung and J Morris,

editors, 13th IEEE Asia-Pacific Comp. Syst. Arch.

Conf, pages 1–9, Hsinchu, Taiwan, Aug 2008.

IEEE Computer Society Press.

[23] Kai Li and Paul Hudak. Memory coherence in

shared virtual memory systems. Trans. Comp.

Syst., 7:321–59, 1989.

[24] Daniel J. Magenheimer and Thomas W. Christian.

vBlades: Optimised paravirtualisation for the Ita-

nium processor family. In 3rd USENIX-VM, pages

73–82, 2004.

[25] Paul E. McKenney and John D. Slingwine. Read-

copy update: Using execution history to solve con-

currency problems. In 10th IASTED Int. Conf. Par-

all. & Distr. Comput. & Syst., Las Vegas, NV, USA,

Oct 1998.

[26] Message Passing Interface Forum. MPI: A

message-passing interface standard, Nov 2003.

[27] Christine Morin, Renaud Lottiaux, Geoffroy

Vallée, Pascal Gallard, David Margery, Jean-Yves

Berthou, and Isaac D. Scherson. Kerrighed and

data parallelism: cluster computing on single sys-

tem image operating systems. In 6th Int. Conf.

Cluster Comput., pages 277–286, 2004.

[28] Bill Nitzberg and Virginia Lo. Distributed shared

memory: A survey of issues and algorithms. IEEE

Comp., 24(8):52–60, Aug 1991.

[29] Martin Pool. distcc, a fast free distributed com-

piler. In 5th Linux.Conf.Au, Jan 2004. http:

//distcc.samba.org/.

[30] PostgreSQL Global Development Group. Post-

greSQL database software. http://www.

postgresql.org/.

[31] Larry Rudolph and Zary Segall. Dynamic decen-

tralized cache schemes for MIMD parallel proces-

sors. In 11th ISCA, pages 340–347, 1984.

[32] The Versatile SMP (vSMP) architecture and solu-

tions based on vSMP Foundation. ScaleMP White

Paper.

[33] Evan Speight and John K. Bennett. Brazos: A third

generation DSM system. In 1st USENIX Windows

NT WS, pages 95–106, 1997.

[34] Alex Vasilevsky. Linux virtualization on Virtual

Iron VFe. In 2005 Ottawa Linux Symp., Jul 2005.

[35] Bruce J. Walker. Open single system image

(openSSI) Linux cluster project. http://www.

openssi.org/ssi-intro.pdf, accessed on

30th September 2008.

[36] Steven Cameron Woo, Moriyoshi Ohara, Evan

Torrie, Jaswinder Pal Singh, and Anoop Gupta.

The SPLASH-2 programs: Characterization and

methodological considerations. In 22nd ISCA,

pages 24–36, 1995.

[37] Matthew J. Zekauskas, Wayne A. Sawdon, and

Brian N. Bershad. Software write detection for a

distributed shared memory. In 1st OSDI, pages 87–

100, 1994.

USENIX Association	 2009 USENIX Annual Technical Conference	 29

ShadowNet: A Platform for Rapid and Safe Network Evolution
Xu Chen Z. Morley Mao Jacobus Van der Merwe
University of Michigan AT&T Labs - Research

Abstract

The ability to rapidly deploy new network services,
service features and operational tools, without impact-
ing existing services, is a significant challenge for all
service providers. In this paper we address this prob-
lem by the introduction of a platform called ShadowNet.
ShadowNet exploits the strong separation provided by
modern computing and network equipment between log-
ical functionality and physical infrastructure. It allows
logical topologies of computing servers, network equip-
ment and links to be dynamically created, and then in-
stantiated to and managed on the physical infrastruc-
ture. ShadowNet is a sharable, programmable and com-
posable infrastructure, consisting of carrier-grade equip-
ment. Furthermore, it is a fully operational network
that is connected to, but functionally separate from the
provider production network. By exploiting the strong
separation support, ShadowNet allows multiple technol-
ogy and service trials to be executed in parallel in a real-
istic operational setting, without impacting the produc-
tion network. In this paper, we describe the ShadowNet
architecture and the control framework designed for its
operation and illustrate the utility of the platform. We
present our prototype implementation and demonstrate
the effectiveness of the platform through extensive eval-
uation.

1 Introduction
Effecting network change is fundamentally difficult.
This is primarily due to the fact that modern networks
are inherently shared and multi-service in nature, and
any change to the network has the potential to negatively
impact existing users and services. Historically, pro-
duction quality network equipment has also been propri-
etary and closed in nature, thus further raising the bar to
the introduction of any new network functionality. The
negative impact of this state of affairs has been widely
recognized as impeding innovation and evolution [23].
Indeed at a macro-level, the status quo has led to calls
for a clean slate redesign of the Internet which in turn has
produced efforts such as GENI [3] and FEDERICA [2].
In the work presented in this paper we recognize that

at a more modest micro-level, the same fundamental
problem, i.e., the fact that network change is inher-
ently difficult, is a major operational concern for service
providers. Specifically, the introduction of new services

or service features typically involves long deployment
cycles: configuration changes to network equipment are
meticulously lab-tested before staged deployments are
performed in an attempt to reduce the potential of any
negative impact on existing services. The same applies
to any new tools to be deployed in support of network
management and operations. This is especially true as
network management tools are evolving to be more so-
phisticated and capable of controlling network functions
in an automated closed-loop fashion [25, 9, 7]. The op-
eration of such tools depends on the actual state of the
network, presenting further difficulties for testing in a
lab environment due to the challenge of artificially recre-
ating realistic network conditions in a lab setting.
In this paper we address these concerns through a plat-

form called ShadowNet. ShadowNet is designed to be an
operational trial/test network consisting of ShadowNet
nodes distributed throughout the backbone of a tier-1
provider in the continental US. Each ShadowNet node
is composed of a collection of carrier-grade equipment,
namely routers, switches and servers. Each node is con-
nected to the Internet as well as to other ShadowNet
nodes via a (virtual) backbone.
ShadowNet provides a sharable, programmable and

composable infrastructure to enable the rapid trial or de-
ployment of new network services or service features,
or evaluation of new network management tools in a re-
alistic operational network environment. Specifically,
via the Internet connectivity of each ShadowNet node,
traffic from arbitrary end-points can reach ShadowNet.
ShadowNet connects to and interacts with the provider
backbonemuch like a customer network would. As such
the “regular” provider backbone, just like it would pro-
tect itself from any other customers, is isolated from the
testing and experimentation that take place within Shad-
owNet. In the first instance, ShadowNet provides the
means for testing services and procedures for subsequent
deployment in a (separate) production network. How-
ever, in time we anticipate ShadowNet-like functionality
to be provided by the production network itself to di-
rectly enable rapid but safe service deployment.
ShadowNet has much in common with other test net-

works [10, 27, 22]: (i) ShadowNet utilizes virtualization
and/or partitioning capabilities of equipment to enable
sharing of the platform between different concurrently
running trials/experiments; (ii) equipment in ShadowNet

30	 2009 USENIX Annual Technical Conference	 USENIX Association

nodes are programmable to enable experimentation and
the introduction of new functionality; (iii) ShadowNet
allows the dynamic composition of test/trial topologies.
What makes ShadowNet unique, however, is that this

functionality is provided in an operational network on
carrier-grade equipment. This is critically important
for our objective to provide a rapid service deploy-
ment/evaluation platform, as technology or service tri-
als performed in ShadowNet should mimic technology
used in the provider network as closely as possible.
This is made possible by recent vendor capabilities that
allow the partitioning of physical routers into subsets
of resources that essentially provide logically separate
(smaller) versions of the physical router [16].
In this paper, we describe the ShadowNet architec-

ture and specifically the ShadowNet control framework.
A distinctive aspect of the control framework is that it
provides a clean separation between the physical-level
equipment in the testbed and the user-level slice speci-
fications that can be constructed “within” this physical
platform. A slice, which encapsulates a service trial, is
essentially a container of the service design including
device connectivity and placement specification. Once
instantiated, a slice also contains the allocated physical
resources to the service trial. Despite this clean separa-
tion, the partitioning capabilities of the underlying hard-
ware allows virtualized equipment to be largely indistin-
guishable from their physical counterparts, except that
they contain fewer resources. The ShadowNet control
framework provides a set of interfaces allowing users to
programmatically interact with the platform to manage
and manipulate their slices.
We make the following contributions in this work:
• Present a sharable, programmable, and composable
network architecture which employs strong separa-
tion between user-level topologies/slices and their
physical realization (§2).

• Present a network control framework that allows
users to manipulate their slices and/or the physical
resource contained therein with a simple interface
(§3).

• Describe physical-level realizations of user-level
slice specifications using carrier-grade equipment
and network services/capabilities (§4).

• Present a prototype implementation (§5) and evalu-
ation of our architecture (§6).

2 ShadowNet overview
In this paper, we present ShadowNet which serves as a
platform for rapid and safe network change. The pri-
mary goal of ShadowNet is to allow the rapid composi-
tion of distributed computing and networking resources,
contained in a slice, realized in carrier-grade facilities
which can be utilized to introduce and/or test new ser-

vices or network management tools. The ShadowNet
control framework allows the network-wide resources
that make up each slice to be managed either collectively
or individually.
In the first instance, ShadowNet will limit new ser-

vices to the set of resources allocated for that purpose,
i.e., contained in a slice. This would be a sufficient so-
lution for testing and trying out new services in a real-
istic environment before introducing such services into
a production network. Indeed our current deployment
plans espouse this approach with ShadowNet as a sep-
arate overlay facility [24] connected to a tier-1 produc-
tion network. Longer term, however, we expect the base
functionality provided by ShadowNet to evolve into the
production network and to allow resources and function-
ality from different slices to be gracefully merged under
the control of the ShadowNet control framework.
In the remainder of this section we first elaborate on

the challenges network service providers face in effect-
ing network changes. We describe the ShadowNet archi-
tecture and show how it can be used to realize a sophis-
ticated service. Several experimental network platforms
are compared against it, and we show that ShadowNet
is unique in terms of its ability to provide realistic net-
work testing. Finally we describe the architecture of the
primary system component, namely the ShadowNet con-
troller.

2.1 Dealing with network change
There are primarily three drivers for changes in modern
service provider networks:

Growth demands: Fueled by an increase in broadband
subscribers and media rich content, traffic volumes on
the Internet continue to show double digit growth rates
year after year. The implication of this is that service
providers are required to increase link and/or equipment
capacities on a regular basis, even if the network func-
tionality essentially stays the same.
New services and technologies: Satisfying customer
needs through new service offerings is essential to the
survival of any network provider. “Service” here spans
the range from application-level services like VoIP and
IPTV, connectivity services like VPNs and IPv4/IPv6
transport, traffic management services like DDoS miti-
gation or content distribution networks (CDNs), or more
mundane (but equally important and complicated) ser-
vice features like the ability to signal routing preferences
to the provider or load balancing features.
New operational tools and procedures: Increasing use
of IP networks for business critical applications is lead-
ing to growing demands on operational procedures. For
example, end-user applications are often very intolerant
of even the smallest network disruption, leading to the

USENIX Association	 2009 USENIX Annual Technical Conference	 31

deployment of methods to decrease routing convergence
in the event of network failures. Similarly, availabil-
ity expectations, in turn driven by higher level business
needs, make regularly plannedmaintenance events prob-
lematic, leading to the development of sophisticated op-
erational methods to limit their impact.

As we have alluded to already, the main concern of
any network change is that it might have an impact on
existing network services, because networks are inher-
ently shared with known and potentially unknown de-
pendencies between components. An example would be
the multi-protocol extensions to BGP to enable MPLS-
VPNs or indeed any new protocol family. The change
associated with rolling out a new extended BGP stack
clearly has the potential to impact existing IPv4 BGP
interactions, as bugs in new BGP software could nega-
tively impact the BGP stack as a whole.
Note also that network services and service fea-

tures are normally “cumulative” in the sense that once
deployed and used, network services are very rarely
“switched off”. This means that over time the dependen-
cies and the potential for negative impact only increases
rather than diminishes.
A related complication associated with any network

change, especially for new services and service features,
is the requirement for corresponding changes to a vari-
ety of operational support systems including: (i) con-
figuration management systems (new services need to
be configured typically across many network elements),
(ii) network management systems (network elements
and protocols need to be monitored and maintained),
(iii) service monitoring systems (for example to ensure
that network-wide service level agreements, e.g., loss,
delay or video quality, are met), (iv) provisioning sys-
tems (e.g., to ensure the timely build-out of popular ser-
vices). ShadowNet does not address these concerns per
se. However, as described above, new operational solu-
tions are increasingly more sophisticated and automated,
and ShadowNet provides the means for safely testing out
such functionality in a realistic environment.
Our ultimate goal with the ShadowNet work is to de-

velop mechanisms and network management primitives
that would allow new services and operational tools to be
safely deployed directly in production networks. How-
ever, as we describe next, in the work presented here we
take the more modest first step of allowing such actions
to be performed in an operational network that is sepa-
rate from the production network, which is an important
transitional step.

2.2 ShadowNet architecture
Different viewpoints of the ShadowNet network archi-
tecture are shown in Figures 1(a) and (b). Figure 1(a)
shows the topology from the viewpoint of the tier-1

����������

���������
����

���������
����

���������
���� ���������

����

����������������������
�����������
���������
������������

������������

������������������

���������
����

���������
����

���������
����

�����������������

���������
����

Figure 1: ShadowNet network viewpoints

������������������

���������
����������

������

�����������
������

���� ����������������������

�������

�����������������
��������

����
����
�����

��������

������������
������
������
������
������

������
������
������
������

������

Figure 2: ShadowNet functional architecture

provider. ShadowNet nodes connect to the provider net-
work, but are essentially separate from it. Each Shad-
owNet node has connectivity to other ShadowNet nodes
as well as connectivity to the Internet. As shown in Fig-
ure 1(b), connectivity to other ShadowNet nodes effec-
tively creates an overlay network [24] to form a virtual
backbone among the nodes. Via the provided Internet
connectivity, the ShadowNet address space is advertised
(e.g., using BGP) first to the provider network and then
to the rest of the Internet. Thus ShadowNet effectively
becomes a small provider network itself, i.e., a shadow
of the provider network.
The ShadowNet functional architecture is shown in

Figure 2. Each ShadowNet node contains different types
of computing and networking devices, such as servers,
routers, and switches. Combined with the network con-
nectivity received from the ISP, they complete the phys-
ical resource for ShadowNet. ShadowNet manages the
physical resources and enables its users to share them.
The devices provide virtualization/partitioning capabili-
ties so that multiple logical devices can share the same
underlying physical resource. For example, modern
routers allow router resources to be partitioned so that
several logical routers can be configured to run simulta-
neously and separately on a single physical router [16].

32	 2009 USENIX Annual Technical Conference	 USENIX Association

(Note that modern routers are also programmable in both
control and data planes [18].) Logical interfaces can
be multiplexed from one physical interface via config-
uration and then assigned to different logical routers.
We also take advantage of virtual machine technology
to manage server resources [5]. This technology en-
ables multiple operating systems to run simultaneously
on the same physical machine and is already heavily
used in cloud computing and data-center environments.
To facilitate sharing connectivity, the physical devices in
each ShadowNet node are connected via a configurable
switching layer, which shares the local connectivity, for
example using VLANs. The carrier-supporting-carrier
capabilities enabled by MPLS virtual private networks
(VPNs) [11, 15] offer strong isolation and are therefore
an ideal choice to create the ShadowNet backbone.

As depicted in Figure 2, central to ShadowNet func-
tionality is the ShadowNet Controller. The controller
facilitates the specification and instantiation of a ser-
vice trial in the form of a slice owned by a user. It
provides a programmatic application programming in-
terface (API) to ShadowNet users, allowing them to cre-
ate the topological setup of the intended service trial or
deployment. Alternatively users can access ShadowNet
through a Web-based portal, which in turn will interact
with the ShadowNet Controller via the user-level API.
The ShadowNet Controller keeps track of the physical
devices that make up each ShadowNet node by con-
stantly monitoring them, and further manages and ma-
nipulates those physical devices to realize the user-level
APIs, while maintaining a clean separation between the
abstracted slice specifications and the way they are re-
alized on the physical equipment. The user-level APIs
also enable users to dynamically interact with and man-
age the physical instantiation of their slices. Specifically,
users can directly access and configure each instantiated
logical device.

ShadowNet allows a user to deactivate individual de-
vices in a slice or the slice as a whole, by releasing the
allocated physical resources. ShadowNet decouples the
persistent state from the instantiated physical devices, so
that the state change associated with a device in the spec-
ification is maintained even if the physical instantiation
is released. Subsequently, that device in the specification
can be re-instantiated (assuming that sufficient resources
are available), the saved state restored and thus the user
perceived slice remains intact. For example, the config-
uration change made by the user to a logical router can
be maintained and applied to a new instantiated logical
router, even if the physical placement of that logical de-
vice is different.

������������

���

������

���

�

�����

�����
�������

������������

���

������

���

�����

���

���
���

��

�

�

��������
�������� ��������

��������

��������
��������

Figure 3: Usage scenario: load-aware anycast CDN.

2.3 Using ShadowNet
In this section we briefly describe an example usage sce-
nario that illustrates the type of sophisticated network
services that can be tested using the ShadowNet infras-
tructure. We discuss the requirements for testing these
services and explain why existing platforms fall short in
these scenarios.
Assume that ShadowNet is to be used to run a cus-

tomer trial of a load-aware anycast content distribution
network (CDN) [9]. Figure 3 depicts how all the com-
ponents of such a CDN can be realized on the Shad-
owNet platform. Specifically, a network, complete with
provider edge (PE) and core (C) routers, can be dynami-
cally instantiated to represent a small backbone network.
Further, servers in a subset of the ShadowNet nodes can
be allocated and configured to serve as content caches.
A load-aware anycast CDN utilizes route control to in-
form BGP selection based on the cache load, i.e., using
BGP, traffic can be steered away from overloaded cache
servers. In ShadowNet, this BGP speaking route control
entity can be instantiated on either a server or a router de-
pending on the implementation. Appropriate configura-
tion/implementation of BGP, flow-sampling, and server
load monitoring complete the infrastructure picture. Fi-
nally, actual end-user requests can be directed to this in-
frastructure, e.g., by resolving a content URL to the any-
cast address(es) associated with and advertised by the
CDN contained in the ShadowNet infrastructure.
Using this example we can identify several capabili-

ties required of the ShadowNet infrastructure to enable
such realistic service evaluation (see Table 1): (i) to gain
confidence in the equipment used in the trial it should
be the same as, or similar to, equipment used in the pro-
duction network (production-grade devices); (ii) to thor-
oughly test load feedback mechanisms and traffic steer-
ing algorithms, it requires participation of significant
numbers of customers (realistic workloads); (iii) this in
turn requires sufficient network capacity (high capacity
backbone); (iv) realistic network and CDN functionality

USENIX Association	 2009 USENIX Annual Technical Conference	 33

SN EL PL VN
Production grade devices Y N N N
Realistic workloads Y N Y Y
High capacity backbone Y N N Y
Geographical coverage Y N Y Y
Dynamic reconfiguration Y N N N

Table 1: Capability comparison between ShadowNet
(SN), EmuLab (EL), PlanetLab (PL) and VINI (VN)

require realistic network latencies and geographic distri-
bution (geographic coverage); (v) finally, the CDN con-
trol framework could dynamically adjust the resources
allocated to it based on the offered load (dynamic recon-
figuration).
While ShadowNet is designed to satisfy these require-

ments, other testing platforms, with different design
goals and typical usage scenarios, fall short in provid-
ing such support, as we describe next.

Emulab achieves flexible network topology through
emulation within a central testbed environment. There
is a significant gap between emulation environments and
real production networks. For example, software routers
typically do not provide the same throughput as pro-
duction routers with hardware support. As EmuLab is
a closed environment, it is incapable of combining real
Internet workload into experiments. Compared to Em-
uLab, the ShadowNet infrastructure is distributed, thus
the resource placement in ShadowNet more closely re-
sembles future deployment phases. In EmuLab, an ex-
periment in a slice is allocated a fixed set of resources
during its life cycle — a change of specification would
require a “reboot” of the slice. ShadowNet, on the other
hand, can change the specification dynamically. In the
CDN example, machines for content caches and net-
work links can be dynamically spawned or removed in
response to increased or decreased client requests.

PlanetLab has been extremely successful in academic
research, especially in distributed monitoring and P2P
research. It achieves its goal of amazing geographical
coverage, spanning nodes to all over the globe, obtain-
ing great end-host visibility. The PlanetLab nodes, how-
ever, are mostly connected to educational networks with-
out abundant upstream or downstream bandwidth. Plan-
etLab therefore lacks the capacity to realize a capable
backbone between PlanetLab nodes. ShadowNet, on the
other hand, is built upon a production ISP network, hav-
ing its own virtual backbone with bandwidth and latency
guarantees. This pushes the tested service closer to the
core of the ISP network, where the actual production ser-
vice would be deployed.

VINI is closely tied with PlanetLab, but utilizes In-
ternet2 to provide a realistic backbone. Like EmuLab

Figure 4: The ShadowNet controller

and PlanetLab, VINI runs software routers (XORP and
Click), the forwarding capacity of which lags behind
production devices. This is mostly because its focus is to
use commodity hardware to evaluate new Internet archi-
tectures, which is different from the service deployment
focus of ShadowNet. VINI and PlanetLab are based on
the same control framework. Similar to EmuLab, it lacks
the capability of changing slice configurations dynam-
ically, i.e., not closing the loop for more adaptive re-
source management, a functionality readily available in
ShadowNet.

2.4 The ShadowNet Controller
The ShadowNet controller consists of a user-level man-
ager, a physical-level manager, a configuration effector
and a device monitor, as shown in Figure 4. We describe
each component below. The current ShadowNet design
utilizes a centralized controller that interacts with and
controls all ShadowNet nodes.

2.4.1 User-level manager
The user-level manager is designed to take the input of
user-level API calls. Each API call corresponds to an
action that the users of ShadowNet are allowed to per-
form. A user can create a topological specification of a
service trial (§3.1), instantiate the specification to physi-
cal resources (§3.2), interact with the allocated physical
resources (§3.3), and deactivate the slice when the test
finishes (§3.4). The topology specification of a slice is
stored by the user-level manager in persistent storage,
so that it can be retrieved, revived and modified over
time. The user-level manager also helps maintain and
manage the saved persistent state from physical instan-
tiations (§3.3). By retrieving saved states and applying
them to physical instantiations, advanced features, like
device duplication, can be enabled (§3.5).
The user-level manager is essentially a network ser-

vice used to manipulate configurations of user experi-
ments. We allow the user-level manager to be accessed
from within the experiment, facilitating network control

34	 2009 USENIX Annual Technical Conference	 USENIX Association

in a closed-loop fashion. In the example shown in Fig-
ure 3, the route control component in the experiment can
dynamically add content caches when user demand is
high by calling the user-level API to add more comput-
ing and networking resource via the user-level manager.

2.4.2 Physical-level manager
The physical-level manager fulfills requests from the
user-level manager in the form of physical-level API
calls by manipulating the physical resources in Shad-
owNet. To do this, it maintains three types of informa-
tion: 1) “static” information, such as the devices in each
ShadowNet node and their capabilities; 2) “dynamic”
information, e.g., the online status of all devices and
whether any interface modules are not functioning; 3)
“allocation” information, which is the up-to-date usage
of the physical resources. Static information is changed
when new devices are added or old devices are removed.
Dynamic information is constantly updated by the de-
vice monitor. The three main functions of the physical-
level manager is to configure physical devices to spawn
virtualized device slivers (§4.1) for the instantiation of
user-level devices (§4.1.1) and user-level connectivities
(§4.1.2), to manage their states (§4.4) and to delete ex-
isting instantiated slivers. A sliver is a share of the phys-
ical resource, e.g., a virtual machine or a sliced physical
link. The physical-level manager handles requests, such
as creating a VM, by figuring out the physical device to
configure and how to configure it. The actual manage-
ment actions are performed via the configuration effec-
tor module, which we describe next.

2.4.3 Configuration effector
The configuration effector specializes in realizing con-
figuration changes to physical devices. Configlets are
parametrized configuration or script templates, saved in
the persistent storage and retrieved on demand. To real-
ize the physical-level API calls, the physical-level man-
ager decides the appropriate configlet to use and gener-
ates parameters based on the request and the physical re-
source information. The configuration effector executes
the configuration change on target physical devices.

2.4.4 Device monitor
A device monitor actively or passively determines the
status of physical devices or components and propagates
this “dynamic” information to the physical-level man-
ager. Effectively, the device monitor detects any phys-
ical device failures in real time. As the physical-level
manager receives the update, it can perform appropri-
ate actions to mitigate the failure. The goal is to mini-
mize any inconsistency of physical instantiation and user
specifications. We detail the techniques in §4.5. Device
or component recovery can be detected as well, and as

Figure 5: The slice life cycle

S1

NY

Internet

R3

M5 M6

L5 L6

TX

Internet

R2

M3 M4

L3 L4

CA

Internet

R1

M1 M2

L1 L2

L7

L10

L8 L9

L11 L12 L13 L14 L15

$SL = AddUsrSlice();
$S1 = AddUsrSwitch($SL);
$R1 = AddUsrRouter($SL,"CA");
$M1 = AddUsrMachine($SL,"CA","Debian");
$M2 = AddUsrMachine($SL,"CA","Windows");
$L1 = AddUsrLink($M1,$R1); # similar for M2
$L10 = AddUsrLink($M1,$S1); # similar for M2
$L7 = AddToInternet($R1, "141.212.111.0/24");
similar for "TX" and "NY"

Figure 6: Example of user-level API calls

such the recovered resource can again be considered us-
able by the physical-level manager.

3 Network service in a slice
A user of ShadowNet creates a service topology in the
form of a slice, which is manipulated through the user-
level API calls supported by the ShadowNet controller.
The three layers embedded in a slice and the interactions
among them are depicted in Figure 5 and detailed below.
In this section, we outline the main user-exposed func-
tionalities that the APIs implement.

3.1 Creating user-level specification
To create a new service trial, an authorized user of Shad-
owNet can create a slice. As a basic support, and usu-
ally the first step to create the service, the user speci-
fies the topological setup through the user-level API (a
in Figure 5). As an example, Figure 6 depicts the in-
tended topology of a hypothetical slice and the API call
sequence that creates it.
The slice created acts like a placeholder for a collec-

tion of user-level objects, including devices and connec-
tivities. We support three generic types of user-level de-
vices (UsrDevice): router (UsrRouter), machine (Usr-
Machine), and switch (UsrSwitch). Two UsrDevices can
be connected to each other via a user-level link (Usr-
Link). User-level interfaces (UsrInt) can be added to

USENIX Association	 2009 USENIX Annual Technical Conference	 35

a UsrDevice explicitly by the slice owner; however, in
most cases, they are created implicitly when a UsrLink
is added to connect two UsrDevices.
Functionally speaking, a UsrMachine (e.g., M1 in

Figure 6) represents a generic computing resource,
where the user can run service applications. A Us-
rRouter (e.g., R1) can run routing protocols, forward
and filter packets, etc. Further, UsrRouters are pro-
grammable, allowing for custom router functionality. A
UsrLink (e.g., L1) ensures that when the UsrDevice on
one end sends a packet, the UsrDevice on the other
end will receive it. A UsrSwitch (e.g., S1) provides a
single broadcast domain to the UsrDevices connecting
to it. ShadowNet provides the capability and flexibil-
ity of putting geographically dispersed devices on the
same broadcast domain. For example, M1 to M6, al-
though specified in different locations, are all connected
to UsrSwitch S1. Besides internal connectivity among
UsrDevices, ShadowNet can drive live Internet traffic
to a service trial by allocating a public IP prefix for a
UsrInt on a UsrDevice. For example, L7 is used to
connect R1 to the Internet, allocating an IP prefix of
141.212.111.0/24.
Besides creating devices and links, a user of Shad-

owNet can also associate properties with different ob-
jects, e.g., the OS image of a UsrMachine and the IP
addresses of the two interfaces on each side of a Usr-
Link. As a distributed infrastructure, ShadowNet allows
users to specify location preference for each device as
well, e.g., California forM1,M2 andR1. This location
information is used by the physical layer manager when
instantiation is performed.

3.2 Instantiation
A user can instantiate some or all objects in her slice
onto physical resources (b in Figure 5). From this point
on, the slice not only contains abstracted specification,
but also has associated physical resources that the in-
stantiated objects in the specification are mapped to.
ShadowNet provides two types of instantiation strate-

gies. First, a user can design a full specification for the
slice and instantiate all the objects in the specification
together. This is similar to what Emulab and VINI pro-
vide. As a second option, user-level objects in the speci-
fication can be instantiated upon request at any time. For
example, they can be instantiated on-the-fly as they are
added to the service specification.This is useful for users
who would like to build a slice interactively and/or mod-
ify it over time, e.g., extend the slice resources based on
increased demand.
Unlike other platforms, such as PlanetLab and Emu-

Lab, which intend to run as many “slices” as possible,
ShadowNet limits the number of shares (slivers) a phys-
ical resource provides. This simplifies the resource al-

location problem to a straightforward availability check.
We leave more advanced resource allocation methods as
future work.

3.3 Device access & persistent slice state
ShadowNet allows a user to access the physical instanti-
ation of the UsrDevices and UsrLinks in her slice, e.g.,
logging into a router or tapping into a link (c in Figure 5).
This support is necessary for many reasons. First, the
user needs to install software on UsrMachines or Usr-
Routers and/or configure UsrRouters for forwarding and
filtering packets. Second, purely from an operational
point of view, operators usually desire direct access to
the devices (e.g., a terminal window on a server, or com-
mand line access to a router).
For UsrMachines and UsrRouters, we allow users to

log into the device and make any changes they want
(§4.3). For UsrLinks and UsrSwitches, we provide
packet dump feeds upon request (§4.3). This support
is crucial for service testing, debugging and optimiza-
tion, since it gives the capability and flexibility of sniff-
ing packets at any place within the service deployment
without installing additional software on end-points.
Enabling device access also grants users the ability to

change the persistent state of the physical instantiations,
such as files installed on disks and configuration changes
on routers. In ShadowNet, we decouple the persistent
states from the physical instantiation. When the physical
instantiation is modified, the changed state also become
part of the slice (d in Figure 5).

3.4 Deactivation
The instantiated user-level objects in the specification
of a slice can be deactivated, releasing the physical in-
stantiations of the objects from the slice by giving them
back to the ShadowNet infrastructure. For example, a
user can choose to deactivate an under-utilized slice as
a whole, so that other users can test their slices when
the physical resources are scarce. While releasing the
physical resource, we make sure the persistent state is
extracted and stored as part of the slice (f in Figure 5).
As a result, when the user decides to revive a whole slice
or an object in the slice, new physical resources will be
acquired and the stored state associated with the object
applied to it (e in Figure 5). Operationally speaking, this
enables a user to deactivate a slice and reactivate it later,
most likely on a different set of resources but still func-
tioning like before.

3.5 Management support
Abstracting the persistent state from the physical instan-
tiation enables other useful primitives in the context of
service deployment. If we instantiate a new UsrDevice
and apply the state of an existing UsrDevice to it, we ef-

36	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 7: Network connectivity options.

fectively duplicate the existing UsrDevice. For example,
a user may instantiate a new UsrMachine with only the
basic OS setup, log into the machine to install necessary
application code and configure the OS. With the support
provided by ShadowNet, she can then spawn several new
UsrMachines and apply the state of the first machine.
This eases the task of creating a cluster of devices serv-
ing similar purposes. From the ShadowNet control as-
pect, this separation allows sophisticated techniques to
hide physical device failures. For example, a physical
router experiences a power failure, while it hosts many
logical routers as the instantiation of UsrRouters. In this
case, we only need to create new instantiations on other
available devices of the same type, and then apply the
states to them. During the whole process, the slice spec-
ification, which is what the user perceives, is intact. Nat-
urally, the slice will experience some downtime as a re-
sult of the failure.

4 Physical layer operations
While conceptually similar to several existing sys-
tems [10, 27], engineering ShadowNet is challenging
due to the strong isolation concept it rests on, the
production-grade qualities it provides and the distributed
nature of its realization. We describe the key methods
used to realize ShadowNet.

4.1 Instantiating slice specifications
The slice specification instantiation is performed by the
ShadowNet controller in a fully automated fashion. The
methods to instantiate on two types of resource are de-
scribed as follows.

4.1.1 User-level routers and machines
ShadowNet currently utilizes VirtualBox [5] from Sun
Microsystems, and Logical Routers [16] from Juniper
Networks to realize UsrMachines and UsrRouters re-
spectively. Each VM and logical router created is con-
sidered as a device sliver. To instantiate a UsrRouter
or a UsrMachine, a ShadowNet node is chosen based
on the location property specified. Then all matching
physical devices on that node are enumerated for avail-

ability checking, e.g., whether a Juniper router is capa-
ble of spawning a new logical router. When there are
multiple choices, we distribute the usage across devices
in a round-robin fashion. Location preference may be
unspecified because the user does not care about where
the UsrDevice is instantiated, e.g., when testing a router
configuration option. In this case, we greedily choose
the ShadowNet node where that type of device is the
least utilized. When no available resource can be allo-
cated, an error is returned.

4.1.2 User-level connectivity
The production network associated with ShadowNet
provides both Internet connection and virtual backbone
connectivity to each ShadowNet node. We configure a
logical router, which we call the head router of the Shad-
owNet node, to terminate these two connections. With
the ShadowNet backbone connectivity provided by the
ISP, all head routers form a full-mesh, serving as the
core routers of ShadowNet. For Internet connectivity,
the head router interacts with ISP’s border router, e.g.,
announcing BGP routes.
Connecting device slivers on the same ShadowNet

node can be handled by the switching layer of that node.
The head routers are used when device slivers across
nodes need to be connected. In ShadowNet, we make
use of the carrier-supporting-carrier (CsC) capabilities
provided by MPLS enabled networks. CsC utilizes the
VPN service provided by the ISP, and stacks on top of
it another layer of VPN services, running in parallel but
isolated from each other. For example, layer-2 VPNs (so
called pseudo-wire) and VPLS VPNs can be stacked on
top of a layer-3 VPN service [15].
This approach has three key benefits. First, each

layer-2 VPN or VPLS instance encapsulates the network
traffic within the instance, thus provides strong isolation
across links. Second, these are off-the-shelf production-
grade services, which are much more efficient than man-
ually configured tunnels. Third, it is more realistic for
the users, because there is no additional configuration
needed in the logical routers they use. The layer-2
VPN and VPLS options that we heavily use in Shad-
owNet provides layer-2 connectivity, i.e., with router
programmability, any layer-3 protocol besides IP can run
on top of it.
Figure 7 contains various examples of enabling con-

nectivity, which we explain in detail next.
UsrLink: To instantiate a UsrLink, the instantiations of
the two UsrDevices on the two ends of the UsrLink are
first identified. We handle three cases, see Figure 7a).
(We consider the UsrLinks connected to a UsrSwitch
part of that UsrSwitch, which we describe later):

1) Two slivers are on the same physical device: for
example, V M1 and V M2 are on the same server; LR2

USENIX Association	 2009 USENIX Annual Technical Conference	 37

and Head1 are on the same router. In this case, we use
local bridging to realize the UsrLink.
2) Two slivers are on the same ShadowNet node, but
not the same device: for example, V M1 and LR1,
LR1 and LR2. We use a dedicated VLAN on that node
for each UsrLink of this type, e.g.,, LR1 will be config-
ured with two interfaces, joining two different VLAN
segments, one for the link to V M1, the other one to
LR2.
3) Two slivers are on different nodes: for example,
LR2 and LR3. In this case, we first connect each sliver
to its local head router, using the two methods above.
Then the head router creates a layer-2 VPN to bridge the
added interfaces, effectively creating a cross-node tunnel
connecting the two slivers.

In each scenario above, the types of the physical inter-
faces that should be used to enable the link are decided,
the selected physical interfaces are configured, and the
resource usage information of the interfaces is updated.
MPLS-VPN technologies achieve much higher lev-

els of realism over software tunnels, because almost no
configuration is required at the end-points that are be-
ing connected. For example, to enable the direct link
between LR2 and LR3, the layer-2 VPN configuration
only happens on Head1 and Head2. As a result, if the
user logs into the logical router LR2 after its creation,
she would only sees a “physical” interface setup in the
configuration, even without IP configured, yet that inter-
face leads to LR3 according to the layer-2 topology.
User-view switches: Unlike for UsrMachines and Usr-
Routers, ShadowNet does not allocate user-controllable
device slivers for the instantiation of UsrSwitches, but
rather provide an Ethernet broadcasting medium. (See
Figure 7b).)
To instantiate a UsrSwitch connecting to a set of Us-

rDevices instantiated on the same ShadowNet node, we
allocate a dedicated VLAN-ID on that node and config-
ure those device slivers to join the VLAN (i.e., LR5 and
LR6). If the device slivers mapped to the UsrDevices
distribute across different ShadowNet nodes, we first
recursively bridge the slivers on the same node using
VLANs, and then configure one VPLS-VPN instance on
each head router (i.e., Head3 and Head4) to bridge all
those VLANs. This puts all those device slivers (i.e.,
V M3, LR5, LR6) onto the same broadcast domain.
Similar to layer-2 VPN, this achieves a high degree of
realism, for example on LR5 and LR6, the instantiated
logical router only shows one “physical” interface in its
configuration.
Internet access: We assume that ShadowNet nodes can
use a set of prefixes to communicate with any end-points
on the Internet. The prefixes can either be announced
through BGP sessions configured on the head routers to

the ISP’s border routers, or statically configured on the
border routers.
To instantiate a UsrDevice’s Internet connectivity, we

first connect the UsrDevice’s instantiation to the head
router on the same node. Then we configure the head
router so that the allocated prefix is correctly forwarded
to the UsrDevice over the established link and the route
for the prefix is announced via BGP to the ISP. For ex-
ample, a user specifies two UsrRouters connecting to the
Internet, allocating them with prefix 136.12.0.0/24
and 136.12.1.0/24. The head router should in turn
announce an aggregated prefix 136.12.0.0/23 to
the ISP border router.

4.2 Achieving isolation and fair sharing
As a shared infrastructure for many users, ShadowNet
attempts to minimize the interference among the physi-
cal instantiation of different slices. Each virtual machine
is allocated with its own memory address space, disk im-
age, and network interfaces. However, some resources,
like CPU, are shared among virtual machines, so that
one virtual machine could potentially drain most of the
CPU cycles. Fortunately, virtual machine technology is
developing better control over CPU usage of individual
virtual machines [5].
A logical router on a Juniper router has its own config-

uration file and maintains its own routing table and for-
warding table. However, control plane resources, such
as CPU and memory are shared among logical routers.
We evaluate this impact in §6.3.
The isolation of packets among different UsrLinks is

guaranteed by the physical device and routing protocol
properties. We leverage router support for packet filter-
ing and shaping, to prevent IP spoofing and bandwidth
abusing. The corresponding configuration is made on
head routers, where end-users cannot access. For each
UsrLink, we impose a default rate-limit (e.g., 10Mbps),
which can be upgraded by sending a request via the user-
level API. We achieve rate limiting via hardware traffic
policers [19] and Linux kernel support [4].

4.3 Enabling device access
Console or remote-desktop access: For each VM run-
ning on VirtualBox, a port is specified on the hosting
server to enable Remote Desktop protocol for graphical
access restricted to that VM. If the user prefers command
line access, a serial port console in the VM images is en-
abled and mapped to a UNIX domain socket on the host-
ing machine’s file system [5]. On a physical router, each
logical router can be configured to be accessible through
SSH using a given username and password pair, while
confining the access to be within the logical router only.
Though the device slivers of a slice can be connected

to the Internet, the management interface of the actual

38	 2009 USENIX Annual Technical Conference	 USENIX Association

physical devices in ShadowNet should not be. For ex-
ample, the IP address of a physical server should be con-
tained within ShadowNet rather than accessible globally.
We thus enable users to access the device slivers through
one level of indirection via the ShadowNet controller.
Sniffing links: To provide packet traces from a partic-
ular UsrLink or UsrSwitch, we dynamically configure a
SPAN port on the switching layer of a ShadowNet node
so that a dedicated server or a pre-configured VM can
sniff the VLAN segment that the UsrLink or UsrSwitch
is using. The packet trace can be redirected through the
controller to the user in a streaming fashion or saved as
a file for future downloading. There are cases where no
VLAN is used, e.g., for two logical routers on the same
physical router connected via logical tunnel interfaces.
In this case, we deactivate the tunnel interfaces and re-
instantiate the UsrLink using VLAN setup to support
packet capture. This action, however, happens at the
physical-level and thus is transparent to the user-level,
as the slice specification remains intact.

4.4 Managing state
To extract the state of an instantiated UsrMachine, which
essentially is a VM, we keep the hard drive image of
the virtual machine. The configuration file of a logical
router is considered as the persistent state of the corre-
sponding UsrRouter. Reviving stored state for a Usr-
Machine can be done by attaching the saved disk im-
age to a newly instantiated VM. On the other hand, Us-
rRouter state, i.e., router configuration files, need ad-
ditional processing. For example, a user-level inter-
face may be instantiated as interface fe-0/1/0.2 and
thus appear in the configuration of the instantiated log-
ical router. When the slice is deactivated and instan-
tiated again, the UsrInt may be mapped to a different
interface, say ge-0/2/0.1. To deal with this com-
plication, we normalize the retrieved configuration and
replace physical-dependent information with user-level
object handles, and save it as the state.

4.5 Mitigating and creating failures
Unexpected physical device failures can occur, and as an
option ShadowNet tries to mitigate failures as quickly
as possible to reduce user perceived down time. One
benefit of separating the states from the physical instan-
tiation is that we can replace a new physical instantia-
tion with the saved state applied without affecting the
user perception. Once a device or a physical compo-
nent is determined to be offline, ShadowNet controller
identifies all instantiated user-level devices associated to
it. New instantiations are created on healthy physical
devices and saved states are applied if possible. Note
that certain users are specifically interested in observing
service behavior during failure scenarios. We allow the

users to specify whether they want physical failures to
pass through, which is disabling our failure mitigation
functionality. On the other hand, failure can be injected
by the ShadowNet user-level API, for example tearing
down the physical instantiation of a link or a device in
the specification to mimic a physical link-down event.
For physical routers, the device monitor performs pe-

riodic retrieval of the current configuration files, preserv-
ing the states of UsrRouters more proactively. When a
whole physical router fails, the controller creates new
logical routers with connectivity satisfying the topology
on other healthy routers and applies the saved configu-
ration, such as BGP setup. If an interface module fails,
the other healthy interfaces on the same router are used
instead. Note that the head router is managed in the
same way as other logical routers, so that ShadowNet
can also recover from router failures where head routers
are down.
A physical machine failure is likely more catas-

trophic, because it is challenging to recover files from
a failed machine and it is not feasible to duplicate large
files like VM images to the controller. One potential so-
lution is to deploy a distributed file system similar to the
Google file system [13] among the physical machines
within one ShadowNet node. We leave this type of func-
tionality for future work.

5 Prototype Implementation
In this section, we briefly describe our prototype im-
plementation of the ShadowNet infrastructure, including
the hardware setup and management controller.

5.1 Hardware setup
To evaluate our architecture we built two ShadowNet
nodes and deployed them locally. (At the time of writ-
ing, a four node ShadowNet instance is being deployed
as an operational network with nodes in Texas, Illinois,
New Jersey and California. Each node has two giga-
bit links to the production network, one used as regular
peering link and the other used as the dedicated back-
bone.)
Each prototype node has two Juniper M7i routers run-

ning JUNOS version 9.0, one Cisco C2960 switch, as
well as four HP DL520 servers. The M7i routers are
equipped with one or two Gigabit Ethernet PICs (Physi-
cal Interface Cards), FastEthernet PIC, and tunneling ca-
pability. Each server has two gigabit Ethernet interfaces,
and we install VirtualBox in the Linux Debian operating
system to host virtual machines. The switch is capable
of configuring VLANs and enabling SPAN ports.
In the local deployment, two Cisco 7206 routers act as

an ISP backbone. MPLS is enabled on the Cisco routers
to provide layer-3 VPN service as the ShadowNet back-
bone. BGP sessions are established between the head

USENIX Association	 2009 USENIX Annual Technical Conference	 39

router of each node and its adjacent Cisco router, en-
abling external traffic to flow into ShadowNet. We con-
nect the network management interface fxp0 of Ju-
niper routers and one of the two Ethernet interfaces
on machines to a dedicated and separate management
switch. These interfaces are configured with private
IP addresses, and used for physical device management
only, mimicking the out-of-band access which is com-
mon in ISP network management.

5.2 Controller
The ShadowNet controller runs on a dedicated machine,
sitting on the management switch. The controller is
currently implemented in Perl. A Perl module, with
all the user-level APIs, can be imported in Perl scripts
to create, instantiate and access service specifications,
similar to the code shown in Figure 6. A mysql
database is running on the same machine as the con-
troller, serving largely, though not entirely, as the per-
sistent storage connecting to the controller. It saves
the physical device information, user specifications, and
normalized configuration files, etc. We use a differ-
ent set of tables to maintain physical-level information,
e.g.,, phy_device_table, and user-level informa-
tion, e.g.,, usr_link_table. The Perl module re-
trieves information from the tables and updates the ta-
bles when fulfilling API calls.
The configuration effector of the ShadowNet con-

troller is implemented within the Perl module as well.
We make use of the NetConf XML API exposed by Ju-
niper routers to configure and control them. Configlets
in the form of parametrized XML files are stored on
the controller. The controller retrieves the configura-
tion of the physical router in XML format periodically
and when UsrRouters are deactivated. We wrote a spe-
cialized XML parser to extract individual logical router
configurations and normalize relative fields, such as in-
terface related configurations. The normalized config-
urations are serialized in text format and stored in the
mysql database associating to the specific UsrRouter.
Shell and Perl scripts, which wrap the VirtualBox

management interface, are executed on the hosting
servers to automatically create VMs, snapshot running
VMs, stop or destroy VMs. The configuration effector
logs into each hosting server and executes those scripts
with the correct parameters. On the servers, we run
low-priority cron jobs to maintain a fair amount of de-
fault VM images of different OS types. In this case,
the request of creating a new VM can be fulfilled fairly
quickly, amortizing the overhead across time. We use the
following steps to direct the traffic of an interface used
by a VM to a particular VLAN. First, we run tunctl
on the hosting server to create a tap interface, which is
configured in the VMM to be the “physical” interface of

the VM. Second, we make use of 802.1Q kernel mod-
ule to create VLAN interfaces on the hosting server, like
eth1.4, which participates in VLAN4. Finally we use
brctl to bridge the created tap interface and VLAN
interface.
Instead of effecting one configuration change per ac-

tion, the changes to the physical devices are batched and
executed once per device, thus reducing authentication
and committing overheads. All devices are manipulated
in parallel. We evaluate the effectiveness of these two
heuristics in §6.1.
The device monitor module is running as a daemon

on the controller machine. SNMP trap messages are en-
abled on the routers and sent over the management chan-
nel to the controller machine. Ping messages are sent
periodically to all devices. The two sources of infor-
mation are processed in the background by the monitor-
ing daemon. When failures are detected, the monitoring
module calls the physical-level APIs in the Perl module,
which in response populates configlets and executes on
the routers to handle failures. An error message is also
automatically sent to the administrators.

6 Prototype Evaluation
In this section, we evaluate various aspects of Shad-
owNet based on two example slices instantiated on our
prototype. The user specifications are illustrated on the
left side of Figure 8; the physical realization of that spec-
ification is on the right. In Slice1, two locations are
specified, namely LA and NY. On the LA side, one Us-
rMachine (M1) and one UsrRouter (R1) are specified.
R1 is connected to M1 through a UsrLink. R1 is con-
nected to the Internet through L2 and to R2 directly via
L5. The setup is similar on NY side. We use mini-
mum IP and OSPF configuration to enable the correct
forwarding between M1 and M2. Slice2 has essentially
the same setup, except that the two UsrRouters do not
have Internet access.
The right side of Figure 8 shows the instantiation of

Slice1 and Slice2. VM1 and LR1 are the instantiation
of M1 and R1 respectively. UsrLink L1 is instantiated
as a dedicated channel formed by virtualized interfaces
from physical interfaces, eth1 and ge-0/1/0, con-
figured to participate in the same VLAN. To create the
UsrLink L5, ShadowNet first uses logical tunnel inter-
faces to connect LR1 and LR2 with their head routers,
which in turn bridge the logical interfaces using layer-2
VPN.

6.1 Slice creation time
Table 2 shows the creation time for Slice1, broken
down into instantiation of machine and router, along
with database access (DB in the table.) Using a naive
approach, the ShadowNet controller needs to spend 82

40	 2009 USENIX Annual Technical Conference	 USENIX Association

L1

L2 L3

L4

LA NY

M1 R1 M2R2

L5

L6 L8

M3 M4R3 R4

Slice1

Slice2

Internet

L7

Vlan3

Vlan1

LTs

ge-0/1/0

LR1

Head
Internet

VPN

JuniperRouter1

Vlan4

Vlan2

LTs

ge-0/1/0

Internet

VPN

JuniperRouter2

Internet

VPN

Internet

VPN

VM3

VM1

Eth1.3

Eth1.1

Server1

Eth1
VM4

VM2

Eth1.4

Eth1.2

Server2

Eth1

SwitchISPSwitch

LR3 LR4

LR2

Head

LTs stands for Logical Tunnels

For L2VPN that connects LR1 to LR2For L2VPN that connects LR3 to LR4

For Internet access to LR1/LR2

Slice specif ication Actual instant iat ion

Figure 8: User slices for evaluation

Router Machine DB Total
Default (ms) 81834 11955 452 94241
Optimized (ms) 6912 5758 452 7364

Table 2: Slice creation time comparison

bandwidth packet Observed Delta
(Kbps) size bandwidth (%)

56 64 55.9 .18
1500 55.8 .36

384 64 383.8 .05
1500 386.0 .52

1544 64 1537.2 .44
1500 1534.8 .60

5000 1500 4992.2 .16
NoLimit 1500 94791.2 NA

Table 3: Cross-node link stress test

seconds on the physical routers alone by making 13
changes, resulting a 94-second execution time in total.
For machine configuration, two scripts are executed for
creating the virtual machines, and two for configuring
the link connectivity. With the two simple optimization
heuristics described in §5.2, the total execution time is
reduced to 7.4 seconds. Note that the router and ma-
chine configurations are also parallelized, so that we
have total = DB + max(Routeri, Machinej). Par-
allelization ensures that the total time to create a slice
does not increase linearly with the size of the slice. We
estimate creation time for most slices to be within 10
seconds.

6.2 Link stress test
We perform various stress tests to examine ShadowNet’s
capability and fidelity. We make L5 the bottleneck link,
setting different link constraints using Juniper router’s
traffic policer, and then test the observed bandwidth M1
and M2 can achieve on the link by sending packets as
fast as possible. Packets are dropped from the head of
the queue. The results are shown in Table 3, demon-
strating that ShadowNet can closely mimic different link

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

P
ro

ce
ss

in
g

tim
e

(s
ec

on
d)

Routes to receive

w/o impact
w/ impact

(a) Impact of shared control
planes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35 40 45

B
an

dw
id

th
 (k

bp
s)

Time (second)

Packet rate

(b) Hardware failure recovery

Figure 9: Control plane isolation and recovery test.
capacities.
When no constraint is placed on L5, the throughput

achieved is around 94.8Mbps, shown as “NoLimit” in
the table. This is close to maximum, because the routers
we used as ISP cores are equipped with FastEthernet in-
terfaces, which have 100Mbps capacity and the VM is
specified with 100Mbps virtual interface. Physical gi-
gabit switches are usually not the bottleneck, as we ver-
ified that two physical machines on the same physical
machines connected via VLAN switch can achieve ap-
proximately 1Gbps bandwidth.
As we are evaluating on a local testbed, the jitter and

loss rate is almost zero, while the delay is relatively con-
stant. We do not expect this to hold in our wide-area
deployment.

6.3 Slice isolation
We describe our results in evaluating the isolation assur-
ance from the perspectives of both the control and data
plane.

6.3.1 Control plane
To understand the impact of a stressed control plane on
other logical routers, we run software routers, bgpd of
zebra, on both M1 and M3. The two software routers
are configured to peer with the BGP processes on LR1
and LR3. We load the software routers with BGP rout-
ing tables of different sizes, transferred to LR1 and LR3.
The BGP event log on the physical router is analyzed by
measuring the duration from the first BGP update mes-
sage to the time when all received routes are processed.
In Figure 9(a), the bottom line shows the processing

USENIX Association	 2009 USENIX Annual Technical Conference	 41

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400

R
ec

ei
vi

ng
 ra

te
 o

n
M

2
(k

bp
s)

Sending rate on M1 (kbps)

L1
 900

 920

 940

 960

 980

 1000

 0 200 400 600 800 1000 1200 1400

R
ec

ei
vi

ng
 ra

te
 o

n
M

2
(k

bp
s)

Sending rate on M3 (kbps)

L1

(a) Variable packet rate (b) Max packet rate
(L6’s rate is maxed) (L6’s rate is variable)

Figure 10: Data plane isolation test.

time of the BGP process on LR1 to process all the routes
if LR3 is BGP-inactive. The top line shows the process-
ing time for LR1 when LR3 is also actively processing
the BGP message stream. Both processing times in-
crease linearly with the number of routes received. The
two lines are almost parallel, meaning that the delay is
proportional to the original processing time. The differ-
ence of receiving 10k routes is about 13 seconds, 73 sec-
onds for 50k routes. We have verified that the CPU usage
is 100% even if only LR1 is BGP-active. We have also
used two physical machines to peer with LR1 and LR3
and confirmed that the bottleneck is due to the Juniper
router control processor. If these limitations prove to
be problematic in practice, solutions exist which allow a
hardware separation of logical router control planes [17].

6.3.2 Data plane
L1 and L6 share the same physical interfaces, eth1
on Server1 and ge-0/1/0 on JuniperRouter1. We
restrict the bandwidth usage of both L1 and L6 to be
1Mbps by applying traffic policer on the ingress inter-
faces on LR1 and LR3. From the perspective of a given
UsrLink, say L1, we evaluate two aspects: regardless
of the amount of traffic sent on L6, (1) L1 can always
achieve the maximum bandwidth allocated (e.g., 1Mbps
given a 100Mbps interface); (2) L1 can always obtain
its fair share of the link. To facilitate this test, we apply
traffic policer on the ingress interfaces (ge-0/1/0) on
LR1 and LR3, restricting the bandwidth of L1 and L6 to
1Mbps. Simultaneous traffic is sent from M1 via L1 to
M2, and from M3 via L6 to M4.
Figure 10(a) shows the observed receiving rate on M2

(y-axis) as the sending rate of M1 (x-axis) increases,
while M3 is sending as fast as possible. The receiving
rate matches closely with the sending rate, before reach-
ing the imposed 1Mbps limit, This demonstrates that L1
capacity is not affected, even if L6 is maxed out. Fig-
ure 10(b) shows the max rate ofL1 can achieve is always
around 980kbps no matter how fastM2 is sending.

6.4 Device failure mitigation
We evaluate the recovery time in response to a hardware
failure in ShadowNet. While Slice1 is running,M1 con-
tinuously sends packets to M2 via L1. We then phys-

ically yanked the Ethernet cable on the Ethernet mod-
ule ge-0/1/0, triggering SNMP LinkDown trap mes-
sage and the subsequent reconfiguration activity. A sep-
arate interface (not shown in the figure) is found to be us-
able, then automatically configured to resurrect the down
links. Figure 9(b) shows the packet rate that M2 ob-
serves. The downtime is about 7.7 seconds, mostly spent
on effecting router configuration change. Failure detec-
tion is fast due to continuous SNMP messages, and sim-
ilarly controller processing takes less than 100ms. This
exemplifies the benefit of strong isolation in ShadowNet,
as the physical instantiation is dynamically replaced us-
ing the previous IP and OSPF configuration, leaving the
user perceived slice intact after a short interruption. To
further reduce the recovery time, the ShadowNet con-
troller can spread a UsrLink’s instantiation onto multiple
physical interfaces, each of which provides a portion of
the bandwidth independently.

7 Related work
ShadowNet has much in common with other test/trial
networks [10, 27, 22]. However, to our knowledge,
ShadowNet is the first platform to exploit recent ad-
vances in the capabilities of networking equipment to
provide a sharable, composable and programmable in-
frastructure using carrier-grade equipment running on
a production ISP network. This enables a distinct em-
phasis shift from experimentation/prototyping (enabled
by other test networks), to service trial/deployment (en-
abled by ShadowNet). The fact that ShadowNet uti-
lizes production quality equipment frees us from having
to deal with low-level virtualization/partitioning mech-
anisms, which typically form a significant part of other
sharable environments.
A similar service deployment incentive to that es-

poused by ShadowNet was advocated in [21]. Their ser-
vice definition is, however, narrower than ShadowNet’s
scope which also includes network layer services. Ama-
zon’s EC2 provides a platform for rapid and flexible
edge service deployment with a low cost [1]. This plat-
form only rents computing machines with network ac-
cess, lacking the ability to control the networking as-
pects of service testing, or indeed network infrastructure
of any kind. PLayer [14] is designed to provide a flexible
and composable switching layer in data-center environ-
ment. It achieves dynamic topology change with low
cost; however, it is not based on commodity hardware.
Alimi et al. proposed the idea of shadow configura-

tion [8], a new set of configuration files that first run in
parallel with existing configuration and then either com-
mitted or discarded. The shadow configuration can be
evaluated using real traffic load. The downside is that
the separation between the production network and the
shadowed configurationmay not be strongly guaranteed.

42	 2009 USENIX Annual Technical Conference	 USENIX Association

This technique requires significant software and hard-
ware modification on proprietary network devices.
We heavily rely on hardware-based and software-

based virtualization support [6] in the realization of
ShadowNet, for example virtual machines [5] and Ju-
niper’s logical router [16]. The isolation between the
logical functionality and the physical resource can be
deployed to achieve advanced techniques, like router
migration in VROOM [26] and virtual machine migra-
tion [20, 12], which can be used by ShadowNet.

8 Conclusion
In this paper, we propose an architecture called Shad-
owNet, designed to accelerate network change in the
form of new networks services and sophisticated net-
work operation mechanisms. Its key property is that the
infrastructure is connected to, but functionally separated
from a production network, thus enabling more realistic
service testing. The fact that production-grade devices
are used in ShadowNet greatly improves the fidelity and
realism achieved. In the design and implementation
of ShadowNet, we created strong separation between
the user-level representations from the physical-level
instantiation, enabling dynamic composition of user-
specified topologies, intelligent resource management
and transparent failure mitigation. Though ShadowNet
currently provides primitives mainly for service testing
purposes, as a next step, we seek to broaden the applica-
bility of ShadowNet, in particular, to merge the control
framework into the production network for allowing
service deployment.

Acknowledgment: We wish to thank our shepherd
Jaeyeon Jung as well as the anonymous reviewers for
their valuable feedback on this paper.

References
[1] Amazon Elastic Compute Cloud. http://aws.amazon.

com/ec2/.
[2] FEDERICA: Federated E-infrastructure Dedicated to European

Researchers Innovating in Computing network Architectures.
http://www.fp7-federica.eu/.

[3] GENI: Global Environment for Network Innovations. http:
//www.geni.net/.

[4] Traffic Control HOWTO. http://linux-ip.net/
articles/Traffic-Control-HOWTO/.

[5] VirtualBox. http://www.virtualbox.org.
[6] K. Adams and O. Agesen. A comparison of software and hard-

ware techniques for x86 virtualization. In Proceedings of the
12th international conference on Architectural support for pro-
gramming languages and operating systems, 2006.

[7] M. Agrawal, S. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Se-
shan, K. van der Merwe, and J. Yates. Routerfarm: Towards a
dynamic, manageable network edge. SIGCOMM Workshop on
Internet Network Management (INM), September 2006.

[8] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration as
a network management primitive. In Proceedings of ACM SIG-
COMM, Seattle, WA, August 2008.

[9] H. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and J. Van
der Merwe. Anycast CDNs Revisited. 17th International World
Wide Web Conference, April 2008.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford.
In VINI veritas: realistic and controlled network experimenta-
tion. SIGCOMM Comput. Commun. Rev., 36(4):3–14, 2006.

[11] Cisco Systems. MPLS VPN Carrier Supporting Car-
rier. http://www.cisco.com/en/US/docs/ios/12_
0st/12_0st14/feature/guide/csc.html.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
NSDI’05: Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, 2005.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file sys-
tem. SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[14] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switch-
ing layer for data centers. SIGCOMM Comput. Commun. Rev.,
38(4), 2008.

[15] Juniper Networks. Configuring Interprovider and Carrier-of-
Carriers VPNs. http://www.juniper.net/.

[16] Juniper Networks. Juniper Logical Routers. http:
//www.juniper.net/techpubs/software/junos/
junos85/feature-guide-85/id-11139212.html.

[17] Juniper Networks. Juniper Networks JCS 1200 Control Sys-
tem Chassis. http://www.juniper.net/products/
tseries/100218.pdf.

[18] Juniper Networks. Juniper Partner Solution Development Plat-
form. http://www.juniper.net/partners/osdp.
html.

[19] Juniper Networks. JUNOS 9.2 Policy Framework Configura-
tion Guide. http://www.juniper.net/techpubs/
software/junos/junos92/swconfig-policy/
frameset.html.

[20] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent mi-
gration for virtual machines. In ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical Conference,
pages 25–25, Berkeley, CA, USA, 2005. USENIX Association.

[21] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint
for Introducing Disruptive Technology Into the Internet. In Proc.
of ACM HotNets, 2002.

[22] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Expe-
riences building planetlab. In OSDI ’06: Proceedings of the
7th symposium on Operating systems design and implementa-
tion. USENIX Association, 2006.

[23] L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet
Impasse through Virtualization. Proc. of ACM HotNets, 2004.

[24] J. Turner and N. McKeown. Can overlay hosting services
make ip ossification irrelevant? PRESTO: Workshop on Pro-
grammable Routers for the Extensible Services of TOmorrow,
May 2007.

[25] J. E. Van der Merwe et al. Dynamic Connectivity Management
with an Intelligent Route Service Control Point. Proceedings of
ACM SIGCOMM INM, October 2006.

[26] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
ford. Virtual routers on the move: live router migration as a
network-management primitive. SIGCOMM Comput. Commun.
Rev., 38(4), 2008.

[27] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems and
Networks. In Proc. of the Fifth Symposium on Operating Sys-
tems Design and Implementation, 2002.

USENIX Association	 2009 USENIX Annual Technical Conference	 43

Design and implementation of TCP data probes for reliable and
metric-rich network path monitoring

Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang
The Hong Kong Polytechnic University, Hong Kong
{csxluo|cswwchan|csrchang}@comp.polyu.edu.hk

Abstract
Monitoring network services and diagnosing their prob-
lems often require active probing methods. Current prob-
ing methods, however, are becoming unreliable, because
of interferences from various middleboxes, and inad-
equate due to their limited path metrics support. In
this paper, we present the design and implementation
of OneProbe, a new TCP probing method for reliable
and metric-rich path monitoring. We have implemented
HTTP/OneProbe (i.e., OneProbe for HTTP) which sends
TCP data probes containing legitimate HTTP requests to
induce HTTP responses for path measurement. Since the
probing method is based on TCP’s basic data transmis-
sion mechanisms, OneProbe works correctly on all major
operating systems and web server software, and on 93%
of the 37,874 websites randomly selected from the Inter-
net. We also successfully deployed HTTP/OneProbe to
monitor a number of network paths for over a month and
obtained interesting and useful measurement results.

1 Introduction
The ability of measuring a network path’s quality is im-
portant for monitoring service level agreement, choos-
ing the best route, diagnosing performance problems,
and many others. This paper considers active measure-
ment methods that do not require the remote endpoint’s
cooperation in terms of setting up additional software.
A non-cooperative method therefore measures the path
quality solely based on the response packets induced
by its probes. Compared with cooperative methods,
non-cooperative methods offer the potential advantage of
monitoring a large number of paths from a single system.

The design and implementation of a reliable non-
cooperative method is very challenging for the Internet
landscape today. A main challenge is to obtain reliable
measurement in the midst of interferences from various
middleboxes. By reliability, we mean three specific re-
quirements. First, the method can always induce the ex-
pected response packets from the remote endpoints, re-

gardless of their operating systems, for path measure-
ment. Second, the method can measure the path qual-
ity experienced by data packets. Third, the method can
support an adequate sampling rate and sound sampling
patterns for obtaining reliable measurement samples.

However, the most practiced measurement methods
are not reliable according to our definition. Most no-
tably, routers and end hosts do not always respond to
ICMP Ping and Traceroute [24]. Even when ICMP pack-
ets are returned, the Ping measurement results may not
be trustworthy [38], because the ICMP packets and TCP
data packets are processed on different paths in routers.
The same can also be said for the probe and response
packets that are TCP SYNs, TCP RSTs, and TCP ACKs
(pure TCP acknowledgment packets). Other middle-
boxes, such as accelerators, traffic shapers, load balan-
cers, and intrusion detection systems, can further in-
crease the measurement inaccuracy. A related problem
is that their sampling rates cannot be too high.

Another motivation for this work is that an existing
non-cooperative method usually supports a very limited
number of path metrics. As the quality expected from
network paths could be different for various applications,
it is necessary to measure the path quality using as many
metrics as possible. There are three specific shortcom-
ings responsible for the current limitation. First, many
methods, such as Ping, can only measure round-trip path
quality. Second, almost all methods (with the exception
of tulip [26]) only support one or two types of metrics
(e.g., sting [34] for packet loss and POINTER [25] for
packet reordering). Third, all methods cannot measure
path metrics with different response packet sizes (e.g.,
sting measures reverse-path packet loss using only TCP
ACKs).

1.1 A new non-cooperative measurement approach

Our approach to tackling the reliable path monitoring
problem is to conduct measurement in a legitimate TCP
application session and to use TCP data packets for the

44	 2009 USENIX Annual Technical Conference	 USENIX Association

probe and response packets. We avoid using the TCP
ACKs returned from the remote endpoints for measure-
ment, because some systems do not return them. More-
over, TCP ACKs are not reliable, and their packet size
cannot be changed. Using TCP data packets for the probe
and response packets resolves all three problems.

The new TCP data probe is also capable of measuring
multiple path metrics—round-trip time (RTT), forward-
path and reverse-path packet loss rates, and forward-path
and reverse-path packet reordering rates—all at the same
time from the same probe. Therefore, we call this new
TCP probing method OneProbe: the same probe for mul-
tiple path metrics. Although tulip also measures multiple
metrics, it cannot measure some packet loss scenarios
[26]. Moreover, the tulip probes are different for loss
and reordering measurement.

We have implemented HTTP/OneProbe (i.e., One-
Probe for HTTP/1.1) which sends legitimate HTTP GET
requests in the TCP data probes to induce HTTP re-
sponse messages for path measurement. Our validation
results have shown that the TCP data probes work cor-
rectly on all major operating systems and web server
software. It also worked on 93% of the 37,874 web-
sites randomly selected from the Internet. We have also
enhanced the basic HTTP/OneProbe by using concur-
rent TCP connections and TCP timestamps option, and
improving the process of obtaining sufficient HTTP re-
sponses for continuous measurement.

TCP Sidecar [35, 36], a measurement platform based
on TCP, is closest to our work regarding the requirement
of evading middleboxes’ interferences. TCP Sidecar’s
approach is to inject probes into an externally generated
TCP flow. Since the focus of TCP Sidecar is to pro-
vide a platform for unobtrusive measurement, it does not
provide a new probing method to its “passengers.” One-
Probe, on the other hand, establishes a new TCP flow for
measurement and customizes TCP data probes for mea-
suring multiple path metrics.

1.2 Contributions of this work

1. This paper explains why the existing non-
cooperative measurement methods are becoming
unreliable and inadequate for the Internet today and
proposes to use TCP data probes for reliable and
metric-rich path measurement.

2. This paper proposes a new TCP probing method
called OneProbe which sends two TCP data packets
to measure multiple path metrics. The correctness
of the probe responses was validated on operating
systems, web server software, and websites.

3. This paper describes the implementation details of
HTTP/OneProbe, such as the method of obtain-
ing suitable http URLs for measurement and using
HTTP/1.1’s request pipelining to facilitate continu-

ous measurement in a persistent HTTP connection.
4. This paper prescribes three enhancements to the

basic HTTP/OneProbe: improving the process of
inducing HTTP responses, using TCP timestamps
option to enhance the measurement, and employ-
ing concurrent TCP connections to support a higher
sampling rate and different sampling patterns.

5. This paper presents testbed experiment results
for evaluating HTTP/OneProbe’s performance and
measurement accuracy, and our measurement expe-
rience of monitoring network paths for over a month
using HTTP/OneProbe and other tools.

2 Related work
Since OneProbe measures RTT, packet loss, and packet
reordering in an legitimate TCP session, it is mostly
related to several non-cooperative measurement tools:
sting, POINTER, tulip [26], and TCP sidecar.

OneProbe overcomes sting’s two main shortcomings
for loss-only measurement: unreliability due to anoma-
lous probe traffic and a lack of support for variable re-
sponse packet size. The probe packets in sting may be fil-
tered due to their highly unusual patterns (a burst of out-
of-ordered TCP probes with zero advertised window).
The reverse-path loss measurement based on TCP ACKs
may be under-estimated for a larger packet size [15]. We
recently evaluated sting on the set of 37,874 websites
with the two probe packet sizes considered in [34]. With
the 41-byte probes, the sting measurement was unsuc-
cessful for 54.8% of the servers; the non-success rate for
the 1052-byte probes was even close to 100%.

OneProbe overcomes POINTER’s two similar short-
comings for reordering-only measurement. The first
two POINTER methods (ACM and SAM1) send TCP
probe packets with unacceptable acknowledgment num-
bers (ANs) and sequence number (SNs) to induce TCP
ACKs for measurement. Therefore, the probes could be
considered anomalous, and the response packet size can-
not be changed. The third method (SAM2), on the other
hand, sends probes with acceptable SNs but the ANs be-
come unacceptable if the probe packets are reordered.

Tulip, being a hop-by-hop measurement tool, was de-
signed to localize packet loss and reordering events on
network paths, and to measure queueing delay. Tulip’s
loss and reordering measurement, however, is based on
the unwarranted assumption that the remote hosts and
routers support consecutive IPID (IP’s identification) val-
ues. We tested tulip using the same set of web servers for
sting. In our experiments, tulip measured the last hops
of the paths. The tests were unsuccessful for 80% of
the servers for loss and reordering measurement—50%
of them failed to respond to tulip’s UDP probes, and an-
other 30% failed to return consecutive IPID values.

TCP Sidecar provides support for injecting measure-

USENIX Association	 2009 USENIX Annual Technical Conference	 45

ment probes in a non-measurement TCP connection. The
probes are limited to TCP ACKs and replayed TCP data
packets, because they must not interfere with the normal
data transmissions in the TCP connection. As a result,
the probes do not measure all packet loss scenarios and
packet reordering. Due to the same reason, the sampling
pattern and rate cannot be controlled, because a probe is
sent only after the connection is idle for some time (e.g.,
500 milliseconds in [36]).

3 OneProbe
OneProbe is a new probing method operating at the TCP
layer. Each probe consists of two customized TCP data
packets to induce at most two new TCP data packets from
the remote endpoint for path measurement. Moreover,
the probe and response packets carry legitimate applica-
tion data, so that the remote side will perceive the probe
traffic as coming from a legitimate application session.
In a client-server application protocol, the probes usu-
ally carry application requests, and the response packets
contain the requested objects. Therefore, an OneProbe
implementation comprises two main components: One-
Probe and a TCP application-dependent component.

OneProbe can be implemented for any TCP appli-
cation protocol that provides support for requesting
data from the remote endpoint. This paper presents
HTTP/OneProbe (HTTP/OP in short), an OneProbe im-
plementation for HTTP/1.1 [33]. Figure 1 shows the
main components of HTTP/OP. An HTTP/OP user inputs
an http URL, and the probe and response packet sizes
(measured in terms of the IP packet size). The HTTP
helper, an application-dependent component, first comes
up a set of qualified URLs for the specified packet sizes
and then prepares the corresponding HTTP GET mes-
sages. The user may also specify the sampling pattern
and rate which, together with the HTTP GET messages,
are used for OneProbe measurement at the TCP layer.

3.1 The probe design

The probe is the result of several design choices. The first
advantage of using TCP probes (instead of application-
layer probes) is that the same probing mechanism could
be implemented for many TCP application protocols.
TCP probes can also provide more accurate measure-
ment about the network path quality than higher-layer
probes. Moreover, using two packets is a minimum
requirement for packet reordering measurement. For
loss measurement, the second packet can help determine
where—the forward path (from OneProbe to the remote
endpoint) or the reverse path—the first packet is lost.

Another key issue in the probe design is what kind of
response packets to induce from the remote endpoint. To
measure the reverse-path quality with the same types of
metrics, the probe is designed to induce at most two new

TCP

Prepare HTTP GET
requests

Find qualified URLs

HTTP GET requests

Network

HTTP

Probe packets Response packets

OneProbe

User

Sampling rate (e.g.,
2Hz) and sampling

pattern (e.g.,
Poisson)

URL (e.g.,
http://

usenix.org)

Probe and
response packet
sizes (e.g., 1500
and 240 bytes)

H
TTP/O

neProbe

H
TTP helper

Figure 1: The main components of HTTP/OneProbe.

TCP data packets from the remote endpoint. These two
response packets are used for measuring the reverse-path
quality in a similar way as the two probe packets for the
forward-path quality. Furthermore, the response packets
are distinguishable for almost all possible delivery sta-
tuses of the probe and response packets. As a result,
OneProbe can measure both forward-path and reverse-
path quality primarily based on the response packets.

3.2 The probing process

HTTP/OP sends a sequence of probes in a persistent
HTTP connection (over a single TCP connection). Each
probe packet contains a legitimate HTTP request, and
each response packet contains legitimate data requested
by HTTP/OP. To focus on the probing process in this
section, we temporarily ignore the application-level is-
sues and assume that the TCP server always has enough
application data to send back to HTTP/OP. We also post-
pone the explanation on how OneProbe can set the user-
specified packet sizes to section 4.

We use Figure 2 to explain the probing process. De-
note a probe packet by Cm|n and a response packet by
Sm|n. Both packets are TCP data packets, and m and n

are the TCP data segment’s SN and AN, respectively. All
the TCP data segments considered in this paper are of full
size (i.e., the maximum segment size, MSS). Therefore,
we simply use m = 1, 2, · · · to enumerate the server’s
TCP data segments and 1′, 2′, · · · OneProbe’s TCP data
segments. For example, OneProbe sends its fourth data
segment in C4′|2 that also acknowledges the first two
data segments from the server. Moreover, when the AN
is not important, we just use Cm and Sm.

OneProbe customizes and dispatches the successive
probes according to the following three rules:

46	 2009 USENIX Annual Technical Conference	 USENIX Association

P1. (Dispatching a new probe) A new probe is dis-
patched only after receiving two new data segments
from the server and the acknowledgment for the
data segments in the probe.

P2. (Acknowledging one data segment) Each probe
packet acknowledges only one data segment from
the server, although both have been received by the
time of sending the first probe packet.

P3. (Controlling the send window size) The probe pack-
ets advertise a TCP receive window of two segments
in an attempt to constrain the server’s TCP send
window size to two segments.

Figure 2 depicts two successive probe rounds (the first
round denoted by dotted lines and the second by solid
lines). According to P1, OneProbe sends a new probe of
{C3′|1, C4′|2} (for a new probe round) after receiving
S1|1′ and S2|2′. Therefore, the packet transmissions in
the first round do not overlap with that in the next. More-
over, if the server’s congestion window size (cwnd) is at
least two segments, P3 will ensure that its send window
size is set to two segments. Finally, based on P2 and P3,
the server can send only one new data segment after re-
ceiving a probe packet if the probe packets are received
in the original order.

Server

C3'|1 C4'|2

S1|1' S2|2' S3|3' S4|4'

OneProbe
C1 C2 Time

...

' '

Figure 2: Two successive probe rounds in OneProbe.

Although OneProbe manipulates the TCP packet
transmissions according to P1-P3, there are no apparent
anomalies existing in the probe packets. It only appears
to the server that the client has a low receive buffer, and
its send window is always full. Moreover, according to
our measurement experience, the OneProbe transmission
pattern was not construed for an anomalous TCP flow.
We received only a couple of complaints about our mea-
surement activities for the past two years; one of them
came from a website that normally received very few ex-
ternal requests.

3.3 Measuring RTT

OneProbe measures the RTT based on a probe packet
and its induced new data packet (e.g., C3′|1 and S3|3′ in
Figure 2). Therefore, in the absence of packet loss, One-
Probe normally obtains two RTT observations in a probe
round. However, OneProbe uses only the first-probe-
packet-RTT for measurement, because the second probe
packet’s RTT may be biased by the first packet [10].

3.4 Detecting packet loss and reordering events

There are five possible path events regarding the two
probe packets on the forward path:
F0. Both probe packets arrive at the server with the

same order.
FR. Both probe packets arrive at the server with a re-

verse order.
F1. The first probe packet is lost, but the second arrives

at the server.
F2. The first probe packet arrives at the server, but the

second is lost.
F3. Both probe packets are lost.
There are also five similar events for the two new re-

sponse packets on the reverse path: R0, RR, R1, R2,
and R3 (by replacing “probe” with “response” and “the
server” with “OneProbe” in the list above). As a result,
there are 18 possible loss-reordering events, as shown in
Table 1: the 17 events indicated

√
and one event for F3

(there is no
√

, because this is a forward-path-only event).
Others indicated by – are obviously not possible.

Table 1: The 18 possible loss-reordering events for the two probe pack-
ets and two response packets.

R0 RR R1 R2 R3
F0

√ √ √ √ √

FR
√ √ √ √ √

F1
√ √ √ √ √

F2
√

–
√

– –

F3 – – – – –

OneProbe can detect almost all the 18 path events
based on the response packets. Considering the
{C3′|1, C4′|2} probe in Figure 2, Table 2 summarizes
the response packets induced for the 18 cases based on
RFC 793 [20]. In addition to the new data segments 3
and 4, the server may retransmit old data segments 1,
2, and 3, and we use �Sm|n to refer to a data retrans-
mission. Since the server responses are based on TCP’s
two basic mechanisms: acknowledgment-clocked trans-
missions and timeout-based retransmissions, all operat-
ing systems are expected to produce the same responses.

Figure 2 has already illustrated the event F0×R0; Fig-
ure 3 (C1′ and C2′ are omitted) illustrates four other
cases: FR×R0, F1×R0, F2×R0, and F3. The rest can
be easily constructed from the illustrations for these five
events. Note that, because of P1, the server retransmits
old data segments in all four cases. The main purpose for
withholding a new probe, even after receiving two new
data segments (e.g., in the events FR×R0 and F1×R0), is
to induce retransmissions for path event differentiation.

USENIX Association	 2009 USENIX Annual Technical Conference	 47

Server

C3'|1 C4'|2

S1|1' S2|2' S3|2' S4|2'

OneProbe

(a) FR R0

S3|4'

C3'|1 C4'|2

S1|1' S2|2' S3|2' S4|2'

(b) F1 R0

S3|2'

C3'|1 C4'|2

S1|1' S2|2' S3|3'

(c) F2 R0

S2|3'

C3'|1 C4'|2

S1|1' S2|2'

(d) F3

S1|2'
Timeout Timeout TimeoutTimeout

X X X

Time

...

Figure 3: OneProbe’s packet transmissions for the path events FR×R0, F1×R0, F2×R0, and F3×R0.

Table 2: The response packets induced by the {C3′|1, C4′|2} probe
for the 18 path events according to RFC 793.

Path events 1st response 2nd response 3rd response
packets packets packets

1. F0×R0 S3|3′ S4|4′ –
2. F0×RR S4|4′ S3|3′ –
3. F0×R1 S4|4′ �S3|4′ –
4. F0×R2 S3|3′ �S3|4′ –
5. F0×R3 �S3|4′ – –

6. FR×R0 S3|2′ S4|2′ �S3|4′

7. FR×RR S4|2′ S3|2′ �S3|4′

8. FR×R1 S4|2′ �S3|4′ –
9. FR×R2 S3|2′ �S3|4′ –
10. FR×R3 �S3|4′ – –

11. F1×R0 S3|2′ S4|2′ �S3|2′

12. F1×RR S4|2′ S3|2′ �S3|2′

13. F1×R1 S4|2′ �S3|2′ –
14. F1×R2 S3|2′ �S3|2′ –
15. F1×R3 �S3|2′ – –

16. F2×R0 S3|3′ �S2|3′ –
17. F2×R1 �S2|3′ – –

18. F3 �S1|2′ – –

3.4.1 Distinguishability of the path events

The different combinations of the SN and AN in the re-
sponse packets enable OneProbe to distinguish almost all
the 18 path events. It is not difficult to see, by sorting Ta-
ble 2 according to the three response packets, that each
sequence of the response packets matches uniquely to a
path event, except for the following three cases:
A1. F1×R2 and F1×R3: These two events cannot be

distinguished based on the response packets, be-
cause S3|2′ and �S3|2′ are identical, and the server
may retransmit more than once.

A2. F1×RR and F1×R1: The reasons for their indistin-
guishability are similar to that for A1.

A3. F0×R3 and FR×R3: Both events have the same re-
sponse packet �S3|4′.

The ambiguities in A1 and A2 make the delivery sta-
tus of S3|2′ uncertain. The ambiguity in A3, on the
other hand, makes the probe’s order of arrival uncertain.
Our current implementation disambiguates A1 and A2
by measuring the time required for S3|2′ (or �S3|2′) to
arrive. It usually takes a much longer time to receive

�S3|2′, the retransmission of S3|2′.
3.5 Assistance from TCP ACKs
Recall that an important design choice for OneProbe is
not to rely on TCP ACKs. However, some ACKs, if
received by OneProbe, can assist in detecting the path
events. There are two such ACKs: out-of-ordered-packet
ACK (OOP-ACK) and filling-a-hole ACK (FAH-ACK).
Referring to Figure 3(a), the early arrival of C4′|2 could
immediately trigger an OOP-ACK, whereas the late ar-
rival of C3′|1 could immediately trigger an FAH-ACK.
According to our measurement, some systems did not
return the OOP-ACK, but all the systems tested returned
the FAH-ACK.

Even though the system responses regarding the FAH-
ACK are uniform, OneProbe still does not rely on it for
measurement, because it could be lost. Instead, One-
Probe exploits these ACKs, if received, to enhance its
measurement. The first is using the FAH-ACK to accel-
erate the detection of the forward-path reordering events
(i.e., FR×∗) without waiting for the data retransmissions.
The second is using the FAH-ACK to disambiguate A3
that is the only unresolved case. An arrival of FAH-ACK,
in addition to �S3|4′, clearly signals an FR×R3 event.
3.6 Starting a new probe round
Out of the 18 path events, only the path events 1-2 ful-
fill the conditions for dispatching a new probe in P1 im-
mediately after receiving two response packets. More-
over, path events 3 and 6-8 fulfill the conditions imme-
diately after receiving a data retransmission. However,
the condition is not met for the rest (i.e., events 4-5 and
9-18). Another related problem is that the server’s cwnd
is dropped to one segment for all the path events that
involve timeout-based retransmissions (i.e., path events
3-18).

To address the two problems that prevent OneProbe
from starting a new probe round, OneProbe will first
send one or more new TCP ACKs to increase the server’s
cwnd back to two for path events 3-18. After re-
ceiving two new data segments, OneProbe dispatches a
new probe: {C5′, C6′} for events 3-10, {C4′, C5′} for
events 16-17, and {C3′, C4′} for event 18. Handling
events 11-15 is more complicated. If a new probe of

48	 2009 USENIX Annual Technical Conference	 USENIX Association

{C3′, C4′} were used, the server will drop C4′, because
it has already been received. The current implementa-
tion restarts the connection when encountering these path
events. A better approach is to retransmit C3′ with the
respective ANs and to use a new probe of {C5′, C6′}.

3.7 Sampling the packet loss and reordering rates

OneProbe samples the packet loss and reordering rates
from consecutive probe rounds. Similar to the RTT mea-
surement, OneProbe uses only the first packet for the loss
measurement. After conducting a number of consecutive
probe rounds, say 120, over one minute, OneProbe com-
putes the forward-path (and reverse-path) loss rate by di-
viding the number of the first-probe-packet-loss events
(and the first-response-packet-loss events) by 120. One-
Probe computes the packet reordering rates in a similar
manner.

4 HTTP/OneProbe
We have implemented HTTP/OP as a user-level tool
(around 8000 lines of C code) on unmodified Linux 2.6
kernel. As shown in Figure 1, HTTP/OP consists of two
main components: HTTP helper and OneProbe. HTTP
helper handles the issues concerning the HTTP 1.1 pro-
tocol, whereas OneProbe implements OneProbe. This
section considers a basic HTTP/OP that utilizes a persis-
tent HTTP/1.1 connection.

4.1 The HTTP helper

The HTTP helper’s main tasks include finding one or
more qualified http URLs for the user-specified packet
sizes and preparing the HTTP GET requests for them.
Figure 4 shows that HTTP/OP sends an initial HTTP
GET request for a qualified url-1 in C0′. The server
replies with an HTTP response message sent in S1, S2,
· · ·. HTTP/OP also sends the same request in all subse-
quent probe packets. Note that before sending the first
probe {C1′, C2′}, HTTP/OP sends an ACK to ramp up
the server’s cwnd to two segments. Therefore, C0′ and
S1-S3 are not used for OneProbe measurement.

Web
server

H
TT

P
G

ET
ur

l-1

C0'

S1 S2

HTTP/
OP C2'

S4 S5

...

HTTP response message for url-1 ...

C1'

H
TT

P
G

ET
ur

l-1
H

TT
P

G
ET

ur
l-1

S3

ACK
Preparation phase

C4'C3'
Probing phase

Figure 4: HTTP/OP sends HTTP GET requests for url-1 for OneProbe
measurement.

4.1.1 Finding qualified http URLs

An http URL is considered qualified if its HTTP GET
request can be retrofitted into a probe packet, and the
GET request can induce at least five response packets
from the server. A minimum of five response packets is
required because of the three additional response pack-
ets for the cwnd ramp-up. Let Zp and Zr be the user-
specified probe packet size and response packet size,
respectively. Therefore, the length of the HTTP GET
request for a qualified URL will not exceed Zp − 40
bytes (assuming a 40-byte TCP/IP header). Moreover,
the length of corresponding HTTP response message, in-
cluding the response header and message body, must be
at least 5 × (Zr − 40) bytes.

Checking the length of the GET request is simple. Ver-
ifying whether a user-specified URL meets the size re-
quirement for the response packets, however, requires
some work. If the Content-Length header field is
present in the HTTP response message, the length is just
a sum of the field value and the response header’s length.
Otherwise, the helper will download the entire HTTP re-
sponse message to determine the length. If no qualified
URL can be obtained, the helper will perform web crawl-
ing to retrieve all the available URLs, starting at the root
of the web server and down to a certain depth level (five
for our case). Our implementation for the web crawling
process is based on the recursive retrieval technique im-
plemented in Wget [17].

Besides, the HTTP GET request for a qualified URL
must induce a 200(OK) response. We purposely do not
use those with 404(Not Found) responses in order
not to cause security alerts on the site. We also avoid us-
ing HTTP response messages that do not have a message
body (e.g., 304(Not Modified)).

4.1.2 Preparing the HTTP GET requests

To craft a Zp-byte probe packet for an HTTP request,
the helper expands the packet size through the Referer
field. Since some web servers only accept requests re-
ferred from their own web pages, the helper first appends
the requested URL to the Referer field to avoid block-
ing. If the packet size still falls short, the helper further
appends a customized string consisting of a probe ID and
an email address for our project (for lodging a complaint
[18]) repeatedly until reaching the packet size. More-
over, to reduce the delay in dispatching the probes due
to possible context switching, the HTTP helper has pre-
pared the HTTPGET requests for the qualified http URLs
before starting the OneProbe measurement.

HTTP/OP exploits HTTP/1.1’s request pipelining to
include a GET message in each probe packet for path
measurement. The pipelined HTTP GET requests could
be for a single or multiple URLs. There are also other al-
ternatives, such as sending a large GET message in sev-

USENIX Association	 2009 USENIX Annual Technical Conference	 49

eral probe packets or including multiple GET messages
in a probe packet. But we did not adopt them, because
they are either delaying the return of the response packets
or introducing too many request messages.

Moreover, an HTTP response message usually will not
fully occupy the last response packet. Therefore, a full-
sized response packet may contain data from two HTTP
response messages. However, we have also observed
that some response packets are not full-sized packets, be-
cause they contain only the last chunks of the response
messages. Our current implementation will close the
connection whenever detecting a small segment and ig-
nore the probe rounds involving small segments. A bet-
ter approach is perhaps to continue the next probe round
using the next HTTP response message in the same con-
nection.

4.2 An implementation of OneProbe

OneProbe manages the measurement in two levels:
session and TCP connection. An OneProbe session
could involve concurrent TCP connections (see section
5.3 for this enhancement). Figure 5 shows OneProbe’s
main tasks for a TCP connection in two consecutive
phases: preparation and probing. The preparation phase
is for performing the ground works for the probing phase.
In the probing phase, OneProbe dispatches the probes
containing the HTTP GET requests that have been pre-
pared by the HTTP helper, analyzes the response pack-
ets, and terminates the connection when the session ends
or encounters exceptions. OneProbe also includes a di-
agnosis module to detect self-induced packet losses.

Ramping up
the server's
cwnd

Configuring
the probe and

response
packet sizes

Sending the
probe and

analyzing the
results

No probe task

Getting the
next probe

task

Preparing for
the next probe

task
No exception

Terminating
the TCP

connection

Exception or Done

OK

Preparation phase Probing phase

Start

Figure 5: OneProbe’s major tasks in the preparation and probing
phases for a TCP connection.

4.2.1 Session management

There are two mains tasks in the session management.
The first task is that OneProbe establishes and main-
tains a system-configurable number of TCP connections
for a measurement session (one connection for the ba-
sic HTTP/OP). As a second task, OneProbe prepares a
probe schedule according to the user-specified sampling
pattern and rate before starting the measurement. The

schedule contains a list of probe tasks, each of which in-
cludes a dispatch time and a probe number. The probe
tasks are enqueued to a probe-schedule queue as soon as
they are generated. OneProbe currently supports peri-
odic and Poisson sampling, and it is not difficult to admit
others. For the Poisson sampling, our implementation is
based on the method 3 in RFC 2330 [31] which elimi-
nates possible timing errors in dispatching the probes.

4.2.2 The preparation phase

OneProbe configures the probe and response packet
sizes during the TCP three-way handshake. OneProbe
advertises its MSS (say MSSc) in the TCP SYN seg-
ment to control the size of the server’s response pack-
ets. From the TCP SYN/ACK segment returned by
the server, OneProbe learns the server’s advertised
MSS (say MSSs). As a result, Zp must be less than
MSSs +40 bytes, and Zr = min{MSSc, MSSs}+40
bytes. Therefore, OneProbe can dictate the server’s re-
sponse packet size by advertising an MSSc < MSSs.

Another purpose of this phase, as already shown in
Figure 4, is to ramp up the server’s cwnd to two seg-
ments for starting the first probe round. If the server’s
initial cwnd is at least two segments (detected by receiv-
ing two response packets after the initial HTTP GET re-
quest), then the first probe round can be started without
sending the ACK.

4.2.3 The probing phase

Preparing for the probes The probing phase starts as
soon as receiving two response packets from the server
(see Figure 4). To dispatch a probe, OneProbe first
retrieves a probe task from the probe-schedule queue.
Moreover, any slipped probe task, for which its dispatch
time has already passed the current time, will be removed
from the queue and discarded. When the probe schedule
is empty, OneProbe closes the TCP connection.

After obtaining a probe task, OneProbe uses
clock nanosleep() in time.h to perform a high-
resolution sleep until reaching the dispatch time. Upon
waking up, OneProbe draws a pair of HTTP GET re-
quests randomly from the list of the GET requests already
prepared by the HTTP helper and sends each in a probe
packet. To ensure a successful delivery of the probe to
the network, OneProbe captures each dispatched probe
packet using libpcap.
Dispatching the probes Similar to other measuring sys-
tems, such as Scriptroute [37], we have used Linux
raw socket to craft and send the probe packets, and the
libpcap 1.0.0 library to capture the probe and response
packets. As a result of bypassing Linux’s normal TCP/IP
processing, the kernel is unaware of OneProbe’s TCP
connections and will therefore respond with a TCP RST
for each response packet received. Our implementation

50	 2009 USENIX Annual Technical Conference	 USENIX Association

blocks the RST traffic using Linux’s iptables.
Another important issue is to timestamp each probe

and response packet accurately for the RTT measure-
ment. Since we have already used libpcap to capture
packets, we use the timestamp from the pcap pkthdr
structure of each probe and response packet to measure
the RTT with microsecond resolution. An alternative is
to use the recently proposed TSC clock [14] that provides
a highly accurate timing information through the kernel
timestamping, but accessing it requires a kernel patch.
The user-level timestamp from gettimeofday(), on
the other hand, is unreliable, because its accuracy can be
affected by system’s context switching.
Analyzing the response packets OneProbe cap-
tures the response packets (and probe packets) using
libpcap and writes all the captured packets to a dump
file (which can be opened by pcap dump offline()
available in the libpcap library) for analysis.
OneProbe determines the path event based on the se-
quence of response packets in Table 2 and the assistance
of TCP ACKs discussed in section 3.5. It also measures
the first-probe-packet-RTT from the packet timestamps.
In processing the response packets, OneProbe also fil-
ters packets irrelevant to the measurement, such as TCP
window updates. Furthermore, OneProbe computes
from a consecutive number of probe rounds the statis-
tical metrics (in terms of, e.g., mean and median) for the
RTT, loss rates, and reordering rates.
OneProbe supports both online and offline process-

ing of the response packets. The online processing is
possible, because OneProbe only needs to identify the
TCP data packet received from the server. However, we
have set the default processing to offline mainly for pre-
venting the processing workload from influencing the
probing process. Another advantage of the offline ap-
proach is to facilitate a more accurate (as compared with
the online approach) disambiguation of A1 and A2 based
on the RTT samples collected in the measurement (as
discussed in section 3.4).

4.2.4 Diagnosing self-induced packet losses

OneProbe performs a self-diagnosis to confirm that the
measurement is free of self-induced packet losses. For
the forward-path measurement, failures of sending out
the probe packets are still possible, despite that the im-
plementation always validates the successful invocation
of the sendto() function. To detect these self-induced
losses, OneProbe uses libpcap to verify the deliv-
ery of each outgoing probe packet to the network. For
the reverse-path measurement, self-induced losses could
also occur to the response packets due to insufficient
buffer space. OneProbe monitors the ps drop vari-
able returned by the libpcap’s pcap stats() func-
tion to detect such losses.

5 Enhancements
This section describes three enhancements to the basic
HTTP/OP presented in the last section. The first en-
hancement is to improve the process of inducing suffi-
cient HTTP responses. We have implemented additional
mechanisms to prevent web servers from compressing
the requested objects and to use unqualified URLs for
measurement. The second is to disambiguate A3 using
TCP timestamps option. The third enhancement is using
multiple TCP connections in a measurement session to
satisfy the user-specified sampling rate and pattern. With
a single TCP connection, the sampling rate is constrained
to at most one per RTT, and the RTT variations also make
it difficult to realize the user-specified sampling pattern.

5.1 Improving the HTTP response solicitation

Avoiding message compression The first improvement
is to prevent web servers from compressing HTTP re-
sponses which, for example, is performed by Apache
server’s mod deflate module [1]. The compressed
responses could affect OneProbe measurement, be-
cause the expected number of response packets for
a qualified URL may be reduced. Therefore, each
HTTP GET request specifies Accept-Encoding:
identity;q=1, *;q=0, where identity;q=1
indicates that the identity encoding (i.e., no trans-
formation) should be performed on the entity of the
response, and *;q=0 means avoiding other encoding
methods.
Using unqualified URLs for measurement As a sec-
ond improvement, HTTP/OP exploits the range request
feature in HTTP/1.1 to use unqualified URLs for path
measurement. A range request can be used to request
multiple overlapped ranges of the same web object from
a web server that accepts range requests. Therefore, even
an unqualified URL can be “expanded” to fulfill the min-
imum size requirement for the response packet.

We have implemented this enhancement in the HTTP
helper which can verify whether the server supports the
range request via the Accept-Ranges header field in
the HTTP response message. If the HTTP helper cannot
find any qualified URL but discover that the server sup-
ports the range request feature, it will craft a range re-
quest as discussed above to induce HTTP response mes-
sages for OneProbe measurement.

5.2 Using TCP timestamps to disambiguate A3

In addition to the FAH-ACK, we have proposed and im-
plemented a method to disambiguate A3 using the TCP
timestamps option [21]. In this enhancement, each probe
packet contains a distinct timestamp in the TCP option
field. If the server also supports the TCP timestamps op-
tion, it will retain the timestamp received from the most
recent probe packet that advances its receive window and

USENIX Association	 2009 USENIX Annual Technical Conference	 51

echo it in its next response packet. Therefore, the server
retains C4′’s timestamp for the case of F0×R3 and C3′’s
timestamp for the case of FR×R3. As a result, the two
path events can be distinguished based on the different
timestamps in �S3|4′.
5.3 Using multiple TCP connections
To extend the basic HTTP/OP to using N TCP connec-
tions, we have used the POSIX Threads (pthreads)
library to create and manage multiple threads. A sin-
gle thread is used for managing the measurement ses-
sion, and N worker threads are created for managing the
TCP connections separately. OneProbe also monitors
the health of the connections to ensure that there are al-
ways N TCP connections available throughout the mea-
surement session.

Since some web servers may limit the number of con-
current TCP connections initiated from an IP address,
OneProbe assigns randomly selected source IP ad-
dresses from an address pool to the N connections. Our
experience shows that N = 10 is sufficient for support-
ing periodic sampling with a rate of two probes per sec-
ond. A higher N , however, is expected for Poisson sam-
pling because of the high inter-probe delay variability.

6 Evaluation
This section presents three sets of evaluation results. The
first one evaluates whether different systems and web
servers respond to OneProbe’s probes correctly. The sec-
ond evaluates how the latency induced by web servers
will affect the accuracy of the HTTP/OP measurement.
The final set evaluates the effect of the HTTP/OP mea-
surement on the system resource consumption in the
measuring system and web servers.

6.1 Validation of OneProbe
We have designed a small, but just sufficient, suite of val-
idation tests (called Validator) for OneProbe. A system
or web server that passes all the tests can be used by One-
Probe for path measurement. Table 3 describes the four
validation tests V0-V2 that “simulate” the forward-path
events F0-F2, respectively. Same as OneProbe, Validator
constrains the server’scwnd to two segments. Moreover,
Validator does not acknowledge the response data pack-
ets in order to simulate reverse-path losses. Therefore,
the data retransmissions are expected to be the same as
in Table 2. Note that these tests for reverse-path losses
have already covered the test for F3, because withholding
the next probe is the same as losing it.

6.1.1 Results for operating systems and web servers
We applied Validator to test the major operating systems
and web server software listed in Table 4. Three tri-
als were performed for each system and server. A test
was considered successful if all four validation tests were

Table 3: A suite of four validation tests performed by Validator.

Tests Testing Expected packets Expected data
probes induced from server retransmissions

V0. {C3′, C4′} {S3|3′, S4|4′} �S3|4′

VR. {C4′, C3′} {S3|2′, S4|2′} �S3|4′

V1. C4′ only {S3|2′, S4|2′} �S3|2′

V2. C3′ only S3|3′ �S2|3′

passed in at least one trial. The validation results were all
successful.

Table 4: The 39 systems and 35 web server software that passed the
OneProbe validation tests.

Systems tested
in our lab.:

FreeBSD v4.5/4.11/5.5/6.0/6.2, Linux kernel
v2.4.20/2.6.5/2.6.11/2.6.15/2.6.18/2.6.20, MacOSX
10.4 server, NetBSD 3.1, OpenBSD 4.1, Solaris
10.1, Windows 2000/XP/Vista

Systems tested
in the Internet:

AIX, AS/400, BSD/OS, Compaq Tru64, F5 Big-
IP, HP-UX, IRIX, MacOS, NetApp NetCache, Net-
Ware, OpenVMS, OS/2, SCO Unix, Solaris 8/9,
SunOS 4, VM, Microsoft Windows NT4/98/Server
2003/2008

Servers tested
in our lab.:

Abyss, Apache, Lighttpd, Microsoft IIS, Nginx

Servers tested
in the Internet:

AOLserver, Araneida, Apache Tomcat, GFE, GWS-
GRFE, IBM HTTP Server, Jetty, Jigsaw, LiteSpeed,
Lotus-Domino, Mongrel, Netscape-Enterprise, Om-
niSecure, Oracle HTTP Server, Orion, Red Hat Se-
cure, Redfoot, Roxen, Slinger, Stronghold, Sun Java
System, thttpd, Twisted Web, Virtuoso, WebLogic,
WebSiphon, Yaws, Zeus, Zope

6.1.2 Results for web servers in the Internet
In spite of the successful results above, OneProbe may
still not be supported on some Internet paths because
of middleboxes and customized TCP/IP stacks. We
therefore extended the validation tests to websites in
the Internet. We ran the Larbin web crawler [6] with
slashdot.org as the starting URL (the same method
used in [35]) to obtain 241,906 domain names and then
randomly selected 38,069 websites from them. Based on
the Netcraft database [29], the web servers came from 87
geographical locations, covering the 39 systems in Table
4 and 117 web server software. After excluding 195 of
them that reset the TCP connections, we report the re-
sults from the remaining 37,874 websites below.
Successful (93.00%) These servers passed all tests.
Failures in the preparation phase (1.03%) These web-
sites failed to return the expected {S1, S2}. Therefore,
OneProbe could not start the probing phase.
Failures in test V0 (0.26%) Most websites in this
set replied with {S3|4′, S4|4′}, instead of the expected
{S3|3′, S4|4′}. That is, they sent response packets after
receiving both probe packets.
Failures in test VR (5.71%) Some websites appeared

52	 2009 USENIX Annual Technical Conference	 USENIX Association

to have received an order-intact probe because of
two kinds of response packets received from them:
{S3|3′, S4|4′} and {S3|4′, S4|4′}. Another set replied
with {S3|3′, S4|3′}; such behavior is similar to the prob-
lem of “failure to retain above sequence data” reported in
[30]. The final set replied with {S3|2′, S4|2′}, showing
that they did not receive the reordered C3′, possibly due
to packet drop by firewalls and intrusion detection sys-
tems. For example, Cisco IOS firewall drops reordered
packets before release 12.4(11)T [13].

Since all the websites that failed test V1 also failed test
VR, these failures are classified only under test VR.

6.2 Latency introduced by web servers

A common problem for non-cooperative measurement
tools is that their delay measurement could be affected by
the remote endpoint’s loading. In particular, a busy web
server can introduce substantial latency during HTTP
transaction processing [8].

6.2.1 Testbed and experiment setup

We setup a testbed to evaluate the impact of server-
induced latency on the HTTP/OP measurement. The
testbed consisted of a web server running Apache v2.2.3
and a probe sender where HTTP/OP and other measure-
ment tools resided. Both machines were connected to
each other through a router, which ran Click v1.6 [22]
in kernel mode to emulate a fixed RTT of 25 millisec-
onds between them. Each machine, including the router,
was equipped with a 1.7GHz Pentium 4 processor with
256MB memory running Linux v2.6.18 and connected
to a 100Mbits/s LAN.

By adopting the approach described in [8], we set up
two Surge web load generators [7] in separate machines
that were directly connected to the web server. We ex-
perimented with a light load (20 Surge users from each
generator) and a heavy load (260 Surge users from each
generator). Each generator generated requests for objects
selected from a set of 2000 distinct static files with size
ranging from 78 bytes to 3.2MB. We conducted the same
set of experiments for HTTP/OP and httping [19]. We
included httping, because it is a common HTTP-based
ping tool which uses HTTP HEAD and GET requests as
probes to induce HTTP responses for RTT and round-trip
loss measurement.

We restricted both HTTP/OP and httping to request-
ing five static text files of 20KB, 200KB, 2MB, 10MB,
and 100MB available in the web server. We launched
HTTP/OP using 30 TCP connections and periodic sam-
pling with a rate of 20Hz (one probe every 50 millisec-
onds). All probe and response packets were 240 bytes in
length. For httping, we used the default sampling rate of
1Hz and HEAD requests and responses for measurement.
The httping’s probe and response packet sizes depended

on the URL specified in the HTTP request and the corre-
sponding response.

For each load environment, we obtained the server-
induced latency by measuring the difference between the
arrival time of a probe packet at the server and the time of
sending out the response packet that it has induced. Be-
sides for HTTP/OP and httping, we measured the server-
induced latency also for the initial HTTP request sent
out in the HTTP/OP’s preparation phase. As discussed
in section 4.1, this request is used for ramping up the
server’s cwnd, therefore not used for measurement. We
installed tcpdump at the server to capture all network
traffic to and from the probe sender until we had obtained
150 latency samples for each experiment.

6.2.2 Server-induced latency

Figure 6 plots the cumulative distribution function (CDF)
of the server-induced latency for HTTP/OP, httping, and
HTTP/OP’s initial HTTP GET request under the light and
heavy loads. The figure shows a significant latency oc-
curred to both httping and the initial HTTP GET request.
This start-up latency was reported for the Apache 1.3.0
architecture [8]. A similar delay of several milliseconds
was also observed for a Google server to send out the
first response packet for a request [12].

For the httping and initial HTTPGET request measure-
ment, the server is required to invoke several expensive
system calls (such as, read() and stat()) for process-
ing the first request. Using the strace utility [4], we
confirmed that the system calls invoked in the user space
before sending out the response message was responsi-
ble for the start-up latency [2]. Besides, the start-up la-
tency could last even longer because of additional back-
end server operations (e.g., the query delay of a Google
search [12]).

HTTP/OP, on the other hand, avoids the substantial
start-up latency, because it does not use the initial HTTP
GET request for measurement. Moreover, when the
first probe round starts, the response packets can be in-
duced immediately after receiving a new TCP acknowl-
edgment in a probe packet. Therefore, the overhead for
the HTTP/OP measurement mainly comes from the data
copying between the kernel space and devices. Accord-
ing to the strace results, the overhead of the data copy
operations was low, because it was performed by invok-
ing sendfile() to copy data from the file descriptor for
the response message directly to a socket interface within
the kernel.

Figure 6 also shows a much higher server-induced la-
tency under heavy load for the httping and initial HTTP
GET request measurement. The reason is that the server
has less system resources for the start-up processing of
httping’s HEAD request and the initial HTTP GET re-
quest. By avoiding the start-up latency, the HTTP/OP

USENIX Association	 2009 USENIX Annual Technical Conference	 53

0 0.5 1 1.5 2 2.50
0.2
0.4
0.6
0.8

1

Server−induced latency (milliseconds)

C
D

F
HTTP/OP (heavy)HTTP/OP (light)

httping (heavy)

HTTP/OP’s initial GET (heavy)
HTTP/OP’s initial GET (light)

httping (light)

Figure 6: Server-induced latency experienced by HTTP/OP, httping,
and HTTP/OP’s initial HTTP GET request under light and heavy loads.

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

Server−induced latency (microseconds)

C
D

F

10MB
2MB
20KB

(a) Light server load

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

Server−induced latency (microseconds)

C
D

F

10MB
2MB
20KB

(b) Heavy server load

Figure 7: CDFs of the server-induced latency experienced by
HTTP/OP.

measurement is also much less susceptible to the server
load, as shown in Figure 6.

6.2.3 Effect of object size on server-induced latency

To evaluate the effect of the object size on the server-
induced latency, we plot in Figure 7(a) (for light load)
and Figure 7(b) (for heavy load) the CDFs of the server-
induced latencies for the HTTP/OP measurement based
on 4500 samples. For the sake of clarity, we show the re-
sults only for 20KB, 2MB, and 10MB. The observations
obtained from them also hold for 200KB and 100MB.
Both figures show that the server-induced latency dur-

ing the HTTP/OP measurement was very small: 80% of
the samples were less than 30 microseconds. Therefore,
the server-induced latency had negligible effect on the
RTT measurement accuracy. Moreover, under a heavy
server load, the latency was higher for a smaller object
size, because HTTP/OP requested the server to load the
requested objects more often. Under a light server load,
however, the latency differences for the three object sizes
were not significant. As a result, the server loading had
more impact on the HTTP/OP measurement for small ob-
jects. Similar observations were reported in [8].

6.3 Resource consumptions of HTTP/OneProbe

6.3.1 System resources

Another important evaluation concerns the amount of
system resources consumed by the HTTP/OP measure-
ment in the probe sender and web server. We employed
the same testbed but with different parameter settings.
The web server hosted ten 61MB tarballs for retrieval.
We ran HTTP/OP on the probe sender to randomly re-
quest the ten tarballs for 240 seconds using 1, 10, and 100

TCP connections and periodic sampling with five differ-
ent rates: {1, 5, 10, 50, 100, 150}Hz. The probe and re-
sponse packets had the same packet size of 1500 bytes.

We used vmstat [3] to measure the CPU and mem-
ory utilizations consumed by all Apache processes in
the web server every second. At the same time, we
measured the utilizations consumed by HTTP/OP in the
probe sender. During the measurement, we ensured that
no other routine processes were executed on both ma-
chines. Table 5 shows that the CPU utilizations were
very low in all cases. Even when HTTP/OP used 100
concurrent TCP connections with a fine sampling rate of
150Hz, the average CPU utilizations of the probe sender
and web server were still below 0.9% and 1.2%, respec-
tively. The average memory utilizations (not shown here)
of the probe sender and web server were also less than
2% and 6.3%, respectively, in all cases.

Table 5: The CPU utilizations consumed in the probe sender and web
server during the HTTP/OP measurement.

Number of TCP Sampling Average CPU utilizations (%)
connections rates (Hz) Probe sender Web server

1 1 <0.01 0.03
1 5 0.07 0.07
10 10 <0.01 0.27
10 50 0.07 0.70
100 100 0.17 0.77
100 150 0.87 1.17

We also performed similar experiments for three op-
erating systems used by the web server: FreeBSD 6.2-
RELEASE, Linux v2.6.18, and Microsoft Windows XP
(SP2), and for three popular web server software with
default settings: Lighttpd 1.4.18, Microsoft IIS 5.1,
and Nginx 0.5.34. The CPU utilizations consumed by
them during the HTTP/OP measurement ranged between
0.08% and 1.05%.

HTTP/OP incurs a small overhead to the probe sender,
because it inspects only the TCP headers of the probe and
response packets, and does not require saving the entire
packet’s payload to the disk. Moreover, HTTP/OP ap-
plies libpcap’s packet filters to capture packets rele-
vant to the path measurement and limits the amount of
data captured from a packet.

6.3.2 Network I/O

To measure the network I/O for the HTTP/OP mea-
surement, we conducted the measurement on the same
testbed using five TCP connections and periodic sam-
pling with a rate of 5Hz. HTTP/OP requested files of
2MB, 10MB, and 100MB for 240 seconds. The probe
and response packet sizes were 1500 bytes. We used the
sar utility [5] to measure the network I/O from the web
server side in terms of the number of packets per second
(pkts/s) and bytes per second.

54	 2009 USENIX Annual Technical Conference	 USENIX Association

The results in Table 6 are very close to the expected
results of 10 pkts/s (5Hz×2 packets) and 15000 bytes/s
(10 pkts/s×1500 bytes/pkt) for both reception (Rcv) and
transmission (Tmt). The results are slightly higher than
the expected results, because of the additional packets
for the TCP connection establishment and termination.
Table 6 also shows that the network I/O stays almost the
same for different object sizes, because it depends only
on the probe and response packet sizes.

Table 6: Network I/O for the HTTP/OP measurement.

Object Rcv Tmt Rcv Tmt
sizes (MB) (pkts/s) (pkts/s) (bytes/s) (bytes/s)

2 11.36 11.52 15598 16508

10 11.35 11.52 15598 16511

100 11.34 11.48 15590 16485

7 Measurement experiences
This section reports our recent experience of deploying
HTTP/OP for Internet path measurement. All the mea-
surement results reported here were obtained from an
HTTP/OP deployment at a Hong Kong data center. The
full set of results and the measurement setup are available
from [11].

7.1 Diurnal RTT and loss patterns

This set of measurement results was obtained from a set
of web servers hosting the last Summer Olympic Games.
HTTP/OP sent a probe every 500 milliseconds, contin-
uously for one minute, and the same probing pattern re-
peated after idling for four minutes. The entire measure-
ment was smoothly conducted for over a month.

Figure 8 shows the RTT and round-trip loss rate mea-
surement for one of the paths. The HTTP/OP mea-
surement captured clear diurnal RTT and round-trip loss
patterns. The peak loss rates also coincided with the
daily high RTT periods. A positive correlation between
RTT and loss rate was also reported by observing packet
losses at bottleneck queues in a ns-2 simulation study
[9]. For temporal correlation, the high RTT periods were
longer and the intensity of the peak loss rates were higher
on weekends.

Studying the correlation of RTT and packet loss rate
is important for predicting network congestion from end
hosts [9]. HTTP/OP provides a more accurate measure-
ment of their correlation, because it can sample an Inter-
net path with more fine-grained and uniform sampling,
and over a long duration. HTTP/OP’s intrusion to the
path is also minimal, thus minimizing the self-induced
bias. For the purpose of comparison, the measurement in
[27] was conducted for five days and for each day each
run was executed every two hours, and it introduced be-
tween 6 and 20 MB in each run.

7.2 Discrepancy between Ping and OneProbe RTTs

This set of results is also part of the Olympic Games
measurement. Besides HTTP/OP, we also deployed
ICMP Ping and other tools for path measurement. To
compare their results accurately, the tools were config-
ured to measure the same path at the same time. Figure 9
shows the RTT measurement obtained by HTTP/OP and
Ping for one of the paths. The figure shows that for the
first few days their RTTs consistently differed by around
100 milliseconds on the peaks, but they were similar on
the valleys. As a result, the Ping measurement under-
estimated the actual RTT experienced by TCP data pack-
ets by as much as 70%! Moreover, due to an (possi-
bly network configuration) event unseen to Traceroute,
their RTTs “converged” at 12 Aug. 2008 16:39 UTC. At
the same time, the forward-path loss rate dropped signif-
icantly after this convergence point. Therefore, non-data
probes may not measure the actual path quality experi-
enced by data packets.

9Aug 10Aug 11Aug 12Aug 13Aug 14Aug 15Aug0

100

200

300

R
TT

 (m
ill

is
ec

on
ds

)

0

10

20

30

40

Fo
rw

ar
d−

pa
th

 lo
ss

 ra
te

 (%
)

OneProbe RTT
Ping RTT 12 Aug 16:39 UTC

Figure 9: Discrepancy in the RTT measurement obtained by HTTP/OP
and Ping for a Summer Olympics web server.

7.3 Asymmetric loss rates and loss-pair RTTs

This set of results is also part of the Olympic Games
measurement. For all the paths in this set of measure-
ment, the reverse-path losses dominated the round-trip
loss rates, and in some cases the packet losses occurred
only on the reverse paths. These results are consistent
with web’s highly asymmetric traffic profile. Moreover,
we conducted a parallel measurement to the same servers
but with different reverse paths, but we did not observe
packet losses from this set of measurement. Therefore,
the packet losses were believed to occur on the reverse
paths close to the web servers but not in the web servers.

Moreover, HTTP/OP can measure the loss-pair RTT.
A probe packet-pair or a response packet-pair is con-
sidered a loss pair if only one packet is lost to the pair
[23]. Loss-pair analysis has been shown useful in es-
timating bottleneck buffer sizes of droptail routers and
characterizing packet dropping behavior [23]. However,
in the absence of a suitable measurement tool, the loss-
pair analysis has so far been analyzed using simulations
and restricted to round-trip loss pairs.

Figure 10 shows the forward-path and reverse-path

USENIX Association	 2009 USENIX Annual Technical Conference	 55

8Aug12nn 15Aug12nn 22Aug12nn0

100

200

300

R
TT

(m
ill

is
ec

on
ds

)

0

10

20

30

40

R
ou

nd
−t

rip
 L

os
s

R
at

e
(%

)

RTT

Loss
rate

22 Aug
20:37 UTC

Olympic Games

Figure 8: Time series of RTT and round-trip loss rates obtained by HTTP/OP for a Summer Olympics web server.

loss-pair RTTs for one of the paths, and the RTT was
measured for the first packet in the pair (and the second
was lost). The loss-pair RTTs are superimposed with the
corresponding RTT time series to identify which parts
of the RTT time series the loss pairs were located. The
figure shows that almost all the loss-pair RTTs on the
forward path were clustered on the RTT peaks, suggest-
ing that the packets were dropped in a drop-tail router
on the forward path. However, the reverse-path loss-pair
RTTs behaved very differently. While many loss pairs
saw the highest RTT, there were also many others seeing
other RTT values, including the lowest RTT. Therefore,
the packet dropping behavior is more similar to that ex-
hibited by a random-early-drop router.

7.4 Effect of packet size on reordering rates
This set of measurement results was obtained from a
PlanetLab node [32]. The HTTP/OP measurement re-
vealed that this path experienced persistent, high re-
ordering rates on both forward and reverse paths over
one week. We experimented with three combinations of
packet sizes: {280, 280}, {280, 1420}, and {1420, 280},
where the first is the probe packet size in bytes and the
second response packet size in bytes. Note that the cur-
rent non-cooperative tools cannot measure the reverse-
path reordering rate for different packet sizes.

Figure 11(a) depicts how the packet size affected the
reordering rate for the forward path. The reordering pat-
tern for {280, 280}, which is not included in the fig-
ure, is similar to that for {280, 1420}. A comparison of
the three results therefore concludes that a smaller probe
packet is more prone to packet reordering. This finding
is consistent with the results obtained from a cooperative
measurement study [16] and TBIT measurement [28].

Figure 11(b) shows the distinctive reordering rates on
the reverse path for the three packet size combinations.
Same as the forward-path reordering, a smaller response
packet size is more prone to packet reordering. Thus, the
case of {280, 1420} suffered from the least reordering.
Surprisingly though, the reordering rate for {280, 280}
was distinctively higher than that of {1420, 280}, al-
though they had the same response packet size. A pos-

sible explanation is that smaller probe packets will reach
the server with a smaller inter-packet interval. They will
therefore induce two response packets also with a smaller
interval, and the occurrence of packet reordering gener-
ally increases with a shorter inter-packet interval.

20Sep 21Sep 22Sep 23Sep 24Sep 25Sep 26Sep0

5

10

15

20

R
eo

rd
er

in
g

ra
te

 (%
)

{280,1420} {1420,280}

(a) Forward-path reordering

20Sep 21Sep 22Sep 23Sep 24Sep 25Sep 26Sep0

5

10

15

20

R
eo

rd
er

in
g

ra
te

 (%
)

{280,1420}

{280,280}
{1420,280}

(b) Reverse-path reordering

Figure 11: Time series of forward-path and reverse-path packet re-
ordering rates obtained by HTTP/OP for a PlanetLab node.

8 Conclusions
In this paper, we presented OneProbe, a new TCP prob-
ing method, and HTTP/OneProbe, an implementation of
OneProbe for HTTP/1.1 to induce sufficient HTTP data
for continuous measurement. HTTP/OneProbe’s path
measurement is reliable, because the probes and induced
response packets are legitimate HTTP/TCP data pack-
ets, and the probes are based on TCP’s basic fundamen-
tal transmission mechanisms. OneProbe can also sample
RTT, packet loss rates on the forward and reverse paths,
and packet reordering rates on the forward and reverse
paths at the same time using the same probe. We per-

56	 2009 USENIX Annual Technical Conference	 USENIX Association

8Aug12nn 15Aug12nn 22Aug12nn0

100

200

300
R

TT
(m

ill
is

ec
on

ds
)

RTT Loss−pair RTT

(a) Forward path

8Aug12nn 15Aug12nn 22Aug12nn0

100

200

300

R
TT

(m
ill

is
ec

on
ds

)

RTT Loss−pair RTT

(b) Reverse path

Figure 10: Time series for the loss-pair RTTs obtained by HTTP/OP for a Summer Olympics web server.

formed extensive experiments to validate the correctness
of the probe responses, to evaluate the performance and
accuracy of HTTP/OneProbe, and to monitor network
paths for over a month. We are currently introducing new
path metrics, such as capacity and available bandwidth,
to OneProbe.

Acknowledgments
We thank the five anonymous reviewers for their criti-
cal reviews and suggestions and Mike Freedman, in par-
ticular, for shepherding our paper. We also thank Wait-
ing Fok for preparing the colorful Internet measurement
plots. This work is partially supported by a grant (ref.
no. ITS/152/08) from the Innovation Technology Fund
in Hong Kong.

References
[1] Apache: HTTP server project. http://httpd.apache.org/.
[2] Apache Performance Tuning. http://httpd.apache.org/docs/2.2/

misc/perf-tuning.html.
[3] procps. http://procps.sourceforge.net/.
[4] strace. http://sourceforge.net/projects/strace.
[5] SYSSTAT. http://pagesperso-orange.fr/sebastien.godard/

features.html.
[6] S. Ailleret. Larbin: Multi-purpose web crawler.

http://larbin.sourceforge.net/.
[7] P. Barford and M. Crovella. Generating representative workloads

for network and server performance evaluation. In Proc. ACM
SIGMETRICS, 1998.

[8] P. Barford and M. Crovella. Critical path analysis of TCP trans-
actions. IEEE/ACM Trans. Networking, 9(3), 2001.

[9] S. Bhandarkar, A. Reddy, Y. Zhang, and D. Loguinov. Emulating
AQM from end hosts. In Proc. ACM SIGCOMM, 2007.

[10] J. Bolot. End-to-end packet delay and loss behavior in the Inter-
net. In Proc. ACM SIGCOMM, 1993.

[11] R. Chang, E. Chan, W. Fok, and X. Luo. Sampling TCP data-path
quality with TCP data probes. In Proc. PFLDNeT, 2009.

[12] Y. Cheng, U. Holzle, N. Cardwell, S. Savage, and G. Voelker.
Monkey see, monkey do: A tool for TCP tracing and replaying.
In Proc. USENIX Annual Technical Conference, 2004.

[13] Cisco Systems. TCP out-of-order packet support for Cisco IOS
firewall and Cisco IOS IPS. http://www.cisco.com/, 2006.

[14] E. Corell, P. Saxholm, and D. Veitch. A user friendly TSC clock.
In Proc. PAM, 2006.

[15] S. Floyd and E. Kohler. Tools for the evaluation of simulation and
testbed scenarios. Internet-draft draft-irtf-tmrg-tools-05, Febru-
ary 2008.

[16] L. Gharai, C. Perkins, and T. Lehman. Packet reordering, high
speed networks and transport protocol performance. In Proc.
IEEE ICCCN, 2004.

[17] GNU Wget. http://www.gnu.org/software/wget/.
[18] A. Haeberlen, M. Dischinger, K. Gummadi, and S. Saroiu.

Monarch: A tool to emulate transport protocol flows over the In-
ternet at large. In Proc. ACM/USENIX IMC, 2006.

[19] F. Heusden. httping. http://www.vanheusden.com/httping/.
[20] J. Postel (editor). Transmission control protocol. RFC 793, IETF,

September 1981.
[21] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high

performance. RFC 1323, IETF, May 1992.
[22] E. Kohler. The Click Modular Router Project.

http://read.cs.ucla.edu/click/.
[23] J. Liu and M. Crovella. Using loss pairs to discover network

properties. In Proc. ACM IMW, 2001.
[24] M. Luckie, Y. Hyun, and B. Huffaker. Traceroute probe method

and forward IP path inference. In Proc. ACM/USENIX IMC,
2008.

[25] X. Luo and R. Chang. Novel approaches to end-to-end packet
reordering measurement. In Proc. ACM/USENIX IMC, 2005.

[26] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level
Internet path diagnosis. In Proc. ACM SOSP, 2003.

[27] J. Martin, A. Nilsson, and I. Rhee. Delay-based congestion avoid-
ance for TCP. IEEE/ACM Trans. Networking, 11(3), 2003.

[28] A. Medina, M. Allman, and S. Floyd. Measuring the evolution of
transport protocols in the Internet. ACM CCR, April 2005.

[29] Netcraft Services. http://uptime.netcraft.com/up/accuracy.html.
[30] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heav-

ens, K. Lahey, J. Semke, and B. Volz. Known TCP implementa-
tion problems. RFC 2525, IETF, March 1999.

[31] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for
IP performance metrics. RFC 2330, IETF, May 1998.

[32] PlanetLab. http://www.planet-lab.org/.
[33] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC

2616, IETF, June 1999.
[34] S. Savage. Sting: a TCP-based network measurement tool. In

Proc. USENIX Symp. Internet Tech. and Sys., 1999.
[35] R. Sherwood and N. Spring. A platform for unobtrusive measure-

ments on PlanetLab. In Proc. USENIX Workshop on Real, Large
Distributed Systems (WORLDS), 2006.

[36] R. Sherwood and N. Spring. Touring the Internet in a TCP side-
car. In Proc. ACM/USENIX IMC, 2006.

[37] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public
Internet measurement facility. In Proc. USENIX Symp. Internet
Tech. and Sys., 2003.

[38] L. Wenwei, Z. Dafang, Y. Jinmin, and X. Gaogang. On evaluat-
ing the differences of TCP and ICMP in network measurement.
Computer Communications, January 2007.

USENIX Association	 2009 USENIX Annual Technical Conference	 57

StrobeLight: Lightweight Availability Mapping and Anomaly Detection

James W. Mickens, John R. Douceur, William J. Bolosky
Microsoft Research

mickens,johndo,bolosky@microsoft.com

Brian D. Noble
University of Michigan

bnoble@umich.edu

Abstract
Large-scale distributed systems span thousands of inde-
pendent hosts which come online and go offline at their
users’ whim. Such availability flux is ostensibly a key
concern when systems are designed, but this flux is rarely
measured in a rich way post-deployment, either by the
distributed system itself or by a standalone piece of in-
frastructure. In this paper we introduce StrobeLight, a
tool for monitoring per-host availability trends in enter-
prise settings. Every 30 seconds, StrobeLight probes Mi-
crosoft’s entire corporate network, archiving the ping re-
sults for use by other networked services. We describe
two such services, one offline and the other online. The
first service uses longitudinal data collected by our Stro-
beLight deployment to analyze large-scale trends in our
wired and wireless networks. The second service draws
live StrobeLight measurements to detect network anoma-
lies like IP hijacking in real time. StrobeLight is easy
to deploy, requiring neither modification to end hosts nor
changes to the core routing infrastructure. Furthermore,
it requires minimal network and CPU resources to probe
our network of over 200,000 hosts.

1 Introduction

As distributed systems are built at increasingly larger
scales, it becomes more difficult to understand the re-
lationship between host availability and distributed sys-
tem performance. Loosely coordinated, independently
administered hosts display a wide variety of availabil-
ity patterns [8, 10, 25]. Providing robust services atop
this churning substrate requires substantial effort during
the design and implementation of the distributed system.
Thus, all distributed systems are guided by at least a crude
characterization of host availability in the deployment en-
vironment.

Unfortunately, once these systems are deployed, they
rarely include a component for collecting and analyz-
ing system-wide, fine-grained availability data. Histori-
cal availability traces exist (e.g., [8, 10]), but they were
collected by one-shot tools that were not intended to be
permanent, stable pieces of the distributed infrastructure.

The permanent monitoring tools in existence often fo-
cus on monitoring path characteristics, not individual host
availability, so they issue measurements to and from a
small set of vantage points. For example, RON [4] and
iPlane [24] track latency and loss rates between a set of
topologically diverse end points, but these machines are
assumed to be highly available and small in number; no
mechanism is provided for testing individual host avail-
ability inside a stub network. CoMon [29] provides up-
time monitoring for individual PlanetLab hosts, but it
does not scale to hundreds of thousands of machines. Fur-
thermore, it requires modifications to end hosts, which
may be difficult in non-academic settings where people
are leery of installing new software.

In overlays like Pastry [32] and storage systems like To-
talRecall [9], hosts probe the availability of select peers,
but this data is not archived in a public directory, prevent-
ing global analysis. Schemes to distribute such data ex-
ist [20, 26], but large-scale data mining is difficult due to
the number of wide-area data fetches required, as well as
the need to perform cryptographic calculations to verify
measurements submitted by untrusted peers.

The lack of a persistent infrastructure for availability
monitoring is unfortunate because it could benefit a wide
variety of systems. For example, distributed job alloca-
tors [5] could use historical uptime data in concert with
availability prediction [25] to assign high priority tasks to
machines that are likely to be online for the expected du-
ration of the job. Distributed storage systems could also
use a live feed of availability measurements to guide ob-
ject placement and increase data availability [1].

To address such needs, we introduce StrobeLight, a tool
for measuring availability in an enterprise setting contain-
ing hundreds of thousands of hosts. StrobeLight issues
active probing sweeps at 30 second intervals, archiving
ping results for the benefit of other distributed services
that might find them useful. We describe two examples of
such services. The first is an offline data-miner for lon-
gitudinal availability traces; such an application might be
useful for distributed storage systems trying to make de-
cisions about replica allocation. The second StrobeLight
service monitors network-wide availability in real time,

58	 2009 USENIX Annual Technical Conference	 USENIX Association

raising alarms for anomalies such as network partitions
and IP hijacks. StrobeLight detects such problems us-
ing a new abstraction called an availability fingerprint.
Under normal conditions, a subnet’s fingerprint changes
very slowly. Thus, StrobeLight raises an alert when the
similarity between consecutive fingerprints falls below a
threshold. Using Planetlab experiments, simulations, and
a real enterprise deployment, we show that our detection
system is accurate and fast.

By using standard ICMP probes to test availability,
StrobeLight avoids the need to install new software on end
hosts or deploy new infrastructure within the routing core.
By collecting data from a few centrally controlled vantage
points, StrobeLight avoids the trust and complexity issues
involved with distributed solutions while making it easy
for other systems to access availability data.

This paper provides three primary contributions. From
the technical perspective, it demonstrates that frequent,
active probing of a large host set is cheap and practical.
From an analytical perspective, it introduces new tech-
niques for analyzing availability traces that contain tem-
poral gaps (see Section 3.3). Finally, the paper introduces
a new, fine-grained trace of wired and wireless availabil-
ity in a large corporate environment. Using this trace,
we can validate results from previous studies that used
coarser-grained data [10, 25]. We also discover an inter-
esting property about the stability of subnet availability.
From the qualitative perspective, subnet uptime is consis-
tent across weeks—for example, the relative proportion
of diurnal hosts is unlikely to change. However, from the
quantitative perspective, subnet availability may fluctuate
by more than 25% across a month (see Section 3.4.2).

2 Design and Implementation

The design of our availability measurement system was
guided by three principles. First, keep the system simple.
Second, make the system unobtrusive. Third, collect fine-
grained data.

Keep it simple. Our primary design principle was to
keep everything simple, a philosophy reflected in many
different ways. We wanted to avoid solutions which re-
quired new software to be installed on end hosts, an ar-
duous task that is difficult to justify on a corporate-wide
basis. Similarly, we hoped to avoid major modifications
to our internal routing infrastructure. Large-scale decen-
tralization of the probing infrastructure was not a pri-
mary concern. Although coordinated distributed monitor-
ing has certain benefits, previous experience had taught us
that the road to a bug-free distributed protocol is fraught
with peril [11]. Thus, we thought hard about the costs
and benefits of a coordinated peer-to-peer design, and ul-
timately rejected it. One motivating factor was our de-
velopment of analysis techniques which tolerate temporal

gaps in availability data (see Section 3.3). These tech-
niques shifted the payoff curve between the better cover-
age and robustness of a distributed, coordinated solution
and the reduced complexity of a centralized one.

Don’t annoy the natives. We wanted a system that
was unobtrusive—we did not want our measurement ac-
tivity to disrupt normal network traffic or add significant
load. We also required a straightforward mechanism to
turn off measurement activity in specific parts of the net-
work. The latter was important because previous experi-
ence had taught us that at some point, our new network in-
frastructure would break someone else’s experiment or in-
teract with other components in unexpected ways. When
such scenarios arose, we wanted the capability to quickly
remove the friction point.

Collect high-resolution data. We wanted our tool to
collect per-host availability statistics at a fine temporal
granularity. This would allow us to validate previous em-
pirical studies which used coarser data sets [10, 25]. It
would also make the service more useful for anomaly de-
tection, since disruptions like IP hijacking may only last
for a few minutes [31].

These design considerations led to several “non-goals”
for our system.

Infinite scalability is overkill. Our solution only
needed to scale to the size of an enterprise network con-
taining hundreds of thousands of hosts. Building a mea-
surement system to cover an arbitrary number of hosts
in an arbitrary number of administrative domains would
have been extremely challenging. For example, active
availability probing from foreign domains might trigger
intrusion detection systems. Organizations might also be
reluctant to provide outside access to DNS servers and
other infrastructure useful for identifying “live” end hosts.

Complete address disambiguation is difficult. An-
other barrier to performing arbitrary-scale, cross-domain
host monitoring is the widespread use of NATs, firewalls,
and DHCP. These technologies can create arbitrary bind-
ings between hosts and IP addresses, and prevent some
machines from being seen by external parties. Devising a
comprehensive monitoring system that can pierce this het-
erogeneous cloud of addressing policies is an important
research topic. However, this goal was beyond the scope
of our project. By focusing on enterprise-level solutions,
we hoped to avoid many of the issues mentioned above;
NATs were relatively rare in our corporate environment,
and we could configure our firewalls to trust packets gen-
erated by our new monitoring system.

2.1 The Winning Design: StrobeLight
As shown in Figure 1, we eventually chose a centralized
architecture in which a single server measured availabil-
ity throughout our entire network. To determine which IP
addresses to test, the server would download hostname/IP

USENIX Association	 2009 USENIX Annual Technical Conference	 59

Figure 1: StrobeLight Architecture

mappings from corporate DNS servers. It would then
test host availability using standard ping probes issued
at intervals of 30 seconds. Recent probe results would
be transferred to an analysis server for real-time anomaly
detection, and longitudinal data would be archived in the
corporation’s standard distributed data store.

This design, which we named StrobeLight, was very
attractive from the implementation and deployment per-
spectives. No new code would have to be pushed to end
hosts or internal routers, and the only additional hardware
required would be the probing server and the analysis en-
gine. We also expected the probing process to have a
light footprint. The total volume of request/response traf-
fic would be trivial compared to the overall traffic level in
the corporate network. Furthermore, we would not have
to deal with control or synchronization issues that might
arise in a more decentralized design. Our main concerns
involved performance and fault tolerance. We feared that
a single server might be overloaded by sending probes for
hundreds of thousands of machines every 30 seconds. A
centralized probing design also had obvious ramifications
for fault robustness. Despite these weaknesses, we com-
mitted to the single-server design due to its relative ease
of implementation, and we pledged to revisit the design if
we encountered undue difficulties after deployment.

2.2 Implementation and Deployment

The core probing infrastructure was deployed first. The
pinging daemon, consisting of 2,200 lines of C++ code,
runs on a standard desktop PC with a 3.2 GHz CPU, 2 GB
of RAM, and a gigabit Ethernet card; this machine resides
within a corporate subnet in Redmond, WA. At boot time,
the daemon reads an exclusion file which specifies the set
of IP prefixes that should never be pinged. This file al-
lows us to selectively exclude parts of the network from
our probing sweeps. To determine which IP addresses to
ping, the daemon downloads zone files from Microsoft’s
DNS servers at 2:10 AM each day. At any given mo-
ment, these zone files contain entries for over 150,000 IP

addresses scattered throughout the world. This set of ad-
dresses evolves over time due to the introduction of new
hosts and the decommissioning of old ones.

Due to these factors, an address may not appear in ev-
ery DNS snapshot. Since StrobeLight only probes the ad-
dresses mentioned in the zone data, an IP may have gaps
in its availability history. To deal with these gaps, Stro-
beLight describes the availability of an address as online,
offline, or unknown. The first two categories result from
the outcome of a ping probe, whereas the third is assigned
to an IP which was not probed at a particular time.

Once the probing daemon had produced a sizable
archive of availability data, we were able to test the of-
fline analysis engine. This engine, totaling about 5,000
lines of C++ code, provides a set of low-level classes to
represent per-host availability. It also defines a high-level
query interface for use by data mining programs. We used
this interface to generate the results in Section 3. Impor-
tantly, the interface defines a subnet of size N as a set
of N consecutive and allocated IP addresses; the queryer
chooses the starting address, N , and the time period over
which “allocated” is defined. An address is considered al-
located during a given time period if it appeared in a zone
file at least once during that period. In practice, we of-
ten set N to a small number like 256 and investigate the
subnets contained within a Class A or B prefix.

2.3 Operational Experiences

The probing server has run with few interruptions for al-
most three years, and it has not struggled with the network
load generated by the ping sweeps. We currently spread
each sweep across 25 seconds to avoid load spikes on our
shared network infrastructure, but brief “full throttle” ex-
periments show that our current prober can scan 270,000
hosts in 7.9 seconds (roughly 35,000 hosts a second).

In general, our ping traffic has not bothered the other
members of our network. We occasionally receive emails
from the network support staff when they unveil a new
intrusion detection system and they conclude that our
probing machine is infected with an IP-scanning virus;
these incidents became rarer after we explained that Stro-
beLight was a piece of permanent infrastructure. We also
received a complaint from another research group who
claimed that our pings were causing problems for their
wireless devices. After generating the appropriate exclu-
sion file and restarting the daemon, we received no more
complaints.

3 Application 1: Offline Analytics

In this section, we describe one application of Stro-
beLight, using it to gather long-term availability data
for offline analysis. Such data could be used in several

60	 2009 USENIX Annual Technical Conference	 USENIX Association

0%

20%

40%

60%

80%

100%

Time

Fr
ac

tio
n

of
 A

ll
Ho

st
s

O
nl

in
e

Wired Hosts
Wireless Hosts

Figure 2: Global availability (10/21/2005 to 11/21/2005)

ways, e.g., to guide replication policy in a distributed data
store [1, 9, 25]. In this section, we use the data in a more
exploratory fashion, looking for interesting patterns in our
wired and wireless networks. We restrict our analysis to
IP addresses which appeared in at least 95% of the daily
DNS snapshots. During the time period examined below,
this included 138,801 wired IPs and 11,670 wireless IPs.
In our corporate environment, the DHCP lease time is 20
days for wired machines and 3 hours for wireless ones.
Thus, a wireless address is likely to be bound to multiple
machines over the course of the day. Although we often
refer to “hosts” and “IP addresses” interchangeably, the
true unit of uniqueness is an address, not a host.

3.1 Global Trends

Figure 2 depicts aggregate availability fluctuations from
October 21 to November 21 of 2005. The bulk of Mi-
crosoft’s machines reside in the American west coast, so
both the wired and wireless networks show large-scale di-
urnal trends aligned with the work day in this time zone.
However, during these large-scale surges and declines
in availability, there are regular, smaller-scale peaks and
valleys. These additional periodic cycles are driven by
phase-shifted diurnal behavior amongst Microsoft hosts
in Europe and the Middle East.

Comparing the two curves in Figure 2, we see that wire-
less IP addresses are much less likely to be associated with
online hosts. However, the wireless network demonstrates
stronger diurnal trends than the wired network. We inves-
tigate this issue further in Section 3.3.

3.2 Subnet-level Trends

We define the mean availability of a subnet as its average
fraction of online hosts. Figure 3 shows the distribution of
mean subnet availability in the wired network for subnets
of size 256 and 2048. In both cases, mean subnet avail-
ability is always higher than 40%. Increasing the subnet
size causes probability mass to coalesce around several re-
gions of mean availability. This is a discretization artifact,
since increasing the subnet size without increasing the to-
tal number of hosts results in fewer subnets to examine
and less smoothness in the resultant distribution.

0%

6%

12%

18%

0% 20% 40% 60% 80% 100%
Mean availability

Li
ke

lih
oo

d

(a) 256 hosts per subnet

0%

6%

12%

18%

0% 20% 40% 60% 80% 100%
Mean availability

Li
ke

lih
oo

d

(b) 2048 hosts per subnet

Figure 3: PDF for mean subnet availability (wired)

0%

20%

40%

60%

0% 20% 40% 60% 80% 100%
Mean availability

Li
ke

lih
oo

d

Figure 4: PDF for mean subnet availability (wireless)

As expected, Figure 4 shows that wireless subnets have
much lower mean availability. Figure 4 shows results for
a subnet size of 256, but increasing the subnet size to 2048
results in an almost identical availability distribution. The
relative lack of discretization artifacts is due to the greater
homogeneity of wireless host availability. Figure 5 shows
the distribution of per-host uptime fractions within each
subnet. Each wired subnet has a skewed bimodal distri-
bution, with a plurality of hosts having very high uptime
and a smaller fraction having very low uptime. How-
ever, in every wired subnet, roughly 50% of the proba-
bility mass is spread across the “plateau” between the two
modes. In contrast, the wireless subnets look more uni-
modal, with the majority of hosts having very low avail-
ability and much less probability mass sheared away from
the mode.

3.3 The Availability of Individual Hosts
To understand the lower-level dynamics driving aggregate
availability, we modified our previous taxonomy for clas-
sifying the uptime behavior of individual hosts [25]. In
the unmodified scheme, a host is declared always-on if its
uptime is greater than 90% and always-off if its uptime
is less than 10%. If a host fails these tests, its availabil-
ity signal is converted into the frequency domain using

USENIX Association	 2009 USENIX Annual Technical Conference	 61

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 5

 10
 15

 20
 25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Fraction of Subnet Hosts

Availability Level
Subnet Number

Fraction of Subnet Hosts

(a) Wired subnets (2048 hosts per subnet)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Availability Level 0 0.5 1 1.5 2 2.5 3

Subnet Number
 0

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

Fraction of Subnet Hosts

(b) Wireless subnets (2048 hosts per subnet)

Each curve on the “availability level” axis is a pdf for per-
host uptime fractions in a particular subnet. In each fig-
ure, the pdfs are sorted by standard deviation, with higher
subnet numbers indicating larger standard deviations. The
trends depicted in each graph are insensitive to subnet
size.

Figure 5: Per-host availability within a subnet

a Fourier transform. If the resultant profile demonstrates
harmonic peaks in the daily and weekly spectra, the host is
labeled diurnal. If the spectral curve resembles the curve
1/f, i.e., it contains large amounts of low frequency en-
ergy, the host is labeled as long stretch, meaning that it
has long, uninterrupted periods of uptime and downtime.
Nodes failing all four tests are labeled as unstable. Such
a designation usually implies that the host’s availability is
difficult to predict.

The standard algorithms for Fourier decomposition as-
sume that signals are sampled at a uniform rate and that
no samples are missing. In our data set, the assumption
of a uniform sampling rate was almost always true, since
the vast majority of probe sweeps were separated by 30
second intervals. However, missing samples were fairly
common for two reasons. First, our network used DHCP

to assign IP addresses to physical machines. When an ad-
dress was dormant (i.e., unassigned), it did not show up in
our zone files, meaning that we did not collect availability
data for it during the dormant period. Second, the DNS
servers occasionally failed, or misbehaved and returned
extremely small zone files. Both of these phenomena in-
troduce brief probing gaps for many hosts.

To deal with missing samples, we replaced the Fourier
analyses with two entropy-based techniques. To deter-
mine whether an availability signal contained diurnal pat-
terns, we adapted Cincotta’s method for period detection
in irregularly sampled time series [14]. Let at ∈ {0, 1} be
the value of an availability signal at time t. Given a hy-
pothetical period τ , we calculate the phase of each at as
φt = t

τ −nearestInteger(t
τ); note that φt ∈ [−0.5, 0.5].

We can interpret each (φt, at) pair as a coordinate in φ×a
space. If the hypothesized period τ is close to the signal’s
actual period (or a harmonic of it), the (φt, at) points will
cluster in the coordinate space. This means that if we di-
vide the coordinate space into bins, the resultant bin dis-
tribution will have low entropy. If the hypothesized pe-
riod is not the signal’s true period, points will be scattered
throughout the φt × at space and the bin distribution will
have high entropy.

To determine whether an availability signal contains di-
urnal patterns, we check whether the entropy for a τ of 24
hours is less than the entropy for a τ of 23 hours. Avail-
ability signals with complex diurnal patterns may have en-
tropy dips in other places, but finding one for a τ of 24 is
sufficient for our purposes.

To determine whether an availability signal contains
long-stretch behavior, we use an approximate entropy
test [30]. Suppose that we have an arbitrary window
of k consecutive samples from the signal. We define
ApEn(k) as the additional information conveyed by the
last sample in the window, given that we already know
that previous k − 1 samples. Low values of ApEn(k)
indicate regularity in the underlying signal. In particular,
if we know that a host is not always-on, always-off, or di-
urnal, but it still has a low ApEn(k), it is likely that the
uptime regularity is driven by long-stretch behavior.

The choice of window size k is driven by the time scale
over which “long stretch” is defined; k should be small
enough that a stretch contains several windows, but not
so small that ApEn(k) measures the incidence of small
k-grams that are actually pieces of larger, more complex
availability patterns. In the results presented below, we
used a k of 8 and sampled our availability trace in steps
of 15 minutes. This meant that we looked for long-stretch
behavior at a time scale of roughly two hours. We de-
fined hosts as long-stretch if their availability signal had
an ApEn(8) of less than 0.16. This cutoff was deter-
mined by hand, but our results were not very sensitive to
the exact value.

62	 2009 USENIX Annual Technical Conference	 USENIX Association

0%

20%

40%

60%

80%

100%

ON OFF DIURNAL LONG STRETCH UNSTABLE

Fr
ac

tio
n

of
 a

ll
Ho

st
s

Wired
Wireless

Figure 6: Availability taxonomy

Figure 6 depicts the availability taxonomy for the wired
and wireless networks. We found that roughly half of the
wired hosts were always online. This result is congru-
ent with smaller-scale observations of the Microsoft net-
work which used an hourly sampling period [10, 25]. In-
deed, the fact that the always-on fraction is the same at
a finer sampling granularity implies that the natural time
scale for availability fluctuation in wired corporate en-
vironments is hours, not minutes. This claim is further
validated by the fact that almost none of the wired hosts
had unstable availability. In other words, if a host was
not always-on, always-off, or diurnal, then it at least had
availability that was stable across one or two hours.

The wireless network was dominated by always-off
machines, which comprised 61% of all hosts. The wire-
less network had almost twice as many diurnal machines
as the wired network (25% versus 13% respectively) but
almost half as many long-stretch hosts (12% versus 23%).
These trends were unsurprising. In contrast to desktop
machines that were always “plugged in,” wireless devices
with limited battery lives were more likely to have shorter
sessions. Also, users often took these devices home at the
end of the day, removing them from the physical proxim-
ity of a corporate access point. Thus, wireless connec-
tivity exhibited stronger diurnal patterns and less long-
stretch behavior than wired uptime.

3.4 Availability Fingerprints

Up to this point, we have investigated aggregate availabil-
ity trends over a five week window. However, many net-
work anomalies occur over a much smaller time scale. For
example, an IP hijacking attack might only last for several
minutes [31], and BGP misconfigurations can be just as
transient [13].

Both types of anomaly change the mapping between IP
addresses and physical hosts. In a hijacking attack, an en-
tire range of IPs is bound to a different set of physical ma-
chines; similarly, a misconfigured router can cause arbi-
trary desynchronizations. Active availability probing can
detect such problems if three conditions are true. First,
the probing interval must be less than the duration of the
desynchronization episode, lest the anomaly escape un-
detected between probing sweeps. Second, in the absence

0%

20%

40%

60%

80%

100%

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Self-similarity

Li
ke

lih
oo

d

Subnet self-similarity between successive probing sweeps
is very high. The graph depicts results for wired subnets
of size 256, but the outcome is insensitive to subnet size.
The results are extremely similar for wireless subnets.

Figure 7: PDF for self-similarity of delta fingerprints (15
minute probe interval)

of anomalies, a subnet’s availability “fingerprint” must be
stable across multiple consecutive probing periods. This
gives us confidence that when the fingerprint changes, an
actual problem has arisen. Third, at any given moment,
the availability fingerprint for each subnet should be glob-
ally unique. This allows us to detect routing problems in
which two subnets have their IP bindings swapped.

With these desired characteristics in mind, we can pro-
vide a formal definition of a fingerprinting system. Given
a specific subnet and a time window of interest, a finger-
printing algorithm examines per-host availability trends
during that window and produces a bit-string that is a
function of those trends. A fingerprinting system also
defines a distance metric which determines the similar-
ity of two fingerprints. To detect an anomaly in a subnet,
we maintain a time series of its fingerprints and raise an
alarm if the most recent fingerprint is too dissimilar from
the previous one.

In the remainder of this section, we provide a concrete
description of a fingerprinting system and evaluate its per-
formance on trace data collected by StrobeLight. We fo-
cus on basic issues such as how a subnet’s fingerprint
evolves over time, and the accuracy with which we can
distinguish two subnets based solely on their fingerprints.
We present more applied results in Section 4, where we
show how fingerprints can be used to detect anomalies
within the enterprise and across the wide area.

3.4.1 Delta Fingerprints

During a single probe sweep, we test the availability of
each known host in our network. Given a subnet of size
s, we represent its probe results as an s-bit vector where
a particular bit is 1 if the corresponding host was online
and 0 if the host was offline or unknown (remember that
a host is not probed if it is not mentioned in the current
DNS mapping). We call such a vector an instantaneous or
delta fingerprint because it represents a snapshot of subnet
availability at a specific time.

USENIX Association	 2009 USENIX Annual Technical Conference	 63

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

Delta Similarity

Subnet size

Figure 8: PDF for instantaneous cross-subnet similarity
(15 minute probe interval)

A natural distance metric for two delta fingerprints is
the number of bit positions with equivalent values. Thus,
we define the similarity of two fingerprints as the number
of equivalent bit positions divided by s and normalized to
the range [−1, 1]. For example, if two fingerprints match
in half of their bit positions, they will have a similarity of
0. If they match in all positions or no positions, they will
have a similarity of 1 or -1 respectively.

Given the availability probing period ρ, we define a
subnet’s self-similarity as the expected similarity of its
fingerprints at time t and time t + ρ. Figure 7 depicts the
pdf for self-similarity in the wired network with a ρ of 15
minutes. As shown in Section 3.3, the natural time scale
of availability fluctuation in the wired network is hours,
not minutes. Thus, with a 15 minute sampling granular-
ity, delta fingerprints are very stable across two consecu-
tive snapshots, with 95% of all fingerprint pairs exhibiting
similarities of 0.96 or greater. Decreasing ρ results in even
greater stability, which is possible since StrobeLight has
a 30 second probing granularity.

The delta similarity of two different subnets at time t
is simply the similarity of their fingerprints at t. Figure 8
depicts the pdf for cross-subnet similarity as a function of
subnet size. As the subnet size grows, probability mass
shifts towards the center of the similarity spectrum. How-
ever, even for subnets as small as 32 hosts, less than 2%
of all subnet pairs have similarities greater than 0.8. The
reason is that the various availability patterns described in
Section 3.3 are randomly scattered throughout each sub-
net. For example, even though most subnets have a large
set of always-on hosts, these hosts are randomly posi-
tioned throughout each subnet’s fingerprint vector. Thus,
two vectors are unlikely to have high correlations in all
bit positions, and each fingerprint is likely to be globally
unique.

The tiny peaks along the right side of Figure 8 indicate
a small probability that at any given moment, two subnets
have completely equivalent fingerprints. To understand

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Delta similarity 0

 20
 40

 60
 80

 100
 120

 140

Time (units of 6 hours)
 0

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

Figure 9: Temporal evolution of cross-subnet delta simi-
larity (15 minute probe interval)

0%

20%

40%

60%

80%

100%

Time
Fr

ac
tio

n
of

 1
57

.5
5.

.
 H

os
ts

O

nl
in

e
(a) Host availability in 157.55.*.*

0%

20%

40%

60%

80%

100%

Time

Fr
ac

tio
n

of
 1

0.
.

.*
Ho

st
s

O
nl

in
e

(b) Host availability in 10.*.*.*

Network anomalies during November 3 and 4 of 2005
caused the spike in fingerprint similarity seen in Figure 9.

Figure 10: Punctuated availability disruptions

the origin of these peaks, we plotted cross-subnet simi-
larity as a function of time. Figure 9 indicates a large
spike in fingerprint similarity during the middle of the
trace period. As Figure 10 shows, this spike was syn-
chronous with a dramatic availability drop in several IP
blocks during November 3 and 4 of 2005. When these
blocks went offline, their fingerprint vectors transitioned
to an “all-zeros” state, leading to an immediate increase
in cross-subnet similarity.

Once the anomaly terminated, the similarity distribu-
tion returned to a steady state in which all fingerprints
were distinguishable. Thus, during the whole trace pe-
riod, the global uniqueness property was only violated
during the severe network disturbance. We return to the
issue of anomaly detection in Section 4.

64	 2009 USENIX Annual Technical Conference	 USENIX Association

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1Similarity 0
 2

 4
 6

 8
 10

 12
 14

Day 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

(a) 256 hosts per subnet, 24 hour window, 32-bit float per
host

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1Similarity 0
 2

 4
 6

 8
 10

 12
 14

Day 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

(b) 256 hosts per subnet, 24 hour window, 1-bit float per host

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1Similarity 0
 2

 4
 6

 8
 10

 12
 14

Day 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

(c) 32 hosts per subnet, 24 hour window, 1-bit float per host

Figure 11: Cross-subnet similarity for wired and wireless
subnets (24 hour window)

3.4.2 Fingerprinting Over Larger Windows

As currently described, a fingerprint is a bit vector repre-
senting the instantaneous availability of a set of hosts. In
this section, we briefly describe how to extend our finger-
prints to cover longer observation periods.

Cross-subnet Similarity: To create a fingerprint
which covers a longer time window, we can associate each
host with a floating point number instead of a single bit.
Each float represents the mean availability of a host dur-
ing the time period of interest. To compute the similar-
ity between two floating point fingerprints, we examine

each pair of corresponding floats and calculate the abso-
lute magnitude of their difference. We sum these absolute
magnitudes, divide by the subnet size, and then normalize
the result to the range [−1, 1].

Figure 11(a) shows the temporal evolution of cross-
subnet similarity using a day-long window; the subnet
size was 256 hosts and each host was associated with a
32-bit floating point number. Comparing Figure 11(a) to
Figure 8, we see that lengthening the fingerprint window
does not change the fundamental distribution of subnet
similarity. Most subnets are weakly similar or weakly
dissimilar, but almost none are very similar or very dis-
similar.

Figure 11(b) depicts cross-subnet similarity using a 24
hour window and “1-bit floats.” In this scenario, a finger-
print contained a single bit for each host; the bit was 1 if
the host was majority-online during the window and 0 if
it was majority-offline. Comparing Figure 11(a) to 11(b),
we see that using these truncated floats has little impact on
the similarity distribution. Even if we decrease the subnet
size to 32 hosts, Figure 11(c) shows that 1-bit floats pro-
vide enough resolution to keep the likelihood of perfect
cross-subnet similarity well below 1%.

Using 1-bit floats, very little storage space is needed to
maintain longitudinal fingerprint databases. For example,
suppose that one needs to store fingerprints for a network
containing 250,000 hosts. Using 1-bit floats, an individual
snapshot would consume 250,000 bits (roughly 30 KB).
Assuming a 24 hour window, a full year of data will only
require 11 MB of storage space.

Self-similarity: Most subnets exhibit diurnal uptime.
However, the true period of their availability is a week, not
a day, since availability during the weekend lacks diurnal
fluctuation and is depressed relative to that of the work
week. Thus, if we examine subnet self-similarity using
a day-long window, there are discontinuities during the
transitions into and out of the weekend. However, one
might expect self-similarity to be high using a week-long
window, since this window size would precisely capture a
full cycle of the seven day availability pattern.

Figure 12(a) shows the distribution of wired subnet
self-similarity between the first and fourth weeks of our
observation period. Although self-similarity was almost
always positive, the correlation was unexpectedly weak,
with the bulk of the probability mass residing between
0.0 and 0.5. This surprised us, since we had predicted
that a host’s availability fraction would not change much
across weeks. Confronted with these results, we gener-
ated a new hypothesis, predicting that a host’s availability
class would vary less than its availability fraction. For
example, the uptime fraction of a long-stretch host might
vary between weeks, but its availability would be unlikely
to transition from long-stretch behavior to (say) diurnal
behavior.

USENIX Association	 2009 USENIX Annual Technical Conference	 65

Self-similarity: Week 1 vs Week 4
(Delta Fingerprints)

0

0.03

0.06

0.09

0.12

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Similarity

Pr
ob

ab
ili

ty

(a) If we represent host uptime as a 32-bit floating point avail-
ability fraction, subnet self-correlation across weeks is mildly
positive. However, raw subnet availability often varied by
more than 25%.

Self-similarity: Week 1 vs Week 4
(FeatureVec Fingerprints)

0

0.03

0.06

0.09

0.12

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Similarity

Pr
ob

ab
ili

ty

(b) Self-correlation is higher if we represent host availability
using a 2-bit enumeration type {ALWAYS-ON, ALWAYS-
OFF, DIURNAL, OTHER} and check for behavioral equiva-
lence amongst corresponding fingerprint entries.

Figure 12: Wired subnet self-similarity using week-long
windows

To test this hypothesis, we devised a new type of finger-
print called a feature vector fingerprint. Instead of associ-
ating each host with a floating point availability fraction,
we gave each host a 2-bit identifier representing whether
it was always-on, always-off, diurnal, or “other” (either
long-stretch or unstable). We defined the similarity be-
tween two feature vectors as the number of corresponding
positions with equivalent feature identifiers. As before,
we divided this number by the vector size and normalized
it to the range [−1, 1].

Figure 12(b) confirmed our hypothesis that, at the gran-
ularity of individual hosts, availability classes are more
stable than availability fractions. However, subnet self-
similarity was still lower than expected given the observed
stability of weekly availability cycles at the subnet level.
This topic remains an important area for future research.

4 Application 2: Detecting IP Hijacking

The Internet is composed of individual administrative
domains called autonomous systems (ASes). The Bor-
der Gateway Protocol (BGP) stitches these independent
domains together to form a global routing system [16].
Packets follow intra-domain routing rules until they hit an
inter-AS border, at which point BGP data determines the
next AS that will be traversed.

As currently described, StrobeLight detects intra-AS
anomalies. For example, in Section 3.4.1, we showed
how StrobeLight discovered the unreachability of several
large subnets from within our corporate network. In this
section, we describe how to detect BGP anomalies which
affect subnet visibility from the perspective of external
ASes. To detect such anomalies, we must deploy Stro-
beLight servers outside of the local domain. We describe
the architecture for such a system and evaluate it using
Planetlab experiments and simulations driven by our cor-
porate availability trace.

4.1 Overview of IP Hijacking
An AS declares ownership of an IP prefix through a BGP
announcement. This announcement is recursively propa-
gated to neighboring ASes, allowing each domain to de-
termine the AS chain which must be traversed to reach a
particular Internet address. BGP updates are also gener-
ated when parts of a route fail or are restored. Since BGP
does not authenticate routing updates, an adversary can
fraudulently declare ownership of someone else’s IP pre-
fix and convince routers to deliver that prefix’s packets to
attacker-controlled machines. An attacker can also hijack
a prefix by claiming to have an attractively short route to
that prefix.

Zheng et al describe three basic types of hijacking at-
tack [38]. In a blackhole attack, the hijacker simply drops
every packet that he illegitimately receives. In an impos-
ture attack, the hijacker responds to incoming traffic, try-
ing to imitate the behavior of the real subnet. In an inter-
ception attack, the hijacker forwards packets to their real
destination, but he may inspect or manipulate the packets
before forwarding them.

Due to vagaries in the BGP update process, the at-
tacker’s fraudulent advertisement may not be visible to
the entire Internet. This means that during the hijack,
some ASes may route traffic to the legitimate prefix al-
though others will not [6]. If the hijack causes divergence
in external views of the prefix’s availability, we can de-
tect the attack by deploying multiple StrobeLight servers
at topologically diverse locations.

For all but the least available subnets, a blackhole attack
will create a dramatic instantaneous change in externally
measured fingerprints. Fingerprint deviations may be less
dramatic during an imposture attack; however, as we show
in Section 4.3, two arbitrary subnets are still dissimilar
enough to make imposture detection easy. Interception
attacks cannot be detected through fingerprint deviations
since the attacker will forward StrobeLight’s probes to the
real hosts in the target prefix. However, we describe a pre-
liminary scheme in Section 4.4 that uses carefully chosen
probe TTLs to detect such interceptions.

66	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 13: Availability of live IPs from different views

In our distributed StrobeLight system, the individual
StrobeLight servers do not need to reside within the core
routing infrastructure—they merely need to be deployed
outside of the AS that they monitor. Furthermore, since
anomalies are defined with respect to local measurements,
there is little need for communication between the indi-
vidual servers. Thus, a distributed StrobeLight system
should be easy to deploy and maintain.

4.2 Does the Wide-Area Distort Probing?
As shown in Figure 7, a subnet’s fingerprint changes
very slowly under normal network conditions. However,
that conclusion was derived from the perspectives of van-
tage points inside the enterprise. To detect BGP anoma-
lies, StrobeLight servers must be deployed at external
locations. This exposes probes to the vagaries of wide-
area traversal, possibly increasing delay or loss in a way
that destroys fingerprint stability during non-anomalous
regimes.

To determine whether fingerprints could provide di-
agnostic power across the wide area, we deployed Stro-
beLight servers on 10 topologically diverse Planetlab
hosts. From April to July of 2008, these servers probed
45 Class C subnets belonging to the computer science
department at the University of Michigan. We also de-
ployed a StrobeLight server inside the local campus do-
main. Each server launched a probe sweep every 30 sec-
onds, similar to our deployment inside the Microsoft cor-
porate network. The campus network contained roughly
11,000 live IP addresses. Figure 13 shows the measured
availability of these addresses from the local perspective
and those of four representative Planetlab hosts. Avail-
ability was always greater than 90% from the local van-
tage point. This was also true for the first two external
views. The third and fourth views were measured from
servers that were heavily loaded with other Planetlab ex-
periments. Processor and network utilization were con-
sistently high on these hosts; particularly severe spikes
caused the StrobeLight servers to miss incoming probe re-
sponses and underestimate true domain availability by up
to 80%. However, these incidents were rare, and would
not arise in a real StrobeLight deployment that used dedi-
cated probing machines.

Near time step 7100, external views 2, 3, and 4 were
almost completely partitioned from the campus domain.
This partition was caused by a switchgear failure at a
Detroit Edison power plant that caused punctuated router
failures throughout southeast Michigan. Interestingly, this
event simulated a selective blackhole attack—although
views 2, 3, and 4 were cut off from the local domain, view
1 enjoyed continuous connectivity. Thus, the Planetlab
deployment showed two things. First, wide-area network
effects do not destroy the diagnostic utility of availabil-
ity fingerprints. Second, StrobeLight can detect blackhole
attacks if probe servers are deployed at topologically di-
verse locations.

4.3 Imposture Attacks
Blackhole attacks are not subtle. In such an attack, the
adversary drops all traffic destined for the target network,
creating dramatic decreases in subnet availability and thus
dramatic changes in subnet fingerprints. Imposture at-
tacks are potentially more difficult to detect, since the ad-
versary seeks to mimic the behavior of hosts in the tar-
get domain. In particular, we are interested in detecting
spectrum agility attacks, first described by Ramachandran
and Feamster [31]. The goal of a spectrum attack is to
elude IP-based blacklists using short-lived manipulations
of BGP state. Spammers hijack a large network, e.g., a
/8 prefix, send a few pieces of spam from random IP ad-
dresses within the prefix, and then withdraw the fraud-
ulent BGP advertisement a few minutes later. By using
short-lived routing advertisements, spammers increase the
likelihood that their hosts will be unreachable by the time
that white hat forensics begin. By sending a small amount
of traffic from each host, and by randomly scattering the
traffic throughout a large address space, spammers avoid
filtering by DNS-based blacklists [21].

To determine whether StrobeLight can detect spectrum
attacks, we used simulations driven by availability data
from the Microsoft network. We used this trace data in-
stead of the Michigan data because it contained many
more IP addresses, and spectrum attacks require large ad-
dress spaces for maximum effectiveness. Our simulations
used a trace gathered between July 29, 2006 and Septem-
ber 1, 2006. To include the largest possible host set in
our evaluation, we did not filter hosts based on their un-
known fraction. During this observation period, we saw
238,951 unique IP addresses. Our simulations examined
the largest subnets demarcated by standard Class A/B/C
rules. We also examined a “mega” subnet consisting of
all IP addresses in the trace.

During each simulation run, we iterated through our
availability data in strides of 15 minutes; during each iter-
ation, we compared each subnet’s fingerprint to that of a
similarly sized attacker subnet in which a random fraction
of hosts responded to StrobeLight’s pings. StrobeLight

USENIX Association	 2009 USENIX Annual Technical Conference	 67

0%

20%

40%

60%

80%

100%

All subnets
(238951 hosts)

10.*.*.*
(38507 hosts)

65.*.*.*
(29030 hosts)

157.56.*.*
(28262 hosts)

157.55.*.*
(23670 hosts)

157.60.*.*
(21366 hosts)

A
cc

ur
ac

y:
Tr

ue
 P

os
 /

(T
ru

e
Po

s
+

Fa
ls

e
N

eg
)

Figure 14: Detecting spectrum agility attacks

detected the spectrum attack if the similarity of the two
fingerprints was beneath a threshold c. More specifically,
let freal,t represent the fingerprint of a real subnet at time
t and ffake,t be the fingerprint of the attacker subnet. Let
sim() compute the similarity of two fingerprints. Given a
similarity cutoff c, we define StrobeLight’s detection ac-
curacy at time t as follows:
• True positive: sim(freal,t−1, ffake,t) < c.

The attacker’s fake subnet at time t is too dissimi-
lar to the real subnet’s fingerprint from the previous
timestep. StrobeLight raises an alarm in this case.

• False negative: sim(freal,t−1, ffake,t) ≥ c.
The fake subnet is sufficiently similar to the real sub-
net that StrobeLight does not raise an alarm.

Every simulated comparison should raise an alarm, so
there are no true negatives or false positives.

Figure 14 shows StrobeLight’s detection accuracy in
the five largest subnets. We also show results for an at-
tack against the “mega-subnet” containing all hosts, since
this is the best that we can approximate a large /8 pre-
fix. Each cluster of bars represents detection accuracy for
a specific subnet. Within a cluster, the i-th bar is our de-
tection accuracy when a random i ∗ 10% of hosts in the
attacker subnet respond to probes. For all of the results,
we used a similarity cutoff c of 0.78; this value minimized
the false negative rate.

In the mega-subnet containing 238,951 hosts, Stro-
beLight had perfect detection accuracy across all time
steps. StrobeLight also had perfect accuracy for two
of the five classful subnets. In the other three, detec-
tion accuracy for low response fractions dipped as low as
90%. These subnets were affected by a DNS failure which
caused their hosts to spend part of the observation period
in an unknown state. StrobeLight assumes that unknown
hosts are offline, so an attacker could hijack these sub-
nets during the DNS failure and evade detection by rarely
responding to StrobeLight pings. However, StrobeLight
would raise alarms at the beginning of the DNS anomaly,
since a large number of hosts would appear to go offline
suddenly. Thus, human operators would be more vigilant
for additional problems during this time period. In Sec-
tion 4.6, we return to the issue of StrobeLight’s reliance
on DNS infrastructure.

If an attacker could measure availability trends in our
subnets, he could mimic the legitimate distribution of
probe responses during the spectrum attack and avoid de-
tection by StrobeLight. However, many organizations al-
ready perform ingress filtering of ping probes destined for
internal hosts, eliminating the most obvious way for an
adversary to collect availability data.

The attacker could try to spoof the IP address of a real
StrobeLight server, and use the spoofed address to launch
surveillance probes. There are several ways to deal with
such an attack. One simple solution is to have the legiti-
mate StrobeLight servers periodically audit each other us-
ing a shared-secret challenge/response protocol. If an at-
tacker spoofs server S0’s address, and the spoof is visible
by another server S1, the fake S0 will fail S1’s challenge,
and S1 can raise an alarm.

4.4 Interception Attacks
In an interception attack, the adversary convinces routers
to send other people’s traffic through attacker-controlled
machines. These machines may inspect or tamper with
the packets before forwarding them to their real destina-
tion. The current version of StrobeLight cannot detect
such interceptions, since the interceptor does not drop le-
gitimate probe packets or generate false probe responses.
We have preliminary thoughts about how to modify Stro-
beLight to detect interceptions, and we briefly sketch
some ideas below. However, a full exploration is left to
future work.

Since two arbitrary prefixes are likely to be topolog-
ically distant [38], an interception attack that affects a
StrobeLight probing path should lengthen the route be-
tween the StrobeLight server and the monitored prefix. In
theory, this will increase the latency from the server to the
monitored prefix. So, the server can raise an alarm if it
detects a correlated spike in response latencies across all
prefix hosts. Unfortunately, latency may display signif-
icant jitter during non-anomalous conditions, so a naive
implementation of this scheme will generate excessive
false alarms.

Instead of looking for latency changes, StrobeLight
could look for hop count changes. Previous research has
shown that the hop count between two arbitrary prefixes
is stable in the short to medium term [36, 38]. We ver-
ified this result with our StrobeLight deployment at the
University of Michigan. Figure 15 shows the stability of
hop counts from the internal Michigan server and from
several external vantage points. Both internal and ex-
ternal servers recalculated their hop count to Michigan
hosts once an hour; these recalculations were staggered
across each hour. Recalculations typically resulted in
TTL changes for less than 1% of all nodes, and we believe
that most changes were due to lost tracing packets instead
of actual host movement within the target domain.

68	 2009 USENIX Annual Technical Conference	 USENIX Association

Stub networks rarely change their location with respect to
the network core. Thus, the hop counts between hosts in
that stub and an external vantage point are stable.

Figure 15: Hop count stability

0

250

500

750

1000

0 16384 32768 49152 65536 81920 98304 114688 131072

Network Size (# of Hosts Probed)

A
no

m
al

y
D

et
ec

tio
n

Ti
m

e:
C

PU
 +

 d
is

k
ov

er
he

ad
(U

ni
ts

 o
f M

ill
is

ec
on

ds
)

Each data point represents the average of 100 trials. Stan-
dard deviations were very small.

Figure 16: Scalability of Analysis Engine

Since interception attacks are likely to lengthen the
route between a StrobeLight server and its target prefix,
they are detectable by monitoring the hop count between
the target prefix and the distributed measurement sites.
This idea was first proposed by Zheng et al [38], and a
variant could be integrated into StrobeLight. Each server
would carefully set the TTLs of its probes to the expected
hop count to the target prefix. A sudden increase in this
path length will cause the probes to be dropped before
they reach their destination; the StrobeLight server will
perceive this as a sudden decrease in prefix availability
and raise an alarm. This solution is more attractive than
the latency-based scheme since hop counts are much more
stable than latency. However, the hop count technique
assumes that the attacker has limited topological knowl-
edge. In particular, if the interceptor knows the routes
connecting the target prefix, the StrobeLight servers, and
the interceptor’s routers, he can rewrite TTLs in a straight-
forward way to elude detection.

4.5 Performance

Anomaly detection consists of three steps: issuing the
ping sweep from the probe machine, transferring the
probe results to the analysis machine, and performing fin-
gerprint calculations on the analysis machine. The first
step is the slowest one, since we spread the probing sweep
over several seconds to avoid noticeable network spikes.
The second step should be fast even if the probing ma-

chine is different than the analysis machine, since probe
results are just small bit vectors. As shown in Figure 16,
the final calculation step is also fast. Figure 16 shows that
once the analyzer has pulled the ping results onto local
storage, the time needed to calculate new fingerprints and
perform threshold calculations is less than half a second,
even for networks with 130,000 hosts.

4.6 Discussion

StrobeLight queries DNS servers to determine which IP
addresses to probe. Depending on one’s perspective, this
is a vice or a virtue. StrobeLight’s sensitivity to DNS state
means that it can detect some anomalies in DNS opera-
tion. However, this opens StrobeLight to DNS-mediated
attacks in which adversaries try to disrupt StrobeLight’s
DNS fetches before tampering with BGP state. The IP
prefixes owned by an enterprise are fairly stable, so we
could manually configure StrobeLight with these prefixes
and probe every address without regard to whether it was
assigned internally (in fact, this is what we did for the
StrobeLight deployment at the University of Michigan,
since we lacked access to the DNS zone files). The
penalty would be an increase in the prober’s network load;
also, if there are many unassigned addresses, cross-subnet
similarity will naturally be higher, leading to more false
alarms.

5 Related Work

Several commercial products provide enterprise-scale net-
work monitoring without requiring end-host modification.
For example, in the SiteScope system [17], a centralized
server remotely logs into client systems and reads local
performance counters. Tools like this collect a wider vari-
ety of data than StrobeLight, which only measures avail-
ability. However, StrobeLight can scan more machines
per second, since it uses simple ping probes instead of
comparatively heavyweight remote logins. StrobeLight is
also easier to deploy in heterogenous end-host environ-
ments, since ICMP probes work “out-of-the-box” across
all commodity operating systems, but remote login proce-
dures can differ substantially across OSes.

Passive introspection of preexisting traffic can be used
to infer path characteristics or host availability. For ex-
ample, Padmanabhan et al record the end-to-end loss rate
inside a client-server flow and use Bayesian statistics to
extrapolate loss rates for interior IP links [28]. Passive
detection of host availability is attractive for two reasons.
First, it does not generate new traffic. Second, explicit
probing may trigger intrusion detection systems on leaf
networks, a problem occasionally encountered with ac-
tive probing systems deployed on PlanetLab [34]. Despite
these advantages, passive probing was ill-suited for our

USENIX Association	 2009 USENIX Annual Technical Conference	 69

goal of tracking per-host availability in a large network.
The time that a host is online is a superset of the time that
it is generating network traffic, so passive observations of
per-host packet flows may underestimate true availability.
Also, a key design goal was to minimize the new infras-
tructure that had to be pushed to end hosts or the corporate
routing infrastructure. Installing custom network intro-
spection code on every end host was infeasible. Placing
such code inside the core network infrastructure was also
infeasible due to the complex web of proxies, firewalls,
and routers that would have to be instrumented to get a
full view of each host’s network activity.

Most prior work on IP hijack detection has required
modification to core Internet routers. Some systems re-
quire routers to perform cryptographic operations to val-
idate BGP updates [2, 12, 19], whereas others require
changes to router software to make BGP updates more
robust to tampering [35, 37]. We eschewed such designs
due to the associated deployment problems.

Several systems use passive monitoring of BGP dy-
namics to detect inconsistencies in global state [22, 23,
33]. These systems typically search for anomalies in
one or more publicly accessible databases such as Route-
Views [27], which archives BGP state from multiple van-
tage points, or the Internet Routing Registry [3], which
contains routing policies and peering information for each
autonomous system. Passive monitoring eases deploya-
bility concerns. However, data freshness becomes a con-
cern when dealing with “eventually updated” repositories
such as the IRR, and even RouteViews data is only up-
dated once every two hours. Legitimate changes to rout-
ing policy may also be indistinguishable from hijacking
attacks in terms of BGP semantics, making disambigua-
tion difficult in some cases. In contrast, if our availability
fingerprints indicate that a large chunk of hosts have sud-
denly gone offline or changed their availability profile, it
is extremely unlikely that this is a natural phenomenon.

Hu and Mao were the first to use data plane fingerprints
in the context of hijack detection [18]. In their system, a
live BGP feed is monitored for suspicious updates. If an
IP prefix is involved in a questionable update, its hosts
are scanned from multiple vantage points using nmap OS
fingerprinting [15], IP ID probing [7], and ICMP times-
tamp probing [18]. The results are presented to a human
operator who determines if they are inconsistent. Our sys-
tem differs in three ways. First, we do not require privi-
leged access to a live BGP feed, easing deployability. Sec-
ond, we continually calculate subnet fingerprints, whereas
Hu’s system only calculates fingerprints upon detecting
suspicious BGP behavior, behavior which may take sev-
eral minutes to propagate to a particular vantage point.
Third, we can finish a probing sweep in less than 30 sec-
onds, whereas several of Hu’s scans may take several min-
utes to complete. Given the short-lived nature of spectrum

agility attacks [31], we believe that quick, frequent scan-
ning is preferable, if only to serve as a tripwire to trigger
slower, “deeper” scans.

Zheng et al detect hijacking attacks by measuring the
hop count from monitor hosts to the IP prefixes of inter-
est [38]. For each prefix, the monitor selects a reference
point that is topologically close to the prefix and lies along
the path from the monitor to the prefix. In normal situ-
ations, the hop count along the monitor-reference point
path should be close to that of the monitor-prefix path.
When the prefix is hijacked, the hop count along the two
paths should diverge. Zheng’s system avoids the deploya-
bility problems mentioned above, since hop counts can be
determined by any host that can run traceroute. However,
the system assumes that a reference point can be found
which is immediately connected to the target prefix and
responds to ICMP messages; if the reference point is fur-
ther out, the hijacker can hide within the extra hops. Our
system only requires that end hosts respond to pings. Fur-
thermore, our system tracks the availability of individual
hosts, whereas Zheng’s system only tracks the availability
of a few representative hosts in each target prefix.

6 Conclusion

Many distributed systems would benefit from an infras-
tructure that collected high resolution availability mea-
surements for individual hosts. Unfortunately, existing
frameworks either do not scale, do not track every host in
the network, or store data in such a way that makes global
analysis difficult. In this paper we describe StrobeLight,
an enterprise-level tool for collecting fine-grained avail-
ability data. Our current prototype has measured the up-
time of hundreds of thousands of hosts in our corporate
network for almost two years. Using the longitudinal data
generated by this tool, we performed extensive analyses
of availability in our wired and wireless networks. Us-
ing external Planetlab deployments and simulations, we
also demonstrated how StrobeLight’s real-time analysis
engine can detect wide-area network anomalies. Our op-
erational experiences indicate that StrobeLight’s anomaly
detection is fast and accurate.

References
[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,

J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer.
FARSITE: Federated, Available, and Reliable Storage for an In-
completely Trusted Environment. In Proceedings of OSDI, pages
1–14, Boston, MA, December 2002.

[2] W. Aiello, J. Ioannidis, and P. McDaniel. Origin Authentication
in Interdomain Routing. In Proceedings of CCS, pages 165–178,
Washington, DC, October 2003.

[3] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer,
T. Bates, D. Karrenberg, and M. Terpstra. Routing Policy Specifi-
cation Language (RPSL). RFC 2622, June 1999.

70	 2009 USENIX Annual Technical Conference	 USENIX Association

[4] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In Proceedings of SOSP, pages 131–
145, Banff, Canada, October 2001.

[5] D. Anderson. BOINC: A System for Public-Resource Comput-
ing and Storage. In Proceedings of the IEEE/ACM International
Workshop on Grid Computing, pages 4–10, Pittsburgh, November
2004.

[6] H. Ballani, P. Francis, and X. Zhang. A Study of Prefix Hijacking
and Interception in the Internet. In Proceedings of SIGCOMM,
pages 265–276, Kyoto, Japan, August 2007.

[7] S. Bellovin. A Technique for Counting NATted Hosts. In Proceed-
ings of the SIGCOMM Internet Measurement Workshop, pages
267–272, Marseille, France, November 2002.

[8] R. Bhagwan, S. Savage, and G. Voelker. Understanding availabil-
ity. In Proceedings of the 2nd IPTPS, Berkeley, CA, February
2003.

[9] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total
Recall: system support for automated availability management. In
Proceedings of NSDI, pages 337–350, March 2004.

[10] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of
a serverless distributed file system deployed on an existing set of
desktop PCs. In Proceedings of ACM SIGMETRICS, pages 34–43,
Santa Clara, CA, June 2000.

[11] W. Bolosky, J. Douceur, and J. Howell. The Farsite Project: A Ret-
rospective. ACM SIGOPS Operating Systems Review, 41(2):17–
26, April 2007.

[12] K. Butler, P. McDaniel, and W. Aiello. Optimizing BGP Security
by Eploiting Path Stability. In Proceedings of CCS, pages 298–
310, Alexandria, VA, November 2006.

[13] D.-F. Chang, R. Govindan, and J. Heidemann. Locating BGP
Missing Routes Using Multiple Perspectives. In Proceedings of the
SIGCOMM Workshop on Network Troubleshooting, pages 301–
306, Portland, OR, September 2004.

[14] P. Cincotta, M. Mendez, and J. Nunez. Astronomical Time Series
Analysis I: A Search for Periodicity Using Information Entropy.
The Astrophysical Journal, 449:231–235, August 1995.

[15] Fyodor. nmap security scanner. http://insecure.org/nmap/.

[16] IETF IDR Working Group. A Border Gateway Protocol 4 (BGP-
4). RFC 1771, March 1995.

[17] Hewlett-Packard Development Company. HP SiteScope software:
Data sheet. White paper, August 2008.

[18] X. Hu and Z. Morley Mao. Accurate Real-time Identification of
IP Prefix Hijacking. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 3–17, Oakland, California, May 2007.

[19] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: Secure Path Vector Rout-
ing for Securing BGP. In Proceedings of SIGCOMM, pages 179–
192, Portland, OR, September 2004.

[20] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. In Proceedings of
VLDB, pages 321–332, Berlin, Germany, September 2003.

[21] J. Jung and E. Sit. An Empirical Study of Spam Traffic and the
Use of DNS Black Lists. In Proceedings of IMC, pages 370–375,
Taormina, Sicily, Italy, October 2004.

[22] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Topology-based
Detection of anomalous BGP messages. In Proceedings of RAID,
pages 17–35, Pittsburgh, PA, September 2003.

[23] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang. Phas:
A Prefix Hijack Alert System. In Proceedings of USENIX Security,
pages 153–166, Vancouver, Canada, August 2006.

[24] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani. iplane: An Information Plane
for Distributed Services. In Proceedings of OSDI, pages 367–380,
Seattle, WA, November 2006.

[25] J. Mickens and B. Noble. Exploiting Availability Prediction in
Distributed Systems. In Proceedings of NSDI, pages 73–86, San
Jose, CA, May 2006.

[26] J. Mickens and B. Noble. Concilium: Collaborative Diagnosis of
Broken Overlay Routes. In Proceedings of DSN, pages 225–234,
Edinburgh, UK, June 2007.

[27] University of Oregon. Route Views Project.
http://www.routeviews.org.

[28] V. Padmanabhan, L. Qiu, and H. Wang. Passive Network Tomog-
raphy Using Bayesian Inference. In Proceedings of SIGCOMM
Internet Measurement Workshop, pages 93–94, Marseille, France,
November 2002.

[29] K. Park and V. Pai. CoMon: A mostly-scalable monitoring system
for PlanetLab. Operating Systems Review, 40(1):65–74, January
2006.

[30] S. Pincus. Approximate entropy as a measure of system complex-
ity. In Proceedings of the National Academy of Science, pages
2297–2301, USA, March 1991.

[31] A. Ramachandran and N. Feamster. Understanding the Network-
Level Behavior of Spammers. In Proceedings of SIGCOMM,
pages 291–302, Pisa, Italy, September 2006.

[32] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
Proceedings of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), pages 329–350, Heidel-
berg, Germany, November 2001.

[33] G. Siganos and M. Faloutsos. Neighborhood Watch for Internet
Routing: Can We Improve the Robustness of Internet Routing To-
day? In Proceedings of INFOCOM, pages 1271–1279, Anchor-
age, AK, May 2007.

[34] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using Planetlab
for Network Research: Myths, Realities, and Best Practices. In
Proceedings of WORLDS, pages 67–72, San Francisco, CA, De-
cember 2005.

[35] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz.
Listen and Whisper: Security Mechanisms for BGP. In Proceed-
ings of NSDI, pages 127–140, San Francisco, CA, March 2004.

[36] R. Teixeira, S. Agarwal, and J. Rexford. BGP Routing Changes:
Merging Views from Two ISPs. In SIGCOMM Computer Com-
munications Review, pages 79–82, October 2005.

[37] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and
L. Zhang. Detection of Invalid Routing Announcement in the In-
ternet. In Proceedings of DSN, pages 59–68, Bethesda, MD, June
2002.

[38] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis. A Light-Weight
Distributed Scheme for Detecting IP Prefix Hijacks in Real-Time.
In Proceedings of SIGCOMM, pages 277–288, Kyoto, Japan, Au-
gust 2007.

USENIX Association	 2009 USENIX Annual Technical Conference	 71

Hashing Round-down Prefixes for Rapid Packet Classification
 Fong Pong Nian-Feng Tzeng

 Broadcom Corp. Center for Advanced Computer Studies
 2451 Mission College Blvd., Santa Clara, CA 95054 University of Louisiana at Lafayette, LA 70504

 fpong@broadcom.com tzeng@cacs.louisiana.edu

Abstract — Packet classification is complex due to
multiple fields present in each filter rule, easily manifesting
itself as a router performance bottleneck. Most known
classification approaches involve either hardware support or
optimization steps (to add precomputed markers and insert
rules in the search data structures). Unfortunately, an
approach with hardware support is expensive and has
limited scalability, whereas one with optimization fails to
handle incremental rule updates effectively. This work
treats a rapid packet classification mechanism, realized by
hashing round-down prefixes (HaRP) in a way that the
source and the destination IP prefixes specified in a rule are
rounded down to “designated prefix lengths” (DPL) for
indexing into hash sets. Utilizing the first ζ bits of an IP
prefix with l bits (for ζ ≤ l, ζ∈DPL) as the key to the hash
function (instead of using the original IP prefix), HaRP
exhibits superb hash storage utilization, able to not only
outperform those earlier software-oriented classification
techniques but also well accommodate dynamic creation
and deletion of rules. HaRP makes it possible to hold all its
search data structures in the local cache of each core within
a contemporary processor, dramatically elevating its
classification performance. Empirical results measured on
our Broadcom BCM-1480 multicore platform under nine
filter datasets obtained from a public source unveil that
HaRP enjoys up to some 5× (or 10×) throughput
improvement when compared with well-known HyperCuts
(or Tuple Space Search).

1 Introduction
Packet classification is basic to a wide array of Internet

applications and services, performed at routers by applying
“rules” to incoming packets for categorizing them into flows. It
employs multiple fields in the header of an arrival packet as the
search key for identifying the best suitable rule to apply. Rules
are created to differentiate packets based on the values of their
corresponding header fields, constituting a filter set. Header
fields may contain network addresses, port numbers, the
protocol type, TCP flags, ICMP message type and code
number, VLAN tags, DSCP and 802.1p codes, etc. A field
value in a filter can be an IP prefix (e.g., source or destination
sub-network), a range (e.g., source or destination port numbers),
or an exact number (e.g., protocol type or TCP flag). A real
filter dataset often contains multiple rules for a pair of
communicating networks, one for each application. Similarly,

an application is likely to appear in multiple filters, one for each
pair of communicating networks using the application.
Therefore, lookups over a filter set with respect to multiple
header fields are complex [9] and often become router
performance bottlenecks.

Various classification mechanisms have been considered,
and they aim to quicken packet classification through hardware
support or the use of specific data structures to hold filter
datasets (often in SRAM and likely with optimization) for fast
search [25]. Hardware support frequently employs FPGAs
(field programmable gate arrays) or ASIC logics [4, 21], plus
TCAM (ternary content addressable memory) to hold filters or
registers for rule caching [8]. Key design goals with hardware
support lie in simple data structures and search algorithms to
facilitate ASIC or FPGA implementation and low storage
requirements to reduce the TCAM costs. They tend to prevent a
mechanism with hardware support from handling incremental
rule updates efficiently, and any change to the mechanism (in its
search algorithm or data structures) is usually expensive.
Additionally, such a mechanism exhibits limited scalability, as
TCAM employed to hold a filter set dictates the maximal set
size allowable. Likewise, search algorithms dependent on
optimization via preprocessing (used by recursive flow
classification [9]) or added markers and inserted rules (stated in
rectangle tuple space search (TSS) [24], binary TSS on columns
[28], diagonal-based TSS [15], etc.) for speedy lookups often
cannot deal with incremental rule updates effectively. A tuple
under TSS specifies the involved bits of those fields employed
for classification, and probes to tuple space for appropriate rules
are conducted via fast exact-match search methods like hashing.

Many TSS-based classifiers employ extra SRAM (in
addition to processor caches). Unlike TCAM, SRAM costs far
less and consumes much lower energy. Further, if the required
SRAM size is made small to fit in an on-chip module, the cost
incurred for the on-chip SRAM can be very low, since it shares
the same fabrication processes as those for on-chip caches.
However, the inherent limitation of a TSS classifier in dealing
with incremental rule updates (deemed increasingly common
due to such popular applications as voice-over-IP, gaming, and
video conferencing, which all involve dynamically triggered
insertion and removal of rules in order for the firewall to handle
packets properly) will soon become a major concern [30].

This article treats hashing round-down prefixes (HaRP)
for rapid packet classification, where an IP prefix with l bits
is rounded down to include its first ζ bits only (for ζ ≤ l, ζ

72	 2009 USENIX Annual Technical Conference	 USENIX Association

∈DPL, “designated prefix lengths” [17]). With two-staged
search, HaRP achieves high classification throughput and
superior memory efficiency by means of (1) rounding down
prefixes to a small number of DPL (denoted by m, i.e., m
possible designated prefix lengths), each corresponding to
one hash unit, for fewer (than 32 under IPv4, when every
prefix length is permitted without rounding down) hash
accesses per packet classification, and (2) collapsing those
hash units to one lumped hash (LuHa) table for better
utilization of table entries, which are set-associative. Based
on a LuHa table keyed by the source and destination IP
prefixes rounded down to designated lengths, HaRP not
only enjoys fast classification (due to a small number of
hash accesses) but also handles incremental rule updates
efficiently (without precomputing markers or inserting rules
often required by typical TSS). While basic HaRP
identifies up to two candidate sets in the LuHa table to hold
a given filter rule, generalized HaRP (denoted by HaRP*)
may store the rule in any one of up to 2m candidate sets,
considerably elevating table utilization to lower the
probability of set overflow and achieving good scalability
even for a small set-associative degree (say, 4). Each packet
classification under HaRPP

* requires to examine all the
possible 2m candidate sets (in parallel for those without
conflicts, i.e., those in different memory modules which
constitute the LuHa Table), where those sets are identified
by the hash function keyed with the packet’s source and
destination IP addresses, plus their respective round-down
prefixes. HaRP is thus to exhibit fast classification, due to
its potential of parallel search over candidate sets. With
SRAM for the LuHa table and the application-specific
information table (for holding filter fields other than source
and destination IP prefixes), HaRP exhibits a lower cost and
better scalability than its hardware counterpart. With its
required SRAM size dropped considerably (to some 200KB
at most for all nine filter datasets examined), HaRP makes it
possible to hold all its search data structures in the local
cache of a core within a contemporary processor, further
boosting its classification performance.

Our LuHa table yields high storage utilization via
identifying multiple candidate sets for each rule (instead of
just a single one under a typical hash mechanism), like the
earlier scheme of d-left hashing [1]. However, the LuHa
table differs from d-left hashing in three major aspects: (1)
the LuHa table requires just one hash function, as opposed
to d functions needed by d-left hashing (which divides
storage into d fragments), one for each fragment, (2) the
hash function of the LuHa table under HaRP

 Extensive evaluation on HaRP has been conducted on our
platform comprising a Broadcom’s BCM-1480 SoC (System on
Chip) [18], which has four 700MHz SB-1TM MIPS cores [12],
under nine filter datasets obtained from a public source [29].
The proposed HaRP was made multithreaded so that up to 4
threads could be launched to take advantage of the 4 SB-1TM
cores for gathering real elapsed times via the BCM-1480 ZBus
counter, which ticks at every system clock. Measured
throughput results of HaRP are compared with those of its
various counterparts (whose source codes were downloaded
from a public source [29] and then made multithreaded for)
executing on the same platform to classify millions of packets
generated from the traces packaged with the filter datasets. Our
measured results reveal that HaRPP

* boosts classification
throughput by some 5× (or 10×) over well-known HyperCuts
[20] (or Tuple Space Search [24]), when its LuHa table has a
total number of entries equal to 1.5n and there are 4 designated
prefix lengths, for a filter dataset sized n. HaRP attains superior
performance, on top of its efficient support for incremental rule
updates lacked by previous techniques, making it a highly
preferable software-based packet classification technique.

2 Pertinent Work and Tuple Space Search
Packet classification is challenging and its cost-effective

solution is still in pursuit actively. Known classification lookup
mechanisms may be categorized, in accordance with their
implementation approaches, as being hardware-centric and
software-oriented, depending upon if dedicated hardware logics
or specific storage components (like TCAM or registers) are
used. Different hardware-centric classification mechanisms
exist. In particular, a mechanism with additional registers to
cache evolving rules and dedicated logics to match incoming
packets with the cached rules was pursued [8]. Meanwhile,
packet classification using FPGA was considered [21] by using
the BV (Bit Vector) algorithm [13] to look up the source and
destination ports and employing a TCAM to hold other header
fields, with search functionality realized by FPGA logic gates.
Recently, packet classification hardware accelerator design
based on the HiCuts and HyperCuts algorithms [3, 20] (briefly
reviewed in Section 2.1), has been presented [11]. Separately,
effective methods for dynamic pattern search were introduced
[4], realized by reusing redundant logics for optimization and by
fitting the whole filter device in a single Xilinx FPGA unit,
taking advantage of built-in memory and XOR-based
comparators in FPGA.
 Hardware approaches based on TCAM are considered

attractive due to the ability for TCAM to hold the don’t care
state and to search the header fields of an incoming packet
against all TCAM entries in a rule set simultaneously [16, 27].
While deemed as most widely employed storage components in
support of fast lookups, TCAM has such noticeable
shortcomings (listed in [25]) as lower density, higher power
consumption, and being pricier and unsuitable for dynamic

P

* is keyed by
2m different prefixes produced from each pair of the source
and the destination IP addresses, and (3) a single LuHa table
obtained by collapsing separate hash units is employed to
attain superior storage utilization, instead of one hash unit
per prefix length to which d-left hashing is applied.

USENIX Association	 2009 USENIX Annual Technical Conference	 73

rules, since incremental updates usually require many TCAM
entries to be shifted (unless provision like those given earlier
[19, 27] is made). As a result, software-oriented classification is
more attractive, provided that its lookup speed can be quickened
by storing rules in on-chip SRAM.

2.1 Software-Oriented Classification
Software-oriented mechanisms are less expensive and

more flexible (better adaptive to rule updates), albeit to slower
filter lookups when compared with their hardware-centric
counterparts. Such mechanisms are abundant, commonly
involving efficient algorithms for quick packet classification
with an aid of caching or hashing (via incorporated SRAM).
Their classification speeds rely on efficiency in search over the
rule set (stored in SRAM) using the keys constituted by
corresponding header fields. Several representative software
classification techniques are reviewed in sequence.

Recursive flow classification (RFC) carries out multistage
reduction from a lookup key (composed of packet header fields)
to a final classID, which specifies the classification rule to apply
[9]. Given a rule set, preprocessing is required to decide
memory contents so that the sequence of RFC lookups
according to a lookup key yields the appropriate classID [9].
Preprocessing results can be put in SRAM for fast accesses,
important for RFC as it involves multiple stages of lookups.
Any change to the rule set, however, calls for memory content
recomputation, rendering it unsuitable for frequent rule updates.

Based on a precomputed decision tree, HiCuts
(Hierarchical Intelligent Cuts) [10] holds classification rules
merely in leaf nodes and each classification operation needs to
traverse the tree to a leaf node, where multiple rules are stored
and searched sequentially. During tree search, HiCuts relies
on local optimization decisions at each node to choose the next
field to test. Like HiCuts, HyperCuts is also a decision tree-
based classification mechanism, but each of its tree nodes splits
associated rules possibly based on multiple fields [20]. It builds
a decision tree, aiming to involve the minimal amount of total
storage and to let each leaf node hold no more than a
predetermined number of rules. HyperCuts is shown to enjoy
substantial memory reduction while considerably quickening
the worst-case search time under core router rule sets [20], when
compared with HiCuts and other earlier classification solutions.

An efficient packet classification algorithm was introduced
[2] by hashing flow IDs held in digest caches (instead of the
whole classification key comprising multiple header fields) for
reduced memory requirements at the expense of a small amount
of packet misclassification. Recently, fast and memory-efficient
(2-dimensional) packet classification using Bloom filters was
studied [7], by dividing a rule set into multiple subsets before
building a crossproduct table [23] for each subset individually.
Each classification search probes only those subsets that contain
matching rules (and skips the rest) by means of Bloom filters,
for sustained high throughput. The mean memory requirement
is claimed to be some 32 ~ 45 bytes per rule. As will be

demonstrated later, our mechanism achieves faster lookups
(involving 8~16 hash probes plus 4 more SRAM accesses,
which may all take place in parallel, per packet) and consumes
fewer bytes per rule (taking 15 ~ 25 bytes per rule).

A fast dynamic packet filter, dubbed Swift [30], comprises
a fixed set of instructions executed by an in-kernel interpreter.
Unlike packet classifiers, it optimizes filtering performance by
means of powerful instructions and a simplified computational
model, involving a kernel implementation.

2.2 Tuple Space Search (TSS)
Having rapid classification potentially (with an aid of

optimization) without additional expensive hardware, TSS has
received extensive studies. It embraces versatile software-
oriented classification and involves various search algorithms.
Under TSS, a tuple comprises a vector of k integer elements,
with each element specifying the length or number of bits of a
header field of interest used for the classification purpose. As
the possible numbers of bits for interested fields present in the
classification rules of a filter dataset tend to be small, all length
combinations of the k fields constituting tuple space are rather
contained [24]. In other words, while the tuple space T in
theory comprises totally Πi=1..k prefix.length(fieldi) tuples, it only
needs to search existing tuples rather than the entire space T.

A search key can be obtained for each incoming packet by
concatenating those involved bits in the packet header.
Consider a classic 5-dimensional classification problem, with
packets classified by their source IP address (sip), source port
number (spn), destination IP address (dip), destination port
number (dpn), and protocol type (pt). An example tuple of (sip,
dip, spn, dpn, pt) = (16, 24, 6, 4, 6) means that the source and
the destination IP addresses are respectively a 16-bit prefix and
a 24-bit prefix. The number of prefix bits used to define the
tuple elements of sip and dip is thus clear. On the other hand,
the port numbers and the protocol type are usually specified in
ranges; for example, [1024, 2112] referring to the port number
from 1024 to 2112. For TSS, those range files are (1) handled
separately (like what was stated in [3]), (2) encoded by nested
level and range IDs [24], or (3) transformed into collections of
sub-ranges each corresponding to a prefix (namely, a range with
an exact power of two), resulting in rule dataset expansion.

TSS Implementation Consideration
TSS intends to achieve high memory efficiency and fast

lookups by exploiting a well sanctioned fact of rule construction
resulting from optimization. Its optimization methods include:

1. Tuple Pruning and Rectangle Search, using markers and
pre-computed best-matched rules to achieve the worst-
case lookup time of 2W-1 for two-dimensional
classification, with W being the length of source and
destination IP prefixes [24],

2. Binary Search on Columns, considered later [28] to
reduce the worst-case lookup time down to O(log2W),
while involving O(N×log2W) memory for N rules, and

74	 2009 USENIX Annual Technical Conference	 USENIX Association

Prefix Pair Pointer

(sip, dip) index
……..

….

(sip, dip) index

Figure 1. HaRP classification mechanism comprising one set-associative hash table (obtained by lumping multiple hash
tables together) and an application-specific information table.

Collapse

hash table for prefixes P|lm

hash table for prefixes P|li

hash table for prefixes P|lk

Source Port Dest. Port Proto. Type

(spnlow, spnhi) (dpnlow, dpnhi) (ptlow, pthi)
…….. ……..

(spnlow, spnhi) (dpnlow, dpnhi) (ptlow, pthi)

(spnlow, spnhi) (dpnlow, dpnhi) (ptlow, pthi)

(spnlow, spnhi) (dpnlow, dpnhi) (ptlow, pthi)

Lumped Hash
(LuHa) table

Application-Specific Information
(ASI) table

3. Diagonal-based Search to exhibit the search time of
O(logW) for two-dimensional filters, with a large
memory requirement of O(N2) [15].

While TSS (with optimization) is generally promising, it
suffers from the following limitations.
Expensive Incremental Updates. Dynamic creation and
removal of classification rules may prove to be challenging to
those known TSS methods. However, dynamic changes to rule
datasets take place more frequently going forward, due to many
growing popular applications, such as voice-over-IP, gaming,
and video conferencing, which all require dynamically triggered
insertion and removal of rules in order for the firewall to handle
packets properly. This inability in dealing with frequent rule
updates is common to TSS-based packet classification, because
its high search rate and efficient memory (usually SRAM)
utilization result from storing contents in a way specific to
contents themselves, and any change to the rule dataset requires
whole memory content recomputed and markers/rules
reinserted. With its nature of complex and prohibitively
expensive memory management in response to rule changes,
TSS is unlikely to arrive at high performance.
Limited Parallelism. TSS with search optimization lends itself
to sequential search, as the next tuple to be probed depends on
the search result of the current tuple. Its potential in parallelism
is rather limited as the number of speculative states involved
grows exponentially when the degree increases.
Extensibility to Additional Fields. Results for two-dimensional
TSS have been widely reported. However, it is unclear about
TSS performance when the number of fields rises (to
accommodate many other fields, including TCP flags, ICMP
message type and code number, VLAN tags, DSCP and 802.1p
codes, besides commonly mentioned five fields), in particular, if
markers and precomputation for best rules are to be applied.

3 Proposed HaRP Architecture
3.1 Fundamentals and Pertinent Data Structures

As eloquently explained earlier [25, 26], a classification
rule is often specified with a pair of communicating networks,
followed by the application-specific constraints (e.g., port

numbers and the protocol type). Our HaRP exploits this
situation by considering the fields on communicating networks
and on application-specific constraints separately, comprising
two search stages. Its first stage narrows the search range via
communicating network prefix fields, and its second stage
checks other fields on only entries chosen in the first stage.

 Basic HaRP
As depicted in Figure 1, the first stage of HaRP comprises

a single set-associative hash table, referred to as the LuHa
(lumped hash) table. Unlike typical hash table creation using
the object key to determine one single set for an object, our
LuHa table aims to achieve extremely efficient table utilization
by permitting multiple candidate sets to accommodate a given
filter rule and yet maintaining fast search over those possible
sets in parallel during the classification process. It is made
possible by (1) adopting designated prefix length, DPL: {l1, l2,
… li, … lm}, where li denotes a prefix length, such that for any
prefix P of length w (expressed by P|w) with li ≤ w < li+1, P is
rounded down to P|li before used to hash the LuHa table, and (2)
storing a filter rule in the LuHa table hashed by either its source
IP prefix (sip, if not wild carded) or destination IP prefix (dip, if
not wild carded), after they are rounded down. Each prefix
length ζ, with ζ∈DPL, is referred to as a tread. Given P, it is
hashed by treating P|li as an input to a hash function to get a d-
bit integer, where d is dictated by the number of sets in the
LuHa table. Since treads in DPL are determined in advance, the
numbers of bits in an IP address of a packet used for hash
calculation during classification are clear and their hashed
values can be obtained in parallel for concurrent search over the
LuHa table. Our classification mechanism results from hashing
round-down prefixes (HaRP) during both filter rule installation
and packet classification search, thereby so named.

The LuHa table comprises collapsed individual hash tables
(each of which is assigned originally to hold all prefixes P|w (li
≤ w < li+1) under chosen DPL, as shown in Figure 1 by the
leftmost component before collapsing) to yield high table
utilization and is made set-associative to alleviate the overflow
problem. Each entry in the LuHa table keeps a prefix pair for
the two communicating networks, namely, sip (the source IP
prefix) and dip (the destination IP prefix). While different (sip,

USENIX Association	 2009 USENIX Annual Technical Conference	 75

dip) pairs after being rounded down may become identical and
distinct prefixes possibly yield the same hashed index, the set-
associative degree of the LuHa table can be held low in practice.
Given the LuHa table composed of 2d sets, each with α entries,
it experiences overflow if the number of rules hashed into the
same set exceeds α. However, this overflow problem is
alleviated, since a filter rule can be stored in either one of the
two sets indexed by its sip and dip. With the LuHa table, our
HaRP arrives at (1) rapid packet classification due to a reduced
number of hash probes through a provision of parallel accesses
to all entries in a LuHa set and also to a restricted scope of
search (pointed to by the matched LuHa entry) in the second
stage, and (2) a low SRAM requirement due to one single set-
associated hash table (for better storage utilization).

Generalized HaRP
Given a filter rule with its sip or dip being P|w and under

DPL = {l1, l2, … li, … lm}, HaRP can be generalized by
rounding down P|w, with li ≤ w < li+1, to P|lb, for all 1 ≤ b ≤ i,
before hashing P|lb to identify more candidate sets for keeping
the filter rule. In other words, this generalization in rounding
down prefixes lets a filter rule be stored in any one of those 2×i
sets hashed by P|lb in the LuHa table, referred to as HaRP*.
This is possible because HaRP takes advantage of the
“transitive property” of prefixes – for a prefix P|w, P|t is a prefix
of P|w for all t < w, considerably boosting its pseudo set-
associative degree. A classification lookup for an arrived packet
under DPL with m treads involves m hash probes via its source
IP address and m probes via its destination IP address, therefore
allowing the prefix pair of a filter rule (say, (Ps|ws , Pd|wd), with
lis ≤ ws < lis+1 and lid ≤ wd < lid+1) to be stored in any one of the is
sets indexed by round-down Ps (i.e., Ps|{l1, l2, … lis}, if Ps is not
a wildcard), or any one of the id sets indexed by round-down Pd
(i.e., Pd|{l1, l2, … lid}, if Pd is not a wildcard). HaRP* balances
the prefix pairs among many candidate sets (each with α
entries), making the LuHa table behave like an (is + id)×α set-
associative design under ideal conditions to enjoy high storage
efficiency. Given DPL with 5 treads: {28, 24, 16, 12, 1}, for
example, HaRP* rounds down the prefix of 010010001111001×
(w = 15) to 010010001111 (ζ = 12) and 0 (ζ = 1) for hashing.

This potentially high pseudo set-associativity makes it
possible for HaRP* to choose a small number of treads (m). A
small m lowers the number of hash probes per lookup
accordingly, thus improving lookup performance. Adversely, as
m drops, more rules can be mapped to a given set in the LuHa
table, requiring m to be moderate practically, say 6 or so. Note
that a shorter prefix (either Ps or Pd) leads to fewer candidate
sets for storing a filter rule, but the number of filter rules with
shorter prefixes is smaller, naturally curbing the likelihood of set
overflow. Furthermore, HaRP* enjoys virtually no overflow, as
long as * is greater than 2, to be seen in the following analysis.

Our basic HaRP stated earlier is denoted by HaRP1 (where
P|w, with li ≤ w < li+1, is rounded down to P|li). Rounding down

P|w to both P|li and P|li-1, dubbed HaRP2, specifies up to four
LuHa table sets for the filter rule. Clearly, HaRP* experiences
overflow only when 2×i sets in the LuHa table are all full. The
following analyzes the LuHa table in terms of its effectiveness
and scalability, revealing that for a fixed, small α (say, 4), its
overflow probability is negligible, provided that the ratio of the
number of LuHa table entries to the number of filter rules is a
constant, say ρ.

Effectiveness and Scalability of LuHa Table

From a theoretic analysis perspective, the probability
distribution could be approximated by a Bernoulli process,
assuming a uniform hash distribution for round-down
prefixes. (As round-down prefixes for real filter datasets
may not be hashed uniformly, we performed extensive
evaluation of HaRP* under publicly available 9 real-world
datasets, with the results provided in Section 4.2.) The
probability of hashing a round-down prefix P|li randomly to
a table with r sets equals 1/r. Thus, the probability for k
round-down prefixes, out of n samples (i.e., the filter dataset

size), hashing to a given set is . As

each set has α entries, we get prob.(overflow | k round-
down prefixes mapped to a set, for all k > α) =

, with r = (n×ρ)/α .

knrkr
k
n −−⎟
⎠
⎞⎜

⎝
⎛)/11()/1(

∑
=

−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

α

0
)/11()/1(1

k

knrkr
k
n

The above expression can be shown to give rise to
almost identical results over any practical range of n, for
given ρ and α. When ρ = 1.5 and α = 4, for example, the
overflow probability equals 0.1316 under n = 500, and it
becomes 0.1322 under n = 100,000. Consequently, under a
uniform hashing distribution of round-down prefixes, the set
overflow probability of HaRP P

* holds virtually unchanged as
the filter dataset size grows, indicating good scalability of
HaRP* with respect to its LuHa table. We therefore provide
in Figure 2, the probability of overflowing a set with α = 4
entries versus ρ (called the dilation factor) for one filter
dataset size (i.e., n = 100,000) only. As expected, the
overflow probability dwindles as ρ rises (reflecting a larger
table). For ρ = 1.5 (or 2), the probability of overflowing a
typical 4-way set-associative table is 0.13 (or 0.05).

HaRP1 achieves better LuHa table utilization, since it
permits the use of either sip or dip for hashing, effectively
yielding “pseudo 8-way” if sip and dip are not wildcards. It
selects the less occupied set in the LuHa table from the two
candidate sets hashed on the non-wild carded sip and dip.
The overflowing probability of HaRP P

1can thus be
approximated by the likelihood of both candidate LuHa
table sets (indexed by sip and dip) being fully taken (i.e.,
each with 4 active entries). In practice, the probability
results have to be conditioned by the percentage of filter
rules with wild carded IP addresses. With a wild carded sip

76	 2009 USENIX Annual Technical Conference	 USENIX Association

(or dip), a filter rule cannot benefit from using either sip or
dip for hashing (since a wild carded IP address is never used
for hashing). The set overflowing probability results of
HaRP1 with wild carded IP address rates of 60% and 0% are
depicted in Figure 2. They are interesting due to their
representative characteristics of real filter datasets used in
this study (as detailed in Section 4.1; the rates of filter rules
with wild carded IP addresses for 9 datasets are listed with
the right box). With a dilation factor ρ = 1.5, the
overflowing probability of HaRP1 drops to 1.7% (or 8.6%),
for the wildcard rate of 0% (or 60%).

Figure 2. Overflow probability versus ρ for a 4-way set.

Meanwhile, HaRP2 and HaRPP

3 are seen in the figure to
outperform HaRP1

P smartly. In particular, HaRP2 (or
HaRP3) achieves the overflowing probability of 0.15% (or
1.4 E-07 %) for ρ = 1.5, whereas HaRP P

3 exhibits the
overflowing probability less than 4.8 E-05 % even under =
1.0 (without any dilation for the LuHa table). These results
confirm that HaRP* indeed leads to virtually no overflow
with α = 4 under * > 2, thanks to its exploiting the high set-
associative potential for effective table storage utilization.
As will be shown in Section 4, HaRP* also achieves great
storage efficiency under real filter datasets, making it
possible to hold a whole dataset in local cache practically
for superior lookup performance.

Application-Specific Information (ASI) Table

The second stage of HaRP involves a table, each of
whose entry keeps the values of application-specific filter
fields (e.g., port numbers, protocol type) of one rule, dubbed
the application-specific information (ASI) table (see Figure
1). If rules share the same IP prefix pair, their application-
specific fields are stored in contiguous ASI entries packed
as one chunk pointed by its corresponding entry in the LuHa
table. For fast lookups and easy management, ASI entries
are fragmented into chunks of a fixed size (say 8 contiguous
entries). Upon creating a LuHa entry for one pair of sip and
dip, a free ASI chunk is allocated and pointed to by the
created LuHa entry. Any subsequent rule with an identical
pair of sip and dip puts its application-specific fields in a

free entry insider the ASI chunk, if available; otherwise,
another free ASI chunk is allocated for use, with a pointer
established from the earlier chunk to this newly allocated
chunk. In essence, the ASI table comprises linked chunks
(of a fixed size), with one link for each (sip, dip) pair.

The number of entries in a chunk is made small
practically (say, 8), so that all the entries in a chunk can be
accessed simultaneously in one cycle, if they are put in one
word line (of 1024 bits, which can physically comprise
several SRAM modules). This is commonly achievable with
current on-chip SRAM technologies. The ASI table requires
a comparable number of entries as the filter dataset to attain
desirable performance, with the longest ASI list containing
36 entries, according to our evaluation results based on real
filter datasets outlined in Sections 4.3 and 4.4.

As demonstrated in Figure 1, each LuHa table entry is
assumed to have 96 bits for accommodating a pair of sip
and dip together with their 5-bit length indicators, a 16-bit
pointer to an ASI list, and a 6-bit field specifying the ASI
list length. Given the word line of 1024 bits and all entries
of a set put within the same word line with on-chip SRAM
technology for their simultaneous access in one cycle, the
set-associative degree (α) of the LuHa table can easily reach
10 (despite that α = 4 is found to be adequate in practice).

3.2 Installing Filter Rules

Given a set of filter rules, HaRP installs them by putting
their corresponding field contents to the LuHa and the ASI
tables sequentially. When adding a rule, one uses its source (or
destination) IP prefix for finding a LuHa entry to hold its prefix
pair after rounded down according to chosen DPL, if its
destination (or source) IP field is a don’t care (×). Under
HaRP*, the number of round-down prefixes for a given non-
wildcard IP prefix is up to * (dependent upon the given IP
prefix and chosen DPL). When both source and destination IP
fields are specified, they are hashed separately (after rounded
down) to locate an appropriate set for accommodation. The set
is selected as follows: (1) if a hashed set contains the (sip, dip)
prefix pair of the rule in one of its entry, the set is selected (and
thus no new LuHa table entry is created to keep its (sip, dip)
pair), (2) if none hashed set has an entry keeping such a prefix
pair, a new entry is created to hold its (sip, dip) pair in the set
with least occupancy; if all candidate sets are with the same
occupancy, the last candidate set (i.e., the one indexed by the
longest round-down dip) is chosen to accommodate the new
entry created for keeping the rule. Note that a default table
entry exists to hold the special pair of (×, ×), and that entry has
the lowest priority since every packet meets its rule.

The remaining fields of the rule are then put into an entry
in the ASI table, indexed by the pointer stored in the selected
LuHa entry. As ASI entries are grouped into chunks (with all
entries inside a chunk accessed at the same time, in the way like
accesses to those set entries in the LuHa table), the rule will find

USENIX Association	 2009 USENIX Annual Technical Conference	 77

any available entry in the indexed chunk for keeping the
contents of its remaining fields, in addition to its full source and
destination IP prefixes (without being rounded down). Should
no entry be available in the indexed chunk, a new chunk is
allocated for use (and this newly allocated chunk is linked to the
earlier chunk, as described in Section 3.1).

Input: Received packet, with dip (destination IP address), sip, sport

(source port), dport (destination port), proto (protocol type)

#define mask(L) ~((0x01 <<L) -1)
int match_rule_id = n_rules;

Hash_Probe (key_select) ::
 key = (key_select == USE_DIP) ? dip : sip;
 for each tread t in DPL {
 h = hash_func(key&mask(t), t); /* round down prefix & hash */
 for each entry s in hash set LuHa[h] {
 if (PfxMatch((s.dip_prefix, dip), s.dip_prefix_length) &&

PfxMatch((s.sip_prefix, sip), s.sip_prefix_length) {
 /* a prefix-pair matched, continue on checking ASI */
 for each asi entry e in the chunk pointed by s.asi_pointer {
 if (e.sport_low <= sport <= e.sport_high &&
 e.dport_low <= dport <= e.dport_high &&
 e.proto_low <= proto <= e.proto_high) {
 /* Match! Choose rule with lower rule number */
 if (match_rule_id >= e.ruleno)
 match_rule_id = e.ruleno;
 }}}}}}

/* Pass 1: hash via dip */

Hash_Probe(USE_DIP);
/* Pass 2: hash via sip */

Hash_Probe(USE_SIP);

Figure 3. Pseudo code for prefix-pair lookups.

3.3 Classification Lookups
 Given the header of an incoming packet, a two-staged

classification lookup takes place. During the LuHa table
lookup, two types of hash probes are performed, one keyed with
the source IP address (specified in the packet header) and the
other with the destination IP address. Since rules are indexed to
the LuHa table using the round-down prefixes during
installation, the type of probes keyed by the source IP address
involves m hash accesses, one associated with a length listed in
DPL = {l1, l2, … li, … lm}. Likewise, the type of probes keyed
by the destination IP address also contains m hash accesses.
This way ensures that no packet will be misclassified regardless
of how a rule was installed, as illustrated by the pseudo code
given in Figure 3.

Lookups in the ASI table are guided by the selected LuHa
entries, which have pointers to the corresponding ASI chunks.
The given source and destination IP addresses could match
multiple entries (of different prefix lengths) in the LuHa table.
Each matched entry points to one chunk in the ASI table, and
the pointed chunks are all examined to find the best matched

rule. As all entries in one pointed chunk are fetched in a clock,
they are compared concurrently with the contents of all relevant
fields in the header of the arrival packet. If a match occurs to
any entry, the rule associated with the entry is a candidate for
application; otherwise, the next linked chunk is accessed for
examination, until a match is found or the linked list is
exhausted. When multiple candidate rules are identified, one
with the longest matched (sip, dip) pair, or equivalently the
lowest rule number, if rules are sorted accordingly, is adopted.
On the other hand, if no match occurs, the default rule is chosen.

Source IP Prefix
length 0 1 2 3 4 5 6 … 32

0
1 X
2 X
3 X
4
5 X
:

30 X
31 X

D
estination IP

32 X
 X: Tuple
 : Marker (Trail)
 : Best matched rules

Source IP Prefix
length 0 1 2 3 4 5 6 … 32

0
1 X
2 X
3 X
4
5 X
:

30 X
31 X

D
estination IP

32 X

Rounding down prefixes to
nearest treads when dip is used
for hashing.

Figure 4. Comparison between TSS and proposed HaRP1.

3.4 Lookup Time Complexity
Time complexity consists of search over both the LuHa

table and the ASI table. Search over the LuHa table is indexed
by keys composed of round-down prefix pairs (following the
algorithm of Figure 3), taking exactly 2m hash probes under
DPL with m treads (ranging from 4 to 8). On the other hand,
search over the ASI table is directed by matched prefix pairs
held in the LuHa table, and the mean number of such pairs is
found to be smaller than 4 (for all nine filter datasets of sizes up
to 10K rules adopted for our study, as listed in Table 1).
Therefore, our HaRP requires 8-16 hash probes plus 4 ASI
accesses per lookup, in comparison to 63 (2W-1) and 25 (log2W,
with W being the IP prefix length) probes respectively for
Rectangle Search and Binary Tuple Search stated earlier. As a
smaller m leads to fewer hash probes but more rules mapped to
a given set in the LuHa table, selecting an appropriate m is
important.

As explained in Section 2.2, TSS with optimization uses
markers and pre-computed results to guide its search. However,
the praised property (that any filter dataset usually comprises
only a few unique prefix pair lengths) fails to take a role in
optimization (which relies instead on each rule to leave
markers), as depicted in Figure 4. Proliferating markers may
heighten the storage requirement by an order of O(N×w). In
contrast, HaRP based on DPL treads actually cuts the tuple
space into segments along each dimension. When dip is used
for hashing, as an example, all destination prefixes are rounded

78	 2009 USENIX Annual Technical Conference	 USENIX Association

down to designated length specified by the DPL set, as
demonstrated in Figure 4 for HaRPP

1 with designated prefix
lengths equal to 30 and 1 shown. The selection of DPL can be
made to match the distribution of unique prefix lengths for the
best hashing results. Based on the fact that there are not many
unique prefix pair length combinations [24, 25], HaRP design
makes very efficient use of the LuHa table, in a way better than
TSS over the tuple space. The storage requirement is a constant
O(N), linear to the number of rules.

3.5 Handling Incremental Rule Updates and Additional Fields

HaRP admits dynamic filter datasets very well. Adding
one rule to the dataset may or may not cause any addition to the
LuHa table, depending upon if its (sip, dip) pair has been
present therein. An entry from the ASI table will be needed to
hold the remaining fields of the rule. Conversely, a rule
removal requires only to make its corresponding ASI entry
available. If entries in the affected ASI chunk all become free
after this removal, its associated entry in the LuHa table is
released as well.

Packet classification often involves many fields, subject to
large dimensionality. As the dimension increases, the search
performance of a TSS-based approach tends to degrade quickly
while needed storage may grow exponentially due to the
combinatorial specification of many fields. By contrast, adding
fields under HaRP does not affect the LuHa table at all, and they
only need longer ASI entries to accommodate them, without
increasing the number of ASI entries. Search performance
hence holds unchanged in the presence of additional fields.

4 Evaluation and Results
This section evaluates HaRP using the publicly available

filter databases, focusing on the distribution results of prefix
pairs in the LuHa table. Because the LuHa table is consulted
2m times for DPL with m treads, the distribution of prefix pairs
plays a critical role in hashing performance. Our evaluation
assumes a 4-way set-associative LuHa table design, with default
DPL comprising 8 treads: {32, 28, 24, 20, 16, 12, 8, 1}, chosen
conveniently, not necessary to yield the best results. It will
show that our use of a single set-associative table obtained by
collapsing individual hash tables (see Figure 1) is effective.

This work assumes overflows to be handled by linked lists,
and each element in the linked list contains 4 entries able to hold
4 additional prefix pairs. HaRP is compared with other
algorithms, including the Tuple Space Search, BV, and
HyperCuts in terms of the storage requirement and measured
execution time on a multi-core SoC.

4.1 Filter Datasets

Our evaluation employed the filter database suite from the
open source of ClassBench [26]. The suite contains three seed
filter sets: covering Access Control List (ACL1), Firewall
(FW1), and IP Chain (IPC1), made available by service

providers and network equipment vendors. By their different
characteristics, various synthetic filter datasets with large
numbers of rules are generated in order to study the scalability
of classification mechanisms. For assistance in, and validation
on, implementation of different classification approaches, the
filter suite is accompanied with traces, which can also be used
for performance evaluation as well [29]. The filter datasets
utilized by our study are listed in the following table.

Table 1. Filter datasets
Seed Filters

(#filters, trace length)
Synthetic Filters

(#filters, trace length)
ACL1(752, 8140) ACL-5K(4415, 45600) ACL-10K(9603, 97000)
FW1(269, 2830) FW-5K(4653, 46700) FW-10K(9311, 93250)

IPC1(1550, 17020) IPC-5K(4460, 44790) IPC-10K(9037, 90640)

4.2 Prefix Pair Distribution in LuHa Table
The hash function is basic to HaRP. In this article, a

simple hash function is developed for use. First, a prefix key
is rounded down to the nearest tread in DPL. Next, simple
XOR operations are performed on the prefix key and the
found tread length, as follows:

tread = find_tread_in_DPL(length of the prefix_key);
pfx = prefix_key & (0xffffffff << (32-tread)); // round down
h = (pfx) ^ (pfx>>7) ^ (pfx>>15) ^ tread ^ (tread<<5) ^
 (tread<<12)^ ~(tread<<18) ^ ~(tread<<25);
set_num = (h ^ (h >> 5) ^ (h<<13)) % num_of_set;

While better results may be achieved by using more
sophisticated hash functions (such as cyclic redundancy codes,
for example), it is beyond the scope of this article. Instead, we
show that a single lumped LuHa table can be effective, and
most importantly, HaRP* works satisfactorily under a simple
hash function.

The results of hashing prefix pairs into the LuHa table are
shown in Figure 5, where the LuHa tables are properly sized.
Specifically, the LuHa table is provisioned with ρ = 2 (dilated
by a factor of 2 relative to the number of filter rules) for HaRP1,
whereas its size is then reduced by 25% (i.e., ρ = 1.5) to show
how the single set-associative LuHa table performs with respect
to fewer treads in DPL under HaRP*. Figure 5(a) illustrates that
HaRP1 exhibits no more than 4% of overflowing sets in a 4-way
set-associative LuHa table. Note that those results for 5K filter
datasets (i.e., ACL-5K, FW-5K, and IPC-5K) were omitted in
Figure 5 so that the remaining 6 curves can be read more easily,
given that those omitted results lying between the set of results
for 1K filter datasets and that for 10K datasets. Only the IPC1
dataset happens to have 20 prefix pairs mapped into one set.
This congested set is caused partly by the non-ideal hash
function and partly by the round-down mechanism of HaRP.
Nevertheless, the single 4-way LuHa table exhibits good
resilience in accommodating hash collisions for the vast
majority (96%) cases.

When the number of DPL treads is reduced to 6 under
HaRP*, improved and well-balanced results can be observed in

USENIX Association	 2009 USENIX Annual Technical Conference	 79

Figure 5. Results of hashing round-down prefixes into LuHa table.

(a)

(c)

HaRP*, with dilation factor = 1.5 and DPL of 6 treads

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Prefix Pairs in a Set

P
er

ce
nt

ag
e(

/T
ot

al
 S

et
s)

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

(d)

HaRP1, with dilation factor = 2 and DPL of 8 treads

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Prefix Pairs in a Set

P
er

ce
nt

ag
e(

/T
ot

al
 S

et
s)

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

(b)

HaRP*, with dilation factor = 1.5 and DPL of 4 treads

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Prefix Pairs in a Set

P
er

ce
nt

ag
e(

/T
ot

al
 S

et
s)

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

HaRP*, with dilation factor = 2 and DPL of 6 treads

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 1

Number of Prefix Pairs in a Set

P
er

ce
nt

ag
e(

/T
ot

al
 S

et
s)

0

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

Figure 5(b), where ρ equal 2. All datasets now experience less
than 1% overflowing sets, except for ACL1 and IPC1 (which
have some 4% and 8% overflows, respectively). Noticeably,
even the most punishing case of IPC1 encountered in Figure
5(a) is reassured. These desirable results hold true when the
LuHa table size is reduced by 25% and DPL contains fewer
thread, as shown in Figures 5(c) and 5(d). Although a few
congested sets emerge, they are still manageable. With 6 treads
in DPL, fewer congested sets, albeit marginal, occur, as
demonstrated in Figure 5(c), than with 4 threads depicted in
Figure 5(d). This is expected, since the hash values are
calculated over round-down prefixes, and a less number of
treads leads to wider strides between consecutive treads, likely
to make more prefixes identical in hash calculation after being
rounded down. Furthermore, fewer treads in DPL implies a
smaller number of LuHa table candidate sets among which
prefix pairs can be stored. These results indicate that a single
lumped set-associative table for HaRP* is promising in
accommodating prefix pairs of filter rules in a classification
dataset effectively.

4.3 Search over ASI Table

The second stage of HaRP probes the ASI (application-
specific information) table, each of whose entry holds values of
all remaining fields, as illustrated in Figure 1. As LuHa table

search has eliminated all rules whose source and destination IP
prefixes do not match, pointing solely to those candidate ASI
entries for further examination. It is important to find out how
many candidate ASI entries exist for a given incoming packet,
as they govern search complexity involved in the second stage.

As described in Section 3.1, we adopt a very simple design
which puts rules with the same prefix pairs in an ASI chunk.
While a more optimized design with smaller storage and higher
lookup performance may be achieved by advanced techniques
and data structures, we study the effectiveness of HaRP by
using basic linear lists because of its simplicity.

The ASI lists are generally short, as shown in Figure 6,
where the results for 5K filter datasets were omitted again
for clarity. Over 95% of them have less than 5 ASI entries
each, and hence, linear search is adequate. The ACL1
dataset is an exception, experiencing a long ASI list with 36
entries. By scrutinizing the outcome, we found that this
case is caused by a large number of rules specified for a
specific host pair, leading to a poor case since those rules
for such host pairs fall in the same list. Furthermore, those
rules have the form of (0:max_destination_port, ×, tcp), that
is, a range is specified for the destination port, with the
source port being wild carded and the protocol being TCP.
Importantly, the destination port range (0, dpi) for Rule i is a
sub-range of (0, dpi+1) for Rule i+1. This is believed to

80	 2009 USENIX Annual Technical Conference	 USENIX Association

represent a situation where a number of applications at the
target host rein accesses from a designated host.
Nevertheless, fetching all ASI entries within one chunk at a
time (achievable by placing them in the same word line)
helps to address long ASI lists, if present (since one ASI
chunk may easily accommodate 8 entries, each with 80 bits,
as stated in the next subsection).

Note that the ASI distribution is orthogonal to the
selection of DPL and to the LuHa table size. Filter rules are
put in the same ASI list only if they have the same prefix
pair combination.

4.4 Storage Requirements
Table 2 shows memory storage measured for the rule

datasets. Each LuHa entry is 12-byte long, comprising two
32b IP address prefixes, two 5b prefix length indicators, a
16b pointer to the ASI table, and a 6b integer indicating the
length of its associated linked list. Each ASI entry needs 10
bytes to keep the port ranges and the protocol type, plus two
bytes for the rule number (i.e., the priority).

Table 2. Memory size

Total Storage (in KB, or

otherwise MB as specified)
Per Rule Storage(Byte, or
otherwise KB as specified)

 HaRP Tuple
Space BV Hyper-

Cuts HaRP Tuple
Space BV Hyper

-Cuts

FW1 4.64 22.72 10.50 10.19 17.66 86.49 40 36.79

ACL1 13.79 44.19 52.14 20.24 18.78 60.18 71 25.56

IPC1 29.17 56.26 92.33 91.19 19.27 37.17 61 58.25

FW-5K 101.0 629.5 3.07M 4.10M 22.23 138.5 691 922.3

ACL-5K 76.54 157.7 1.08M 136.8 17.75 36.57 257 29.73

IPC-5K 90.56 199.4 1.52M 332.6 20.79 45.79 358 74.34

FW-10K 217.3 1.68M 14.05M 25.05M 23.9 189.2 1.54K 2.75K

ACL-10K 192.5 403.4 7.31M 279.4 20.52 43.02 798 27.79

IPC-10K 187.5 449.8 6.79M 649.5 21.24 50.97 788 71.60

As listed in Table 2, HaRP enjoys clear superiority

when compared with its previous counterparts, whose
implemented source codes were available publicly [29] and

employed to gather their respective results included here.
HaRP dramatically reduces memory storage needed and
demonstrates consistent levels of storage requirement across
all datasets examined. Previous techniques, especially those
using decision-tree- or trie-based algorithms, exhibit rather
unpredictable outcomes because the size of a trie largely
depends on if datasets have comparable prefixes to enable
trie contraction; otherwise, a trie can grow quickly toward
full expansion. Among prior techniques, tuple space search
(TSS) [24] and HyperCuts [20] show better results,
although they still require more memory than HaRP. Those
listed outcomes generally indicate what can be best
achieved by the cited techniques. For TSS, as an instance,
Tuple Pruning is implemented, but not pre-computed
markers which increase storage requirement (see Section
2.2 and Figure 4 for details). For HyperCuts, its refinement
options are all turned on, including rule overlapping and
rule pushing for the most optimization results [20].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
Num. of ASI Entries per List

Pe
rc

en
ta

ge
(/T

ot
al

 A
SI

 e
nt

rie
s)

FW1

ACL1

IPC1

FW-10K

ACL-10K

IPC-10K

Figure 6. Length distribution of ASI link lists.

The results of memory efficiency, defined as the ratio
between the total storage of constituent data structures (which
include the provisioned but not occupied entries for the LuHa
table in HaRP) and the minimal storage required to keep all
filter rules (as in a linear array of rules), for various algorithms
are listed in Table 3.

Table 3. Memory efficiency

HaRP
(ρ = 2)

HaRP
(ρ = 1.5)

Tuple
Space BV Hyper-

Cuts
FW1 1.62 1.35 3.60 1.67 1.93

ACL1 1.58 1.31 2.51 2.96 1.38
IPC1 1.58 1.31 1.55 2.54 3.01

FW-5K 1.59 1.32 5.77 28.83 46.21
ACL-5K 1.58 1.31 1.52 10.69 1.59
IPC-5K 1.58 1.31 1.91 14.89 3.82
FW-10K 1.58 1.31 7.88 65.93 141.0
ACL-10K 1.58 1.31 1.79 33.26 1.49
IPC-10K 1.59 1.37 2.12 32.83 3.68

 There are a number of interesting findings. First of all,

HaRP consistently delivers greater efficiency than all other
algorithms. When the LuHa table is dilated by a factor ρ = 2, all
memory data structures allocated are no more than 50% of the
amount required to keep the rules. If the LuHa table size is
reduced to ρ = 1.5, total storage drops by 25%. In general, a
smaller LuHa table yields lower performance because of more
hash collisions. However, the next section will show measured
results on multi-core systems under a small LuHa table (with ρ
= 1.5) and small DPL to deliver satisfactory performance
comparable to that under larger tables.

 Contrary to HaRP enjoying consistent efficiency always, all
other methods exhibit unsteady results. When the number of
filter rules is small, those methods may achieve reasonable
memory efficiency. As the dataset size grows, their efficiency
results vary dramatically. For HyperCuts [20] (which uses a
multi-way branch trie), its size largely depends on if datasets

USENIX Association	 2009 USENIX Annual Technical Conference	 81

have comparable prefixes that enable trie contraction;
otherwise, the trie can grow exponentially toward full
expansion. A decision tree-based method suffers from the fact
that its number of kept rules may blow up quickly under a filter
dataset with plentiful wild-carded rules. The less specific filter
rules are, the lower memory efficiency it becomes, because a
wild-carded rule holds true for all children at a node irrespective
of the number of branches (cuts) made therein. (We have seen
consistent trends for large datasets comprising 20K and 30K
rules generated using the tool included in the ClassBench [26].)
As analyzed in Section 3.1 and shown in Figure 2, the FW
applications have over 60% wild-carded IP addresses (versus
some 0.1% to 8% for ACL and IPC), yielding the worst
memory efficiency consistently in Table 3. To a large degree,
TSS [24] and BV [13] also leverage tries to narrow the search
scope and hence are subject to the same problem. Furthermore,
TSS employs one hash table per tuple in the space, likely to
bloat the memory size because of underutilized hash tables. For
BV, the n-bit vector stored at each leaf node of a trie is the main
culprit for being memory guzzler.

Section 5.2 will demonstrate the measured performance
results of HaRP, revealing that it not only achieves the best
memory efficiency among all known methods but also
classifies packet at four times faster than HyperCuts, and an
order of magnitude higher than TSS and BV, under our
multi-core evaluation platform.

5 Scalability and Lookup Performance on Multi-Cores
As each packet can be handled independently, packet

classification suits a multi-core system well [6]. Given a multi-
core processor with np cores, a simple implementation may
assign a packet to any available core at a time so that np packets
can be handled in parallel by np cores.

In this section, we present and discuss performance and
scalability of HaRP in comparison with those of its counterparts
BV [13], TSS [24], and HyperCuts [20]. Two HaRP
configurations are considered: (1) basic HaRP with the LuHa
table under a dilation factor ρ = 2 and with 8 treads in DPL, and
(2) HaRP* with the LuHa table under ρ = 1.5 and with only 4
treads in DPL. By comparing results obtained for basic HaRP
and HaRP*, we can gain insight into how the LuHa table size
and the number of treads affect lookup performance.

For gathering measures of interest on our multi-core
platform, our HaRP code was made multithreaded for
execution. With those source codes for BV, TSS and HC
implementations taken from the public source [29], we closely
examined and polished them by removing unneeded data
structures and also replacing some poor code segments with in
order to get best performance levels of those referenced
techniques. All those program codes were also made
multithreaded to execute on the same multi-core platform, with
their results presented in next sections.

5.1 Data Footprint Size
Because search is performed on each hashed set sequentially

by a core, it is important to keep the footprint small so that the
working data structure can fit into its caches, preferably the L1
(level-one) cache dedicated to a core. According to Table 3,
HaRP requires the least amount of memory provisioned; Table
2 shows the actual data sizes to be much smaller. By our
measurement, the FW-10K dataset has the largest size of some
200 KB. As a result, it is quite possible to hold the entire data
structure in the L1 cache of a today’s core, even under large
dataset sizes. This advantage in containing the growth of its
data footprint size as the number of rules increases is unique to
HaRP (and not shared by any prior technique), rendering it
particularly suitable for multi-core implementation to attain high
performance.

0

200

400

600

800

1,000

1,200

1,400

1,600

FW1 ACL1 IPC1 FW-5K ACL-5K IPC-5K FW-10K ACL-
10K

IPC-10K

B
yt

es

Basic HaRP

HaRP*

Tuple Space

BV

HyperCuts

Figure 7. Average number of bytes fetched per lookup.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

FW1 ACL1 IPC1 FW-5K ACL-5K IPC-5K FW-10K ACL-
10K

IPC-10K

B
yt

es

Basic HaRP

HaRP*

Tuple Space

BV

HyperCuts

Figure 8. Worst case number of bytes accessed.

The behavior of HaRP driven by the traces provided with
filter datasets [29] was evaluated to obtain the first order of
measurement on the data footprint for lookups. Figure 7
depicts the mean number of bytes fetched per packet lookup, a
conventionally adopted metric for comparing classification
methods [20]. In general, HaRP enjoys lower average footprint
per lookup, except when it is compared to BV under small filter
datasets. Because HaRP always probes 2m LuHa sets
(irrespective of the dataset size), it could incur more overhead
than other techniques which use guided searches. However,
when m is kept small and as the dataset size rises, our HaRP
starts to prevail. Most importantly, as demonstrated in Figure 8,
the deterministic procedure to probe 2m LuHa sets under m
DPL treads yields more stable worst-case results across various
rule datasets (which might possess different characteristics).

In the case of TSS, the data footprint is proportional to the

82	 2009 USENIX Annual Technical Conference	 USENIX Association

num

Table 4. Mean number of accessed tuples per lookup (TSS)

ber of hash probes performed for a packet. In the firewall
(FW) applications, TSS fetches 8 to 10 times more tuples (i.e.,
hash table accesses) than ACL and IPC applications, as depicted
in the following table. As a result, the mean and the worst-case
data footprints for FW are all far larger than those for ACL and
IPC. In the next subsection, FW will be observed to deliver
much lower classification rates due to its excessive hash probes.

FW1 ACL1 IPC1 FW-5K ACL- IPC-5K FW- ACL- IPC-
5K 10K 10K 10K

72.95 6.30 11.45 68.2 1 0.68 9.24 67.76 6.73 8.69

For HyperCuts, the results also fluctuate, depending on the

dept

en it needs to check
ever

Table 5. Search performance (in terms of mean number

h of the decision tree and the number of rules that are
pushed up from the leaves and stored at the intermediate nodes.
Pushing common rule subsets upward, the trie structure is an
important technique for saving storage in HC [20]. The idea is
to keep a common set of rules at the parent node if the rules
hold true for all of its child nodes. In this way, rules can be
associated with non-leaf nodes to save storage by avoiding
replicas at the leaves. Adversely, this optimization heuristic
requires inspection of rules kept at the non-leaf nodes while
traversing the trie during lookups. Hence, it can lead to a large
data footprint, as shown in Figure 7.

For BV, the worst case happens wh
y single bit of the n-bit vector obtained by matching each

individual field (for n rules). As a result, the worst-case number
of BV grows consistently with the number of rules, and it is also
the biggest worst-case footprint among all techniques examined.

of entries) per lookup under basic HaRP and HaRP*

LuHa Search ASI Search
ρ = 2, H HaRP* ρ = 2, H , HaRP*aRP ρ = 1.5, aRP ρ = 1.5
Mean number of prefix pair Mean number of entries

C
hecked

M
a

M
atched

C
hecked

tched

C
hecked

C
hecked

FW1 1 1 1 2 214.32 .28 0.42 .20 .22 .20
ACL1 25.67 1.52 21.81 1.53 1.85 1.88
IPC1 39.47 2.03 34.50 1.98 1.73 1.73

F W-5K 16.69 1.01 11.71 1.01 1.20 1.20
ACL-5K 18.31 1.17 12.88 1.22 3.38 3.25
IPC-5K 21.13 1.39 19.03 1.58 1.66 1.74
FW-10K 19.37 1.00 14.76 1.01 1.00 1.00

ACL-10K 17.57 1.14 13.53 1.13 1.64 1.65
IPC-10K 21.64 1.36 17.94 1.53 1.64 1.69

As can be observed in Figures 7 and 8, HaRPP

* often
exhibits smaller footprints than basic HaRP. Although the
LuHa table under HaRP* (with ρ = 1.5) is 25% smaller than that
under basic HaRP (with ρ = 2) and consequently the former has

a lot more well populated hash sets (see Figure 5(d)) than the
latter (see Figure 5(a)), the use of 4 DPL treads in HaRPP

* saves
8 hash probes per classification lookup, in comparison to basic
HaRP (namely, 8 probes to more occupied sets versus 16 probes
to less occupied sets). The mean numbers of matched entries
under two HaRP configurations differ only a little, as depicted
in Table 5, where the first and the third result columns list the
average numbers of prefix pairs inspected per packet
classification under basic HaRP and HaRP*

P

easured execution time
resu

, respectively.
Clearly, HaRP* touches and inspects fewer prefix pairs than
basic HaRP, due to fewer hash probes. The second and the
fourth column contain the average numbers of prefix pairs
matched. On average, less than two prefix pairs match in the
LuHa table per classification lookup, signifying that the two-
stage lookup procedure of HaRP is effective. Finally, the last
two columns list the mean numbers of ASI tuples inspected
with respect to each matched prefix pair. The mean numbers
are small, suggesting that linear search as being performed in
this work may suffice. Obviously, a more sophisticated scheme
(such as a trie) could be employed, if ASI lists are long and
sequential search becomes inefficient.

The next subsection presents m
lts when basic HaRP and HaRP* are executed on our multi-

core platform, uncovered that HaRPP

5.2 Measured Performance on BCM-1480 MultiCore SoC
ection

migh

P, BV, TSS, and HC (HyperCuts) is
mea

* outperforms its basic
counterpart, because it incurs few hashing probes and accesses
to more populated sets for better caching behavior.

While data footprint results presented in the last subs
t reveal relative performance of different classification

techniques (given the memory system is generally deemed as
the bottleneck), computation steps or the mechanisms involved
in dealing with the data structures are equally important and
have to be taken into consideration. To arrive at more accurate
evaluation, we executed all classification programs on a
platform comprising a Broadcom’s BCM-1480 4-core SoC
[18]. BCM 1480 has four 700MHz SB-1™ MIPS cores [12],
with each SB-1™ core a four-way in-order issue, superscalar
design with separate 32K four-way set-associative instruction
and data caches. The non-blocking data cache supports 8
outstanding misses. The cores are connected by a high-speed
ZBbus and a unified 1MB, L2 cache keeps the active data
structures to back up the smaller L1 caches. The memory
system supports at most two x64 400MHz DDR channels, but
our evaluation platform is equipped with only one channel
clocked at 280MHz, giving rise to theoretical memory
bandwidth of 35 Gbps.

Performance for HaR
sured. TSS generally holds its promise on a reduced

number of hash probes it requires. In this implementation, two
tries (one for source IP and another for destination IP) were
constructed. During lookups, LPM (longest prefix matching)
to the two tries produced two lists of candidate tuples, each
realized by one hash table. Corresponding hash tables in the

USENIX Association	 2009 USENIX Annual Technical Conference	 83

3.7 5.0
3.2 3.9 5.1

4.5
3.9 4.3

4.0

2.4 3.4
2.5

2.4 3.6
3.3

2.4 3.0
2.9

0
2
4
6
8
10
12
14
16
18
20
22

R
el

at
iv

e
Sc

al
e

to
 H

yp
er

C
ut

s(
1)

FW
1

A
C

L1

IP
C

1
FW

1-
5K

A
C

L1
-5

K

IP
C

1-
5K

FW
1-

10
K

A
C

L1
-1

0K

IP
C

1-
10

K

B
V

(1
)

B
V

(2
)

B
V

(4
)

H
yp

er
C

ut
s(

1)

Tu
pl

e(
1)

H
aR

P
(1

)

H
aR

P
*(

1)

H
yp

er
C

ut
s(

2)

Tu
pl

e(
2)

H
aR

P
(2

)

H
aR

P
*(

2)

H
yp

er
C

ut
s(

4)

Tu
pl

e(
4)

H
aR

P
(4

)

H
aR

P
*(

4)

BV(1) BV(2) BV(4)
HyperCuts(1) Tuple(1) HaRP(1)
HaRP*(1) HyperCuts(2) Tuple(2)
HaRP(2) HaRP*(2) HyperCuts(4)
Tuple(4) HaRP(4) HaRP*(4)

Figure 9. Measured throughput results on Broadcom BCM-1480 4-core SoC (in relative scale).

intersection of the two lists (namely, intersected tuples) are then
probed. All executed programs were made multithreaded such
that up to 4 threads could be launched to take advantage of the 4
SB-1TM cores. Millions of packets were generated from the
traces packaged together with the rule datasets to measure the
real elapsed times via the BCM-1480 ZBus counter, which ticks
at every system clock.

Results depicted in Figure 9 are all relatively scaled to one
thread HyperCuts performance, which is shown as a consistent
scal

2.4 t

stemming from the fact it employs
DPL

e of one across the graph for clear and system configuration-
independent comparison. Labels on the x-axis of Figure 9
denote different techniques (i.e., BV, HyperCuts, TSS, and
HaRP) executed on varying numbers of BCM-1480 cores (i.e.,
1, 2, and 4). For example, BV(2) (or Tuple(4)) refers to BV (or
TSS) run on 2 (or 4) cores. When the number of threads rises
from 1 to 2 and then 4, HC shows a nearly linear scalability (in
terms of raw classification rates) with respect to the number of
cores. This scalability trend indeed exists for all techniques
because packet classification is inherently parallel, as expected.

Overall, HaRP demonstrates the highest throughput among
all techniques. On a per core basis, HaRP consistently delivers

o 3.5 times improvement over HC under the nine filter
datasets. When compared with TSS, basic HaRP performs 2 to
3 times better than TSS under ACL and IPC filter datasets, and
8 times under the firewall applications (FWs). This is because
HaRP requires fewer hash probes than TSS under firewall
datasets. Our HaRP always performs 2m lookups, equal to 16
for m = 8. Contrary to HaRP, TSS performs as many as four
times more hash probes under Firewall (see Table 4). For ACL
and IPC datasets, TSS may require slightly fewer hash table
lookups, but that advantage is more than negated by its two
LPM search passes over the tries, with respect to the source and
the destination IP prefixes. Furthermore, the smaller data
footprint enjoyed by HaRP (demonstrated in Figure 7) leads to
better cache performance.

Relative performance exhibited by HaRP* is even greater
than that by basic HaRP,

 with 4 treads, as opposed to 8 treads for HaRP. This
brings the number of hash probes per lookup from 16 down to
8, incurring less hashing overhead. Most importantly, HaRPP

* is
expected to be more caching-friendly, because accessing prefix
pairs located in 8 sets should enjoy better caching locality than
prefix pairs spread across 16 sets. Even though HaRP*

P uses a
LuHa table which is 25% smaller than that of HaRP, HaRPP

it sta

ent
filter

m that TSS can outperform HC in such a wide
ma

*
outperforms HC (or TSS) by 4 to 5 times (or 3 to 10 times), on
an average, under the nine datasets, as demonstrated in Figure 9.

When compared to HC, BV shows poor performance with
O(10) degradation, especially for large filter datasets. Because

rts with five LPM search processes across separate tries for
individual header fields to produce a list of candidate rules in
order to get a 5-field cross product, BV is inefficient for
software implementation run on a multi-core platform, since its
processor caches are expected to be trashed due to the large
footprint incurred, as revealed in Figures 7 and 8. Thus, BV is
better suitable for custom hardware with parallelism supported
by high memory bandwidth, suffering from poor scalability.

Table 4 lists the average number of tuples (i.e., hash tables)
fetched per packet lookup under TSS, with respect to differ

 datasets examined. Hash probes for firewall applications
(FWs) are far more than those for ACL and IPC datasets. This
is consistent with the results of Figures 7 and 8, where FWs
exhibit large footprints. Under FWs, TSS delivers 50% to 70%
less performance than HC on a per-core basis. However, TSS
outperforms HC under ACL and IPC datasets by as much as
nearly 100%.

 According to the average footprint results given in Figure 7,
it does not see

rgin. For ACL-5K and ACL-10K datasets, HC reads
roughly the same amount (but no more than 10%) of data bytes
as TSS. However, TSS delivers almost 100% higher

84	 2009 USENIX Annual Technical Conference	 USENIX Association

throughputs per core. Under IPC-5K and IPC-10K, TSS
fetches about 50% less data than HC and shows 47% higher
throughput. It confirms that the data footprint can indeed give
first-order estimation on how well a technique could perform,
but the code path during execution is nevertheless critical. By
inspecting the disassembled HC code, we found that the code
path for HC could be long. For example, at each step
traversing the decision tree, the number of bits to be extracted
from a field needs to be determined, and next the extracted bits
are used to calculate the location of the next child in the decision
tree. In brief, the total number of splits (i.e., children) of a node
is specified by NC = Πi nc(i), where nc(i) is the number of cuts
performed on the ith header field. During search, log2(nc(i)) bits
are extracted from the appropriate positions in the ith field;
assuming the decimal value represented by the extracted bits is
vi, the number of child positions in the linear array covering the

NC space is then expressed by D
D

ij

D

i
i vjncv +Π×∑

+=

−

=
)(

1

1

1
 for D

dimensions. These operations seem hey can
take hundreds of cycles to com ificant
performance loss, as observed above.

 simple, but in fact, t
plete, causing a sign

6 Concluding Remarks
Packet classification is

functionality and services, b
essential for most network system
ut it is complex since it involves

comparing multiple fields in a packet header against entries in
the filter dataset to decide the proper rule to apply for handling
the packet [9]. This article has considered a rapid packet
classification mechanism realized by hashing round-down
prefixes (HaRP) able to not only exhibit high scalability in
terms of both the classification time and the SRAM size
involved, but also effectively handle incremental updates to the
filter datasets. Based on a single set-associative LuHa hash
table (obtained by lumping a set of hash table units together) to
support two-staged search, HaRP promises to enjoy better
classification performance than its known software-oriented
counterpart, because the LuHa table narrows the search scope
effectively based on the source and the destination IP addresses
of an arrival packet during the first stage, leading to fast search
in the second stage. With its required SRAM size lowered
considerably, HaRP makes it possible to hold entire search data
structures in the local cache of each core within a contemporary
processor, further elevating its classification performance.

The LuHa table admits each filter rule in a set with lightest
occupancy among all those indexed by hash(round-down sip)
and hash(round-down dip), under HaRPP

has

 HaRP , as we have
witn

 and M. Mitzenmacher, “Using Multiple Hash
o Improve IP Lookups,” Proceedings of 20th Annual

[2]
k Processors and

[3]
ernational

[4]
ings of 12

[5]
 Proc. of IEEE Int’l Conf. on

[6]
 ACM

*. This lowers
substantially the likelihood of set overflow, which occurs only
when all indexed sets are full, attaining high SRAM storage
utilization. It also leads to great scalability, even for small LuHa
table set-associativity (of 4), as long as the table is dilated by a
small factor (say, ρ = 1.5 or 2). Our evaluation results have
shown that HaRP* with the set associative degree of 4, generally
experiences very rare set overflow instances (i.e., no more than

1% of those sets in the LuHa table with ρ = 2 under all studied
filter datasets other than ACL1 and IPC1, if DPL has 6 treads).

Empirical assessment of HaRP has been conducted on our
platform comprising a Broadcom’s BCM-1480 SoC [18], which

four 700MHz SB-1TM MIPS cores [12]. A simple hashing
function was employed for our HaRP implementation.
Extensive measured results demonstrate that HaRP*
outperforms HC [20] (or TSS [24]) by 4 to 5 times (or 3 to 10
times), on an average, under the nine databases examined, when
its LuHa table is with ρ = 1.5 and there are 4 DPL treads.
Besides its efficient support for incremental rule updates, our
proposed HaRP also enjoys far better classification performance
than previous software-based techniques.

Note that theoretically pathological cases may occur
despite encouraging pragmatic results by *

essed in this study. For example, a large number of (hosts
on the same subnet with) prefixes P|w can differ only in a few
bits. Hence, those prefixes can be hashed into the same set after
being rounded down, say P|w to P|li, for li ≤ w < li+1, under
HaRP*. There are possible ways to deal with such cases and to
avoid overwhelming the indexed set. A possible means is to
use one and only one entry to keep the round-down prefix P|li,
as opposed to holding all P|w’s in individual entries following
the current design. Subsequently, the (w - li) round-down bits
can form a secondary indexing structure to provide the
differentiation (among rules specific to each host) and/or the
round-down bits can be mingled with the remaining fields of the
filter rules. Thus, each stage narrows the range of search by
small and manageable structures. These possible options will
be explored in the future.

References
[1] A. Broder

Functions t
Joint Conf. of IEEE Computer and Communications Societies
(INFOCOM 2001), pp. 1454–1463, Apr. 2001.
F. Chang et al., “Efficient Packet Classification with Digest
Caches,” Proceedings of Workshop on Networ
Applications (NP-3, in conjunction with 10th Int’l Conference on
High-Performance Computer Architecture), Feb. 2004.
W. T. Chen, S. B. Shih, and J. L. Chiang, “A Two-Stage Packet
Classification Algorithm,” Proceedings of 17th Int
Conference on Advanced Information Networking and
Applications (AINA ’03), pp. 762-767, Mar. 2003.
Y. H. Cho and W. H. Magione-Smith, “Deep Packet Filter with
Dedicated Logic and Read Only Memories,” Proceed th

IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 125-134, Apr. 2004.
Y.-T. Chen and S.-S. Lee, “An Efficient Packet Classification
Algorithm for Network Processors,”
Communications (ICC 2003), pp. 1596-1600, May 2003.
H. Cheng et al., “Scalable Packet Classification Using Interpreting
a Cross-Platform Multi-Core Solution,” Proceedings 13th

SIGPLAN Symposium on Principles and Practice of Parallel

USENIX Association	 2009 USENIX Annual Technical Conference	 85

Programming (PPoPP ’08), pp. 33-42, Feb. 2008.
S. Dharmapurikar et al., “Fast Packet Classification Using Bloom
Filters,” Proc. ACM/IEEE Symp. Architectures fo

[7]
r Networking

[8]

[9]
Conference of Special

[10]
ings,” IEEE Micro, vol. 20, pp. 34-41,

[11]
on Hardware Accelerator,” Proceedings of IEEE

[12]
,” Proceedings of IEEE Symp.

[13]
l Range

[14]
Advanced Packet Classification with Ternary

[15]
earch,” Computer Networks, vol. 50, pp.

[16]
urnal on Selected Areas in

[17]
E Conf.

[18]

and Communications Systems (ANCS ’06), pp. 61-70, Dec. 2006.
Q. Dong et al., “Wire Speed Packet Classification without
TCAMs: A Few More Registers (and a Bit of Logic) Are
Enough,” Proceedings of ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS
’07), pp. 253-264, June 2007.
P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proceedings of ACM Annual
Interest Group on Data Communication (SIGCOMM ’99), pp.
147-160, Aug./Sept. 1999.
P. Gupta and N. McKeown, “Classifying Packets with
Hierarchical Intelligent Cutt
Jan. 2000.
A. Kennedy, X. Wang, and B. Liu, “Energy Efficient Packet
Classificati
International Symposium on Parallel and Distributed Processing
(IPDPS 2008), pp. 1-8, Apr. 2008.
D. Kruckemyer, “The SB-1TM Core: A High Performance, Low
Power MIPSTM 64 Implementation
on High Performance Chips (Hot Chips 12), Aug. 2000.
T. V. Lakshman and D. Stiliadis, “High-Speed Policy-Based
Packet Forwarding Using Efficient Multi-Dimensiona
Matching,” Proc. of ACM Annual Conference of Special Interest
Group on Data Communication (SIGCOMM ’98), pp. 191-202,
Aug./Sept. 1998.
K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for
CAMs,” Proceedings of ACM Annual Conference of Special
Interest Group on Data Communication (SIGCOMM 2005), pp.
193-204, Aug. 2005.
F.-Y. Lee and S. Shieh, “Packet Classification Using Diagonal-
Based Tuple Space S
1406-1423, 2006.
J. van Lunteren and T. Engbersen, “Fast and Scalable Packet
Classification,” IEEE Jo
Communications, vol. 21, no. 4, pp. 560-571, May 2003.
F. Pong and N.-F. Tzeng, “Storage-Efficient Architecture for
Routing Tables via Prefix Transformation,” Proc. 32nd IEE
on Local Computer Networks (LCN 2007), pp. 55-62, Oct. 2007.
S. Santhanam et al., “A 1GHz Power Efficient Single Chip
Multiprocessor System for Broadband Networking Applications,”
Proc. of 15th Symp. on VLSI Circuits, June 2001, pp. 107-110.

[19] D. Shah and P. Gupta, “Fast Incremental Updates on Ternary-
CAMs for Routing Lookups and Packet Classification,” Proc. of
8th Annual IEEE Symposium on High-Performance Interconnects
(Hot Interconnects 8), pp. 145-153, Aug. 2000.

[20] S. Singh et al., “Packet Classification using Multidimensional
Cutting,” Proceedings of ACM Annual Conference of Special
Interest Group on Data Communication (SIGCOMM 2003), pp.
213-114, Aug. 2003.

[21] H. Song and J. W. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA,” Proceedings of
ACM/SIGDA 13th International Symposium on Field
Programmable Gate Arrays (FPGA ’05), pp. 238-245, Feb. 2005.

[22] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” Proceedings of 11th IEEE Int’l Conf.
on Network Protocols (ICNP ’03), pp. 120-131, Nov. 2003.

[23] V. Srinivasan et al., “Fast and Scalable Layer Four Switching,”
Proc. of ACM Annual Conference of Special Interest Group on
Data Communication (SIGCOMM ’98), pp. 191-202, Sept. 1998.

[24] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification
Using Tuple Space Search,” Proceedings of ACM Annual
Conference of Special Interest Group on Data Communication
(SIGCOMM ’99), pp. 135–146, Aug./Sept. 1999.

[25] D. E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” ACM Computing Surveys, vol. 37, no. 3, pp. 238-
275, Sept. 2005.

[26] D. E. Taylor and J. S. Turner, “ClassBench: A packet
Classification Benchmark,” Proc. 24th IEEE Int’l Conference on
Computer Communications (INFOCOM 2005), March 2005.

[27] G. Wang and N.-F. Tzeng, “TCAM-Based Forwarding engine
with Minimum Independent Prefix Set (MIPS) for Fast
Updating,” Proceedings of IEEE International Conference on
Communications (ICC ’06), June 2006.

[28] P. Warkhede, S. Suri, and G. Varghese, “Fast Packet
Classification for Two-Dimensional Conflict-Free Filters,” Proc.
20th Annual Joint Conf. of IEEE Computer and Communications
Societies (INFOCOM 2001), pp. 1434–1443, Apr. 2001.

[29] Washington University, “Evaluation of Packet Classification
Algorithms,” at http://www.arl.wustl.edu/~hs1/PClassEval.html.

[30] Z. Wu, M. Xie, and H. Wang, “Swift: A Fast Dynamic Packet
Filter,” Proceedings of 5th USENIX Networked Systems Design
and Implementation (NSDI ’08), pp. 279-292, Apr. 2008.

USENIX Association	 2009 USENIX Annual Technical Conference	 87

Tolerating File-System Mistakes with EnvyFS

Lakshmi N. Bairavasundaram†, Swaminathan Sundararaman,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin-Madison

Abstract
We introduce EnvyFS, an N-version local file system designed
to improve reliability in the face of file-system bugs. EnvyFS,
implemented as a thin VFS-like layer near the top of the stor-
age stack, replicates file-system metadata and data across exist-
ing and diverse commodity file systems (e.g., ext3, ReiserFS,
JFS). It uses majority-consensus to operate correctly despite the
sometimes faulty behavior of an underlying commodity child
file system. Through experimentation, we show EnvyFS is ro-
bust to a wide range of failure scenarios, thus delivering on its
promise of increased fault tolerance; however, performance and
capacity overheads can be significant. To remedy this issue,
we introduce SubSIST, a novel single-instance store designed
to operate in an N-version environment. In the common case
where all child file systems are working properly, SubSIST co-
alesces most blocks and thus greatly reduces time and space
overheads. In the rare case where a child makes a mistake,
SubSIST does not propagate the error to other children, and
thus preserves the ability of EnvyFS to detect and recover from
bugs that affect data reliability. Overall, EnvyFS and SubSIST
combine to significantly improve reliability with only modest
space and time overheads.

1 Introduction

File systems make mistakes. A modern file system con-
sists of many tens of thousands of lines of complex code;
such a system must handle memory-allocation failure,
disk faults, and system crashes, and in all cases pre-
serve the integrity of both user data and its own meta-
data. Thus, it is perhaps no surprise that many recent
studies have uncovered hundreds of bugs in file sys-
tems [14, 18, 34, 49, 51].

Bugs manifest in numerous ways. In the best case, a
system immediately crashes; recent research has shown
how to cope with such “fail-stop” behavior by both iso-
lating said file system from the rest of the kernel and
transparently restarting it [16, 44]. However, in more

insidious scenarios, file-system bugs have been shown
to accidentally corrupt the on-disk state of one or more
blocks [34, 49, 51]; such “fail-silent” behavior is much
more challenging to detect and recover from, and thus
can lead to both data loss (due to a corrupt directory) or
bad data passed back to the user.

One method to improve file systems and reduce fail-
silent mistakes is thorough testing and other bug-finding
techniques. For example, recent research has introduced
a number of increasingly sophisticated and promising
bug-finding tools [18, 29, 49, 51]. However, until such
approaches are able to identify all file-system bugs, prob-
lems are likely to persist. Hence, file-system mistakes are
here to stay; the challenge is how to cope with them.

In this paper, we advocate an approach based on the
classic idea of N-version programming [1]. Specifically,
we present the design and implementation of EnvyFS,
a software layer that multiplexes file-system operations
across multiple child file systems. EnvyFS issues all user
operations to each child, determines the majority result,
and delivers it to the user. By design, we thus elimi-
nate the reliance on a single complex file system, instead
placing it on a much simpler and smaller software layer.

A significant challenge in N-version systems is to for-
mulate the common specification and to create the differ-
ent versions. EnvyFS overcomes this challenge by using
the Virtual File System (VFS) layer as the common spec-
ification and by leveraging existing Linux file systems
already written by different open-source development
groups (e.g., ext3 [46], JFS [8], ReiserFS [36]). In this
manner, we build on work that leverages existing soft-
ware bases to build N-version services, including NFS
servers [37] and transaction-processing systems [47].

An important design goal in building EnvyFS is to
keep it simple, thereby reducing the likelihood of bugs
that arise from the sheer complexity of file-system code.
At the same time, EnvyFS should leverage the VFS layer
and existing file systems to the extent possible. We find
that EnvyFS is indeed simple, being only a fraction of the

88	 2009 USENIX Annual Technical Conference	 USENIX Association

size as its child file systems, and can leverage much of
the common specification. However, limitations do arise
from the nature of the specification in combination with
our goal of simplicity. For example, because child file
systems issue different inode numbers for files, EnvyFS
is tasked with issuing inode numbers as well; in the inter-
est of simplicity, EnvyFS does not maintain these inode
numbers persistently (i.e., the inode number for a file is
the same within, but not across, mounts).

A second challenge for EnvyFS is to minimize the
performance and disk-space overheads of storing and
retrieving data from its underlying child file systems.
Our solution is to develop a variant of a single-instance
store (an SIS) [11, 17, 35]. By utilizing content hashes
to detect duplicate data, an SIS can significantly re-
duce the space and performance overheads introduced
by EnvyFS. However, using an SIS underneath EnvyFS
mandates a different approach, as we wish to reduce
overhead without sacrificing the ability to tolerate mis-
takes in a child file system. We achieve this by imple-
menting a novel SIS (which we call SubSIST) that en-
sures that a mistake in one file system (e.g., filling a
block with the wrong contents) does not propagate to
other children, and thus preserves the ability of EnvyFS
to detect faults in an underlying file system through vot-
ing. Thus, in the common case where all file systems
work properly, SubSIST coalesces most blocks and can
greatly reduce time and space overheads; in the rare case
where a single child makes a mistake, SubSIST does not
do so, enabling EnvyFS to detect and recover from the
problem.

We have implemented EnvyFS and SubSIST for
Linux; currently, EnvyFS employs any combination of
ext3, JFS, and ReiserFS as child file systems. Through
fault injection, we have analyzed the reliability of
EnvyFS and have found that it can recover from a range
of faults in nearly all scenarios; many of these faults
cause irreparable data loss or unmountable file systems
in the affected child. We have also analyzed the per-
formance and space overheads of EnvyFS both with and
without SubSIST. We have found across a range of work-
loads that, in tandem, they usually incur modest perfor-
mance overheads. However, since our current implemen-
tation of SubSIST does not persist its data structures, the
performance improvements achieved through SubSIST
represent the best case. We find that SubSIST also re-
duces the space overheads of EnvyFS significantly by
coalescing all data blocks. Finally, we have discovered
that EnvyFS may also be a useful diagnostic tool for file-
system developers; in particular, it helped us to readily
identify and fix a bug in a child file system.

The rest of the paper is organized as follows. In Sec-
tion 2, we present extended motivation. We present the
design and implementation of EnvyFS and SubSIST in

Sections 3 and 4 respectively. We evaluate our system
for reliability in Section 5 and performance in Section 6.
We then discuss related work in Section 7 and conclude
in Section 8.

2 Do File Systems Make Mistakes?

Before describing EnvyFS, we first briefly explain why
we believe file systems do indeed make mistakes, and
why those mistakes lead file systems to deliver corrupt
data to users or corrupt metadata to themselves. Such
failures are silent, and thus challenging to detect.

Recent work in analyzing file systems has uncov-
ered numerous file system bugs, many of which lead
to silent data corruption. For example, Prabhakaran et
al. found that a single transient disk error could cause
a file system to return corrupt data to the calling appli-
cation [33, 34]. Further, a single transient write failure
could corrupt an arbitrary block of the file system, due
to weaknesses in the failure-handling machinery of the
journaling layer [34]. Similar bugs have been discovered
by others [50, 51].

Another piece of evidence that file systems corrupt
their own data structures is the continued presence of
file system check-and-repair tools such as fsck [30]. De-
spite the fact that modern file systems either use journal-
ing [21] or copy-on-write [12, 19, 25, 38] to ensure con-
sistent update of on-disk structures, virtually all modern
file systems ship with a tool to find and correct inconsis-
tencies in on-disk data structures [20]. One might think
inconsistencies arise solely from faulty disks [6, 7]; how-
ever, even systems that contain sophisticated machinery
to detect and recover from disk faults ship with repair
tools [24]. Thus, even if one engineers a reliable storage
system, on-disk structures can still become corrupt.

In addition to bugs, file systems may accidentally
corrupt their on-disk structures due to faulty memory
chips [31, 39]. For example, if a bit is flipped while a
block is waiting to be written out, either metadata or data
will become silently corrupted when the block is finally
written to disk.

Thus, both due to poor implementations as well as bad
memory, file systems can corrupt their on-disk state. The
type of protection an N-version system provides is thus
complementary to the machinery of checksums and par-
ity and mirroring that could be provided in the storage
system [28, 41], because these problems occur before
such protection can be enacted. These problems cannot
be handled via file-system backups either; backups po-
tentially provide a way to recover data, but they do not
help detect that currently-available data is corrupt. To
detect (and perhaps recover) from these problems, some-
thing more is required.

USENIX Association	 2009 USENIX Annual Technical Conference	 89

3 EnvyFS: An N-Version File System

N-version programming [1, 2, 4, 5, 13, 15, 48] is used to
build reliable systems that can tolerate software bugs. A
system based on N-version programming uses N differ-
ent versions of the same software and determines a ma-
jority result. The different versions of the software are
created by N different developers or development teams
for the same software specification. It is assumed (and
encouraged using the specification) that different devel-
opers will design and implement the specification differ-
ently, lowering the chances that the versions will contain
the same bugs or will fail in a similar fashion.

Developing N-version systems has three important
steps (a) producing the specification for the software, (b)
implementing the N different versions of the software,
and (c) creating the environment that executes the differ-
ent versions and determines a consensus result [1].

We believe the use of N-version programming is par-
ticularly attractive for building reliable file systems since
the design and development effort required for the first
two steps (i.e., specification and version development)
can be much lower than for the typical case.

First, many existing commodity file systems adhere
to a common interface. All Linux file systems adhere
to the POSIX interface, which internally translates to
the Virtual File System (VFS) interface. Thus, if an N-
version file system is able to leverage the POSIX/VFS
interface, then no additional effort will be needed to
develop a new common specification. However, be-
cause the POSIX/VFS interface was not designed with
N-versioning in mind, we do find that EnvyFS must ac-
count for differences between file systems.

Second, many diverse file systems are available for
Linux today. For example, in Linux 2.6, there are at
least 30 different file systems (depending upon how one
counts), such as ext2, ext3, JFS, ReiserFS, XFS, FAT,
and HFS; new ones are being implemented as well, such
as btrfs. All have been built for the POSIX/VFS inter-
face. These different file systems have drastically differ-
ent data structures, both on disk and in memory, which
reduces the chances of common file-system bugs. Fur-
thermore, previous research has shown that file systems
behave differently when they encounter partial-disk fail-
ures; for example, Prabhakaran et al. show that when di-
rectory data is corrupted, ReiserFS and JFS detect the
problem while ext3 does not [34].

3.1 Design Goals and Assumptions
The design of EnvyFS is influenced by the following
goals and assumptions:
Simplicity: As systems have shown time and again,
complexity is the source of many bugs. Therefore, an
N-version file system should be as simple as possible. In

EnvyFS, this goal primarily translates to avoiding persis-
tent metadata; this simplification allows us to not allo-
cate disk blocks and to not worry about failures affecting
EnvyFS metadata.
No application modifications: Applications should not
need to be modified to use EnvyFS instead of a single lo-
cal file system. This goal supports our decision to lever-
age the POSIX specification as our specification.
Single disk: The N-version file system is intended to
improve the reliability of desktop systems in the face of
file-system mistakes. Therefore, it replicates data across
multiple local file systems that use the same disk drive.
This goal translates to a need for reducing disk-space
overheads; thus, we develop a new single-instance store
(Section 4) for our environment.
Non-malicious file systems: We assume that child file
systems are not malicious. Thus, we must only guard
against accidents and not intentional attempts to corrupt
user data or file-system metadata.
Bug isolation: We also assume that the bugs do not prop-
agate to the rest of the kernel. If such corruption were in-
deed a major issue, one could apply isolation techniques
as found in previous work to contain them [16, 44].

3.2 Basic Architecture
EnvyFS receives application file operations, issues the
operations to multiple child file systems, compares the
results of the operation on all file systems, and returns
the majority result to the application. Each child stores
its data and metadata in its own disk partition.

We have built EnvyFS within Linux 2.6, and Figure 1
shows the basic architecture. EnvyFS consists of a soft-
ware layer that operates underneath the virtual file sys-
tem (VFS) layer. This layer executes file operations
that it receives on multiple children. We use ext3 [46],
JFS [9], and ReiserFS [36] for this purpose. We chose
these file systems due to their popularity and their dif-
ferences in how they handle failures [34]. However, the
EnvyFS design does not preclude the use of other file
systems that use the VFS interface.

Similar to stackable file systems [22], EnvyFS inter-
poses transparently on file operations; it acts as a normal
file system to the VFS layer and as the VFS layer to the
children. It thus presents file-system data structures and
interfaces that the VFS layer operates with and in turn
manages the data structures of the child file systems. We
have implemented wrappers for nearly all file and direc-
tory operations. These wrappers verify the status of nec-
essary objects in the children before issuing the operation
to them. For example, for an unlink operation, EnvyFS
first verifies that both the file and its parent directory are
consistent with majority opinion.

Each operation is issued in series to the child file sys-
tems; issuing an operation in parallel to all file systems

90	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 1: N-version file system in Linux. The figure
presents the architecture of a 3-version file system with ext3,
ReiserFS and JFS as the children. The core layer is EnvyFS;
it is responsible for issuing file operations to all three file sys-
tems, determining a majority result from the ones returned by
the file systems, and returning it to the VFS layer. The optional
layer beneath the file systems (SubSIST) is a single-instance
store built to work in an N-version setting; it coalesces user
data stored by the different file systems in order to reduce per-
formance and space overheads.

increases complexity and is unlikely to realize much,
if any, performance benefit when the children share the
same disk drive. When the operations complete, the re-
sults are semantically compared to determine the major-
ity result; this result is then returned to the user. When
no majority result is obtained, an I/O error is returned.

Our current implementation does not support the
mmap operation. While supporting mmap is not funda-
mentally difficult, it does present a case where child file
systems cannot be trivially leveraged. Specifically, an
implementation of mmap in EnvyFS would likely involve
the use of file read and write operations of children,
rather than their mmap operations.

We now discuss how our implementation addresses
each of the three steps of N-version programming. In
particular, we discuss how EnvyFS deals with the com-
plexities of leveraging the existing POSIX specifica-
tion/VFS layer and of using existing Linux file systems
while keeping EnvyFS simple.

3.3 Leveraging the POSIX Specification
EnvyFS leverages the existing POSIX specification and
operates underneath VFS as it provides core functional-
ity (like ordering of file operations) that is challenging to
replicate without modifying applications. Thus, EnvyFS
relies upon the correct operation of the VFS layer. We
believe the VFS layer has been heavily tested over the
years and is likely to have fewer bugs that the file sys-
tems themselves; this optimism is partially validated by
Yang et al., who find two bugs in the VFS layer and
nearly thirty in ext3, ReiserFS, and JFS [51].

One issue that EnvyFS must handle is that the POSIX
specification is imprecise for use in an N-version setting;
that is, the child file systems we leverage differ in vari-
ous user-visible aspects that are not a part of the POSIX
interface. For example, POSIX does not specify the or-
der in which directory entries are to be returned when a
directory is read; thus, different children may return di-
rectory entries in a different order. As another example,
the inode number of a file is available to users and appli-
cations through the stat system call; yet, different file
systems issue different inode numbers for the same file.

One approach to addressing this problem would be
to make the specification more precise and change the
file systems to adhere to the new specification. This ap-
proach has a number of problems. First, refining the
specification discourages diversity across the different
file systems. For example, if the specification details
how inode numbers should be assigned to files, then all
file systems will be forced to use the same algorithm
to allocate inode numbers, perhaps causing them to also
use the same data structures and inviting common bugs.
Second, even given a more precise specification, non-
determinism and differences in operation ordering can
easily cause different results. Finally, changing the spec-
ification would greatly increase the amount of develop-
ment effort to produce an N-version file system, since
each existing Linux file system would need to be changed
to use it as a child file system.

3.3.1 Semantic Result Comparison
Our solution is to have EnvyFS deal with the imprecise
POSIX specification: when EnvyFS compares and re-
turns results from the child file systems, it does so using
semantic knowledge of how the POSIX/VFS interface
operates. In other words, EnvyFS examines the VFS data
structures returned by each child file system and does a
semantic comparison of individual fields.

For example, for a file read operation, EnvyFS com-
pares (a) the size of data read (or the error code re-
turned), (b) the actual content read, and (c) the file po-
sition at the end of the read. For all file operations where
inodes may be updated, EnvyFS compares (and copies
to its VFS inode) the contents of the individual inodes.
We have developed comparators for different file-system
data types like superblocks, inodes, and directories. For
example, an inode comparator checks whether the fields
i nlink, i mode, i uid, and so forth in the child in-
odes are the same. While EnvyFS compares results re-
turned to it, it does not verify that the operation com-
pleted correctly in each file system; for example, it does
not re-read data written to a file to verify that all file sys-
tems actually wrote the correct data.

As mentioned above, directory entries and inodes
are especially interesting cases. We now describe how

USENIX Association	 2009 USENIX Annual Technical Conference	 91

EnvyFS handles these structures in more detail and we
also describe how EnvyFS optimizes its comparison of
data blocks across file systems.
Directory Entries: POSIX does not specify the order in
which directory entries are to be returned. Thus, EnvyFS
reads all directory entries from all file systems; it then
returns individual entries that occur in a majority of file
systems. The disadvantage of this approach is that it in-
creases the overhead for the getdirentries system
call for very large directories. We note that we could
optimize the performance of this case (at the expense of
code simplicity), by reading from child file systems only
until EnvyFS finds matches for exactly as many entries
as the user provides space for.
Inode Numbers: POSIX does not specify how inode
numbers should be assigned to files, yet inode numbers
are visible to user applications. Since EnvyFS cannot
always use the inode number produced by any one child
file system (because it may fail), it assigns a virtual inode
number when a new object is encountered and tracks this
mapping. Keeping with our simplicity goal, inode num-
bers so assigned are not persistent; that is, an object has
a specific virtual inode number only between a mount
and the corresponding unmount. This decision impacts
only a few applications that depend on the persistence of
file-system inode numbers. If applications using EnvyFS
do require persistent inode numbers, one simple solution
that could be explored is to store the inode mapping in a
hidden file in the root directory of each file system and
load the mapping at mount time. A specific example in
this context is an NFS server using protocol versions 2 or
3; the server uses persistent inode numbers to create file
handles for clients that can be used across server crashes.
Even so, in protocol version 4, a “volatile file handle”
option was introduced, thereby eliminating the need for
persistent inode numbers. Interestingly, some local file
systems, like the High Sierra file system for CD-ROMs,
do not have persistent inode numbers [32].
Reads of Data Blocks: In performing read operations,
we would like to avoid the performance overhead of al-
locating memory to store the results returned by all of the
file systems (especially when the data read is already in
cache). Therefore, EnvyFS reuses the memory provided
by the application for the read system call. Reusing the
memory influences two subsequent decisions. First, to
determine whether the child file systems return the same
data from the read, EnvyFS computes checksums on
the data returned by the child file systems and compares
them; a more thorough byte-by-byte comparison would
require memory for all copies of data. Second, EnvyFS
issues the read operation in series to child file systems
only until a majority opinion is reached (i.e., usually to
two children); this choice eliminates the problem of is-
suing reads again in case the last file system returns in-

correct data; in addition, in the common case, when file
systems agree, the third read is avoided. It is important
to note that we choose not to take the same issue-only-
until-majority approach with other VFS operations such
as lookup since the limited performance gain for such
operations is not worth the complexity involved, say in
tracking and issuing a sequence of lookups for the en-
tire path when a lookup returns erroneous results in one
file system. A future implementation could include a
“verify-all” option that causes EnvyFS to issue the read
to all file systems ignoring the performance cost.

In choosing the checksum algorithm for comparing
data, one must remember that the cost of checksumming
can be significant for reads that are satisfied from the
page cache. We have measured that this cost is espe-
cially high for cryptographic checksums such as MD5
and SHA-1; therefore, in keeping with our goal of pro-
tecting against bugs but not maliciousness, we use a sim-
ple TCP-like checksum (sum of bytes) for comparisons.

3.3.2 Operation Ordering
Our placement of EnvyFS beneath VFS simplifies the is-
sue of ordering file operations. As in many replication-
based fault tolerance schemes, determining an order-
ing of operations is extremely important; in fact, recent
work in managing heterogeneous database replicas fo-
cuses primarily on operation ordering [47]. In the context
of a file system, consider the scenario where multiple file
operations are issued for the same object: if an ordering
is not predetermined for these operations, their execu-
tion may be interleaved such that the different children
perform the operations in a different order and therefore
produce different results even in the absence of bugs.

Unlike databases, the dependence between operations
can be predetermined for file systems. In EnvyFS, we
rely on the locking provided by the Linux VFS layer to
order metadata operations. As explained earlier, this re-
liance cannot be avoided without modifying applications
(to issue operations to multiple replicas of VFS that ex-
ecute an agreement algorithm). In addition to the VFS-
level locking, we perform file locking within EnvyFS for
reads and writes to the same file. This locking is neces-
sary since the VFS layer does not (and has no need to)
order file reads and writes.

3.4 Using Existing File Systems
Our decision to leverage existing Linux file systems
for child file systems greatly simplifies the development
costs of the system. However, it does restrict our behav-
ior in some cases.

One problem with using multiple local file systems is
that the different file systems execute within the same ad-
dress space. This exposes EnvyFS to two problems: (a)
a kernel panic induced by a child file system, and (b) a
memory bug in a child file system that corrupts the rest

92	 2009 USENIX Annual Technical Conference	 USENIX Association

of the kernel. A solution to both problems would be to
completely isolate the children using a technique such as
Nooks [43]. However, due to the numerous interactions
between the VFS layer and the file systems, such isola-
tion comes at a high performance cost.

Therefore, we explore a more limited solution to han-
dle kernel panics. We find the current practice of file sys-
tems issuing a call to panic whenever they encounter
errors to be too drastic, and developers seem to agree.
For example, ext3 code had the following comment:
“Given ourselves just enough room to cope with inodes
in which i blocks is corrupt: we’ve seen disk corruptions
in the past which resulted in random data in an inode
which looked enough like a regular file for ext3 to try to
delete it. Things will go a bit crazy if that happens, but at
least we should try not to panic the whole kernel”. In the
case of ext3 and JFS, a mount option (errors) can spec-
ify the action to take when a problem is encountered;
one could specify errors=continue to ensure that panic
is not called by the file systems. However, this option
is not available on all file systems. Our solution is to
replace calls to panic, BUG, and BUG ON by child file
systems with a call to a nvfs child panic routine
in EnvyFS. This simple replacement is performed in file-
system source code. The nvfs child panic routine
disables issuing of further file operations to the failed file
system.

Another limitation of using existing file systems is
that different file systems use different error codes for
the same underlying problems (e.g., “Input/output error”,
“Permission denied”, or “Read-only file system”). A
consistent error code representing each scenario would
enable EnvyFS to take further action. In our current im-
plementation EnvyFS simply reports the majority error
code or reports an I/O error if there is no majority.

3.5 Keeping EnvyFS Simple
EnvyFS has its own data structures (e.g., in-memory in-
odes and dentry structures), which are required for inter-
acting with the VFS layer. In turn, EnvyFS manages the
allocation and deallocation of such structures for child
file systems; this management includes tracking the sta-
tus of each object: whether it matches with the majority
and whether it needs to be deallocated.

In keeping with our simplicity goal, we have designed
EnvyFS so that it does not maintain any persistent data
structures of its own. This decision affects various parts
of the design; we previously discussed how this impacts
the management of inode numbers (Section 3.3.1); we
now discuss how it impacts the handling of faulty file
systems and system crashes.

3.5.1 Handling Disagreement
An important part of EnvyFS is the handling of cases
where a child file system disagrees with the majority re-

sult. This part is specifically important for local file sys-
tems since the ability to perform successive operations
may depend on the result of the current operation (e.g., a
file read cannot be issued when open fails).

When an error is detected, in order to restore EnvyFS
to full replication, the erroneous child file system should
be repaired. The repair functionality within EnvyFS fixes
incorrect data blocks and inodes in child file systems.
Specifically, if EnvyFS observes that the file contents in
one file system differs from the other file systems dur-
ing a file read, it issues a write of the correct data to the
corrupt file system before returning the data to the user.
With respect to inodes, EnvyFS repairs a subset of var-
ious possible corruptions; it fixes inconsistencies in the
permission flags (which are i mode, i uid, i gid) with the
majority result from other file systems. It also fixes size
mismatches where the correct size is larger than the cor-
rupt one by copying the data from correct file systems.
On the other hand, issuing a file truncate for the case
where the correct size is smaller may result in more cor-
ruption in an already corrupt file system (e.g., the blocks
being freed by truncate may actually be in use by a dif-
ferent file as a result of a prior corruption).

As the above example demonstrates, efficient repair
for all inconsistencies is challenging. If EnvyFS can-
not repair the erroneous object in a child file system, it
operates in degraded-mode for the associated object. In
degraded mode, future operations are not performed for
that object in the file system with the error, but EnvyFS
continues to perform operations on other objects for that
file system. For example, if a child’s file inode is de-
clared faulty, then read operations for that file are not is-
sued to that file system. As another example, if a lookup
operation completes successfully for only one file sys-
tem, its corresponding in-memory dentry data structure
is deallocated, and any future file create operation for that
dentry is not issued to that file system.

For simplicity, the validity information for objects is
not maintained persistently. With this approach, after a
reboot, the child file system will try to operate on the
faulty objects again. If the object is faulty due to a perma-
nent failure, then the error is likely to be detected again,
as desired. Alternately, if the problem was due to a tran-
sient error, the child will return to normal operation as
long as the object has not been modified in the interim.
Our current approach to fully repair inconsistencies that
cannot be repaired in-flight requires that the entire erro-
neous child file system be re-created from the other (cor-
rect) children, an expensive process.

Some further challenges with efficient repair may arise
from limitations of the VFS layer. Consider the fol-
lowing scenario. A file with two hard links to it may
have incorrect contents. If EnvyFS detects the corrup-
tion through one of the links, it may create a new file in

USENIX Association	 2009 USENIX Annual Technical Conference	 93

the file system to replace the erroneous one. However,
there is no simple way to identify the directory where the
other link is located, so that it can be fixed as well (ex-
cept through an expensive scan of the entire file system).
In the future, we plan to investigate how one can provide
hooks into the file system to enable fast repair.

3.5.2 System Crashes
When a system crash occurs, EnvyFS file-system recov-
ery consists of performing file-system recovery for all
child file systems before EnvyFS is mounted again. In
our current approach, EnvyFS simply leverages the re-
covery methods inherent to each individual file system,
such as replaying the journal. This approach leads to
a consistent state within each of the children, but it is
possible for different file systems to recover to different
states. Specifically, when a crash occurs in the middle
of a file operation, EnvyFS could have issued (and com-
pleted) the operation for only a subset of the file systems,
thereby causing children to recover to different states. In
addition, file systems like ext3 maintain their journal in
memory, flushing the blocks to disk periodically; jour-
naling thus provides consistency and not durability.

An alternative approach for solving this problem
would be for EnvyFS itself to journal operations and re-
play them during recovery. However, this would require
EnvyFS to maintain persistent state.

In EnvyFS, the state modifications that occur durably
for a majority of file systems before the crash are consid-
ered to have completed. The differences in the minority
set can be detected when the corresponding objects are
read, either during user file operations or during a proac-
tive file-system scan. There are corner cases where a ma-
jority result will not be obtained when a system crash oc-
curs. In these cases, choosing the result of any one file
system will not affect file-system semantics. At the same
time, these cases cannot be distinguished from other real
file-system errors. Therefore, EnvyFS returns an error
code when these differences are detected; future imple-
mentations could choose to use the result from a desig-
nated “primary” child.

4 SubSIST: A Single-Instance Store

Two issues that arise in using an N-version file system are
the disk-space and performance overheads. Since data
is stored in N file systems, there is an N -fold increase
(approximately) in disk space used. Since each file op-
eration is performed on all file systems (except for file
reads), the likely disk traffic is N times that for a sin-
gle file system. For those environments where the user
is willing to trade-off some data reliability for disk space
and performance, we develop a variant of single-instance
storage [11, 17, 35]. Note that SubSIST is not manda-

tory; if the performance and space overheads of EnvyFS
are acceptable, there is no reason to make use of Sub-
SIST (indeed, the less code relied upon the better).

With SubSIST, the disk operations of the multiple chil-
dren pass through SubSIST, which is implemented as
a block-level layer. As is common in single-instance
stores, SubSIST computes a content hash (MD5) for all
disk blocks being written and uses the content hash to
detect duplicate data.

Using an SIS greatly reduces disk usage underneath
an N-version file system. At the same time, despite co-
alescing data blocks, an SIS retains much of the bene-
fit of EnvyFS for two reasons. First, the reliability of
file-system metadata is not affected by the use of an
SIS. Since metadata forms the access path to multiple
units of data, its reliability may be considered more im-
portant than that of data blocks. Because the format of
file-system metadata is different across different file sys-
tems, metadata blocks of different file systems have dif-
ferent hash values and are stored separately; thus, the SIS
layer can distinguish between data and metadata blocks
without any knowledge of file-system data structures.
Second, since file systems maintain different in-memory
copies of data, file-system bugs that corrupt data blocks
in-memory cause the data in different file systems to have
different content hashes; therefore, individual file sys-
tems are still protected against each other’s in-memory
file-data corruptions.

4.1 Requirements and Implications
The design of SubSIST for an N-version file system
should satisfy slightly different requirements than a con-
ventional SIS. We discuss four important observations
and their impact on the design of SubSIST.

First, child file systems often replicate important meta-
data blocks so that they can recover from failures. For ex-
ample, JFS replicates its superblock and uses the replica
to recover from a latent sector error to the primary. Thus,
SubSIST does not coalesce disk blocks with the same
content if they belong to the same file system.

Second, an SIS coalesces common data written at
approximately the same time by different file systems.
Therefore, in SubSIST, the content hash information for
each disk block is not stored persistently; the content
hashes are maintained in memory and deleted after some
time has elapsed (or after N file systems have written the
same content). This ephemeral nature of content hashes
also reduces the probability of data loss or corruption due
hash collisions [10, 23].

Third, in an N-version file system, reads of the same
data blocks occur at nearly the same time. Thus, Sub-
SIST services reads from different file systems by main-
taining a small read cache. This read cache holds only
those disk blocks whose reference count (number of file

94	 2009 USENIX Annual Technical Conference	 USENIX Association

systems that use the block) is more than one. It also
tracks the number of file systems that have read a block
and removes a block from cache as soon as this number
reaches the reference count for the block.

Finally, the child file systems using SubSIST are un-
modified and therefore have no knowledge of content ad-
dressing; therefore, SubSIST virtualizes the disk address
space; it exports a virtual disk to the file system, and
maintains a mapping from each file system’s virtual disk
address to the corresponding physical disk address, along
with a reference count for each physical disk block. Sub-
SIST uses file-system virtual addresses as well as previ-
ously mapped physical addresses as hints when assign-
ing physical disk blocks to maintain as much sequential-
ity and spatial locality as possible. When these hints do
not provide a free disk block, SubSIST selects the closest
free block to the previously mapped physical block.

4.2 Implementation
SubSIST has numerous important data structures, includ-
ing: (i) a table of virtual-to-physical mappings, (ii) al-
location information for each physical disk block in the
form of reference count maps, (iii) a content-hash cache
of recent writes and the identities of the file systems that
performed the write, and (iv) a small read cache.

We have built SubSIST as a pseudo-device driver in
Linux. It exports virtual disks that are used by the file
systems. Our current implementation does not store
virtual-to-physical mappings and reference-count maps
persistently; in the future, we plan to explore reliably
writing this information to disk.

5 Reliability Evaluation

We evaluate the reliability improvements of a 3-version
EnvyFS (EnvyFS3) that uses ext3, JFS, and Reis-
erFS (v3) as children. All our experiments use the ver-
sions of these file systems that are available as part of the
Linux 2.6.12 kernel.

We evaluate the reliability of EnvyFS3 in two ways:
First, we examine whether it recovers from scenarios
where file-system content is different in one of the three
children. Second, we examine whether it can recover
from corruption to on-disk data structures of one child.

5.1 Differing File System Content
The first set of experiments is intended to mimic the sce-
nario where one of the file systems has an incorrect disk
image. Such a scenario might occur either when (i) a
system crash occurs and one of the children has written
more or less to disk than the others, (ii) a bug causes one
of the file systems to corrupt file data, say by perform-
ing a misdirected write of data belonging to one file to
another file, or (iii) soft memory errors cause corruption.

Difference in content Num Correct Correct
Tests success error

code
None 28 17 / 17 11 / 11
Dir contents differ in one 13 6 / 6 7 / 7
Dir present in only two 13 6 / 6 7 / 7
Dir present in only one 9 4 / 4 5 / 5
File contents differ in one 15 11 / 11 4 / 4
File metadata differ in one 45 33 / 33 12 / 12
File present in only two 15 11 / 11 4 / 4
File present in only one 9 3 / 3 6 / 6
Total 147 91 / 91 56 / 56

Table 1: File-system Content Experiments. This table
presents the results of issuing file operations to EnvyFS3 ob-
jects that differ in data or metadata content across the different
children. The first column describes the difference in file-system
content. The second column presents the total number of exper-
iments performed for this content difference; this is the number
of applicable file operations for the file or directory object. For
metadata differences, 15 operations each are performed for dif-
ferences in mode, nlink, and size fields of the inode. The third
column is the fraction of operations that return correct data
and/or successfully complete. The fourth column is the frac-
tion of operations that correctly return an error code (and it is
the expected error code) (e.g., ENOENT when an unlink oper-
ation is performed for a non-existent file). We see that EnvyFS3

successfully uses the majority result in all 147 experiments.

We first experiment by creating different file-system
images as the children and executing a set of file oper-
ations on EnvyFS3 that uses the children. We have ex-
plored various file-system content differences, including
extra or missing files or directories, and differences in
file or directory content. The different file operations per-
formed include all possible file operations for the object
(irrespective of whether the operation causes the differ-
ent content to be read). Our file operations include those
that are expected to succeed as well as those that are ex-
pected to fail with a specific error code.

Table 1 shows that EnvyFS3 correctly detects all dif-
ferences and always returns the majority result to the user
(whether the expected data or error code). EnvyFS3 can
also be successfully mounted and unmounted in all cases.
We find that the results are the same irrespective of which
child (ext3, JFS, ReiserFS) has incorrect contents.

We then explore whether EnvyFS3 continues to detect
and recover from differences caused by in-memory cor-
ruption when SubSIST is added. We experiment by mod-
ifying data (or metadata) as it being written to a child file
system and then causing the data (or metadata) to be read
back. Table 2 presents the results of the experiments.
We find that EnvyFS3 used along with SubSIST returns
the correct results in all scenarios. Also, in most sce-

USENIX Association	 2009 USENIX Annual Technical Conference	 95

Corruption Type Num Correct Fix
Tests success

File contents differ in one 3 3 / 3 3 / 3
Dir contents differ in one 3 3 / 3 0 / 3
Inode contents differ in one 15 15 / 15 9 / 15
Total 21 21 / 21 12 / 21

Table 2: File-system Corruption Experiments. This
table presents the results of corrupting one of the file objects
in EnvyFS3 that results in different data or metadata content
across the different children with SubSIST underneath it. The
first column describes the type of corruption. The second col-
umn presents the total number of experiments performed; The
third column is the fraction of operations that return correct
data and/or successfully complete (which also include identifi-
cation of mismatch in file system contents). The fourth column
is the fraction of operations that EnvyFS was able to repair
after detecting corruption.

narios when file contents or inode contents are different,
EnvyFS3 successfully repairs the corrupt child during
file-system operation (Section 3.5.1 describes scenarios
in which EnvyFS repairs a child during file-system op-
eration). The use of SubSIST does not affect protection
against in-memory corruption; a data block corrupted in
memory will cause SubSIST to generate a different con-
tent hash for the bad block when it is written out, thereby
avoiding the usual coalescing step.

5.2 Disk Corruption
The second set of experiments analyzes whether
EnvyFS3 recovers when a child’s on-disk data structures
are corrupt. Such corruption may be due to a bug in the
file system or the rest of the storage stack. We inject cor-
ruption into JFS and ext3 data structures by interposing
a pseudo-device driver that has knowledge of the data
structures of each file system. This driver zeroes the en-
tire buffer being filled in response to a disk request by
the file system, but does not return an error code (i.e.,
the corruption is silent). All results, except that for data
blocks, are applicable to using EnvyFS3 with SubSIST.

5.2.1 Corruption in JFS
Figures 2a and 2b compare the user-visible results of in-
jecting corruptions into JFS data structures when JFS is
used stand-alone and when EnvyFS3 is used (that is com-
posed of JFS, ext3, and ReiserFS).

Each row in the figures corresponds to the JFS data
structure for which the fault is injected. Each column in
the figures corresponds to different file operations. The
different symbols represent the user-visible results of the
fault; examples of user-visible results include data loss,
and a non-mountable file system. For example, in Fig-
ure 2a, when an inode block is corrupted during path
traversal (column 1), the symbol indicates that (i) the

operation fails and (ii) the file system is remounted in
read-only mode. In addition to the symbols for each
column, the symbol next to the data-structure name for
all the rows indicates whether or not the loss of the disk
block causes irreparable data or metadata loss.

As shown in Figure 2a, JFS is rarely able to recover
from corruptions: JFS can continue normal operation
when the read to the block-allocation bitmap fails during
truncate and unlink. Often, the operation fails and JFS
remounts the file system in read-only mode. The corrup-
tion of some data structures also results in a file system
that cannot be mounted. In one interesting case, JFS de-
tects the corruption to an internal (indirect) block of a file
and remounts the file system in read-only mode, but still
returns corrupt data to the user. Data loss is indicated for
many of the JFS rows.

In comparison to stand-alone JFS, EnvyFS3 recovers
from all but one of the corruptions (Figure 2b). EnvyFS3

detects errors reported by JFS and also detects corrupt
data returned by JFS when the internal block or data
block is corrupted during file read. In all these cases,
EnvyFS3 uses the two other file systems to continue nor-
mal operation. Therefore, no data loss occurs when any
of the data structures is corrupted.

In one interesting fault-injection experiment, a system
crash occurs both when using JFS stand-alone and when
using it in EnvyFS3. In this experiment, the first aggre-
gate inode block (AGGR-INODE-1) is corrupted, and
the actions of JFS lead to a kernel panic during paging.
Since this call to panic is not in JFS code, it cannot
been replaced as described in Section 3.4. Therefore,
the kernel panic occurs both when using JFS stand-alone
and when using EnvyFS3. Thus, we find a case where
EnvyFS3 is not completely resilient to underlying child
failure; faults that lead to subsequent panics in the main
kernel cannot be handled with N-version techniques.

5.2.2 Corruption in Ext3
Figures 2c and 2d show the results of injecting corrup-
tion into ext3 data structures. As in the case of JFS, the
figures compare ext3 against EnvyFS3.

Overall, we find that ext3 does not handle corruption
well. Figure 2c shows that no corruption error leads to
normal operation without data loss for ext3. In most
cases, there is unrecoverable data loss and either the op-
eration fails (ext3 reports an error) or the file system is
remounted in read-only mode or both. In some cases,
the file system cannot even be mounted. In other cases,
ext3 fails to detect corruption (e.g., IMAP, INDIRECT),
thereby either causing data loss (IMAP) or returning cor-
rupt data to the user (INDIRECT). Finally, in one sce-
nario (corrupt INODE during unlink), the failure to
handle corruption leads to a system crash upon unmount.

In comparison, Figure 2d shows that EnvyFS3 contin-

96	 2009 USENIX Annual Technical Conference	 USENIX Association

(a) JFS (b) EnvyFS3

1

pa
th

-tr
av

er
sa

l

2

SE
T-

1

3

SE
T-

2

4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tru
nc

at
e

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

SE
T-

3

18

um
ou

nt

1

pa
th

-tr
av

er
sa

l

2

SE
T-

1

3

SE
T-

2

4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tru
nc

at
e

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

SE
T-

3

18

um
ou

nt

INODE

DIR

BMAP

IMAP

INTERNAL

DATA

SUPER

JSUPER

JDATA

AGGR-INODE-1

IMAPDESC

IMAPCNTL

a a a

(c) EXT3 (d) EnvyFS3

1

pa
th

-tr
av

er
sa

l

2

SE
T-

1

3

SE
T-

2

4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tru
nc

at
e

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

SE
T-

3

18

um
ou

nt

1

pa
th

-tr
av

er
sa

l

2

SE
T-

1

3

SE
T-

2

4
re

ad
5

re
ad

lin
k

6
ge

td
ire

nt
rie

s
7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tru
nc

at
e

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

SE
T-

3

18

um
ou

nt

INODE

DIR

BMAP

IMAP

INDIRECT

DATA

SUPER

JSUPER

GDESC

e e e e e e

LEGEND

Later operations fail
Operation fails
Data corrupted or corrupt data returned
Data or metadata loss
Normal operation

Not applicable
e Data loss <or> Data corruption
a Data loss <or> operation fails and ROFS

Read-only file system (ROFS)
System crash
Non-mountable file system

Figure 2: Disk corruption experiments. The figures show the results of injecting corruption for JFS and ext3 on-disk data
structures. JFS is used stand-alone in (a) and is one of the children in EnvyFS3 in (b). ext3 is used stand-alone in (c) and is one
of the children in EnvyFS3 in (d). Each row in the figures corresponds to the data structure for which the fault is injected; each
column corresponds to a file operation; each symbol represents the user-visible result of the fault injection. Note that (i) the column
SET-1 denotes file operations access, chdir, chroot, stat, statfs, lstat, and open; SET-2 denotes chmod, chown, and utimes; SET-3
denotes fsync and sync, (ii) some symbols are a combination of two symbols, one of which is the light-gray square for “read-only
file system.”

USENIX Association	 2009 USENIX Annual Technical Conference	 97

ues normal operation in every single experiment, includ-
ing in the system-crash case. EnvyFS3 again shows great
resilience to faults in a single child file system.

We also found EnvyFS3 to be surprisingly helpful
in isolating a non-trivial bug in ext3. As reported
above, when an ext3 inode block is corrupted before
an unlink, the system crashes when the file system is
later unmounted. The system crash does not occur in
EnvyFS3; one might suspect that EnvyFS3 is robust be-
cause ext3 was modified to call nvfs child panic.
However, this is not the case; instead, EnvyFS3 com-
pletely avoids the code paths that cause the panic; in
particular, EnvyFS3 detects that the inode returned by
ext3 in response to a lookup (that is performed by VFS
prior to the actual unlink) is faulty (i.e., semantically dif-
fers from the inodes returned by the other file systems).
Therefore, it does not issue the subsequent unlink opera-
tion to ext3, hence avoiding actions that cause the panic.
Interestingly, the bug that causes the crash is actually in
the lookup operation, the first point where EnvyFS3 de-
tects a problem. Note that in the absence of an N-version
file system, one would find that the system crashed on an
unmount, but will not have information linking the crash
to the unlink system call or the bug in ext3 lookup.
Checking the ext3 source code, we found that this bug in
Linux 2.6.12 was subsequently fixed in 2.6.23. This ex-
perience highlights the potential for using N-versioning
to localize bugs in file systems.

5.3 Discussion
Our experiments show that EnvyFS3 can recover from
various kinds of corruptions in a child file system. Since
this improvement in reliability is achieved through addi-
tional layers of code, any bugs in these layers could off-
set the reliability improvements. Therefore, an important
goal in our design is to keep EnvyFS simple. We now
compare the amount of code used to construct EnvyFS
and SubSIST against other file systems in order to es-
timate the complexity (and therefore, the likelihood of
bugs) in such a system.

The EnvyFS layer is about 3,900 lines of code, while
SubSIST is about 2,500 lines of code. In comparison,
ext3 contains 10,423 lines, JFS has 15,520 lines, Reis-
erFS has 18,537 lines, and XFS, a complex file system,
has 44,153 lines.

6 Time and Space Overheads

Although reliable file-system operation is our major goal,
we are also concerned with the overheads innate to an N-
version approach. In this section, we quantify the perfor-
mance costs of EnvyFS and the reduction in disk-space
overheads due to SubSIST.

ext3 JFS Reiser Envy3 +SIS
Cached read 2.1 2.1 2.2 5.7 5.7
Cached write 3.7 2.5 2.2 8.8 8.8
Seq. read-4K 17.8 17.7 18.2 424.1 33.7
Seq. read-1M 17.8 17.7 18.2 75.4 33.7
Seq. write 26.0 18.7 24.4 74.9 29.7
Rand. read 163.6 163.5 165.1 434.2 164.2
Rand. write 20.4 18.9 20.4 61.4 7.0
OpenSSH 25.3 25.7 25.6 26.4 26.0
Postmark-10K 14.7 39.0 9.6 128.8 26.4
Postmark-100K 29.0 107.2 33.6 851.4 430.0
Postmark-100K* 128.3 242.5 78.3 405.5 271.1

Table 3: Performance. This table compares the execution
time (in seconds) for various benchmarks for EnvyFS3 (with-
out and with SubSIST) against the child file systems, ext3, JFS,
and ReiserFS. All our experiments use Linux 2.6.12 installed
on a machine with an AMD Opteron 2.2 GHz processor, 2 GB
RAM, Hitachi Deskstar 7200-rpm SATA disks, and 4-GB disk
partitions for each file system. Cached reads and writes in-
volve 1 million reads/writes to 1 file data block. Sequential
read-4K/writes are 4 KB at a time to a 1-GB file. Sequential
read-1M is 1MB at a time to a 1-GB file. Random reads/writes
are 4 KB at a time to 100 MB of a 1-GB file. OpenSSH is a
copy, untar, and make of OpenSSH-4.5. Postmark was config-
ured to create 2500 files of sizes between 4KB and 40KB. We
ran it with 10K and 100K transactions. All workloads except
ones named “Cached” use a cold file-system cache.

We now quantify the performance overheads of
EnvyFS3 both with and without SubSIST, in contrast to
each of the child file systems (ext3, JFS, and ReiserFS)
running alone. Table 3 presents the results.

We now highlight the interesting points from the table:

• When reads hit in the cache (cached reads),
EnvyFS3 pays a little more than twice the cost (as it
accesses data from only two children and performs
a checksum comparison to find a majority).

• EnvyFS3 performance under cached writes is
roughly the sum across the children; such writes go
to all three child file systems, and thus are repli-
cated in the buffer cache three times. This aspect
of EnvyFS3 is bad for performance (and increases
cache pressure), but at the same time increases fault
resilience; a corruption to one copy of the data while
in memory will not corrupt the other two copies.

• SubSIST does not help with either cached workload
as it only interposes on disk traffic.

• EnvyFS3 has terrible performance under sequen-
tial disk reads, as it induces seeks (and loses disk
track prefetches) between two separate sequential
streams especially with small block sizes; much
of this cost could be alleviated with additional
prefetching or with larger block sizes. Increasing

98	 2009 USENIX Annual Technical Conference	 USENIX Association

the read size from 4KB to 1MB significantly im-
proves the performance of EnvyFS3.

• Sequential writes perform much better on EnvyFS3

compared to sequential reads, due to batching of op-
erations (and hence fewer seeks).

• In many cases where EnvyFS3 performance suffers
(sequential reads and writes, random reads), Sub-
SIST greatly improves performance through coa-
lescing of I/O. Indeed, in one case (random writes),
SubSIST improves performance of EnvyFS3 as
compared to any other single file system, as for this
specific case its layout policy transforms random
writes into a more sequential pattern to disk (see
Section 4.1). These performance improvements
likely represent the best case since the numbers do
not show the costs that would be incurred in a Sub-
SIST implementation that maintains data structures
persistently.

• Application performance, as measured on the
OpenSSH benchmark, is quite acceptable, even
without SubSIST.

• In the case of Postmark benchmark, both workload
size and dirty page writeout intervals affect the per-
formance of EnvyFS3. For smaller workloads (i.e.,
Postmark-10K), performance of EnvyFS3 with Sub-
SIST is comparable with other file systems. But
with increase in workload size (Postmark-100K),
performance of EnvyFS3 worsens as it is forced to
write back more data due to increase in cache pres-
sure along with shorter dirty page writeout inter-
nals. If we provide EnvyFS3 with thrice the amount
of memory and change the writeback intervals ac-
cordingly, we see that EnvyFS3 performance (with
SubSIST) is comparable to the slowest of the three
children (JFS).

We also tracked the storage requirement across these
benchmarks. For those workloads that generated writes
to disk, we found that SubSIST reduced the storage re-
quirement of EnvyFS by roughly a factor of three.

7 Related Work

Over the years, N-version programming has been used
in various real systems and research prototypes to reduce
the impact of software bugs on system reliability. As
noted by Avižienis [1], N-version computing has very old
roots (going back to Babbage and others in the 1800s).

The concept was (re)introduced in computer systems
by Avižienis and Chen in 1977 [2]. Since then, various
other efforts, many from the same research group, have
explored the process as well as the efficacy of N-version
programming [3, 5, 4, 13, 27].

Avižienis and Kelly [4] study the results of using dif-
ferent specification languages; they use 3 different spec-
ification languages to develop 18 different versions of an
airport scheduler program. They perform 100 demand-
ing transactions with different sets of 3-version units and
determined that while at least one version failed in 55.1%
of the tests, a collective failure occurred only in 19.9% of
the cases. This demonstrates that the N-version approach
reduces the chances of failure. Avižienis et al.also deter-
mine the usefulness of developing the different software
versions in different languages like Pascal, C etc. [5]. As
in the earlier study, the different versions developed had
faults, but only very few of these faults were common
and the source of the common faults were traced to am-
biguities in the initial specification.

N-version computing has been employed in many sys-
tems. For many years, such uses have primarily been in
mission-critical or safety-critical systems [48, 52]. More
recently, with the increasing cost of system failures and
the rising impact of software bugs, many research ef-
forts have focused on solutions that use N-version pro-
gramming for improving system security and for han-
dling failures [15, 26, 37, 47]. Joukov et al. [26] store
data across different local file systems with different op-
tions for storing the data redundantly. However, un-
like our approach, they do not protect against file-system
bugs, and inherently rely on each individual file system
to report any errors, so that data recovery may be ini-
tiated in RAID-like fashion. Rodrigues et al. [37] de-
velop a framework to allow the use heterogeneous net-
work file systems as replicas for Byzantine-fault toler-
ance. Vandiver et al. [47] explore the use of hetero-
geneous database systems for Byzantine-fault tolerance.
They specifically address the issue of ordering of op-
erations using commit barriers. In EnvyFS, this issue
is made simpler due to two reasons: (i) in the absence
of transactions, file systems are not expected to provide
atomicity across multiple operations on the same file, and
(ii) the VFS layer can easily identify conflicts through
locking of file-system data structures.

8 Conclusion

“A three-ply cord is not easily severed.”
King Solomon [Ecclesiastes 4:12]

We have proposed EnvyFS, an approach that harnesses
the N-version approach to tolerate file-system bugs. Cen-
tral to our approach is building a reliable whole out
of existing and potentially unreliable parts, thereby sig-
nificantly reducing the cost of development. We have
also proposed the use of a single-instance store to re-
duce the performance and disk-space overheads of an
N-version approach. SubSIST, the single-instance store,

USENIX Association	 2009 USENIX Annual Technical Conference	 99

is designed to retain much of the reliability improve-
ments obtained from EnvyFS. We have built and eval-
uated EnvyFS for Linux file systems and shown that it
is significantly more reliable than file systems of which
it is composed; with SubSIST, performance and capacity
overheads are brought into the acceptable range. As a
fringe benefit, we also show that the N-version approach
can be used to locate bugs in file systems.

Modern file systems are becoming more complex by
the day; mechanisms to achieve data-structure consis-
tency [45], scalability and flexible allocation of disk
blocks [9, 42], and the capability to snapshot the file sys-
tem [25, 40] significantly increase the amount of code
and complexity in a file system. Such complexity could
lead to bugs in the file system that render any data protec-
tion further down the storage stack useless. N-versioning
can help; by building reliability on top of existing pieces,
EnvyFS takes an end-to-end approach and thus delivers
reliability in spite of the unreliability of the underlying
components.

Of course, our approach is not a panacea. Each file
system may have features that N-versioning hides or
makes difficult to realize. For example, some file sys-
tems are tailored for specific workloads (e.g., LFS[38]).
In the future, it would be interesting if one could enable
the N-version layer to be cognizant of such differences;
for example, if one file system is optimized for write per-
formance, all writes could initially be directed to it, and
only later (in the background) would other file systems
be updated. In such a manner, we could truly achieve
the best of both worlds: reliability of the N-version ap-
proach but without the loss of characteristics that makes
each file system unique.

Acknowledgments
We thank the anonymous reviewers and Sean Rhea (our shep-
herd) for their tremendous feedback and comments, which have
substantially improved the content and presentation of this pa-
per. We also thank the members of the ADSL research group
for their insightful comments.

This material is based upon work supported by the National
Science Foundation under the following grants: CCF-0621487,
CNS-0509474, CCR-0133456, as well as by generous dona-
tions from NetApp, Inc and Sun Microsystems.

†Author is currently an employee of NetApp, Inc.
Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do
not necessarily reflect the views of NSF or other institutions.

References
[1] A. A. Avižienis. The Methodology of N-Version Programming.

In M. R. Lyu, editor, Software Fault Tolerance, chapter 2. John
Wiley & Sons Ltd., 1995.

[2] A. A. Avižienis and L. Chen. On the Implementation of N-
Version Programming for Software Fault Tolerance During Ex-

ecution. In Proceedings of 1st Annual International Com-
puter Software and Applications Conference (COMPSAC’77),
Chicago, USA, 1977.

[3] A. A. Avižienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J.
Traverse, K. S. Tso, and U. Voges. The UCLA DEDIX system:
A Distributed Testbed for Multiple-version Software. In Digest
of 15th International Symposium on Fault-Tolerant Computing
(FTCS’85), pages 126–134, Ann Arbor, MI, June 1985.

[4] A. A. Avižienis and J. P. J. Kelly. Fault Tolerance by Design
Diversity: Concepts and Experiments. IEEE Computer, 17(8),
August 1984.

[5] A. A. Avižienis, M. R. Lyu, and W. Schütz. In Search of Ef-
fective Diversity: A Six-Language Study of Fault-Tolerant Flight
Control Software. In Digest of 18th International Symposium on
Fault-Tolerant Computing (FTCS ’88), Tokyo, Japan, June 1988.

[6] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An Analysis of Latent Sector Errors in Disk Drives.
In Proceedings of the 2007 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS
’07), San Diego, California, June 2007.

[7] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An Analysis of
Data Corruption in the Storage Stack. In Proceedings of the
6th USENIX Symposium on File and Storage Technologies (FAST
’08), pages 223–238, San Jose, California, February 2008.

[8] S. Best. JFS Overview. www.ibm.com/developerworks/library/l-
jfs.html, 2000.

[9] S. Best. JFS Overview. http://jfs.sourceforge.net/project/pub/jfs.pdf,
2000.

[10] J. Black. Compare-by-hash: a reasoned analysis. In Proceed-
ings of the USENIX Annual Technical Conference (USENIX ’06),
pages 7–12, Boston, Massachusetts, June 2006.

[11] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Sin-
gle Instance Storage in Windows 2000. In Proceedings of the
4th USENIX Windows Systems Symposium, Seattle, Washington,
August 2000.

[12] J. Bonwick and B. Moore. ZFS: The Last Word in File Systems.
http://opensolaris.org/os/community/zfs/docs/zfs last.pdf, 2007.

[13] L. Chen and A. A. Avižienis. N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation. In Di-
gest of 8th International Symposium on Fault-Tolerant Comput-
ing (FTCS’78), Toulouse, France, 1978.

[14] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An Em-
pirical Study of Operating System Errors. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
’01), pages 73–88, Banff, Canada, October 2001.

[15] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davdison,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-Variant Systems -
A Secretless Framework for Security through Diversity. In Pro-
ceedings of the 15th USENIX Security Symposium (Sec ’06), Van-
couver, British Columbia, Aug. 2006.

[16] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell.
CuriOS: Improving Reliability through Operating System Struc-
ture. In Proceedings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI ’08), San Diego, California,
December 2008.

[17] EMC. Centera Family. http://www.emc.com/products/family/emc-
centera-family.htm, 2009.

[18] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), pages 57–72, Banff,
Canada, October 2001.

100	 2009 USENIX Annual Technical Conference	 USENIX Association

[19] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[20] H. S. Gunawi, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. SQCK: A Declarative File System Checker. In
Proceedings of the 8th Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, California, Decem-
ber 2008.

[21] R. Hagmann. Reimplementing the Cedar File System Using Log-
ging and Group Commit. In Proceedings of the 11th ACM Sympo-
sium on Operating Systems Principles (SOSP ’87), Austin, Texas,
November 1987.

[22] J. S. Heidemann and G. J. Popek. File-system development
with stackable layers. ACM Transactions on Computer Systems,
12(1):58–89, 1994.

[23] V. Henson. An Analysis of Compare-by-hash. In Proceedings
of the 9th Workshop on Hot Topics in Operating Systems (Ho-
tOS’03), Lihue, Hawaii, May 2003.

[24] V. Henson. The Many Faces of fsck.
http://lwn.net/Articles/248180/, September 2007.

[25] D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NFS File Server Appliance. In Proceedings of the USENIX Win-
ter Technical Conference (USENIX Winter ’94), San Francisco,
California, January 1994.

[26] N. Joukov, A. Rai, and E. Zadok. Increasing Distributed Storage
Survivability with a Stackable RAID-like File System. In Pro-
ceedings of the 1st International Workshop on Cluster Security
(Cluster-Sec’05), Cardiff, UK, 2005.

[27] J. P. J. Kelly and A. A. Avižienis. A Specification-Oriented Multi-
version Software Experiment. In Digest of 13th International
Symposium on Fault-Tolerant Computing (FTCS ’83), Milano,
Italy, June 1983.

[28] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srini-
vasan, R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Parity Lost and Parity Regained. In Proceedings of the
6th USENIX Symposium on File and Storage Technologies (FAST
’08), pages 127–141, San Jose, California, February 2008.

[29] Z. Li, Z. Chen, S. M. Srivivasan, and Y. Zhou. C-miner: Min-
ing block correlations in storage systems. In Proceedings of the
3rd USENIX Symposium on File and Storage Technologies (FAST
’04), pages 173–186, San Francisco, California, April 2004.

[30] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Fsck -
The UNIX File System Check Program. Unix System Manager’s
Manual - 4.3 BSD Virtual VAX-11 Version, April 1986.

[31] D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. Increas-
ing Relevance of Memory Hardware Errors: A Case for Recover-
able Programming Models. In 9th ACM SIGOPS European Work-
shop ’Beyond the PC: New Challenges for the Operating System’,
Kolding, Denmark, September 2000.

[32] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler,
D. Noveck, D. Robinson, and R. Thurlow. The NFS Version 4
Protocol. In Proceedings of the 2nd International System Admin-
istration and Networking Conference (SANE 2000), May 2000.

[33] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Model-Based Failure Analysis of Journaling File Sys-
tems. In Proceedings of the International Conference on Depend-
able Systems and Networks (DSN ’05), pages 802–811, Yoko-
hama, Japan, June 2005.

[34] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gu-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON
File Systems. In Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP ’05), pages 206–220, Brighton,
United Kingdom, October 2005.

[35] S. Quinlan and S. Dorward. Venti: A New Approach to Archival
Storage. In Proceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST ’02), Monterey, California, Jan-
uary 2002.

[36] H. Reiser. ReiserFS. www.namesys.com, 2004.
[37] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using Abstrac-

tion to Improve Fault Tolerance. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), Banff,
Canada, October 2001.

[38] M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System. ACM Transactions on
Computer Systems, 10(1):26–52, February 1992.

[39] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in
the wild: A Large-Scale Field Study. In Proceedings of the 2009
Joint International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS/Performance ’09), Seattle,
Washington, June 2007.

[40] Sun Microsystems. ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

[41] R. Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206tot resiliency.html, February 2006.

[42] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,
and G. Peck. Scalability in the XFS File System. In Proceedings
of the USENIX Annual Technical Conference (USENIX ’96), San
Diego, California, January 1996.

[43] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles
(SOSP ’03), Bolton Landing (Lake George), New York, October
2003.

[44] M. M. Swift, B. N. Bershad, and H. M. Levy. Recovering device
drivers. In Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’04), pages 1–16, San
Francisco, California, December 2004.

[45] T. Ts’o and S. Tweedie. Future Directions for the Ext2/3 Filesys-
tem. In Proceedings of the USENIX Annual Technical Conference
(FREENIX Track), Monterey, California, June 2002.

[46] S. C. Tweedie. Journaling the Linux ext2fs File System. In The
Fourth Annual Linux Expo, Durham, North Carolina, May 1998.

[47] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tol-
erating Byzantine Faults in Transaction Processing Systems us-
ing Commit Barrier Scheduling. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP ’07), Steven-
son, Washington, October 2007.

[48] U. Voges, editor. Software Diversity in Computerized Control
Systems. Springer, Wien, New York, Dec. 1988.

[49] J. Yang, C. Sar, and D. Engler. EXPLODE: A Lightweight,
General System for Finding Serious Storage System Errors. In
Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, Washington, November
2006.

[50] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automati-
cally Generating Malicious Disks using Symbolic Execution. In
IEEE Security and Privacy (SP ’06), Berkeley, California, May
2006.

[51] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. In Proceedings of
the 6th Symposium on Operating Systems Design and Implemen-
tation (OSDI ’04), San Francisco, California, December 2004.

[52] Y. C. Yeh. Triple-Triple Redundant 777 Primary Flight Com-
puter. In Proceedings of the 1996 IEEE Aerospace Applications
Conference, 1996.

14

USENIX Association	 2009 USENIX Annual Technical Conference	 101

Decentralized Deduplication in SAN Cluster File Systems

Austin T. Clements∗ Irfan Ahmad Murali Vilayannur Jinyuan Li
VMware, Inc. ∗MIT CSAIL

Abstract
File systems hosting virtual machines typically con-

tain many duplicated blocks of data resulting in wasted
storage space and increased storage array cache footprint.
Deduplication addresses these problems by storing a sin-
gle instance of each unique data block and sharing it be-
tween all original sources of that data. While deduplica-
tion is well understood for file systems with a centralized
component, we investigate it in a decentralized cluster
file system, specifically in the context of VM storage.

We propose DEDE, a block-level deduplication sys-
tem for live cluster file systems that does not require any
central coordination, tolerates host failures, and takes ad-
vantage of the block layout policies of an existing cluster
file system. In DEDE, hosts keep summaries of their
own writes to the cluster file system in shared on-disk
logs. Each host periodically and independently processes
the summaries of its locked files, merges them with a
shared index of blocks, and reclaims any duplicate blocks.
DEDE manipulates metadata using general file system in-
terfaces without knowledge of the file system implemen-
tation. We present the design, implementation, and eval-
uation of our techniques in the context of VMware ESX
Server. Our results show an 80% reduction in space with
minor performance overhead for realistic workloads.

1 Introduction

Deployments of consolidated storage using Storage Area
Networks (SANs) are increasing, motivated by universal
access to data from anywhere, ease of backup, flexibil-
ity in provisioning, and centralized administration. SAN
arrays already form the backbone of modern data cen-
ters by providing consolidated data access for multiple
hosts simultaneously. This trend is further fueled by the
proliferation of virtualization technologies, which rely on
shared storage to support features such as live migration
of virtual machines (VMs) across hosts.

SANs provide multiple hosts with direct SCSI access
to shared storage volumes. Regular file systems assume
exclusive access to the disk and would quickly corrupt a
shared disk. To tackle this, numerous shared disk clus-
ter file systems have been developed, including VMware
VMFS [21], RedHat GFS [15], and IBM GPFS [18],
which use distributed locking to coordinate concurrent
access between multiple hosts.

Cluster file systems play an important role in virtual-
ized data centers, where multiple physical hosts each run
potentially hundreds of virtual machines whose virtual
disks are stored as regular files in the shared file sys-
tem. SANs provide hosts access to shared storage for
VM disks with near native SCSI performance while also
enabling advanced features like live migration, load bal-
ancing, and failover of VMs across hosts.

These shared file systems represent an excellent oppor-
tunity for detecting and coalescing duplicate data. Since
they store data from multiple hosts, not only do they con-
tain more data, but data redundancy is also more likely.
Shared storage for VMs is a ripe application for dedupli-
cation because common system and application files are
repeated across VM disk images and hosts can automat-
ically and transparently share data between and within
VMs. This is especially true of virtual desktop infras-
tructures (VDI) [24], where desktop machines are virtual-
ized, consolidated into data centers, and accessed via thin
clients. Our experiments show that a real enterprise VDI
deployment can expend as much as 80% of its overall
storage footprint on duplicate data from VM disk images.
Given the desire to lower costs, such waste provides mo-
tivation to reduce the storage needs of virtual machines
both in general and for VDI in particular.

Existing deduplication techniques [1, 3–5, 8, 14, 16, 17,
26] rely on centralized file systems, require cross-host
communication for critical file system operations, per-
form deduplication in-band, or use content-addressable
storage. All of these approaches have limitations in our
domain. Centralized techniques would be difficult to ex-

102	 2009 USENIX Annual Technical Conference	 USENIX Association

tend to a setting with no centralized component other
than the disk itself. Existing decentralized techniques
require cross-host communication for most operations,
often including reads. Performing deduplication in-band
with writes to a live file system can degrade overall sys-
tem bandwidth and increase IO latency. Finally, content-
addressable storage, where data is addressed by its con-
tent hash, also suffers from performance issues related
to expensive metadata lookups as well as loss of spatial
locality [10].

Our work addresses deduplication in the decentralized
setting of VMware’s VMFS cluster file system. Unlike
existing solutions, DEDE coordinates a cluster of hosts
to cooperatively perform block-level deduplication of the
live, shared file system. It takes advantage of the shared
disk as the only centralized point in the system and does
not require cross-host communication for regular file sys-
tem operations, retaining the direct-access advantage of
SAN file systems. As a result, the only failure that can
stop deduplication is a failure of the SAN itself, without
which there is no file system to deduplicate. Because
DEDE is an online system for primary storage, all dedu-
plication is best-effort and performed as a background
process, out-of-band from writes, in order to minimize
impact on system performance. Finally, unlike other sys-
tems, DEDE builds block-level deduplication atop an ex-
isting file system and takes advantage of regular file sys-
tem abstractions, layout policy, and block addressing. As
a result, deduplication introduces no additional metadata
IO when reading blocks and permits in-place writes to
blocks that have no duplicates.

This paper presents the design of DEDE. We have im-
plemented a functional prototype of DEDE for VMware
ESX Server [23] atop VMware VMFS. Using a variety
of synthetic and realistic workloads, including data from
an active corporate VDI installation, we demonstrate that
DEDE can reduce VM storage requirements by upwards
of 80% at a modest performance overhead.

Section 2 provides an overview of the architecture of
our system and our goals. Section 3 details the system’s
design and implementation. We provide a quantitative
evaluation of our system in Section 4, followed by a dis-
cussion of related work in Section 5. Finally, we conclude
in Section 6.

2 System Overview

DEDE operates in a cluster setting, as shown in Figure 1,
in which multiple hosts are directly connected to a sin-
gle, shared SCSI volume and use a file system designed
to permit symmetric and cooperative access to the data
stored on the shared disk. DEDE itself runs on each host
as a layer on top of the file system, taking advantage of
file system block layout policies and native support for

Figure 1: Cluster configuration in which multiple hosts
concurrently access the same storage volume. Each host
runs the VMFS file system driver (vmfs3), the dedupli-
cation driver (dedup), and other processes such as VMs.

copy-on-write (COW) blocks. In this section, we provide
a brief overview of our approach to deduplication and the
file system support it depends on.

DEDE uses content hashes to identify potential dupli-
cates, the same basic premise shared by all deduplication
systems. An index stored on the shared file system and
designed for concurrent access permits efficient duplicate
detection by tracking all known blocks in the file system
by their content hashes.

In order to minimize impact on critical file system oper-
ations such as reading and writing to files, DEDE updates
this index out of band, buffering updates and applying
them in large, periodic batches. As part of this process,
DEDE detects and eliminates duplicates introduced since
the last index update. This can be done as an infrequent,
low priority background task or even scheduled during
times of low activity. Unlike approaches to deduplication
such as content-addressable storage that integrate content
indexes directly into the file system storage management,
DEDE’s index serves solely to identify duplicate blocks
and plays no role in general file system operations.

DEDE divides this index update process between hosts.
Each host monitors its own changes to files in the cluster
file system and stores summaries of recent modifications
in on-disk write logs. These logs include content hashes
computed in-band, as blocks are written to disk. Each
host periodically consumes the write logs of files it has
(or can gain) exclusive access to and updates the shared
index to reflect these recorded modifications. In the pro-
cess, it discovers and reclaims any block whose content is
identical to the content of some previously indexed block.
Having each host participate in the index update process
allows the hosts to divide and distribute the burden of
deduplication, while sharing the index allows hosts to
detect duplicates even if they are introduced by separate
hosts.

USENIX Association	 2009 USENIX Annual Technical Conference	 103

Out-of-band index updates mean DEDE must be re-
silient to stale index entries that do not reflect the lat-
est content of recently updated blocks. Indeed, this
is essentially unavoidable in a decentralized setting be-
cause of communication delays alone. While this means
DEDE generally must verify block contents when updat-
ing the index, this resilience has an important implica-
tion: DEDE’s correctness does not depend on its ability
to monitor every write to the file system. This has im-
portant performance benefits. First, updates to write logs
do not have to be crash-consistent with updates to file
contents, which both simplifies fault tolerance and allows
hosts to buffer updates to write logs to minimize addi-
tional IO. Second, this allows users to trade off the CPU
and memory overhead of write monitoring for peak file
system performance on a per-file basis. For example, a
user could simply disable deduplication for VMs that are
performance-critical or unlikely to contain much dupli-
cate data. Finally, this allows the write monitor to shed
work if the system is overloaded.

Because DEDE operates on a live file system, it specif-
ically optimizes for unique blocks (blocks with no known
duplicates). Unlike shared blocks, these blocks remain
mutable after deduplication. The mutability of unique
blocks combined with DEDE’s resilience to stale index
information means these blocks can be updated in place
without the need to allocate space for a copy or to syn-
chronously update the index. As a result, deduplication
has no impact on the performance of writing to unique
blocks, a highly desirable property because these are pre-
cisely the blocks that do not benefit from deduplication.

Similar to some other deduplication work related to
virtual disks [10, 13], DEDE uses fixed-size blocks. Un-
like stream-oriented workloads such as backup, where
variable-sized chunks typically achieve better deduplica-
tion [26], our input data is expected to be block-structured
because guest file systems (e.g., ext3, NTFS) typically
divide the disk into fixed-size 4 KB or 8 KB blocks them-
selves. Consistent with this expectation, earlier work [12]
and our own test results (see Section 4.1), we use a block
size of 4 KB.

2.1 Required File System Abstractions

Most approaches to deduplication unify duplicate elimi-
nation and storage management, supplanting the file sys-
tem entirely. DEDE, in contrast, runs as a layer on top
of VMFS, an existing file system. This layer finds poten-
tially identical blocks and identifies them to the file sys-
tem, which is then responsible for merging these blocks
into shared, copy-on-write blocks.

DEDE requires the file system to be block oriented
and to support file-level locking. The file system block
size must also align with the deduplication block size, a

requirement VMFS’s default 1 MB block size, unfortu-
nately, does not satisfy. Our only non-trivial change to
VMFS was to add support for typical file system block
sizes (i.e., 4 KB), as detailed later in Section 2.2.

Finally, DEDE requires block-level copy-on-write sup-
port, a well understood, but nevertheless uncommon fea-
ture supported by VMFS. Specifically, it requires an un-
usual compare-and-share operation, which replaces two
blocks with one copy-on-write block after verifying that
the blocks are, in fact, identical (using either bit-wise
comparison or a content hash witness). Despite the speci-
ficity of this operation, it fits naturally into the structure
of block-level copy-on-write and was easy to add to the
VMFS interface. DEDE manipulates file system blocks
solely through this interface and has no knowledge of the
underlying file system representation.

There are two noteworthy capabilities that DEDE does
not require of the file system. First, hosts running DEDE
never modify the metadata of files they do not have ex-
clusive locks on, as doing so would require cross-host
synchronization and would complicate per-host metadata
caching. As a result, a host that discovers a duplicate
block between two files cannot simply modify both files
to point to the same block if one of the files is locked by
another host. Instead, when DEDE detects a duplicate
between files locked by different hosts, it uses a third
file containing a merge request as an intermediary. One
host creates a merge request containing a COW reference
to the deduplicated block, then passes ownership of the
merge request file’s lock to the other host, which in turn
replaces the block in its file with a reference to the block
carried by the merge request.

Second, DEDE does not require the file system to ex-
pose a representation of block addresses. Much like any
regular application, it only refers to blocks indirectly, by
their offset in some locked file, which the file system can
resolve into a block address. This restricts the design of
our index, since it cannot simply refer to indexed blocks
directly. However, this limitation simplifies our overall
design, since requiring the file system to expose block
addresses outside the file system’s own data structures
would interfere with its ability to free and migrate blocks
and could result in dangling pointers. Worse, any op-
erations introduced to manipulate blocks directly would
conflict with file-level locking and host metadata caching.

In lieu of referring to blocks by block addresses, DEDE
introduces a virtual arena file. This is a regular file in the
file system, but it consists solely of COW references to
shared blocks that are present in at least one other file.
This file acts as an alternate view of all shared blocks
in the system: DEDE identifies shared blocks simply by
their offsets in the virtual arena file, which the file system
can internally resolve to block addresses using regular
address resolution.

104	 2009 USENIX Annual Technical Conference	 USENIX Association

Because DEDE builds on the underlying file system,
it inherits the file system’s block placement policy and
heuristics. If the underlying file system keeps file blocks
sequential, blocks will generally remain sequential after
deduplication. Shared blocks are likely to be sequen-
tial with respect to other blocks in at least one file, and
common sequences of shared blocks are likely to remain
sequential with respect to each other. Furthermore, the
placement and thus sequentiality of unique blocks is com-
pletely unaffected by the deduplication process; as a re-
sult, deduplication does not affect IO performance to indi-
vidual unique blocks because they do not require copying,
and it maintains sequential IO performance across spans
of unique blocks.

2.2 VMFS

Many of the design decisions in DEDE were influenced
by the design of its substrate file system, VMFS. VMFS
is a coordinator-less cluster file system [21] designed to
allow hosts to cooperatively maintain a file system stored
on a shared disk. In this section, we provide a quick
overview of how VMFS addresses and manages concur-
rent access to its resources in order to provide better con-
text for the design of DEDE.

VMFS organizes the shared disk into four different re-
source pools: inodes, pointer blocks, file blocks, and sub-
blocks. Inodes and pointer blocks play much the same
role as in traditional UNIX file systems, storing per-file
metadata and pointers to the blocks containing actual file
content. File blocks and sub-blocks both store file con-
tent, but are different sizes, as discussed below. The di-
visions between these pools are currently fixed at format
time and can only be expanded by adding more storage,
though this is not a fundamental limitation. In each pool,
resources are grouped into clusters. The header for each
cluster maintains metadata about all of its contained re-
sources; most importantly, this includes a reference count
for each individual resource and tracks which resources
are free and which are allocated.

In order to support concurrent access by multiple hosts
to file and resource data, VMFS uses a distributed lock
manager. Unlike most cluster file systems, which use an
IP network for synchronization, VMFS synchronizes all
file system accesses entirely through the shared disk itself
using on-disk locks. VMFS ensures atomic access to on-
disk lock structures themselves using SCSI-2-based LUN
reservations to guard read-modify-write critical sections.
In addition to taking advantage of the reliability of stor-
age area networks, using the same means to access both
file system state and synchronization state prevents “split
brain” problems typical of IP-based lock managers in
which multiple hosts can access the file system state but
cannot communicate locking decisions with each other.

Figure 2: Mixed block sizes allow any 1 MB file block to
be divided into 256 separate 4 KB sub-blocks.

VMFS protects file data from concurrent access by as-
sociating a coarse-grain lock with each file that covers all
of a file’s metadata (its inode and pointer blocks) as well
as all of the file blocks and sub-blocks comprising the
file’s content. Files in VMFS tend to be locked for long
durations (e.g., a VM’s disk files are locked as long as
the VM is powered on). DEDE respects file system lock-
ing by partitioning the deduplication process according
to which hosts hold which file locks.

VMFS protects resource metadata using per-cluster
locks. Thus, allocation and deallocation of resources
must lock all clusters containing any of the resources
involved. The number of resources packed per cluster
reflects a trade-off between locking overhead and cross-
host cluster lock contention. Higher cluster density al-
lows hosts to manipulate more resources with fewer locks,
but at the cost of increased lock contention. Since DEDE
stresses the sub-block resource pool more than typical
VMFS usage, we increase the sub-block cluster density
from 16 to 128 resources per cluster, but otherwise use
the default VMFS densities.

VMFS maintains two separate resource types for stor-
ing file content: file blocks and sub-blocks. File sizes in
VMFS typically fit a bimodal distribution. Virtual ma-
chine disks and swap files are usually several gigabytes,
while configuration and log files tend to be a few kilo-
bytes. Because of this, VMFS uses 1 MB file blocks
to reduce metadata overhead and external fragmentation
for large files, while for small files, VMFS uses smaller
sub-blocks to minimize internal fragmentation. DEDE
must be able to address individual 4 KB blocks in order
to COW share them, so we configure VMFS with 4 KB
sub-blocks. Furthermore, rather than simply eschewing
the efficiency of 1 MB blocks and storing all file content
in 4 KB blocks, we extend VMFS to support mixed block
sizes, depicted in Figure 2, so that DEDE can address
individual 4 KB blocks of a file when it needs to share
a duplicate block, but when possible still store unique
regions of files in efficient 1 MB blocks. This change
introduces an optional additional pointer block level and

USENIX Association	 2009 USENIX Annual Technical Conference	 105

allows any file block-sized region to be broken into 256
separate 4 KB blocks, which, in turn, add up to the origi-
nal file block. This can be done dynamically to any 1 MB
block based on deduplication decisions, and leaves ad-
dress resolution for other data intact and efficient.

Beyond these unusual block sizes, VMFS supports a
number of other uncommon features. Most important to
DEDE is support for block-level copy-on-write (COW).
Each file or sub-block resource can be referenced from
multiple pointer blocks, allowing the same data to be
shared between multiple places in multiple files. Each
reference to a shared resource is marked with a COW bit,
indicating that any attempts to write to the resource must
make a private copy in a freshly allocated resource and
write to that copy instead. Notably, this COW bit is as-
sociated with each pointer to the resource, not with the
resource itself. Otherwise, every write operation would
need to take a cluster lock to check the COW bit of the
destination block, even if the block was not COW. How-
ever, as a result, sharing a block between two files re-
quires file locks on both files, even though only one of
the references will change. Thus, DEDE must use merge
requests for all cross-host merging operations.

VMFS forms the underlying substrate of DEDE and
handles critical correctness requirements such as special-
izing COW blocks and verifying potential duplicates, al-
lowing DEDE to focus on duplicate detection. Virtual
arenas and merge requests allow DEDE to achieve com-
plex, decentralized manipulations of the file system struc-
ture without knowledge of the file system representation,
instead using only a few general-purpose interfaces.

3 Design and Implementation

In this section, we provide details of the design and im-
plementation of DEDE’s best-effort write monitoring sub-
system and the out-of-band indexing and duplicate elimi-
nation process.

3.1 Write Monitoring

Each host runs a write monitor, as shown in Figure 3,
which consists of a lightweight kernel module (dedup)
that monitors all writes by that host to files in the file
system and a userspace daemon (dedupd) that records
this information to logs stored in the shared file system.
The write monitor is the only part of the system that lies
in the IO critical path of the file system, so the write
monitor itself must incur as little additional disk IO and
CPU overhead as possible.

The kernel module provides the userspace daemon
with a modification stream indicating, for each write done
by the host: the file modified, the offset of the write, and

Figure 3: Only a lightweight kernel module lies in the
IO critical path, opportunistically calculating hashes of
blocks while they are still in memory. A userspace dae-
mon (dedupd) flushes write logs to disk periodically. Du-
plicate detection and elimination occur out of band.

the SHA-1 hashes of all modified blocks. While the in-
band CPU overhead of the monitor could have been virtu-
ally eliminated by computing these hashes lazily (e.g., at
indexing time), this would have required reading the mod-
ified blocks back from disk, resulting in a large amount
of additional random IO. We opted instead to eliminate
the extra IO by computing these hashes while the blocks
were in memory, though the trade-off between run-time
CPU overhead and deduplication-time IO overhead could
be set dynamically by user-defined policy.

The userspace daemon divides the modification stream
by file, aggregates repeated writes to the same block, and
buffers this information in memory, periodically flushing
it to individual write log files associated with each regular
file. These write logs are stored on the shared file system
itself, so even if a host fails or transfers ownership of a
file’s lock, any other host in the system is capable of read-
ing logs produced by that host and merging information
about modified blocks into the index.

The daemon can safely buffer the modification stream
in memory because the index update process is designed
to deal with stale information. Without this, write logs
would have to be consistent with on-disk file state, and
each logical write to the file system would result in at
least two writes to the disk. Instead, buffering allows our
system to absorb writes to over 150 MB of file blocks
into a single infrequent 1 MB sequential write to a log
file. This is the only additional IO introduced by the write
monitor.

Similarly, we rely on the best-effort property of write
monitoring to minimize IO in the case of partial block
writes. If a write to the file system does not cover an
entire block, the monitor simply ignores that write, rather
than reading the remainder of the block from disk simply
to compute its hash. In practice, this is rarely a problem
when writes originate from a virtual machine, because

106	 2009 USENIX Annual Technical Conference	 USENIX Association

guest operating systems typically write whole guest file
system blocks, which are generally at least 4 KB.1

Write monitoring can be enabled or disabled per file.
If the performance of some VM is too critical to incur the
overhead of write monitoring or if the system administra-
tor has a priori knowledge that a VM’s duplication ratio
is small, such VMs can be opted out of deduplication.

3.2 The Index
The shared on-disk index tracks all known blocks in the
file system by their content hashes. As discussed in Sec-
tion 2, each host updates this index independently, in-
corporating information about recent block modifications
from the write logs in large batches on a schedule set by
user-defined policy (e.g., only during off-peak hours). A
match between a content hash in the index and that of
a recently modified block indicates a potential duplicate
that must be verified and replaced with a copy-on-write
reference to the shared block.

The index acts as an efficient map from hashes to
block locations. Because DEDE treats unique blocks
(those with only a single reference) differently from
shared blocks (those with multiple references), each in-
dex entry can likewise be in one of two states, denoted
Unique(H, f ,o) and Shared(H,a). An index entry iden-
tifies a unique block with hash H by the inumber f of
its containing file and its offset o within that file. Be-
cause index updates are out-of-band and unique blocks
are mutable, these entries are only hints about a block’s
hash. Thus, because a mutable block’s contents may have
changed since it was last indexed, its contents must be ver-
ified prior to deduplicating it with another block. Shared
blocks, on the other hand, are marked COW and thus their
content is guaranteed to be stable. The index identifies
each shared block by its offset a in the index’s virtual
arena, discussed in the next section.

3.2.1 Virtual Arena

When duplicate content is found, DEDE reclaims all but
one of the duplicates and shares that block copy-on-write
between files. Because hosts can make per-file, mutable
copies of shared blocks at any time without updating the
index, we cannot simply identify shared blocks by their
locations in deduplicated files, like we could for unique
blocks. The index needs a way to refer to these shared
blocks that is stable despite shifting references from dedu-
plicated files. As discussed earlier, DEDE cannot simply
store raw block addresses in the index because exposing
these from the file system presents numerous problems.

1Unfortunately, owing to an ancient design flaw in IBM PC parti-
tion tables, guest writes are not necessarily aligned with DEDE blocks.
Section 4.1 has a more detailed analysis of this.

Instead, we introduce a virtual arena file as an additional
layer of indirection that provides stable identifiers for
shared blocks without violating file system abstractions.

The virtual arena is a regular file, but unlike typical
files, it doesn’t have any data blocks allocated specifi-
cally for it (hence, it is virtual). Rather, it serves as an
alternate view of all shared blocks in the file system. In
this way, it is very different from the arenas used in other
deduplication systems such as Venti [16], which store
actual data blocks addressed by content addresses.

In order to make a block shared, a host introduces an
additional COW reference to that block from the virtual
arena file, using the same interface that allows blocks
to be shared between any two files. Apart from uncol-
lected garbage blocks, the virtual arena consumes only
the space of its inode and any necessary pointer blocks.
Furthermore, this approach takes advantage of the file
system’s block placement policies: adding a block to the
virtual arena does not move it on disk, so it is likely to
remain sequential with the original file.

The index can then refer to any shared block by its
offset in the virtual arena file, which the file system can
internally resolve to a block address, just as it would for
any other file. The virtual arena file’s inode and pointer
block structure exactly form the necessary map from the
abstract, stable block identifiers required by the index to
the block addresses required by the file system.

3.2.2 On-disk Index Representation

DEDE stores the index on disk as a packed list of entries,
sorted by hash. Because DEDE always updates the index
in large batches and since the hashes of updates exhibit
no spatial locality, our update process simply scans the
entire index file linearly in tandem with a sorted list of
updates, merging the two lists to produce a new index
file. Despite the simplicity of this approach, it outper-
forms common index structures optimized for individual
random accesses (e.g., hash tables and B-trees) even if the
update batch size is small. Given an average index entry
size of b bytes, a sequential IO rate of s bytes per second,
and an average seek time of k seconds, the time required
to apply U updates using random access is Uk, whereas
the time to scan and rewrite an index of I entries sequen-
tially is 2Ib/s. If the ratio of the batch size to the index size
exceeds U/I = 2b/sk, sequentially rewriting the entire in-
dex is faster than applying each update individually. For
example, given an entry size of 23 bytes and assuming
a respectable SAN array capable of 150 MB/s and 8 ms
seeks, the batch size only needs to exceed 0.004% of the
index size. Furthermore, hosts defer index updates until
the batch size exceeds some fixed fraction of the index
size (at least 0.004%), so the amortized update cost re-
mains constant regardless of index size.

USENIX Association	 2009 USENIX Annual Technical Conference	 107

In order to allow access to the index to scale with the
number of hosts sharing the file system, while still re-
lying on file locking to prevent conflicting index access,
hosts shard the index into multiple files, each represent-
ing some subdivision of the hash space. Once the time a
host takes to update a shard exceeds some threshold, the
next host to update that shard will split the hash range
covered by the shard in half and write out the two result-
ing sub-shards in separate files. This technique mirrors
that of extensible hashing [6], but instead of bounding the
size of hash buckets, we bound the time required to up-
date them. Combined with file locking, this dynamically
adjusts the concurrency of the index to match demand.

3.3 Indexing and Duplicate Elimination

As the index update process incorporates information
about recently modified blocks recorded in the write logs,
in addition to detecting hash matches that indicate poten-
tial duplicates, it also performs the actual COW sharing
operations to eliminate these duplicates. The duplicate
elimination process must be interleaved with the index
scanning process because the results of block content ver-
ification can affect the resulting index entries.

In order to update the index, a host sorts the recent
write records by hash and traverses this sorted list of
write records in tandem with the sorted entries in the
index. A matching hash between the two indicates a po-
tential duplicate, which is handled differently depending
on the state of the matching index entry. Figure 4 gives
an overview of all possible transitions a matching index
entry can undergo, given it current state.

When DEDE detects a potential duplicate, it depends
on the file system’s compare-and-share operation, de-
scribed in Section 2.1, to atomically verify that the
block’s content has not changed and replace it with a
COW reference to another block. Based on user-specified
policy, this verification can either be done by reading the
contents of the potential duplicate block and ensuring that
it matches the expected hash (i.e., compare-by-hash), or
by reading the contents of both blocks and performing
a bit-wise comparison (i.e., compare-by-value). If the
latter policy is in effect, hash collisions reduce DEDE’s
effectiveness, but do not affect its correctness. Further-
more, because hashes are used solely for finding poten-
tial duplicates, if SHA-1 is ever broken, DEDE has the
unique capability of gracefully switching to a different
hash function by simply rebuilding its index. The con-
tent verification step can be skipped altogether if a host
can prove that a block has not changed; for example, if
it has held the lock on the file containing the block for
the entire duration since the write record was generated
and no write records have been dropped. While this is a
fairly specific condition, it is often met in DEDE’s target

(a) When the hash H of the block at offset o in file f is not in the
index, a new unique entry is added.

(b) When a second occurrence of hash H is found and the block’s
content passes verification, we place it in the virtual arena and
upgrade the index entry to shared.

(c) When a duplicate of a shared block is found, we verify its con-
tents and replace the block with a reference to the existing shared
block.

(d) Unique entries are garbage collected when the indexing process
finds a write record to that block with a different hash. Shared
entries are garbage collected when only the reference from the
virtual arena remains.

Figure 4: All possible updates to an index entry.

setting because locks on VM disks are usually held for
very long durations.

3.3.1 Single Host Indexing

We begin with an explanation of the index update process
assuming only a single host with exclusive access to the
file system. In a single host design, the host can mod-
ify the metadata of any file. We lift this assumption in
the next section, where we extend the process to support
multiple hosts.

Any write record without a corresponding hash in
the index indicates a new, unique block. Even though
this write record may be stale, because index entries for
unique blocks are only hints, it is safe to simply add
the new unique block to the index without verifying the
block’s content, performing an absent-to-unique transi-
tion as shown in Figure 4(a). This single sequential,
buffered write to the index is the only IO incurred when
processing a new unique block.

When a write record’s hash corresponds to an index en-
try for a unique block, then the host attempts to share both
blocks (freeing one of them in the process) and upgrade
the index entry to refer to the shared block. This unique-
to-shared transition is shown in Figure 4(b). However, be-
cause the write record and index entry may both be stale,
the host must verify the contents of both blocks before ac-

108	 2009 USENIX Annual Technical Conference	 USENIX Association

tually sharing them. Assuming this verification succeeds,
the file system replaces both blocks with a shared block
and the host inserts this block into the virtual arena and
upgrades the index entry to refer to the new, shared block.

Finally, if a write record’s hash matches an index entry
for a shared block, then the host attempts to eliminate this
newly detected potential duplicate, performing a shared-
to-shared transition as shown in Figure 4(c). Because
the write record may be stale, it first verifies that the con-
tent of the potential duplicate has not changed. If this
succeeds, then this block is freed and the reference to
the block is replaced with a reference to the shared block
found via the virtual arena.

3.3.2 Multi-Host Indexing

Extending the index update process to multiple hosts, we
can no longer assume that a host will have unfettered
access to every file. In particular, hosts can only ver-
ify blocks and modify block pointers in files they hold
exclusive locks on. As a result, indexing must be dis-
tributed across hosts. At the same time, we must min-
imize communication between hosts, given the cost of
communicating via the shared disk. Thus, sharing of
blocks is done without any blocking communication be-
tween hosts, even if the blocks involved are in use by
different hosts.

In the multi-host setting, the write logs are divided
amongst the hosts according to which files each host has
(or can gain) exclusive access to. While this is necessary
because hosts can only process write records from files
they hold exclusive locks on, it also serves to divide the
deduplication workload between the hosts.

Absent-to-unique transitions and shared-to-shared tran-
sitions are the same in the multi-host setting as in the
single host setting. Adding a new, unique block to the
index requires neither block verification, nor modifying
block pointers. Shared-to-shared transitions only verify
and rewrite blocks in the file referenced by the current
write log, which the host processing the write log must
have an exclusive lock on.

Unique-to-shared transitions, however, are compli-
cated by the possibility that the file containing the unique
block referenced by the index may be locked by some
host other than the host processing the write record.
While this host may not have access to the indexed block,
it does have access to the block referred to by the write
log. The host verifies this block’s content and promotes
it to a shared block by adding it to the virtual arena and
upgrading the index entry accordingly. However, in or-
der to reclaim the originally indexed block, the host must
communicate this deduplication opportunity to the host
holding the exclusive lock on the file containing the orig-
inally indexed block using the associated merge request

file. The host updating the index posts a merge request for
the file containing the originally indexed block. This re-
quest contains not only the offset of the unique block, but
also another COW reference to the shared block. Hosts
periodically check for merge requests to the files they
have exclusive locks on, verifying any requests they find
and merging blocks that pass verification. The COW ref-
erence to the shared block in the merge request allows
hosts to process requests without accessing the arena.

3.3.3 Garbage Collection

As the host scans the index for hash matches, it also
garbage collects unused shared blocks and stale index
entries, as shown in Figure 4(d). For each shared block
in the index, it checks the file system’s reference count
for that block. If the block is no longer in use, it will
have only a single reference (from the virtual arena), in-
dicating that it can be removed from the virtual arena and
freed. In effect, this implements a simple form of weak
references without modifying file system semantics. Fur-
thermore, this approach allows the virtual arena to double
as a victim cache before garbage collection has a chance
to remove unused blocks.

Unique blocks do not need to be freed, but they can
leave behind stale index entries. Hosts garbage collect
these by removing any index entries that refer to any
block in any of the write records being processed by the
host. In the presence of dropped write records, this may
not remove all stale index entries, but it will ensure that
there is at most one index entry per unique block. In this
case, any later write or potential duplicate discovery in-
volving a block with a stale index entry will remove or
replace the stale entry. The garbage collection process
also check for file truncations and deletions and removes
any appropriate index entries.

4 Evaluation

In this section, we present results from the evaluation of
our deduplication techniques using various microbench-
marks and realistic workloads. We begin in Section 4.1
with experiments and analysis that shows the space sav-
ings achievable with deduplication as well as the space
overheads introduced by it, using data from a real corpo-
rate VDI deployment. We also draw a comparison against
linked clones, an alternative way of achieving space sav-
ings.

We have implemented a functional prototype of DEDE
atop VMware VMFS. Although we haven’t spent any sig-
nificant time optimizing it, it is worthwhile examining
its basic performance characteristics. In Section 4.2, we
present the run-time performance impact of write mon-
itoring and other changes to the file system introduced

USENIX Association	 2009 USENIX Annual Technical Conference	 109

by deduplication, as well as the run-time performance
gained from improved cache locality. Finally, we look
at the performance of the deduplication process itself in
Section 4.3.

4.1 Analysis of Virtual Disks in the Wild

To evaluate the usefulness of deduplication in our target
workload segment of VDI, we analyzed the virtual disks
from a production corporate VDI cluster serving desktop
VMs for approximately 400 users on top of a farm of
32 VMware ESX hosts. Out of these, we selected 113
VMs at random to analyze for duplicate blocks, totaling
1.3 TB of data (excluding blocks consisting entirely of
NULL bytes). Each user VM belonged exclusively to
a single corporate user from a non-technical department
like marketing or accounting. The VMs have been in use
for six to twelve months and all originated from a small
set of standardized Windows XP images. From our expe-
rience, this is typical for most enterprise IT organizations,
which limit the variation of operating systems to control
management and support costs.

Figure 5 shows the reduction in storage space for this
VDI farm using deduplication block sizes between 4 KB
and 1 MB. As expected, VDI VMs have a high degree
of similarity, resulting in an ∼80% reduction in storage
footprint for the 4 KB block size, which falls off loga-
rithmically to ∼35% for 1 MB blocks. Deduplication
at the 4 KB block size reduces the original 1.3 TB of
data to 235 GB. Given the significant advantage of small
block sizes, we chose to use a default 4 KB block size
for DEDE. However, a reasonable argument can be made
for the smaller metadata storage and caching overhead
afforded by an 8 KB block size. We are exploring this as
well as dynamic block size selection as future work.

Figure 6 shows a CDF of the same data, detailing the
duplication counts of individual blocks in terms of the
number of references to each block in the file system af-
ter deduplication. For example, at the 4 KB block size,
94% of deduplicated blocks are referenced 10 or fewer
times by the file system (equivalently, 6% of deduplicated
blocks are referenced more than 10 times). Thus, in the
original data, most blocks were duplicated a small num-
ber of times, but there was a very long tail where some
blocks were duplicated many times. At the very peak of
the 4 KB distribution, some blocks were duplicated over
100,000 times. Each of these blocks individually repre-
sented over 400 MB of space wasted storing duplicate
data. Overall, this data serves to show the potential for
space savings from deduplication in VDI environments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

R
ed

uc
tio

n
in

 s
to

ra
ge

 s
pa

ce

Block size

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

DeDe
Realigned partitions
Linked clones only

Figure 5: Duplication available at various block sizes and
for different variations on the approach. Data is from a
production VDI deployment of 113 Windows XP VMs.

70%

75%

80%

85%

90%

95%

100%

 1 10 100 1000

Fr
ac

tio
n

of
 d

ed
up

lic
at

ed
 b

lo
ck

s

Maximum reference count

1MB
512KB
256KB
128KB
64KB
32KB
16KB
8KB
4KB

Figure 6: CDF of block duplication counts. A few blocks
occur over 100,000 times. Data is from the same deploy-
ment as shown in Figure 5.

4.1.1 Space Overheads

While DEDE reduces the amount of space required by file
data, it requires additional space for both the index and
the additional metadata introduced by mixed block sizes.
For our VDI data set, at a 4 KB block size, this additional
data totaled 2.7 GB, a mere 1.1% overhead beyond the
deduplicated file data.

The index represented 1.5 GB of this overhead,
194 MB of which was file system metadata (pointer
blocks) for the virtual arena. The size of the index scales
linearly with the size of the deduplicated data because
each deduplicated block has one index entry. However,
its relative overhead does vary with the ratio of unique to
shared blocks, because shared blocks require 4 bytes to
locate plus virtual arena metadata, while unique blocks
require 12 bytes beyond the 18 bytes required on average
for each entry’s header and hash. However, even in the
worst case, the index represents only 0.73% overhead.

110	 2009 USENIX Annual Technical Conference	 USENIX Association

Prior to deduplication, file metadata (inodes and
pointer blocks) represented a mere 0.0004% overhead,
owing to the efficiency of tracking VMFS’s 1 MB file
blocks. After deduplication, each 1 MB block that was
divided into sub-blocks requires a new pointer block at
1 KB apiece. As a result, metadata overhead increased
to 0.49% after deduplication, or 1.1 GB of data in total.
While this is a dramatic increase, metadata is still a very
small fraction of the overall space.

4.1.2 Partition Alignment Issues

Our approach of dividing disks into fixed size blocks is
sensitive to the alignment of data on those disks. Un-
fortunately, for historical reasons, the first partition of
partition tables created by utilities like fdisk on com-
modity PC systems has a start address 512 bytes short
of a 4 KB boundary, which can in turn cause all logical
file system blocks to straddle 4 KB disk block boundaries.
This has well-known negative performance effects [22],
particularly for storage array caches, which are forced to
fetch two blocks for each requested file system block. We
were initially concerned that this partition misalignment
could negatively impact deduplication opportunities, so
we “fixed” the alignment of our VDI data by shifting all
of the virtual disks by 512 bytes. Figure 5 compares the
results of deduplication with and without this realignment
and shows that, in practice, partition alignment actually
had very little impact on achieved deduplication. While
this may still prove to be a problem for well-aged guest
file systems, if necessary, it can be solved in a virtual-
ized environment by padding the virtual disk image file
to realign the guest file system blocks with the host file
system blocks.

4.1.3 Deduplication Versus Linked Clones

Linked clones are a simpler space saving alternative to
deduplication where individual user VMs are initially
constructed as block-level COW snapshots of a golden
master VM. This uses the same COW mechanism as
DEDE, but all sharing happens during VM creation and
the user VM images strictly diverge from the base disk
and from each other over time.

In order to compare the efficacy of linked clones versus
full deduplication, we simulated the structured sharing of
linked clones on our VDI data set. This comparison was
necessarily imperfect because we had access to neither
the base disks nor ancestry information for the VDI VMs,
but it did yield a lower bound on the total space required
by linked clones. The analysis used our regular dedupli-
cation algorithm but restricted it to deduplicating blocks
only when they were at the same offset in two files, a
reasonable approximation to user disks that are a mini-

%- Baseline DEDE
Sequential T (MB/s) L (ms) CPU T (MB/s) L (ms) CPU
100% 233 8.6 33% 233 8.6 220%
0% 84 24 16% 84 24 92%

Table 1: Overhead of in-band write monitoring on a pure
IO workload. Results are in terms of throughput (T) and
latency (L) for Iometer issuing 32 outstanding 64 KB IOs
to a 5 GB virtual disk. The CPU column denotes the
utilized processor time relative to a single core.

mal delta from the base disk (e.g., no security patches or
software updates have been installed in the user disks).

Figure 5 compares the savings achieved by linked
clones against those achieved by DEDE, again at vari-
ous COW block sizes. Linked clones max out at a 44%
reduction in space, reducing the 1.3 TB of original data
to 740 GB, a storage requirement over three times larger
than full deduplication achieved.

4.2 Run-time Effects of Deduplication

DEDE operates primarily out of band and engenders no
slowdowns for accessing blocks that haven’t benefited
from deduplication. It can also improve file system per-
formance in certain workloads by reducing the working
set size of the storage array cache. For access to dedu-
plicated blocks, however, in-band write monitoring and
the effects of COW blocks and mixed block sizes can im-
pact the regular performance of the file system. Unless
otherwise noted, all of our measurements of the run-time
effects of deduplication were performed using Iometer [9]
in a virtual machine stored on a 400 GB 5-disk RAID-5
volume of an EMC CLARiiON CX3-40 storage array.

4.2.1 Overhead of In-Band Write Monitoring

Since DEDE’s design is resilient to dropped write log
entries, if the system becomes overloaded, we can shed
or defer the work of in-band hash computation based on
user-specified policy. Still, if write monitoring is enabled,
the hash computation performed by DEDE on every write
IO can represent a non-trivial overhead.

To understand the worst-case effect of this, we ran a
write-intensive workload with minimal computation on a
5 GB virtual disk. Table 1 shows that these worst case
effects can be significant. For example, for a 100% se-
quential, 100% write workload, the CPU overhead was
6.6× that of normal at the same throughput level. How-
ever, because VMware ESX Server offloads the execution
of the IO issuing path code, including the hash computa-
tion, onto idle processor cores, the actual IO throughput
of this workload was unaffected.

USENIX Association	 2009 USENIX Annual Technical Conference	 111

Baseline Error SHA-1 Error

Operations/Min 29989 1.4% 29719 0.8%
Response Time (ms) 60 ms 0.8% 61ms 1.4%

Table 2: Overhead of in-band write monitoring on a SQL
Server database VM running an online e-commerce appli-
cation. The mean transaction rate (operations/min) and
response times for 10 runs are within noise for this work-
load. The reported “error” is standard deviation as a per-
centage of mean.

We don’t expect the effect of the additional compu-
tation to be a severe limitation in realistic workloads,
which, unlike our microbenchmark, perform computa-
tion in addition to IO. To illustrate this, we ran the in-
band SHA-1 computation on a realistic enterprise work-
load. We experimented with a Windows Server 2003 VM
running a Microsoft SQL Server 2005 Enterprise Edi-
tion database configured with 4 virtual CPUs, 6.4 GB of
RAM, a 10 GB system disk, a 250 GB database disk, and
a 50 GB log disk. The database virtual disks were hosted
on an 800 GB RAID-0 volume with 6 disks; log virtual
disks were placed on a 100 GB RAID-0 volume with
10 disks. We used the Dell DVD store (DS2) database
test suite [2], which implements a complete online e-
commerce application, to stress the SQL database and
measure its transactional throughput and latency. The
DVD Store workload issues random 8 KB IOs with a
write/read ratio of 0.25, and a highly variable number of
outstanding write IOs peaking around 28 [7]. Table 2 re-
ports a summary of overall application performance with
and without the in-band SHA-1 computation for writes.
For this workload, we observed no application-visible
performance loss, though extra CPU cycles on other pro-
cessor cores were being used for the hash computations.

4.2.2 Overhead of COW Specialization

Writing to a COW block in VMFS is an expensive op-
eration, though the current implementation is not well
optimized for the COW sub-blocks used extensively by
DEDE. In our prototype, it takes ∼10 ms to specialize
a COW block, as this requires copying its content into
a newly allocated block in order to update it. As such,
any workload phase shift where a large set of previously
deduplicated data is being specialized will result in signif-
icant performance loss. However, in general, we expect
blocks that are identical between VMs are also less likely
to be written to and, unlike most approaches to dedupli-
cation, we do not suffer this penalty for writes to unique
blocks. Optimizations to delay sharing until candidate
blocks have been “stable” for some length of time may
help further mitigate this overhead, as suggested in [8].

% Sequential IO Type Throughput (MB/s) Overhead
BS=1 MB BS=4 KB

100% Writes 238 150 37%
0% Writes 66 60 9%

100% Reads 245 135 45%
0% Reads 37 32 14%

Table 3: Overhead of mixed block fragmentation.
Throughput achieved for 64 KB sequential and random
workloads with 16 outstanding IOs. The comparison is
between two virtual disks backed by block sizes (BS) of
1 MB and 4 KB, respectively. In the 4 KB case, the vir-
tual disk file consists of 163 disjoint fragments, which
implies a sequential run of 31 MB on average.

4.2.3 Overhead of Mixed Block Sizes

VMFS’s 1 MB file blocks permit very low overhead trans-
lation from virtual disk IO to operations on the physi-
cal disk. While the mixed block size support we added
to VMFS is designed to retain this efficiency whenever
1 MB blocks can be used, it unavoidably introduces
overhead for 4 KB blocks from traversing the additional
pointer block level and increased external fragmentation.

To measure the effects of this, we compared IO to two
5 GB virtual disks, one backed entirely by 1 MB blocks
and one backed entirely by 4 KB blocks. These configu-
rations represent the two extremes of deduplication: all
unique blocks and all shared blocks, respectively. The
first disk required one pointer block level and was broken
into 3 separate extents on the physical disk, while the sec-
ond disk required two pointer block levels and spanned
163 separate extents.

The results of reading from these virtual disks are sum-
marized in Table 3. Unfortunately, sub-blocks introduced
a non-trivial overhead for sequential IO. This is partly
because VMFS’s sub-block placement and IO handling
is not yet well-optimized since sub-blocks have not pre-
viously been used in the VM IO critical path, whereas
VMFS’s file block IO has been heavily optimized. One
possible way to mitigate this overhead is by preventing
the deduplication process from subdividing file blocks
unless they contain some minimum number of 4 KB can-
didates for sharing. This would impact the space savings
of deduplication, but would prevent DEDE from subdi-
viding entire file blocks for the sake of just one or two
sharable blocks. Improvements in sub-block IO perfor-
mance and block subdivision are considered future work.

4.2.4 Disk Array Caching Benefits

For some workloads, deduplication can actually improve
run-time performance by decreasing the storage array
cache footprint of the workload. To demonstrate this, we

112	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20

Av
er

ag
e

bo
ot

 ti
m

e
(s

ec
s)

VMs booting concurrently

Fully copied
Cold dedup
Warm dedup

Figure 7: Windows XP VM boot up time comparison
between fully copied VMs and deduplicated VMs. Dedu-
plicated VMs are booted twice in order to measure the
impact of writing to deduplicated blocks.

picked a common, critical, time-limited VDI workload:
booting many VMs concurrently. VDI boot storms can
happen as part of a nightly cycle of shutting down VMs
and their hosts to conserve power, from patching guest
operating systems en masse, from cluster fail-over, or for
a myriad of other reasons.

To test the cache effects of deduplication, we compared
the average time required to boot from one to twenty
VMs simultaneously between two configurations: (1) the
VMs were each full copies of the golden VM (much like
the VDI configuration from Section 4.1) and (2) VMs
were deduplicated copies. The results plotted in Figure 7
show a dramatic improvement of deduplication versus
full copies, owing to the decrease in cache footprint.

To further validate the overhead of COW specializa-
tion for a realistic workload, we also booted the set of
VMs a second time after deduplication. The disk images
were “cold” the first time; they consisted entirely of COW
blocks. The second time, any blocks written to were al-
ready specialized and could be written to directly. The
graph shows virtually no difference between these two
cases, indicating that COW specialization overhead is not
an issue for this workload. This is not unexpected, as
there are only a few write operations during VM boot.

4.3 Deduplication Rate
While our prototype’s implementation of indexing has
not yet been optimized, we measured the overall rate at
which it could process modified blocks, as well as the
performance of the three main operations performed by
it: scanning the index, subdividing 1 MB blocks into
4 KB blocks, and COW sharing duplicates.

The index scanning process operates at nearly the
disk’s sequential access rate, as discussed in Section 3.2.2.

At ∼23 bytes per index entry, our prototype can process
entries for 6.6 GB of blocks per second. However, unlike
block subdivision and COW sharing, which require time
proportional to the number of newly shared blocks, the
index scan requires time proportional to the total number
of blocks in the file system, so it is critical that this be
fast. Once new duplicates have been discovered by the in-
dex scan, 1 MB file blocks containing any of these dupli-
cates can be subdivided into 4 KB blocks at 37.5 MB/sec.
Finally, these newly discovered duplicates can be elimi-
nated via COW sharing at 2.6 MB/sec.

The COW sharing step limits our prototype to process-
ing ∼9 GB of new shared blocks per hour. Unique blocks
(i.e., recently modified blocks whose hashes do not match
anything in the index) can be processed at the full index
scan rate. Furthermore, provisioning from templates, a
source of large amounts of duplicate data, can be per-
formed directly as a COW copy (at roughly 1 GB/sec),
so our deduplication rate applies only to duplicates that
arise outside of provisioning operations. Still, we feel
that our COW sharing rate can be significantly improved
with more profiling and optimization effort. However,
even at its current rate, the prototype can eliminate du-
plicates at a reasonable rate for a VDI workload given
only a few off-peak hours per day to perform out of band
deduplication.

5 Related Work

Much work has been done towards investigating dedu-
plication for file systems with a centralized compo-
nent. Venti [16] pioneered the application of content-
addressable storage (CAS) to file systems. Venti is a
block storage system in which blocks are identified by
a collision-resistant cryptographic hash of their contents
and stored in an append-only log on disk. An on-disk
index structure maps from content hashes to block loca-
tions. Venti’s append-only structure makes it well suited
to archival, but not to live file systems. Venti also depends
heavily on a central server to maintain the block index.

Various other systems, notably Data Domain’s archival
system [26] and Foundation [17], have extended and en-
hanced the Venti approach, but still follow the same ba-
sic principles. While deduplication for archival is gener-
ally well understood, deduplication in live file systems
presents very different challenges. Because backup sys-
tems are concerned with keeping data for arbitrarily long
periods of time, backup deduplication can rely on rela-
tively simple append-only data stores. Data structures
for live deduplication, however, must be amenable to dy-
namic allocation and garbage collection. Furthermore,
live file systems, unlike backup systems, are latency sen-
sitive for both reading and writing. Thus, live file system
deduplication must have minimal impact on these criti-

USENIX Association	 2009 USENIX Annual Technical Conference	 113

cal paths. Backup data also tends to be well-structured
and presented to the backup system in sequential streams,
whereas live file systems must cope with random writes.

Many CAS-based storage systems, including [5,16,20],
address data exclusively by its content hash. Write op-
erations return a content hash which is used for subse-
quent read operations. Applying this approach to VM
disk storage implies multi-stage block address resolution,
which can negatively affect performance [10]. Further-
more, since data is stored in hash space, spatial locality
of VM disk data is lost, which can result in significant
loss of performance for some workloads. DEDE avoids
both of these issues by relying on regular file system lay-
out policy and addressing all blocks by filename, offset
tuples, rather than content addresses. DEDE uses content
hashes only for identifying duplicates.

Both NetApp’s ASIS [14] and Microsoft’s Single In-
stance Store [1] use out of band deduplication to detect
duplicates in live file systems in the background, similar
to DEDE. SIS builds atop NTFS and applies content-
addressable storage to whole files, using NTFS filters to
implement file-level COW-like semantics.

While SIS depends on a centralized file system and
a single host to perform scanning and indexing, Farsite
builds atop SIS to perform deduplication in a distributed
file system [3]. Farsite assigns responsibility for each file
to a host based on a hash of the file’s content. Each host
stores files in its local file system, relying on SIS to lo-
cally deduplicate them. However, this approach incurs
significant network overheads because most file system
operations, including reads, require cross-host communi-
cation and file modifications require at least updating the
distributed content hash index.

Hong’s Duplicate Data Elimination (DDE) system [8]
avoids much of the cross-host communication overhead
of Farsite by building from IBM’s Storage Tank SAN file
system [11]. DDE hosts have direct access to the shared
disk and can thus read directly from the file system. How-
ever, metadata operations, including updates to dedupli-
cated shared blocks, must be reported to a centralized
metadata server, which is solely responsible for detect-
ing and coalescing duplicates. DEDE is closest in spirit
to DDE. However, because DEDE uses a completely de-
centralized scheme with no metadata server, it doesn’t
suffer from single points of failure or contention. Further-
more, DEDE prevents cross-host concurrency issues by
partitioning work and relying on coarse-grain file locks,
whereas DDE’s approach of deduplicating from a central
host in the midst of a multi-host file system introduces
complex concurrency issues.

Numerous studies have addressed the effectiveness of
content-addressable storage for various workloads. Work
that has focused on VM deployments [12, 17] has con-
cluded that CAS was very effective at reducing storage

space and network bandwidth compared to traditional
data reduction techniques like compression.

Other work has addressed deduplication outside of
file systems. Our work derives inspiration from Wald-
spurger [25] who proposed deduplication of memory con-
tents, now implemented in the VMware ESX Server hy-
pervisor [23]. In this system, identical memory pages
from multiple virtual machine are backed by the same
page and marked copy-on-write. The use of sharing hints
from that work is analogous to our merge requests.

6 Conclusion

In this paper, we studied deduplication in the context of
decentralized cluster file systems. We have described
a novel software system, DEDE, which provides block-
level deduplication of a live, shared file system without
any central coordination. Furthermore, DEDE builds
atop an existing file system without violating the file sys-
tem’s abstractions, allowing it to take advantage of regu-
lar file system block layout policies and in-place updates
to unique data. Using our prototype implementation, we
demonstrated that this approach can achieve up to 80%
space reduction with minor performance overhead on re-
alistic workloads.

We believe our techniques are applicable beyond vir-
tual machine storage and plan to examine DEDE in other
settings in the future. We also plan to explore alternate in-
dexing schemes that allow for greater control of dedupli-
cation policy. For example, high-frequency deduplication
could prevent temporary file system bloat during opera-
tions that produce large amounts of duplicate data (e.g.,
mass software updates), and deferral of merge operations
could help reduce file system fragmentation. Addition-
ally, we plan to further explore the trade-offs mentioned
in this paper, such as block size versus metadata over-
head, in-band versus out-of-band hashing, and sequential
versus random index updates.

DEDE represents just one of the many applications
of deduplication to virtual machine environments. We
believe that the next step for deduplication is to inte-
grate and unify its application to file systems, memory
compression, network bandwidth optimization, etc., to
achieve end-to-end space and performance optimization.

Acknowledgments

We would like to thank Mike Nelson, Abhishek Rai, Man-
junath Rajashekhar, Mayank Rawat, Dan Scales, Dragan
Stancevic, Yuen-Lin Tan, Satyam Vaghani, and Krishna
Yadappanavar, who, along with two of the coauthors, de-
veloped the core of VMFS in unpublished work, which
this paper builds on top of. We are thankful to Orran

114	 2009 USENIX Annual Technical Conference	 USENIX Association

Krieger, James Cipar, and Saman Amarasinghe for con-
versations that helped clarify requirements of an online
deduplication system. We are indebted to our shepherd
Andrew Warfield, the anonymous reviewers, John Blu-
menthal, Mike Brown, Jim Chow, Peng Dai, Ajay Gulati,
Jacob Henson, Beng-Hong Lim, Dan Ports, Carl Wald-
spurger and Xiaoyun Zhu for providing detailed reviews
of our work and their support and encouragement. Fi-
nally, thanks to everyone who has noticed the duplication
in our project codename and brought it to our attention.

This material is partly based upon work supported under a
National Science Foundation Graduate Research Fellowship.

References
[1] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single

instance storage in Windows R2000. In Proceedings of the 4th
USENIX Windows Systems Symposium (WSS ’00), Seattle, WA,
Aug. 2000. USENIX.

[2] Dell, Inc. DVD Store. http://delltechcenter.com/
page/DVD+store.

[3] J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed
file system. In Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS ’02), Vienna, Austria,
July 2002. IEEE.

[4] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
Hydrastor: A scalable secondary storage. In Proceedings of the
7th USENIX Conference on File and Storage Technologies (FAST
’09), San Francisco, CA, Feb. 2009. USENIX.

[5] EMC Centera datasheet. http://www.emc.com/
products/detail/hardware/centera.htm.

[6] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Ex-
tendible hashing—a fast access method for dynamic files. ACM
Transactions on Database Systems, 4(3), Sept. 1979.

[7] A. Gulati, C. Kumar, and I. Ahmad. Storage workload charac-
terization and consolidation in virtualized environments. In 2nd
International Workshop on Virtualization Performance: Analysis,
Characterization, and Tools (VPACT), 2009.

[8] B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-Zimet.
Duplicate data elimination in a SAN file system. In Proceedings
of the 21st Symposium on Mass Storage Systems (MSS ’04), God-
dard, MD, Apr. 2004. IEEE.

[9] Iometer. http://www.iometer.org/.

[10] A. Liguori and E. V. Hensbergen. Experiences with content ad-
dressable storage and virtual disks. In Proceedings of the Work-
shop on I/O Virtualization (WIOV ’08), San Diego, CA, Dec. 2008.
USENIX.

[11] J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg.
IBM storage tank—a heterogeneous scalable SAN file system.
IBM Systems Journal, 42(2), 2003.

[12] P. Nath, M. A. Kozuch, D. R. O’Hallaron, J. Harkes, M. Satya-
narayanan, N. Tolia, and M. Toups. Design tradeoffs in applying
content addressable storage to enterprise-scale systems based on
virtual machines. In Proceedings of the USENIX Annual Technical
Conference (ATEC ’06), Boston, MA, June 2006. USENIX.

[13] P. Nath, B. Urgaonkar, and A. Sivasubramaniam. Evaluating the
usefulness of content addressable storage for high-performance

data intensive applications. In Proceedings of the 17th High Per-
formance Distributed Computing (HPDC ’08), Boston, MA, June
2008. ACM.

[14] Netapp Deduplication (ASIS). http://www.netapp.com/
us/products/platform-os/dedupe.html.

[15] K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson, E. Ny-
gaard, C. J. Sabol, S. R. Soltis, D. C. Teigland, and M. T. O’Keefe.
A 64-bit, shared disk file system for Linux. In Proceedings of the
16th Symposium on Mass Storage Systems (MSS ’99), San Diego,
CA, Mar. 1999. IEEE.

[16] S. Quinlan and S. Dorward. Venti: A new approach to archival
data storage. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies (FAST ’02) [19].

[17] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-
addressed storage in Foundation. In Proceedings of the USENIX
Annual Technical Conference (ATEC ’08), Boston, MA, June
2008. USENIX.

[18] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST ’02) [19].

[19] USENIX. The 1st USENIX Conference on File and Storage Tech-
nologies (FAST ’02), Monterey, CA, Jan. 2002.

[20] M. Vilayannur, P. Nath, and A. Sivasubramaniam. Providing tun-
able consistency for a parallel file store. In Proceedings of the
4th USENIX Conference on File and Storage Technologies (FAST
’05), San Francisco, CA, Dec. 2005. USENIX.

[21] VMware, Inc. VMFS datasheet. http://www.vmware.com/
pdf/vmfs_datasheet.pdf.

[22] VMware, Inc. Recommendations for aligning VMFS partitions.
Technical report, Aug. 2006.

[23] VMware, Inc. Introduction to VMware Infrastructure. 2007.
http://www.vmware.com/support/pubs/.

[24] VMware, Inc. VMware Virtual Desktop Infrastructure (VDI)
datasheet, 2008. http://www.vmware.com/files/pdf/
vdi_datasheet.pdf.

[25] C. A. Waldspurger. Memory resource management in VMware
ESX Server. In Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’02), Boston,
MA, Dec. 2002. USENIX.

[26] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in
the Data Domain deduplication file system. In Proceedings of the
6th USENIX Conference on File and Storage Technologies (FAST

’08), San Jose, CA, Feb. 2008. USENIX.

USENIX Association	 2009 USENIX Annual Technical Conference	 115

FlexFS: A Flexible Flash File System for MLC NAND Flash Memory

Sungjin Lee†, Keonsoo Ha†, Kangwon Zhang†, Jihong Kim†, and Junghwan Kim∗

†Seoul National University, Korea
{chamdoo, air21c, kwzhang, jihong}@davinci.snu.ac.kr

∗Samsung Electronics, Korea
junghwani.kim@samsung.com

Abstract
The multi-level cell (MLC) NAND flash memory

technology enables multiple bits of information to be
stored on a single cell, thus making it possible to in-
crease the density of the memory without increasing the
die size. For most MLC flash memories, each cell can
be programmed as a single-level cell or a multi-level cell
during runtime. Therefore, it has a potential to achieve
both the high performance of SLC flash memory and the
high capacity of MLC flash memory.

In this paper, we present a flexible flash file system,
called FlexFS, which takes advantage of the dynamic re-
configuration facility of MLC flash memory. FlexFS di-
vides the flash memory medium into SLC and MLC re-
gions, and dynamically changes the size of each region to
meet the changing requirements of applications. We ex-
ploit patterns of storage usage to minimize the overhead
of reorganizing two different regions. We also propose a
novel wear management scheme which mitigates the ef-
fect of the extra writes required by FlexFS on the lifetime
of flash memory. Our implementation of FlexFS in the
Linux 2.6 kernel shows that it can achieve a performance
comparable to SLC flash memory while keeping the ca-
pacity of MLC flash memory for both simulated and real
mobile workloads.

1 Introduction

As flash memory technologies quickly improve, NAND
flash memory is becoming an attractive storage solution
for various IT applications from mobile consumer elec-
tronics to high-end server systems. This rapid growth is
largely driven by the desirable characteristics of NAND
flash memory, which include high performance and low-
power consumption.

There are two types of NAND flash memory in the
market: a single-level cell (SLC) and a multi-level cell
(MLC) flash memory. They are distinctive in terms of

capacity, performance, and endurance. The capacity of
MLC flash memory is larger than that of SLC flash mem-
ory. By storing two (or more) bits on a single memory
cell, MLC flash memory achieves significant density in-
creases while lowering the cost per bit over SLC flash
memory which can only store a single bit on a cell. How-
ever, SLC flash memory has a higher performance and
a longer cell endurance over MLC flash memory. Es-
pecially, the write performance of SLC flash memory is
much higher than that of MLC flash memory.

As the demand for the high capacity storage system is
rapidly increasing, MLC flash memory is being widely
adopted in many mobile embedded devices, such as
smart phones, digital cameras, and PDAs. However, be-
cause of a poor performance characteristic of MLC flash
memory, it is becoming harder to satisfy users’ require-
ments for the high performance storage system while
providing increased storage capacity.

To overcome this poor performance, in this paper, we
propose exploiting the flexible programming feature of
MLC flash memory [1]. Flexible programming is a writ-
ing method which enables each cell to be programmed
as a single-level cell (SLC programming) or a multi-level
cell (MLC programming). If SLC programming is used
to write data into a particular cell, the effective proper-
ties of that cell become similar to those of an SLC flash
memory cell. Conversely, MLC programming allows us
to make use of the high capacity associated with MLC
flash memory.

The most attractive aspect of flexible programming is
that it allows fine-grained storage optimizations, in terms
of both performance and capacity, to meet the require-
ments of applications. For instance, if the current capac-
ity of flash memory is insufficient for some application,
MLC flash memory can change its organization and in-
crease the number of multi-level cells to meet the space
requirement. However, to exploit flexible cell program-
ming effectively, several issues need to be considered.

First, heterogeneous memory cells should be managed

116	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 1: Threshold voltage distributions for SLC (1
bit/cell) and MLC (2 bits/cell)

in a way that is transparent to the application layer, be-
cause flexible programming allows two different types of
a cell to exist in the same flash chip simultaneously.

Second, dynamic cell reconfigurations between the
SLC and MLC must be handled properly. For example, if
too many flash cells are used as single-level cells, the ca-
pacity of flash memory might be critically impaired, even
though the overall I/O performance is improved. There-
fore, it is important to determine the number of SLC cells
and MLC cells so that both the performance and capacity
would be optimally supported.

Third, the cost of dynamic cell reconfigurations should
be kept as low as possible. Changing the type of a cell
requires expensive erase operations. Since an erase op-
eration resets cells to their initial bit value (e.g., 1), the
data stored in the cells must first be moved to elsewhere.
The performance overhead of this data migration impairs
the overall I/O performance.

Finally, write and erase operations required to change
the type of a cell reduce the endurance of each cell, re-
sulting in the decrease of the lifetime of flash memory.
This problem also needs to be addressed properly.

In this paper, we propose a flexible flash file system,
called FlexFS, for MLC flash memory that addresses the
above requirements effectively. FlexFS provides appli-
cations with a homogeneous view of storage, while in-
ternally managing two heterogeneous memory regions,
an SLC region and an MLC region. FlexFS guarantees
the maximum capacity of MLC flash memory to users
while it tries to write as much data as possible to the
SLC region so as to achieve the highest I/O performance.
FlexFS uses a data migration policy to compensate for
the reduced capacity caused by overuse of the SLC re-
gion. In order to prolong the lifespan of flash memory, a
new wear management scheme is also proposed.

In order to evaluate the effectiveness of FlexFS, we
implemented FlexFS in the Linux 2.6.15 kernel on a
development board. Evaluations were performed using
synthetic and real workloads. Experimental results show
that FlexFS achieves 90% of the read and 96% of the
write performance of SLC flash memory, respectively,
while offering the capacity of MLC flash memory.

The rest of this paper is organized as follows. In Sec-

tion 2, we present a brief review of NAND flash memory
and explain MLC flash memory in detail. In Section 3,
we give an overview of FlexFS and introduce the prob-
lems that occur with a naive approach to exploiting flexi-
ble cell programming. In Section 4, we describe SLC and
MLC management techniques. In Section 5, we present
experimental results. Section 6 describes related work on
heterogeneous storage systems. Finally, in Section 7, we
conclude with a summary and future work.

2 Background

2.1 NAND Flash Memory
NAND flash memory consists of multiple blocks, each
of which is composed of several pages. In many NAND
flash memories, the size of a page is between 512 B and 4
KB, and one block consists of between 4 and 128 pages.
NAND flash memory does not support an overwrite op-
eration because of its write-once nature. Therefore, be-
fore writing new data into a block, the previous data must
be erased. Furthermore, the total number of erasures
allowed for each block is typically limited to between
10,000 and 100,000 cycles.

Like SRAM and DRAM, flash memory stores bits in a
memory cell, which consists of a transistor with a float-
ing gate that can store electrons. The number of electrons
stored on the floating gate determines the threshold volt-
age, Vt, and this threshold voltage represents the state of
the cell. In case of a single-level cell (SLC) flash mem-
ory, each cell has two states, and therefore only a single
bit can be stored in that cell. Figure 1(a) shows how the
value of a bit is determined by the threshold voltage. If
the threshold voltage is greater than a reference voltage,
it is interpreted as a logical ‘1’; otherwise, it is regarded
as a logical ‘0’. In general, the write operation moves the
state of a cell from ‘1’ to ‘0’, while the erase operation
changes ‘0’ to ‘1’.

If flash memory is composed of memory cells which
have more than two states, it is called a multi-level cell
(MLC) flash memory, and two or more bits of informa-
tion can be stored on each cell, as shown in Figure 1(b).
Even though the density of MLC flash memory is higher
than that of SLC flash memory, it requires more precise
charge placement and charge sensing (because of nar-
rower voltage ranges for each cell state), which in turn
reduces the performance and endurance of MLC flash
memory in comparison to SLC flash memory.

2.2 MLC NAND Flash Memory Array
In MLC flash memory, it is possible to use SLC pro-
gramming, allowing a multi-level cell to be used as a
single-level cell. To understand the implications of SLC

USENIX Association	 2009 USENIX Annual Technical Conference	 117

...

...

.
.
.

.
.
.

.
.
.

...

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Figure 2: An organization of an MLC flash memory ar-
ray (2 bits/cell)

programming, it is necessary to know the overall archi-
tecture of a flash memory array. Figure 2 illustrates the
array of flash memory cells which forms a flash memory
block. We assume that each cell is capable of holding
two bits. For a description purpose, this figure does not
show all the elements, such as source and drain select
gates, which are required in a memory array. (For a more
detailed description, see references [2, 3].)

As shown in Figure 2, the memory cells are arranged
in an array of rows and columns. The cells in each
row are connected to a word line (e.g., WL(0)), while
the cells in each column are coupled to a bit line (e.g.,
BL(0)). These word and bit lines are used for read and
write operations. During a write operation, the data to be
written (‘1’ or ‘0’) is provided at the bit line while the
word line is asserted. During a read operation, the word
line is again asserted, and the threshold voltage of each
cell can then be acquired from the bit line.

Figure 2 also shows the conceptual structure of a flash
block corresponding to a flash memory array. The size
of a page is determined by the number of bit lines in the
memory array, while the number of pages in each flash
block is twice the number of word lines, because two
different pages share the memory cells that belong to the
same word line. These two pages are respectively called
the least significant bit (LSB) page and the most signif-
icant bit (MSB) page. As these names imply, each page
only uses its own bit position of a bit pattern stored in a
cell. (This is possible because each memory cell stores
two bits, for example, one bit for the LSB page and the
other for the MSB page.) Thus, if a block has 128 pages,
there are 64 LSB and 64 MSB pages.

Because multiple pages are mapped to the same word
line, read and write operations must distinguish the des-
tination page of each operation. For example, if a cell is
in an erased state (i.e., a logical ‘11’) and a logical ‘0’ is
programmed to the MSB position of the cell, the cell will
then have a bit pattern of ‘01’, which is interpreted as a

Table 1: Performance comparison of different types of
cell programming (us)

Operation SLC MLCLSB MLCBOTH

Read (page) 399 409 403
Write (page) 417 431 994
Erase (block) 860 872 872

logical ‘0’ for the MSB page. If the LSB position is then
programmed as ‘0’, the bit pattern will change to ‘00’.

2.3 SLC Programming in MLC
Since MLC flash memory stores multiple pages in the
same word line, it is possible for it to act as SLC flash
memory by using only the LSB pages (or MSB pages,
depending on the manufacturer’s specification). Thus,
SLC programming is achieved by only writing data to the
LSB pages in a block. In this case, since only two states
of a cell, ‘11’ and ‘10’, are used shown in Figure 1(b),
the characteristics of a multi-level cell become very sim-
ilar to those of a single-level cell. The logical offsets of
the LSB and MSB pages in a block are determined by the
flash memory specification, and therefore SLC program-
ming can be managed at the file system level. Naturally,
SLC programming reduces the capacity of a block by
half, because only the LSB pages can be used.

Table 1 compares the performance of the three dif-
ferent types of cell programming method. The SLC

column shows the performance data in a pure SLC
flash memory; the MLCLSB column gives the perfor-
mance data when only the LSB pages are used; and the
MLCBOTH column gives the data when both the LSB
and MSB pages are used. The access times for page reads
and writes, and for block erase operations were measured
using the Samsung’s KFXXGH6X4M flash memory [4]
at the device driver interface level. As shown in Table 1,
there are no significant performance differences between
page read and block erase operations for the three pro-
gramming methods. However, the write performance is
significantly improved with MLCLSB, and approaches
to that of SLC.

This improvement in the write performance under
MLCLSB is the main motivation for FlexFS. Our pri-
mary goal is to improve the write performance of MLC
flash memory using the MLCLSB method, while main-
taining the capacity of MLC flash memory using the
MLCBOTH method.

3 Overview of the FlexFS File System

We will now describe the overall architecture of the pro-
posed FlexFS system. FlexFS is based on JFFS2 file sys-

118	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 3: The layout of flash blocks in FlexFS

tem [5], and hence the overall architecture is very simi-
lar to JFFS2 except for some features required to manage
heterogeneous cells and to exploit flexible programming.
Therefore, in this section, we focus on how FlexFS deals
with different types of a cell. We also introduce a base-
line approach to exploit flexible cell programming in or-
der to illustrate the need for better policies, which will be
introduced in detail on the following section.

3.1 Design Overview
In order to manage heterogeneous cells efficiently,
FlexFS logically divides the flash memory medium into
an SLC region, composed of SLC blocks, and an MLC
region consisting of MLC blocks. If a block does not
contain any data, it is called a free block. In FlexFS, a
free block is neither an SLC block nor an MLC block; its
type is only determined when data is written into it.

Figure 3 shows the layout of flash memory blocks in
FlexFS. We assume that the number of pages in a block is
128, and the page size is 4 KB. (These values will be used
throughout the rest of this paper.) When a write request
arrives, FlexFS determines the type of region to which
the data is to be written, and then stores the data tem-
porarily in an appropriate write buffer. This temporary
buffering is necessary because the unit of I/O operations
is a single page in flash memory. Therefore, the write
buffer stores the incoming data until there is at least the
page size of data (i.e., 4 KB), which can be transferred
to flash memory. In order to ensure the data reliability,
if there is an explicit flush command from the operating
system, all the pending data is immediately written to
flash memory. In FlexFS, separate write buffers are used
for the SLC and MLC regions.

FlexFS manages flash memory in a similar fashion to
other log-structured file systems [5, 6, 7], except that two
log blocks (one for the SLC and another for the MLC re-
gion) are reserved for writing. When data is evicted from
the write buffer to flash memory, FlexFS writes them se-
quentially from the first page to the last page of the corre-
sponding region’s log block. MLC programming is used
to write data to the MLC block, and SLC programming

Figure 4: Steps in data migration

is used to write to the SLC block. If existing data is up-
dated, the old version of the data is first invalidated, while
the new data is appended to the free space of a log block.
The space used by this invalid data is later reclaimed by
the garbage collector (Section 4.3).

After all the free pages in the current log block have
been exhausted, a new log block is allocated from the
free blocks. However, if there is not enough free space
to store the data, the data migrator triggers a data mi-
gration (Section 4.1.1) to create more free space. This
expands the effective capacity of flash memory by mov-
ing the data from the SLC region to the MLC region.
Figure 4 illustrates the steps in data migration. In this
example, there are initially two SLC blocks and one free
block, as shown in Figure 4(a). We assume that all the
pages in the two SLC blocks contain valid data. Dur-
ing the data migration, the free block is converted into an
MLC block, and the 128 pages in the two SLC blocks are
copied to this MLC block. Then the two SLC blocks are
erased, making them free blocks. This migration frees
up one block, doubling the remaining capacity of flash
memory, as shown in Figure 4(c).

When a read request arrives, FlexFS first checks
whether the write buffers contain the requested data.
If so, the data in the write buffer is transferred to the
page cache. Otherwise, FlexFS searches an inode cache,
which is kept in main memory, to find a physical address
for the requested file data. The inode cache maintains the
inode numbers and physical locations of data that belong
to each inode. If the physical address of the required data
is found, regardless of the type of block in which the data
is stored, FlexFS can read the data from that address.

3.2 Baseline Approach and Its Problems

The major objective of FlexFS is to support both high
performance and high capacity in MLC flash memory. A
simplistic solution, which we call the baseline approach,
is first to write as much data as possible into SLC blocks
to maximize the I/O performance. When there are no
more SLC blocks available, the baseline approach initi-
ates a data migration so that more space becomes avail-

USENIX Association	 2009 USENIX Annual Technical Conference	 119

able for subsequent write requests, so as to maximize the
capacity of flash memory. This simple approach has two
serious drawbacks.

First, if the amount of data stored on flash memory
approaches to half of its maximum capacity, almost all
the free blocks are exhausted. This is because the ca-
pacity of the SLC block is half that of the MLC block.
At this point, a data migration has to be triggered to free
some blocks before writing the requested data. But, this
reduces the overall I/O performance significantly. To ad-
dress this problem, we introduce techniques to reduce the
migration penalty, or to hide it from users.

Second, the baseline approach degrades the lifetime
of MLC flash memory seriously. Each block of NAND
flash memory has a finite number of erase cycles before
it becomes unusable. The baseline approach tends to in-
crease the number of erase operations because of the ex-
cessive data migration. In the worst case, the number of
erasures could be three times more than in conventional
flash file systems. We solve this problem by controlling
the degree of the migration overhead, with the aim of
meeting a given lifetime requirement.

4 Design and Implementation of FlexFS

4.1 Reducing the Migration Overhead
To reduce or hide the overhead associated with data
migrations, we introduce three techniques: background
migration, dynamic allocation, and locality-aware data
management. The background migration technique ex-
ploits the times when the system is idle to hide the data
migration overhead. This technique is effective for many
mobile embedded systems (e.g., mobile phones) which
have long idle time. The dynamic allocation technique,
on the other hand, is aimed at systems with less idle time.
By redirecting part of the incoming data into the MLC
region depending on the idleness of the system, it re-
duces the amount of data that is written into the SLC
region, which in turn reduces the data migration over-
heads. The third technique, locality-aware data manage-
ment, exploits the locality of I/O accesses to improve the
efficiency of data migration. We will now look at these
three techniques in more detail.

4.1.1 Background Migration Technique

Figure 5 shows the overall process of the background mi-
gration. In this figure, the X-axis shows the time and
the Y-axis gives the type of job being performed by the
file system. A foreground job represents I/O requests is-
sued by applications or the operating system. Tbusy is
a time interval during which the file system is too busy
to process foreground jobs, and Tidle is an idle interval.





 

 

 

Figure 5: Overview of the background migration

During this idle time the background migrator can move
data from the SLC region to the MLC region, thus free-
ing many blocks. These free blocks can then be used as
SLC blocks to store data, and so we can avoid a compul-
sory data migration if there is sufficient idle time.

In designing the background migration technique,
there are two important issues: First, it is important to
minimize the delay in response time Tdelay inflicted on
foreground tasks by the background migration. For ex-
ample, in Figure 5, an I/O request arrives at t1, but it
cannot proceed until t2 because of interference from the
background migration. So Tdelay is t2 - t1. To reduce
this delay, the data migrator monitors the I/O subsystem,
and suspends the background migration process if there
is an I/O request. Since the unit of a data migration is a
single page, the maximum delay in response time will be
less than the time required to move a page from SLC to
MLC (about 1,403 us) theoretically. In addition, we also
design the background migrator so that it does not utilize
all available idle times. Instead, it periodically invokes
a data migration at a predefined triggering interval Ttrig.
If Ttrig is larger than the time required to move a single
page, FlexFS reduces the probability that a foreground
job will be issued while a data migration is running, thus
further reducing Tdelay .

The second issue is when to initiate a background mi-
gration. Our approach is based on a threshold; if the du-
ration of the idle period is longer than a specific threshold
value Twait, then the background migrator is triggered.
This kind of problem has been extensively studied in dy-
namic power management (DPM) of hard disk drives [8],
which puts a disk into a low-power state after a certain
idle time in order to save energy. However, the transition
to a low-power state has to be made carefully because
it introduces a large performance penalty. Fortunately,
because Tdelay is quite short, more aggressive transition-
ing is possible in our background migration technique,
allowing Twait to be set to a small value.

4.1.2 Dynamic Allocation Technique

The background migration technique works well when a
system has sufficient idle time. Otherwise, the migration

120	 2009 USENIX Annual Technical Conference	 USENIX Association

 
 



Figure 6: Our approach to idle time prediction

overhead cannot be avoided. But it can be ameliorated
by writing part of the incoming data into the MLC re-
gion, so as to reduce the amount of data to be moved by
the background migrator. Although this approach results
in a lower I/O performance than SLC flash memory, it
can prevent significant performance degradation due to a
compulsory data migration.

The dynamic allocator determines the amount of data
that will be written into the SLC region. Intuitively, it
is clear that this must depend on how much idle time
there is in a given system. Since the amount of idle time
changes dynamically with user activities, we need to pre-
dict it carefully. Figure 6 illustrates the basic idea of our
idle time prediction approach, which is based on previ-
ous work [9]. In this figure, each time window repre-
sents the period during which Np pages are written into
flash memory. The dynamic allocator stores measured
idle times for several previous time windows, and uses
them to predict the idle time, T

pred
idle , for the next time

window. The value of T
pred
idle is a weighted average of

the idle times for the latest 10 time windows; the three
most recent windows are given a higher weight to take
the recency of I/O pattern into account.

If we know the value of T
pred
idle , we can use it to calcu-

late an allocation ratio, denoted by α, which determines
how many pages will be written to the SLC region in the
next time window. The value of α can be expressed as
follows:

α =

8

<

:

1 if T pred

idle ≥ Tmig

T pred

idle

Tmig

if T pred

idle < Tmig ,
(1)

where Tmig = Np · (Ttrig + T SLC
erase/SSLC

p), (2)
where T

SLC
erase is the time required to erase an SLC flash

block which contains S
SLC
p pages. As mentioned in

Section 4.1.1, Ttrig is the time interval required for one
page to migrate from the SLC region to the MLC re-
gion. Therefore, Tmig is the migration time, which in-
cludes the time taken to move all Np pages to the MLC
region and the time for erasing all used SLC blocks. If
T

pred
idle ≥ Tmig , there is sufficient idle time for data mi-

grations, and thus α = 1. Otherwise, the value of α

should be reduced so that less data is written into the
SLC region, as expressed by Eq. (1).

Once the value of α has been determined, the dynamic
allocator tries to distribute the incoming data across the

   



   

   

 







Figure 7: A comparison of the locality-unaware and
locality-aware approaches

different flash regions depending on α. Therefore, the
number of pages to be written into the SLC region,
N

SLC
p , and the amount of data destined for the MLC

region, NMLC
p , can be expressed as follows:

NSLC
p = Np · α, NMLC

p = Np · (1 − α). (3)

Finally, after writing all Np pages, the dynamic allocator
calculates a new value of α for the next Np pages.

4.1.3 Locality-aware Data Management Technique

FlexFS is based on a log-structured file system, and
therefore it uses the out-place update policy. Under this
policy, hot data with a high update frequency generates
more outdated versions of itself than cold data, which is
updated infrequently. Our locality-aware data manage-
ment technique exploits this characteristic to increase the
efficiency of data migration.

Figure 7 compares the locality-aware and the locality-
unaware approaches. We assume that, at time t1, three
cold pages p0, p2, and p3, and one hot page p1, exist in
the SLC region. Between t1 and t2, there are some idle
periods, and new pages p1, p4, p5, and p6 are written
into the SLC region. Note that p1 is rewritten because
it contains hot data. In the case of the locality-unaware
approach shown in Figure 7(a), we assume that pages
p0, p1, and p2 are moved to the MLC region during idle
time, but p3 cannot be moved because there is not enough
idle time. Therefore, at time t2, there are five pages in
the SLC region. If the value of Np is 4, the value of α

should decrease so that data will not accumulate in the
SLC region. However, if we consider the locality of the
data, we can move p3 instead of p1 during idle periods,
as shown in Figure 7(b). Since p1 has a high locality,
it is highly likely to be invalidated by t2. Therefore, an
unnecessary page migration for p1 can be avoided, and
only four pages remain in the SLC region. In this case,
we need not to reduce the value of α, and more data will
be written into the SLC region.

Using this observation, Eq. (2) can be rewritten as
follows:

Tmig = (Np − Nhot
p) · (Ttrig + T SLC

erase/SSLC
p), (4)

USENIX Association	 2009 USENIX Annual Technical Conference	 121

where N
hot
p is the number of page writes for hot pages

stored in the SLC region. For instance, in the above ex-
ample, N

hot
p is 1. Because we only need to move Np

- N
hot
p pages into the MLC region, the value of Tmig

can be reduced, allowing an increase in α for the same
amount of idle time.

To exploit the locality of I/O references, there are two
questions to answer. The first is to determine the local-
ity of a given data. To know the hotness of data, FlexFS
uses a 2Q-based locality detection technique [10], which
is widely used in the Linux operating system. This tech-
nique maintains a hot and a cold queue, each containing
a number of nodes. Each node contains the inode num-
ber of a file. Nodes corresponding to frequently accessed
files are stored on the hot queue, and the cold queue con-
tains nodes for infrequently accessed files. The locality
of a given file can easily be determined from queue in
which the corresponding node is located.

Second, the data migrator and the dynamic allocator
should be modified so that they take the locality of data
into account. The data migrator tries to select an SLC
block containing cold data as a victim, and an SLC block
containing hot data is not selected as a victim unless very
few free blocks remain. Since a single block can con-
tain multiple files which have different hotness, FlexFS
calculates the average hotness of each block as the cri-
terion, and chooses a block whose hotness is lower than
the middle. It seems better to choose a block containing
only cold pages as a victim block; if there are only a few
bytes of hot data in a victim, this results in useless data
migrations for hot data. However, this approach incurs
the delay in reclaiming free blocks, because even if the
small amount of hot data is stored on a block, the block
will not be chosen as a victim.

The dynamic allocator tries to write as much hot data
to the SLC region as possible in order to increase the
value of N

hot
p . The dynamic allocator also calculates a

new value of α after Np pages have been written and, for
this purpose, the value of N

hot
p for the next time window

need to be known. Similar to the approach used in our
idle time prediction, we count how many hot pages were
written into the SLC region during the previous 10 time
windows, and use their average hotness value as N

hot
p

for the next time window. The value of N
hot
p for each

window can be easily measured using an update variable,
which is incremented whenever a hot page is sent to the
SLC region.

4.2 Improving the Endurance
To enhance the endurance of flash memory, many flash
file systems adopt a special software technique called
wear-leveling. In most existing wear-leveling tech-
niques, the primary aim is to distribute erase cycles

evenly across the flash medium [11, 12]. FlexFS uses
this approach, but also needs to support more specialized
wear management to cope with frequent data migrations.

The use of FlexFS means that each block undergoes
more erase cycles because a lot of data is temporarily
written to the SLC region, waiting to move to the MLC
region during idle time. To improve the endurance and
prolong the lifetime, it would be better to write data to
the MLC region directly, but this reduces the overall per-
formance. Therefore, there is another important trade-off
between the lifetime and performance.

To efficiently deal with this trade-off, we propose a
novel wear management technique which controls the
amount of data to be written into the SLC region depend-
ing on a given storage lifetime.

4.2.1 Explicit Endurance Metric

We start by introducing a new endurance metric which
is designed to express the trade-off between lifetime and
performance. In general, the maximum lifetime, Lmax,
of flash memory depends on the capacity and the amount
of data written to them, and is expressed as follows:

Lmax =
Ctotal · Ecycles

WR
, (5)

where Ctotal is the size of flash memory, and Ecycles is
the number of erase cycles allowed for each block. The
writing rate WR indicates the amount of data written in
unit time (e.g., per day). This formulation of Lmax is
used by many flash memory manufacturers [13] because
it clearly shows the lifetime of a given flash application
under various environments.

Unfortunately, Lmax is not appropriate to handle the
trade-off between lifetime and performance because it
expresses the expected lifetime, and not the constraints to
be met in order to improve the endurance of flash mem-
ory. Instead, we use an explicit minimum lifespan, Lmin,
which represents the minimum guaranteed lifetime that
would be ensured by a file system. Since FlexFS can con-
trol the writing rate WR by adjusting the amount of data
written into the SLC region, this new endurance metric
can be expressed as follows:

Control WR by changing a wear index, δ
Subject to

Lmin ≈
Ctotal · Ecycles

WR
,

(6)

where δ is called the wear index. In FlexFS δ is propor-
tional to WR, and therefore δ can be used to control the
value of WR. If δ is high, FlexFS writes a lot of data
to the SLC region; and this increases WR due to data
migrations; but if δ is low, the writing rate is reduced.
Our wear management algorithm controls δ so that the
lifetime specified by Lmin is to be satisfied.

122	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 8: How the number of blocks used depends on δ

4.2.2 Assigning a Writing Budget

The proposed wear management algorithm divides
the given lifetime Lmin into n time windows
(w0, w1, ..., wn−2, wn−1), and the duration of each
window is given as Ts. The writing rate WR(wi)
for each time window wi can also be expressed as
WB(wi)/Ts, where WB(wi) is the amount of data
and represents the writing budget assigned to the time
window wi.

Since Ts is fixed, the assignment of a writing budget
to each window significantly impacts the overall perfor-
mance as well as the rate at which flash memory wears
out. For example, if too large a writing budget is as-
signed to each window, it markedly increases the number
of erase cycles for each block; on the other hand, if too
small a writing budget is allocated, it lowers the overall
performance. Therefore, we determine a writing budget
for the window wi as follows:

WB(ti) =
(Ctotal · Ecycles) − W (ti)

n − (ti/Ts)
, (7)

where ti is the time at the start of window wi, and W (ti)
indicates the amount of a writing budget that has actu-
ally been used by ti. The remaining writing budget is
(Ctotal · Ecycles) − W (ti), and the number of remain-
ing windows is (n − (ti/Ts)). Therefore, the remaining
writing budget is shared equally between the remaining
windows. The writing budget is calculated at the begin-
ning of every time window, so as to take changes in the
workload pattern into consideration.

4.2.3 Determining the Wear Index

Once the writing budget has been assigned to a time win-
dow, the wear manager adjusts the wear index, δ, so that
the amount of a writing budget actually used approxi-
mates the given writing budget. The wear index is used
by a dynamic allocator, similar to Eq. (3), to distribute
the incoming data across the two regions.

Figure 8 shows how the number of blocks used de-
pends on the value of δ. The size of the SLC and MLC

blocks is 256 KB and 512 KB, respectively. Suppose
that 512 KB data is written, and the data migrator moves
this data from the SLC region to the MLC region. If
δ is 1.0, as shown in Figure 8(a), 512 KB is written to
two SLC blocks, and then the data migrator requires one
MLC block to store the data from two SLC blocks. In
this case, the total amount of a writing budget used is 1.5
MB because three blocks have been used for writing. If δ
is 0.5, as shown in Figure 8(b), 1 MB of a writing budget
is used, requiring one SLC block and one MLC block.
Figure 8(c) shows the case when δ is 0.0. Only 512 KB
is used because there is no data to be moved.

This simple example suggests that we can generalize
the relationship between the wear index, the amount of
incoming data, and the amount of a writing budget actu-
ally used, as follows:

IW (wi) · (2 · δ + 1) = OW (wi), (8)

where IW (wi) is the amount of data that arrives during
the window wi, and OW (wi) is the amount of a writing
budget to be used depending on δ. In the example of
Figure 8(b), IW (ti) is 512 KB and δ is 0.5, and thus
OW (ti) is 1 MB. IW (wi) · (2 · δ) is the amount of a
writing budget used by the SLC region and IW (wi) is
the amount of data to be written to the MLC region.

The wear index should be chosen so that OW (wi) =
WB(ti), and can therefore be calculated as follows:

δ =
WB(ti) − IW (wi)

2 · IW (wi)
. (9)

The value of δ is calculated at the beginning of wi when
the exact value of IW (wi) is unknown. IW (wi) is there-
fore estimated to be the average value of the previous
three time windows. If WB(ti) < IW (wi), then δ is
0, and therefore all the data will be written to the MLC
region. If IW (wi) is always larger than WB(ti), it may
be hard to guarantee Lmin. However, by writing all the
data to the MLC region, FlexFS can achieve a lifetime
close to that of a pure MLC flash memory.

A newly determined value of δ is only used by the dy-
namic allocator if δ < α. Therefore, the wear manage-
ment algorithm is only invoked when it seems that the
specified lifetime will not be achieved.

4.3 Garbage Collection
The data migrator can make free blocks by moving data
from the SLC region to the MLC region, but it cannot re-
claim the space used by invalid pages in the MLC region.
The garbage collector, in FlexFS, reclaims these invalid
pages by selecting a victim block in the MLC region, and
then by copying valid pages in the victim into a different
MLC block. The garbage collector selects a block with
many invalid pages as a victim to reduce the requirement

USENIX Association	 2009 USENIX Annual Technical Conference	 123

Figure 9: A snapshot of the flash development board
used for experiments

for additional I/O operations, and also utilizes idle times
to hide this overhead from users. Note that, it is never
necessary to choose a victim in the SLC region. If cold
data is stored in SLC blocks, it will be moved to the MLC
region by the data migrator; but hot data need not to be
moved because it will soon be invalidated.

5 Experimental Results

In order to evaluate the efficiency of the proposed tech-
niques on a real platform, we implemented FlexFS on
Linux 2.6.25.14 kernel. Our hardware system was the
custom flash development board shown in Figure 9,
which is based on TI’s OMAP2420 processor (running
at 400 MHz) with a 64 MB SDRAM. The experiments
were performed on Samsung’s KFXXGH6X4M-series
1-GB flash memory [4], which is connected to one of
the NAND sockets shown in Figure 9. The size of each
page was 4 KB and there were 128 pages in a block.

To evaluate the FlexFS file system objectively, we
used two types of workload. In Section 5.1, we present
experimental results from synthetic workloads. In Sec-
tion 5.2, we evaluate FlexFS using actual I/O traces col-
lected from executions of real mobile applications.

5.1 Experiments with SyntheticWorkloads
5.1.1 Overall Throughput

Table 2 summarizes the configurations of the four
schemes that we used for evaluating the throughput of
FlexFS. In the baseline scheme, all the data is first writ-
ten into SLC blocks, and then compulsorily moved to
MLC blocks only when fewer than five free blocks re-
main. Three other schemes, BM, DA, and LA, use tech-

Table 2: Summary of the schemes used in throughput
evaluation

Schemes Baseline BM DA LA
Background migration × � � �

Dynamic allocation × × � �

Locality-aware × × × �

niques to reduce the overhead of data migrations. For
example, the BM scheme uses only the background mi-
gration technique, while the LA scheme uses all three
proposed techniques. In all the experiments, Twait was
set to 1 second, Np was 1024 pages, and Ttrig was 15
ms. To focus on the performance implications of each
scheme, the wear management scheme was disabled.

All the schemes were evaluated on three synthetic
benchmark programs: Idle, Busy, and Locality. They
were designed to characterize several important proper-
ties, such as the idleness of the system and the locality
of I/O references, which give significant effects on the
performance of FlexFS. The Idle benchmark mimics the
I/O access patterns that occur when sufficient idle time is
available in a system. For this purpose, the Idle bench-
mark writes about 4 MB of data (including metadata) to
flash memory every 25 seconds. The Busy benchmark
generates 4 MB of data to flash memory every 10 sec-
onds, which only allows the I/O subsystem small idle
times. The Locality benchmark is similar to Busy, ex-
cept that about 25% of the data is likely to be rewritten
to the same locations, so as to simulate the locality of
I/O references that occurs in many applications. All the
benchmarks issued write requests until about 95% of the
total MLC capacity has been used. To speed up the eval-
uation, we limited the capacity of flash memory to 64
MB using the MTD partition manager [14].

Figure 10 compares the throughput of Baseline and
BM with the Idle benchmark. The throughput of Base-
line is significantly reduced close to 100 KB/s when the
utilization approaches 50%, because before writing the

1.5

2

2.5

3

3.5

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

0

0.5

1

7 14 21 27 34 41 47 54 61 67 74 81 88 94

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Flash Memory Utilization (%)

Baseline
BM

Figure 10: Performance comparison of Baseline and BM
with the Idle benchmark

124	 2009 USENIX Annual Technical Conference	 USENIX Association

1.5

2

2.5

3

3.5
Th

ro
ug

hp
ut

 (M
B

/s
ec

)

0

0.5

1

7 14 21 27 34 41 47 54 61 67 74 81 88 94

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Flash Memory Utilization (%)

BM
DA

Figure 11: Performance comparison of BM and DA with
the Busy benchmark

incoming data, the data migrator should make enough
free space in the SLC region, incurring a noticeable per-
formance degradation. However, BM achieves the same
performance as SLC flash memory until the utilization
exceeds 94%. Since the Idle benchmark allows FlexFS
a lot of idle time (about 93.6% of the total execution
time), it should be possible to reclaim a sufficient num-
ber of free blocks before new write requests arrive and
require them. When the utilization reaches 94%, the per-
formance of BM is significantly reduced because almost
all of the available blocks is occupied by valid data, and
fewer than 5 free blocks remain available.

Figure 11 compares the performance of BM and DA
while running the Busy benchmark. In this evaluation,
BM shows a better throughput than DA when the utiliza-
tion is less than 67%. However, its performance quickly
declines because the idle time is insufficient to allow BM
to generate enough free blocks to write to the SLC re-
gion. DA does exhibit a stable write performance, re-
gardless of the utilization of flash memory. At the be-
ginning of the run, the value of α is initially set to 1.0
so that all the incoming data is written to the SLC re-
gion. However, since insufficient idle time is available,
the dynamic allocator adjusts the value of α to 0.5. DA
then writes some of the arriving data directly to the MLC
region, avoiding a significant drop in performance.

Figure 12 shows the performance benefit of the
locality-aware approach using the Locality benchmark.
Note that Locality has the same amount of idle time com-
pared as the Busy benchmark. LA achieves 7.9% more
write performance than DA by exploiting the locality of
I/O references. The overall write throughput of LA is
2.66 MB/s while DA gives 2.45 MB/s. The LA scheme
also starts with an α value of 1.0, but that is reduced to
0.5 because the idle time is insufficient. However, after
detecting a high degree of locality from I/O references,
α is partially increased to 0.7 by preventing useless data
migrations of hot data, and more data can then be written
into the SLC region.

1.5

2

2.5

3

3.5

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

0

0.5

1

7 14 21 27 34 41 47 54 61 67 74 81 88 94

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Flash Memory Utilization (%)

DA
LA

Figure 12: Performance comparison of DA and LA with
the Locality benchmark

5.1.2 Response Time

Although the background migration contributes to im-
proving the write throughput of FlexFS, it could incur
a substantial increase in response time because I/O re-
quests can be issued while the background migrator is
running. In this subsection, to investigate the impact of
the background migration on the response time, we per-
formed evaluations with a following scenario.

We first wrote 30 MB of bulk data in order to trigger
the background migrator. FlexFS was modified for all
the incoming data to be written into the SLC region, re-
gardless of the amount of idle time. After writing this
data, we made 10 page write requests. The idle time be-
tween two consecutive write requests was generated us-
ing a pseudo-random number generator, but this was ad-
justed at least larger than Twait so that all write requests
was randomly issued after the background migrator has
been initiated. To collect accurate and reliable results,
we performed this scenario more than 30 times.

We performed our evaluation for the following four
configurations. In order to know the effect of the idle
time utilization, we measured the response time while
varying the idle time utilization. The configurations,
U100, U50, and U10 represent when FlexFS utilizes
100%, 50%, and 10% of the total idle time, respectively.
This idle time utilization can be easily controlled by the
value of Ttrig. For example, the time required to move
a single page from SLC to MLC is about 1.5 ms, and so
the utilization of 10% can be made using Ttrig of 15 ms.
To clearly show the performance penalty from the back-
ground migration, we evaluated the response time when
the background migration is disabled, which is denoted
as OPT. The migration suspension mentioned in Section
4.1.1 was enabled for all the configurations.

Figure 13 shows the cumulative distribution function
of the response time for the four configurations. As ex-
pected, OPT shows the best response time among all the
configurations. However, about 10% of the total I/O re-
quests requires more than 2,000 us. This response time

USENIX Association	 2009 USENIX Annual Technical Conference	 125

0.4
0.5
0.6
0.7
0.8
0.9

1
C

um
ul

at
iv

e
Pr

ob
ab

ili
ty

OPT

0
0.1
0.2
0.3
0.4

1 2 4 8 16 32 64 128

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Response Time (ms)

OPT
U10
U50
U100

Figure 13: A comparison of response time delays on dif-
ferent system configurations

delay is caused by the writing of the metadata informa-
tion. Although we wrote 4 KB of data into flash memory,
the amount of data actually written was slightly larger
than 4 KB because of the metadata overhead. Conse-
quently, this results in additional page writes, incurring
the delay in response time.

U10 exhibits a longer response time than OPT for
about 10% of the total I/O requests, but it shows a fairly
good response time. On the other hand, the performance
of U50 and U100 is significantly deteriorated because
they utilize a lot of idle time for data migrations, increas-
ing the probability of I/O requests being issued while
the background migrator is working. Especially, when
two tasks (the foreground task and the background mi-
gration task) compete for a single CPU resource, the per-
formance penalty caused by the resource contention is
more significant than we expect.

5.1.3 Endurance

We evaluated our wear management scheme using a
workload scenario in which the write patterns change
over a relatively long time. We set the size of flash mem-
ory, Ctotal, to 120 MB, and the number of erase cycles
allowed for each block, Ecycles, was 10, allowing a max-
imum of 1.2 GB to be written to flash memory. We set
the minimum lifetime, Lmin, to 4,000 seconds, and our
wear management scheme was invoked every 400 sec-
onds. So, there are 10 time windows, w0, ..., w9, and the
duration of each, Ts, is 400 seconds. To focus our eval-
uation on the effect of the wear management scheme on
performance, the system was given enough idle time to
write all the data to the SLC region if the lifetime of flash

Table 3: The amount of data (MB) arrives for each win-
dow during the evaluation of wear management policy.

Time window w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

Size (MB) 40 40 40 80 80 20 20 40 40 40

0.4
0.5
0.6
0.7
0.8
0.9
1

400

600

800

1000

1200

δ

A
m

ou
nt

 o
f d

at
a

w
rit

te
n

(M
B

)

0
0.1
0.2
0.3

0

200

400

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

A
m

ou
nt

 o
f d

at
a

w
rit

te
n

(M
B

)

Time window (Ts = 400 s)

Written data
δ

Figure 14: The changes in the size of written data and
the δ value

memory is not considered.
Table 3 shows the amount of data (MB) written to flash

memory for each window, wi, and Figure 14 shows how
the proposed wear management scheme adapts to chang-
ing write sizes while satisfying the minimum lifetime.
Initially, FlexFS allocates a writing budget of 120 MB (=
1.2 GB / 10) to each time window. This budget is large
enough to allow all the incoming data to be written to
the SLC region if less than or equal to 40 MB of data
arrives during each window. Therefore, during the first
three windows, the value of δ is set to 1.0. During w3 and
w4, however, about 160 MB of data arrives, and FlexFS
reduces δ to cut the migration cost. Because only 40 MB
of data arrives during w5 and w6, FlexFS can increase
δ to give a larger writing budget to the remaining win-
dows. We measured the amount of data written to flash
memory, including extra overheads caused by migrations
from the SLC region to the MLC region. FlexFS writes
about 1.2 GB of data to flash memory, and thus achieving
the specified minimum life span of 4,000 seconds.

We also counted the number of erase operations per-
formed on each block while running FlexFS with and
without the wear management scheme using the same
workload scenario. A wear-leveling policy was disabled
when the wear management scheme was not used. Fig-
ure 15 shows distributions of block erase cycles, and Ta-
ble 4 summarizes the results relevant to a wear-leveling.

0
2
4
6
8

10
12
14
16
18

1 32 64 96 128 160 192 224 256

Er
as

e c
ou

nt

Block number

0
2
4
6
8

10
12
14
16
18

1 32 64 96 128 160 192 224 256

Er
as

e c
ou

nt

Block number

 

Figure 15: Distributions of block erase cycles

126	 2009 USENIX Annual Technical Conference	 USENIX Association

Table 4: Summary of results relevant to a wear-leveling
Avg. erase cycles Std.Dev.

w/ wear management 9.23 1.20
wo/ wear management 10.73 2.43

These results clearly indicate that with the wear manage-
ment scheme FlexFS gives a good wear characteristic;
the maximum erase cycle of each block is effectively lim-
ited to less than or equal to 10, and the block erase op-
erations are evenly distributed across the flash memory
medium.

5.2 Experiments with Mobile Workloads
5.2.1 Generating Mobile Workloads

In addition to the synthetic workloads discussed in Sec-
tion 5.1, which were designed to evaluate one aspect of
FlexFS at a time, we evaluated FlexFS using I/O traces
collected from a real-world mobile platform to assess the
performance of FlexFS with mobile applications.

To collect and replay I/O traces from real applica-
tions, we developed a custom mobile workload gen-
eration environment based on the Qtopia Phone Edi-
tion [15], which includes representative mobile appli-
cations such as PIMS, SMS, and media players. This
environment includes three tools: a usage pattern gen-
erator, an I/O tracer, and a replayer. The usage pattern
generator automatically executes mobile applications as
if the user is actually interacting with applications dur-
ing runtime. The I/O tracer captures I/O system calls
(e.g., fopen, fread, and fwrite) while running the usage
pattern generator on the Qtopia platform, and then stores
collected traces in a log file. The replayer uses this log
file to replay the I/O requests in our development board.
Note that this log file allows us to repeat the same usage
patterns for different system configurations.

For the evaluation, we executed the several mobile ap-
plications shown in Table 5 on our workload generation
environment for 30 minutes. We followed a represen-
tative usage profile of mobile users reported in [16] ex-
cept that more multimedia data was written in order to
simulate data downloading scenario. The trace includes

Table 5: Applications used for evaluations
Application Description

SMS Send short messages
Address book Register / modify / remove addresses

Memo Write a short memo
Game Play a puzzle game

MP3 player Download 6 MP3 files (total 18 MB)
Camera Take 9 pictures (total 18 MB)

Table 6: A performance comparison of FlexFSMLC and
FlexFSSLC under mobile workloads

Response time Throughput
Read Write Write
(us) (us) (MB/s)

FlexFSSLC 34 334 3.02
FlexFSMLC 37 345 2.93

JFFS2 36 473 2.12

43,000 read and write requests. About 5.7 MB was read
from flash memory and about 39 MB was written.

5.2.2 Evaluation Results

In order to find out whether FlexFS can achieve SLC-
like performance, we evaluated the performance of
two FlexFS configurations, FlexFSMLC and FlexFSSLC.
FlexFSMLC is the proposed FlexFS configuration us-
ing both SLC and MLC programming, while FlexFSSLC

mimics SLC flash memory by using only SLC program-
ming. To know the performance benefits of FlexFSMLC,
we evaluated JFFS2 file system on the same hardware. In
this subsection, we will focus on the performance aspect
only, since the capacity benefit of FlexFSMLC is clear.

For FlexFSMLC, Ttrig was set to 15 ms, Np to 1024
pages, and Twait to 1 second. We assumed a total ca-
pacity of 512 MB, a maximum of 10,000 erase cycles for
a block, and a minimum lifetime of 3 years. The wear
management policy was invoked every 10 minutes.

Table 6 compares the response time and the through-
put of FlexFSMLC, FlexFSSLC, and JFFS2. The response
time was an average over all the I/O requests in the trace
file, but the throughput was measured when writing a
large amount of data, such as MP3 files. Compared to
JFFS2, FlexFSMLC achieves 28% smaller I/O response
time and 28% higher I/O throughput. However, the per-
formance difference between FlexFSMLC and JFFS2 is
noticeably reduced compared to the difference shown in
Table 1 because of computational overheads introduced
by each file system. JFFS2 as well as FlexFSMLC re-
quires a lot of processing time for managing internal data
structures, such as block lists, a metadata, and an error
detecting code, which results in the reduction of the per-
formance gap between two file systems.

The performance of FlexFSMLC is very close to that
of FlexFSSLC. The response times of FlexFSMLC are
10% and 3.2% slower for reads and writes, compared
with FlexFSSLC. The I/O throughput of FlexFSMLC is
3.4% lower than that of FlexFSSLC. This high I/O perfor-
mance of FlexFSMLC can be attributed to the sufficiency
of idle time in the trace. Therefore, FlexFSMLC can write
most incoming data into the SLC region, improving the
overall I/O performance.

USENIX Association	 2009 USENIX Annual Technical Conference	 127

0.4
0.5
0.6
0.7
0.8
0.9
1
1.1

40
50
60
70
80
90

100

δ

N
um

be
r o

f b
lo

ck
s

SLC block MLC block δ

0
0.1
0.2
0.3
0.4

0
10
20
30
40

30 12
0

21
0

30
0

39
0

48
0

57
0

66
0

75
0

84
0

93
0

10
20

11
10

12
00

12
90

13
80

14
70

15
60

16
50

17
40

18
30

N
um

be
r o

f b
lo

ck
s

Time (second)

Figure 16: The changes in the number of SLC and MLC
blocks with a mobile workload in FlexFSMLC

The graph in Figure 16 shows in more detail how
FlexFSMLC achieves I/O efficiency. We counted the
number of each type of block every 30 seconds. In the
graph, the regions around 840 seconds clearly demon-
strate the effectiveness of the proposed techniques. Start-
ing from 750 seconds, many MP3 files of about 18 MB
are intensively written into flash memory. FlexFSMLC

can write all this data into the SLC region because the
idle time predictor in the dynamic allocator predicts there
will be enough idle time, which allows aggressive writes
to the SLC region.

From our observations on the representative mobile
workloads, there are two distinctive characteristics in I/O
access patterns. First, many mobile embedded systems
such as mobile phones and smart phones are likely to
have sufficient idle time; the average idle time accounts
for about 89% of the total execution time. Second, most
data is intensively written to flash memory within a short
time interval. As the experimental results show, FlexFS
is effectively designed for dealing with such characteris-
tics, and thus can achieve the I/O performance close to
SLC flash memory.

The small performance penalty of FlexFSMLC results
from ensuring the given minimum lifetime. As shown
in Figure 16, at around 1,200 seconds the wear manage-
ment policy reduces the value of δ to 0.5, which degrades
the write performance of FlexFSMLC. However, this de-
cision was necessary because a large number of writes
to the SLC region for storing several MP3 files reduced
the number of erase cycles significantly. To meet the re-
quired minimum lifetime, FlexFS wrote 50% of the data
to the MLC region directly. This result indicates that the
poor wear characteristic of MLC flash memory could be
a hurdle for FlexFS to achieve its performance benefit.

However, it must be noted that 512 MB of flash ca-
pacity used in our evaluation is very small compared to
commercial flash applications. Actually, many flash de-
vices already employ several GB of flash memory and
its capacity doubles every two or three years. For exam-

ple, if a flash device has 16 GB MLC flash memory and
the minimum lifetime is set to 3 years, the writing bud-
get per day is about 146 GB. Therefore, it may safely be
assumed that the endurance problem would be mitigated
without a significant performance degradation.

6 Related Work

Many file systems for NAND flash memory have been
studied in recent years. JFFS2 [5] and YAFFS [7] are
representative, and are both the log-structured file sys-
tems [6], which write data sequentially to NAND flash
memory. JFFS2 was originally developed for NOR flash
memory, and later extended to NAND devices. JFFS2
stores metadata and regular data together. YAFFS is sim-
ilar to JFFS2 except that metadata is stored in a spare area
of each page to promote fast mounting of the file system.
They are both designed for the homogeneous flash mem-
ory media, and do not support the heterogeneous flash
memory devices discussed in this paper.

Recently, there have been several efforts to combine
both SLC and MLC flash memory. Chang et al. suggest a
solid-state disk which is composed of a single SLC chip
and many MLC chips [17], while Park et al. present a
flash translation layer for mixed SLC-MLC storage sys-
tems [18]. The basic idea of these two approaches is
to store frequently updated data in the small SLC flash
memory while using the large MLC flash memory for
storing bulk data. This brings the overall response time
close to that of SLC flash memory while keeping the cost
per bit as low as MLC flash memory. However, these ap-
proaches cannot break down when a large amount of data
has to be written quickly, because they only use the small
SLC flash memory so as to achieve their cost benefit. In
this situation, the overall I/O throughput will be limited
to the throughput of MLC flash memory. But FlexFS can
handle this case efficiently by flexibly increasing the size
of the SLC region, and therefore combines the high per-
formance of SLC flash memory with the high capacity of
MLC flash memory.

The hybrid hard disk [19, 20] is another heteroge-
neous storage system which uses flash memory as a non-
volatile cache for a hard disk. In a hybrid hard disk, flash
memory is used to increase the system responsiveness,
and to extend battery lifetime. However, this approach
is different from our study in which it does not give any
considerations on optimizing the storage system by dy-
namically changing its organization.

7 Conclusions

FlexFS is a file system that takes advantage of flexible
programming of MLC NAND flash memory. FlexFS is

128	 2009 USENIX Annual Technical Conference	 USENIX Association

designed to maximize I/O performance while making the
maximum capacity of MLC flash memory available. The
novel feature of FlexFS is migration overhead reduction
techniques which hide the incurred migration overhead
from users. FlexFS also includes a novel wear manage-
ment technique which mitigates the effect of the data mi-
gration on the lifetime of flash memory. Experimental
results show that FlexFS achieves 90% and 96% of the
read and write performance of SLC flash memory with
real-world mobile workloads.

There are a few areas where FlexFS can be further im-
proved. First, even though the background migration is
effective in hiding the migration overhead, it is less effi-
cient from the energy consumption perspective because
it reduces the probability that the system enters a low-
power state. In order to better handle both the perfor-
mance and energy consumption simultaneously, we are
developing a dynamic allocation policy that takes into ac-
count an energy budget of a system. Second, for FlexFS
to be useful on a wide range of systems, the poor wear
characteristic of MLC flash memory should be addressed
properly. To handle this problem, we are also investigat-
ing a wear management policy for a storage architecture
in which SLC flash memory is used as a write buffer for
MLC flash memory.

8 Acknowledgements

This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) grant funded by the Ko-
rea government (No. R0A-2007-000-20116-0) and the
Brain Korea 21 Project in 2009. This work was also
supported by World Class University (WCU) program
through KOSEF funded by the Ministry of Education,
Science and Technology (No. R33-2008-000-10095-0).
Samsung Electronics partially supported our FlexFS re-
search and the ICT at Seoul National University provided
research facilities for this study.

References

[1] F. Roohparvar, “Single Level Cell Programming in a Mul-
tiple Level Cell Non-volatile Memory Device,” In United
States Patent, No 11/298,013, 2007.

[2] M. Bauer, “A Multilevel-Cell 32 Mb Flash Memory,” In
Proceedings of the Solid-State Circuits Conference, Febru-
ary 1995.

[3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash Memory
Cells - An Overview,” In Proceedings of the IEEE, vol. 85,
no. 8, 1997.

[4] Samsung Electronics Corp., “Flex-OneNAND‘ Specifica-
tion,” http://www.samsung.com/global/system/business/
semiconductor/product/2008/2/25/867322ds kfxxgh6x4m
rev10.pdf.

[5] D. Woodhouse, “JFFS : The Journalling Flash File Sys-
tem,” In Proceedings of the Linux Symposium, July 2001.

[6] M. Rosenblum and J. Ousterhout, “The Design and Imple-
mentation of a Log-Structured File System,” ACM Trans-
actions on Computer Systems, vol. 10, no. 1, 1992.

[7] Aleph One, “YAFFS: Yet Another Flash File System,”
http://www.yaffs.net/, 2002.

[8] L. Benini, A. Bogliolo, and G. D. Micheli, “A Survey of
Design Techniques for System-level Dynamic Power Man-
agement,” IEEE Transactions on VLSI Systems, vol. 8, no.
3, 2000.

[9] E. Chan, K. Govil, and H. Wasserman, “Comparing Algo-
rithms for Dynamic Speed-setting of a Low-power CPU,”
In Proceedings of the Conference on Mobile Computing
and Networking (MOBICOM ’95), November 1995.

[10] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” In
Proceedings of the Conference on Management of Data
(SIGMOD ’93), May 1993.

[11] H. Kim and S. Lee, “An Effective Flash Memory Man-
ager for Reliable Flash Memory Space Management,” IE-
ICE Transactions on Information and System, vol. E85-D,
no. 6, 2002.

[12] L. Chang and T. Kuo, “Efficient Management for Large-
Scale Flash-Memory Storage Systems with Resource Con-
servation,” ACM Transactions on Storage, vol. 1, no. 4,
2005.

[13] SanDisk, “Longterm Data Endurance (LDE) for Client
SSD,” http://www.sandisk.com/Assets/File/pdf/oem/LDE
White Paper.pdf, 2008.

[14] Memory Technology Device (MTD), http://www.linux-
mtd.infradead.org/doc/general.html.

[15] Nokia Corp., “Qtopia Phone Edition 4.1.2,”
http://www.qtsoftware.com/products/.

[16] H. Verkasalo and H. Hämmäinen, “Handset-Based Mon-
itoring of Mobile Subscribers,” In Proceedings of the
Helsinki Mobility Roundtable, June 2006.

[17] L.P. Chang, “Hybrid Solid-State Disks: Combining Het-
erogeneous NAND Flash in Large SSDs,” In Proceedings
of the Conference on Asia and South Pacific Design Au-
tomation (ASP-DAC ’08), January 2008.

[18] S. Park, J. Park, J. Jeong, J. Kim, and S. Kim, “A Mixed
Flash Translation Layer Structure for SLC-MLC Com-
bined Flash Memory System,” In Proceedings of the Work-
shop on Storage and I/O Virtualization, Performance, En-
ergy, Evaluation and Dependability (SPEED ’08), Febru-
ary 2008.

[19] R. Panabaker, “Hybrid Hard Disk and ReadyDrive Tech-
nology: Improving Performance and Power for Windows
Vista Mobile PCs,” In Proceedings of the Microsoft Win-
HEC, May 2006.

[20] Y. Kim, S. Lee, K. Zhang, and J. Kim, “I/O Performance
Optimization Technique for Hybrid Hard Disk-based Mo-
bile Consumer Devices,” IEEE Transactions on Consumer
Electronics, vol. 53, no. 4, 2007.

USENIX Association	 2009 USENIX Annual Technical Conference	 129

Layering in Provenance Systems

Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland,
Peter Macko, Diana Maclean, Daniel Margo, Margo Seltzer, Robin Smogor

Harvard School of Engineering and Applied Sciences
pass@eecs.harvard.edu

Abstract
Digital provenance describes the ancestry or history of a
digital object. Most existing provenance systems, how-
ever, operate at only one level of abstraction: the sys-
tem call layer, a workflow specification, or the high-level
constructs of a particular application. The provenance
collectable in each of these layers is different, and all of
it can be important. Single-layer systems fail to account
for the different levels of abstraction at which users need
to reason about their data and processes. These systems
cannot integrate data provenance across layers and can-
not answer questions that require an integrated view of
the provenance.

We have designed a provenance collection structure
facilitating the integration of provenance across multi-
ple levels of abstraction, including a workflow engine,
a web browser, and an initial runtime Python prove-
nance tracking wrapper. We layer these components atop
provenance-aware network storage (NFS) that builds
upon a Provenance-Aware Storage System (PASS). We
discuss the challenges of building systems that integrate
provenance across multiple layers of abstraction, present
how we augmented systems in each layer to integrate
provenance, and present use cases that demonstrate how
provenance spanning multiple layers provides function-
ality not available in existing systems. Our evaluation
shows that the overheads imposed by layering prove-
nance systems are reasonable.

1 Introduction

In digital systems, provenance is the record of the cre-
ation and modification of an object. Provenance pro-
vides answers to questions such as: How does the an-
cestry of two objects differ? Are there source code files
tainted by proprietary software? How was this object
created? Most existing provenance systems operate at
a single level of abstraction at which they identify and

record provenance. Application-level systems, such as
Trio [29], record provenance at the semantic level of
the application – tuples for a database system. Other
application-level solutions record provenance at the level
of business objects, lines of source code, or other units
with semantic meaning to the application. Service-
oriented workflow (SOA) approaches [8, 9, 23], typically
associated with workflow engines, record provenance at
the level of workflow stages and data or message ex-
changes. System-call-based systems such as ES3 [3],
TREC [28], and PASS [21] operate at the level commu-
nicated via system calls – processes and files. In all of
these cases, provenance increases the value of the data it
describes.

While the provenance collected at each level of ab-
straction is useful in its own right, integration across
these layers is crucial but currently absent. Without
a unified provenance infrastructure, individual compo-
nents produce islands of provenance with no way to re-
late provenance from one layer to another. The most
valuable provenance is that which is collected at the layer
that provides user-meaningful names. If users reason in
terms of file names, then a system such as PASS that
operates at the file system level is appropriate. If users
want to reason about abstract datasets manipulated by a
workflow, then a workflow engine’s provenance is ap-
propriate. As layers interoperate, the layers that name
objects produce provenance, transmitting it to other lay-
ers and forming relationships with the objects at those
different layers. For example, this might associate many
files that comprise a data set with the single object rep-
resenting the data set. PASS captures provenance trans-
parently without application modification, but it might
not capture an object’s semantics. If applications encap-
sulate that semantic knowledge, then those applications
require modification to transmit that knowledge to PASS.
In summary, application and system provenance provide
different benefits; the value of the union of this prove-
nance is greater than the sum of its parts.

130	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 1: Example of a layered architecture introduced in Section 1. This scenario demonstrates a workflow
application running on a workstation, but accessing its inputs and outputs on remote file servers. The workflow
engine, local file system, and remote file system all capture provenance, but only by integrating that provenance can
we respond to queries that require complete ancestry of an object.

Consider the scenario in Figure 1. A workflow en-
gine running on a workstation reads input files from an
NFS-mounted file system, runs a workflow that produces
intermediate files stored on the the workstation’s disk,
and ultimately produces three output files that are stored
on a second NFS-mounted file system. Imagine that we
run the workflow on Monday, and unbeknownst to us,
a colleague modifies one of the input files on Tuesday.
When we run the workflow on Wednesday, we find that
it produces different results. If we capture provenance
only on the local or remote file systems, we cannot see
any of the processing stages that occur inside the work-
flow engine. If we capture provenance inside the work-
flow engine, then we lose track of the fact that one of
the inputs to the workflow changed, since it changed in
a manner transparent to the workflow engine (on a re-
mote server). Properly tracing the ancestry of the output
file requires the full provenance chain: from one remote
server through the local system and workflow engine to
another remote server.

This example illustrates the challenges that we en-
countered in developing a layered provenance architec-
ture. We will use this example throughout the rest of the
paper to discuss these challenges and describe our solu-
tions to them. We describe the PASSv2 system, a new
version of PASS that enables the seamless integration
of provenance from different layers of abstraction. In

such a layered system, data and provenance flow together
through the different layers. The resulting system pro-
vides a unified provenance infrastructure allowing users
to get answers to queries that span layers of abstraction,
including information about objects in different applica-
tions, the local file system, remote file systems, and even
those downloaded from the Web. Furthermore, the sys-
tem allows an arbitrary number of layers to stack on each
other (we demonstrate a three layer stack in Section 7).

The contributions of this work are:

• Use cases demonstrating the utility of integrating
provenance-aware applications and a provenance-
aware operating system.

• An architecture for provenance-aware systems that
integrates provenance across multiple abstraction
layers.

• A prototype demonstrating the capabilities of this
layered architecture through the creation of an inte-
grated set of provenance-aware components: NFS,
a workflow engine, a browser (links), and an ini-
tial runtime Python provenance tracking wrapper.

The rest of this paper is organized as follows: In
Section 2, we place this work in the context of exist-
ing systems and introduce the idea of integrating prove-
nance across semantic layers in a system. In Sec-
tion 3, we present use cases that highlight the benefits

USENIX Association	 2009 USENIX Annual Technical Conference	 131

of layering. In Section 4, we discuss the fundamen-
tal challenges inherent in building systems that integrate
provenance across multiple layers, and in Section 5, we
present our layered architecture, demonstrating how it
addresses these challenges. In Section 6, we describe
the provenance-aware applications and remote file server
we developed. Section 7 presents the cost of providing
these features in terms of time and space overheads. In
Section 8, we discuss related work, and we conclude in
Section 9.

2 Background

Previous work exists at each of the layers discussed in
the introduction, but there is no approach that integrates
across the different levels of abstraction to provide a uni-
fied solution.

At the domain-specific level, systems like GenePat-
tern [10] provide provenance for environments in which
biologists perform routine analyses. Experiments done
within the analysis environment record and maintain in-
formation about the particular algorithms and parameters
used, but this information can be lost if data is manipu-
lated outside of the environment.

Tracking provenance at the level provided by work-
flow engines – such as Pasoa [23], Chimera [9], and Ke-
pler [2] – allows users to group collection of related ob-
jects into single logical entities. For example, scientists
frequently refer to logical data sets containing hundreds
or thousands of individual files. These systems can an-
swer queries such as: What were all the output files of
a particular experiment? or What version of the soft-
ware release are we using for this analysis? These sys-
tems lose some of the semantic knowledge available at
the domain-specific level, but do provide the ability to
handle abstractions such as data sets.

System level solutions like ES3 [3] and PASSv1 [21]
capture information at the operating system level, losing
both the semantic information of domain-specific solu-
tions and also the relationships among data sets and pro-
cessing units found in workflow engines. However, these
systems provide a wealth of information about the envi-
ronment in which objects are created, such as the specific
binaries, libraries, and kernel modules in use.

Provenance is not the same as a security label, and
provenance systems are different from label-based se-
curity systems such as HiStar [31], Asbestos [6], and
Flume [18]. These systems track information flow but
not in sufficient detail for general provenance querying.
ES3 and PASSv1 capture not only the fact of relation-
ships among data sets but also the means, including data
such as process arguments and environment variables,
and support queries over this information.

All of these solutions fundamentally fail to account for
the different levels of abstraction at which users need to
reason about their data and processes. Users should be
able to work at any or all levels as desired, rather than
being limited to one. This requires being able to relate
objects that appear in one layer to their manifestations in
other layers.

It seems that perhaps it is sufficient for each system
to generate its own provenance independently and then
use the names of objects to link the layers together, as
by a relational join. However, the Second Provenance
Challenge [25] showed that even at a single level of ab-
straction, uniform object naming is both fundamental to
provenance interoperability and nontrivial. Across ab-
straction boundaries, it is harder yet. For example, an
object that exists in one layer may in other layers have
some local manifestation, such as a collection of files
forming a data set, but no clearly defined name. Thus,
using only object names or identifiers is not sufficient.

Providing a uniform basis for object identity and link-
age requires an integrated provenance solution with ex-
plicit layer support, where data moving from one layer to
the next carries its provenance with it.

3 Use Cases

We have explored provenance collection in a variety of
different contexts ranging from NFS to web browsers.
We began with NFS, as a large number of users store
their data on network-attached storage. Developing
provenance-aware NFS (PA-NFS) helped us understand
how to extend provenance outside a single machine.
Next, we decided to explore integrating a provenance-
aware workflow engine with PASSv2 as most prior
provenance systems operated at the level of a workflow
engine [2, 9, 23]. We selected the Kepler open-source
workflow enactment engine [2] in which to explore in-
tegrating workflow provenance with PASSv2. We then
explored adding provenance collection to an application
that bears little similarity to workflow engines and op-
erating systems: a web browser. We used the links text
based web browser for this purpose. Last, we built a set
of Python wrappers to capture provenance for Python ap-
plications.

In this section, we present scenarios and differentiate
the problems that provenance-aware systems can address
with and without layering.

3.1 Provenance Aware NFS
Use Case: Finding the Source of Anomalies

Scenario: Implementing the scenario depicted in Figure
1, we use Kepler to execute the Provenance Challenge

132	 2009 USENIX Annual Technical Conference	 USENIX Association

workflow [24], reading inputs from one NFS file server
and writing outputs to another. Between two executions,
unbeknownst to us someone modifies an input file. When
we examine the new output, we see that it is different
from the old output, and we would like to understand
why.
Without Layering: If we examine only the Kepler
provenance, we would think that the two executions were
identical, since the change in the input file is invisible to
Kepler. If we examine only the PASSv2 provenance, we
would see that there was a different input to the Kepler
workflow, but we would not know for sure that the input
was actually used to produce the output since we cannot
see how the multiple inputs and outputs are related.
With Layering: If Kepler runs on PASSv2, then the
PASSv2 provenance store contains the provenance from
both systems. Hence, it is possible to both determine and
verify that the input file modification was responsible for
the different output.

3.2 Provenance-Aware links
Use Case: Attribution

Scenario: A professor is preparing a presentation and
has a number of graphs and quotes that have been pre-
viously downloaded from the Web. She copies these ob-
jects into the directory containing the presentation. Now,
she would like to include proper attribution for them, but
none remain in the browser’s history and some of them
are no longer even accessible on the Web.
Without Layering: Any browser can record the URL
and name of a downloaded file and, when the site is re-
visited, can verify if the file has changed. (In fact, this
is how most browser caches function.) However, if the
user moves, renames, or copies the file, the browser loses
the connection between the file and its provenance. The
provenance collected by PASSv2 alone is insufficient as
it only records the fact that the file was downloaded by
the browser.
With Layering: A provenance-aware browser generates
provenance records that include the URL of the down-
loaded file and transmits them to PASSv2 when it writes
the file to disk. PASSv2 ensures that the file and its
provenance stay connected even if it was renamed or
copied. Our absent-minded professor can now determine
the browser provenance for the file included in the pre-
sentation.

Use Case: Determining Malware Source

Scenario: Suppose Alice downloaded a codec from a
web site. Suppose further that Eve, unbeknownst to Al-
ice, has hacked the web site and caused this codec to
contain malware. Alice later discovers that her computer

has been infected. She would like to be able to find the
origin of the malware and the extent of the damage.
Without Layering: Alice can traverse the provenance
graph recorded by PASSv2 (similar to Backtracker [17]
and Taser [11]) to identify and remove the malware bina-
ries and recover any corrupted files. However, PASSv2
by itself cannot identify the web site from which the mal-
ware was downloaded. Conversely, a provenance-aware
browser can identify the web site from which a known
malware file was downloaded, but it cannot track the
spread of that malware through the file system.
With Layering: A provenance-aware browser integrated
with PASSv2 can help identify the web site that Al-
ice was visiting when malware was downloaded, any
linked third party site where the malware download orig-
inated, as well as other details about the browsing session
(for example, the user may have been redirected from a
trusted site). It can also find other files and descendants
of files downloaded from the same web site, which may
now be suspect. Layering with PASSv2 also provides an
extra level of protection. The malware can compromise
the browser, but to hide the fact that it was ever on the
system, it also needs to compromise the operating sys-
tem. If the operating system is compromised, we can en-
sure the integrity of the provenance collected before the
compromise by using a selective versioning secure disk
system [27].

3.3 Provenance-Aware Python

Use Case: Determining Data Origin

Scenario: Through approximately 400 experiments on
60 specimens over the course of a week, colleagues in
Iowa State’s Thermography Research Group developed
a set of data quantitatively relating crack heating to the
vibrational stresses on the crack. The experiment logs
for these data were stored in a series of XML files by the
team’s data acquisition system. A team member devel-
oped a Python script to plot crack heating as a function
of crack length for two different classifications of vibra-
tional stress. Our goal was to determine the sources of
the specific XML data files that contributed to each plot.
Without Layering: This might have been a simple prob-
lem for PASSv2, except that the analysis program reads
in all the XML data files to determine which ones to use.
PASSv2 reports that the plot derives from all the XML
files. Provenance-Aware Python knows which XML doc-
uments were actually used, but it does not know the
source files of those documents.
With Layering: In a layered Provenance-Aware
Python/PASSv2 system, queries over the provenance of
the resulting plot can report both the precise XML doc-
uments, the files from which they came, and the prove-

USENIX Association	 2009 USENIX Annual Technical Conference	 133

nance of those files.

Use Case: Process Validation

Scenario: They upgraded the Python libraries on one of
their analysis machines, introducing bugs in a calculation
routine used to estimate crack heating temperatures. The
group discovered this bug after running the experiments
and wanted to identify the results that were affected by
the erroneous routine.
Without Layering: PASSv2 can distinguish which out-
put files were generated using the new Python library,
but cannot determine which of those files were generated
by invoking the erroneous routine. Provenance-Aware
Python can determine which files were generated by in-
voking the calculation routine, but cannot tell which ver-
sion of Python library was used.
With Layering: Integrating the provenance collected by
PA-Python and PASS identifies the files that have in-
correct data, because they descend from both the new
Python library and the calculation routine.

4 Challenges in Layering

Mapping objects between the different layers of abstrac-
tion is only one of the challenges facing layered prove-
nance systems. We identified six fundamental challenges
for a layered provenance architecture:

Interfacing Between Provenance-Aware Systems:
The manner in which different provenance-aware sys-
tems stack is not fixed. A workflow engine might in-
voke a provenance-aware Python program (see Section
6.4) in one instance and in another instance be invoked by
it. Thus, provenance-aware components must be able to
both accept and generate messages that transmit prove-
nance. We designed a single universal API appropriate
for communication among PASSv2 components and also
among different provenance systems. It took several iter-
ations to develop an API that was both general and sim-
ple; we discuss the resulting Disclosed Provenance API
(DPAPI) in Section 5.2.

Object Identity: As mentioned earlier, objects may
be tangible at one layer and invisible at another. Imagine
tracking provenance in a browser, as in Section 6.3. It
would be useful to track each browser session as an in-
dependent entity. However, browser sessions do not exist
as objects in the file system, so it is not obvious how to
express a dependence between a browser page and a file
downloaded from it. We show how the DPAPI makes ob-
jects from one layer visible to other layers and how the
distributor lets us manage objects that are not manifest
at a particular layer in Section 5.5.

Consistency: Provenance is a form of metadata; we
need to define and enforce consistency semantics be-

tween the data and its metadata, so users can make ap-
propriate use of it. The DPAPI bundles data and prove-
nance together to achieve this consistency and our lay-
ered file system, Lasagna (Section 5.6), maintains this
consistency on disk.

Cycles: In earlier work, we discussed the challenge
of detecting and removing cycles in PASSv1 [21]. This
problem becomes even more complicated in a layered
environment. Since there are objects that appear at one
layer and not at others, we may need to create relation-
ships between objects that exist in different layers, and
then detect and remove cycles that these relationships in-
troduce. In Section 5.4, we discuss how the analyzer
performs cross-layer cycle detection.

Query: Collecting provenance is not particularly
valuable if we cannot make it available to a user or ad-
ministrator in a useful fashion. We shadowed several
computational science users to understand what types
of queries they might ask a provenance system. Af-
ter struggling through three generations of query lan-
guages for provenance, we incorporated the input from
our users and derived the following list of requirements
for a provenance query language [16]:

• The basic model should be paths through graphs;
• Paths should be first-class language level objects;
• Path matching should be by regular expressions

over graph edges; and
• The language needs sub-queries and aggregation.

Query languages for semi-structured data proved the
best match; our query language PQL (Path Query Lan-
guage) derives from one of these. Section 5.7 provides a
brief overview.

Security: While there has been research showing the
use of provenance for auditing and enhancing security
[13], there has been little work on security controls for
the provenance itself. The fundamental provenance secu-
rity problem is that provenance and the data it describes
do not necessarily share the same access control. There
is no universally correct rule that dictates which of the
two (data or provenance) requires stronger control. For
example, consider a report generated by aggregating the
health information of patients suffering a certain ailment.
While the report (the data) can be accessible to the pub-
lic, the files that were used to generate the report (the
provenance) must not be. The provenance must be more
tightly controlled than the data. Conversely, a document
produced by a government panel (the data) might be clas-
sified, but the membership of the committee and the iden-
tities of all participants in briefings (the provenance) may
nonetheless be entirely public. The data carries stronger
access control than the provenance. Creating an access
control model for provenance is outside the scope of this

134	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 2: PASSv2 Architecture

paper; however, a related paper presents an in-depth dis-
cussion of the problem and our approach to solving it
[4].

5 Architecture

We begin with a high level overview that introduces the
main components of the PASSv2 system. Then we ex-
plain each component of the system in detail and show
how it addresses the challenges discussed above.

5.1 Overview

From a user perspective, PASSv2 is an operating
system that collects provenance invisibly. Application
developers can also use it to develop provenance-aware
applications. Figure 2 shows the seven main components
of the PASSv2 system. These are:
libpass: libpass is a library that exports the DPAPI to
user-level. Application developers develop provenance-
aware applications by augmenting their code to collect
provenance and then issuing DPAPI calls to libpass.
Interceptor: The interceptor intercepts system calls and
passes information to the observer.
Observer: The observer translates system call events
to provenance records. For example, when a process P
reads a file A, the observer generates a record P → A,
indicating that P depends on A. Hence, together the
observer and the interceptor generate provenance.
Analyzer: The analyzer processes the stream of prove-
nance records and eliminates duplicates and ensures that
cyclic dependencies do not arise.

Distributor: The distributor caches provenance for ob-
jects that are not persistent from the kernel’s perspective,
such as pipes, processes and application-specific objects
(e.g., a browser session or data set) until they need to be
materialized on disk.
Lasagna: Lasagna is the provenance-aware file system
that stores provenance records along with the data.
Internally, it writes the provenance to a log. The log
format ensures consistency between the provenance and
data appearing on disk.
Waldo: Waldo is a user-level daemon that reads prove-
nance records from the log and stores them in a database.
Waldo is also responsible for accessing the database on
behalf of the query engine.

5.2 Disclosed Provenance API (DPAPI)

The DPAPI is the central API inside PASSv2. It al-
lows transfer of provenance both among the compo-
nents of the system and between layers. Applications
use the DPAPI to send (“disclose”) provenance to the
kernel. The same interface is used to send prove-
nance to the file system. The DPAPI consists of six
calls: pass_read, pass_write, pass_freeze,
pass_mkobj, pass_reviveobj, and pass_sync
and two additional concepts: the pnode number and the
provenance record.

A pnode number is a unique ID assigned to an object
at creation time. It is a handle for the object’s prove-
nance, akin to an inode number, but never recycled. A
provenance record is a structure containing a single unit
of provenance: an attribute/value pair, where the attribute
is an identifier and the value might be a plain value (in-
teger, string, etc.) or a cross-reference to another object.
Provenance records may contain ancestry information,
records of data flows, or identity information.

The pass_read and pass_write operations are
like read and write but are provenance-aware. This
ensures that provenance and data move together, provid-
ing consistency of provenance and data as required by
Section 4.

The pass_read call returns both the data requested
and the exact identity of what was read: the file’s pnode
number and version as of the moment of the read. This
ensures that applications or other higher layers can con-
struct provenance records that accurately describe what
they read, also a critical component of consistency.

The pass_write call takes both a data buffer and
a “bundle” of provenance records that describe the data.
A provenance bundle is an array of object handles and
records, each potentially describing a different object.
The complete provenance for a block of data written to
a file might involve many objects (e.g., several processes

USENIX Association	 2009 USENIX Annual Technical Conference	 135

and pipes in a shell pipeline). This organization allows
all of the separate objects to be sent as a single unit.

Cycle-breaking sometimes requires creating new ver-
sions of objects. In a layered system, versions must
be handled at the bottom level (the storage system),
but cycle-breaking may occur at any level. The
pass_freeze call breaks cycles by requesting a new
version.

As discussed in Section 4, provenance-aware applica-
tions may need to represent objects, such as browser ses-
sions, data sets, or program variables, that do not map
to a particular file system object. The pass_mkobj
call allows applications to create such objects. These
objects are referenced like files, with file handles. The
objects can also be used to relate names/objects at one
level to names/objects at another level. A system at any
layer can create objects using pass_mkobj and create
dependencies between its objects and objects at differ-
ent layers of abstraction by issuing pass_write calls.
Users can then issue queries using the name in the most
convenient abstraction layer (e.g., filename) and PASSv2
can retrieve the appropriate objects across the layers us-
ing these dependencies.

We initially designed the objects returned by
pass_mkobj to be transient and applications had
no means to access these objects again after clos-
ing them. However, when developing provenance-
aware applications, we discovered occasions where we
needed to access these objects. Hence, we added the
pass_reviveobj call that takes a pnode number and
version and returns an object previously created via
pass_mkobj.

By default, the provenance associated with an object
returned via pass_mkobj is not flushed to disk unless
it becomes a part of the ancestry of a persistent object
on a PASS-enabled volume. This is correct behavior for
purely transient objects with no descendants (e.g., pro-
cesses), but it would lose objects that exist only at lay-
ers above PASS. Applications can use the pass_sync
function to make persistent provenance associated with
an object created via pass_mkobj even if is not in the
ancestry of a persistent PASS-volume object.

Applications link against libpass to use the user-
level DPAPI to record provenance. Such applications
are provenance-aware. The DPAPI enables an arbitrary
number of layers of provenance-aware applications. For
example, we can construct a system with five layers
using a provenance-aware Python application that uses
a provenance-aware Python library, both of which ex-
ecute on a provenance-aware Python interpreter. That
provenance-aware Python interpreter might then use a
PA-NFS utilizing PASSv2. Note that the provenance-
aware library and provenance-aware interpreter both ac-
cept DPAPI calls from higher layers and issue DPAPI

calls to lower layers.

5.3 Provenance Generation
Provenance generation involves two system components:
the interceptor and observer. The interceptor captures
system call events and reports them to the observer.
The PASSv2 interceptor handles the following system
calls: execve, fork, exit, read, readv, write,
writev, mmap, open, and pipe, and the kernel oper-
ation drop_inode. The interceptor is a thin operating
system specific layer, while the remaining system com-
ponents can be mostly operating system independent.

The observer takes the information it receives from the
interceptor, constructs provenance records, and passes
those records to the analyzer via DPAPI calls. For ex-
ample, when a process issues a read system call, the
observer first issues a pass_read on the file. When
the pass_read returns with the data, pnode, and ver-
sion of the file, the observer creates a record stating that
the particular version of the file is an input to the pro-
cess, thereby creating a dependency between the process
and the file. It then sends the record to the analyzer by
issuing a pass_write with the provenance record, but
no data. When that process then issues a write system
call, the observer creates a record stating that the process
is an input to the written file and issues a pass_write
containing both this provenance record and the data from
the write system call, thereby creating a dependency
between the process and the file.

The observer is also the entry point for provenance-
aware applications that use the DPAPI to explicitly dis-
close provenance records to PASSv2. The observer is the
appropriate entry point, since PASS might need to gen-
erate additional provenance records even when an appli-
cation is disclosing provenance. For example, when an
application invokes a pass_write DPAPI call, apart
from the explicit provenance disclosed by the appli-
cation, the observer has to create a record that cap-
tures the dependency between the application and the
file. The observer converts the provenance that higher-
level provenance-aware applications explicitly disclose
via DPAPI calls into appropriate kernel structures and
passes the records to the analyzer.

5.4 Analyzer
The analyzer eliminates redundant provenance and cy-
cles in the stream of provenance records that it re-
ceives. Programs generally perform I/O in relatively
small blocks (e.g., 4 KB), issuing multiple reads and
writes when manipulating large files. Each read or
write call causes the observer to emit a new record,
most of which are identical. The analyzer removes such

136	 2009 USENIX Annual Technical Conference	 USENIX Association

duplicates. Meanwhile, cycles can occur when multiple
processes are concurrently reading and writing the same
files. The analyzer prevents cycles by creating new ver-
sions of objects. In PASSv1, we used an algorithm that
maintains a global graph of object dependencies and ex-
plicitly checks for cycles. On detecting a cycle, the algo-
rithm merged all the nodes in the cycle into a single en-
tity. This proved challenging, and there were cases where
we were not able to do this correctly. In PASSv2, we use
a more conservative algorithm, called the cycle avoid-
ance algorithm that uses only an object’s local depen-
dency information to avoid cycles. We discuss and ana-
lyze this algorithm in detail in earlier work [20]. Since
any semantic information that the higher-level applica-
tions disclose to PASSv2 is via objects returned through
pass_mkobj, the analyzer works in a layered environ-
ment without modification.

5.5 Distributor
Since processes are first-class objects, the system must
track and store their provenance. However, processes
are not by themselves persistent objects residing on a
PASS-enabled volume. Where should their provenance
be stored? Similar issues arise with pipes, files from non-
PASS volumes, and objects introduced by provenance-
aware applications. In these cases, PASSv2 must se-
lect some PASS-enabled volume on which to store their
provenance. The distributor addresses this issue.

The distributor caches provenance records for all ob-
jects that are not PASS files. When those objects be-
come part of the ancestry of a persistent object on
a PASS-enabled volume or are explicitly flushed via
pass_sync, the distributor assigns these objects to a
PASS volume (either that of the persistent ancestor or the
one specified when an object was created) and flushes
the provenance records by issuing a pass_write to
Lasagna.

5.6 Lasagna & Waldo
Lasagna is our provenance-aware file system that stores
both provenance and data. Lasagna is a stackable file
system, based upon the eCryptfs [12] code base. Lasagna
implements the DPAPI interface in addition to the regular
VFS calls. We implement pass_read, pass_write,
pass_freeze as inode operations and pass_mkobj
and pass_reviveobj as superblock operations.

PASSv1 wrote provenance directly into databases that
provided indexed access to provenance. This arrange-
ment was neither flexible nor scalable, so PASSv2 writes
all provenance records to a log. A user-level daemon pro-
cess, Waldo, later moves the provenance to a database
and indexes it. When the log file exceeds a parametrized

maximum size or has been dormant for a parametrized
length of time, the kernel closes the log and creates a
new one. Waldo uses the Linux inotify interface to
monitor this activity, processing and removing log files.

We use a write-ahead-provenance (WAP) protocol to
ensure that on-disk provenance accurately reflects on-
disk data. WAP is analogous to database write-ahead
logging. Enforcing WAP requires that all provenance
records be written to disk before the data they describe.
This eliminates the possibility that unprovenanced data
exists on the disk. In addition, we use transactional struc-
tures in the log along with MD5sums of data so that dur-
ing file system recovery, we identify any data for which
the provenance is inconsistent. This indicates precisely
the data that was being written to disk at the time of a
crash. Thus, Lasagna’s DPAPI interface along with the
WAP protocol ensures that provenance is consistent with
the data it describes (or, after a crash, inconsistencies are
identified).

5.7 Querying

Most existing provenance systems use either an XML-
based or a relational representation. We found both lack-
ing. XML has a notion of paths (XPath) but is inherently
tree-structured and does not extend well to graphs. SQL
has no native concept of paths; writing path-like queries
in SQL requires mentally translating the paths into recur-
sive queries, which are themselves expensive and unnat-
ural in a relational environment. It seemed most appro-
priate to find a query language that was designed specif-
ically for querying graphs.

The Lore semistructured database project at Stanford
provided us with the Lorel [1] query language and its
“OEM” data model. A semistructured database is one
with no fixed schema; the data model in Lore is that of a
collection of arbitrary objects, some holding values and
some holding tables of named linkages to other objects.
The data types of values and linkages are not fixed, and
the query language is designed accordingly.

The OEM data model is appealing for provenance,
since it naturally represents both graphs and object at-
tributes, and Lorel provides the path-oriented query
model for which we were looking. Unfortunately, we
found that Lorel had several shortcomings. In particu-
lar, it did not support boolean values in the database, its
formal grammar was ambiguous, and there were corner
cases where the semantics were not well defined. We
also needed to extend Lorel to allow traversal of graph
edges in both directions. We present a more in-depth
discussion of these issues in a recent publication [16].

We developed a new query language based on Lorel,
which we call Path Query Language (PQL or “pickle”).
It is specifically geared to handle our requirements for

USENIX Association	 2009 USENIX Annual Technical Conference	 137

querying provenance. PQL’s query model is based on
following paths through an object graph to find and re-
trieve data. The typical query returns a set of values.
The general structure of a PQL query is: select outputs
from sources where condition. Sources are path expres-
sions, which represent paths through the graph, outputs
are anything we can compute on paths, and conditions
are boolean predicates like in a SQL query. The PQL
reference manual is available online [15].

The following sample query determines the cause of
the anomaly in the output in the use case described in
Section 3.1.

select Ancestor
from Provenance.file as Atlas

Atlas.input* as Ancestor
where Atlas.name = "atlas-x.gif"

The query returns all the ancestors of one output file,
atlas-x.gif (by following zero or more input re-
lationships), which will include both the Kepler work-
flow entities and the PASS data for the input files. PQL
queries, if not posed carefully, can result in information
overload. Pruning the query results to produce more fo-
cused results is an area of ongoing research.

6 Provenance-Aware Applications

The following sections present technical details about
how we implemented provenance collection in a vari-
ety of different provenance-aware layers, and the prove-
nance we collect in each. We conclude this section with a
summary of the lessons learned while constructing these
provenance-aware components. Table 1 summarizes the
provenance collected by each provenance-aware system.

6.1 Provenance-Aware NFS
We implemented provenance-aware NFS using
NFSv4 [26] in Linux 2.6.23.17. Making NFS prove-
nance aware involves addressing two questions: First,
while provenance-aware NFS can leverage the PASSv2
analyzer, should that analyzer reside on the client or
the server? And second, how do we extend the NFSv4
protocol to support the six DPAPI operations?

6.1.1 Cycles vs. NFS

An analyzer must process all the provenance records at
its abstraction layer in order to properly avoid cycles.
Consider a process on an NFS client machine access-
ing data from two different storage servers. The analyzer
must reside at the client, because only there is it possible
to see all relevant provenance records.

Record Type Description
PA-NFS
BEGINTXN Beginning record of a transaction
ENDTXN Terminating record of a transaction
FREEZE Freeze record sent in pass_write
PA-Kepler
TYPE Type of object: set to OPERATOR
NAME Name of the operator
PARAMS Operator parameters
INPUT Dependency between operators
PA-links
TYPE Type of object: set to SESSION
VISITED_URL Session and URL dependency
FILE_URL File and URL dependency
CURRENT_URL URL user was viewing while

download was initiated
INPUT File and Session dependency
PA-Python
TYPE Type of object: e.g., FUNCTION
NAME object name (e.g., method name)
INPUT method input and invocation

dependency or invocation and output
dependency

Table 1: Provenance records collected by each
provenance-aware application.

Next, consider two programs running on different
clients accessing a single server. By the same logic, the
analyzer must reside on the server, because only there
can it see all related provenance records.

Finally, combine these two scenarios: two client pro-
grams each accessing files from two different file servers.
In this case, we need analyzers on both clients and
servers.

This means that in general we must have an analyzer
on every client and also an analyzer on every server;
this in turn means that the client instance of the analyzer
must be able to stack on top of the server instance, which
means that the input and output data representations must
be the same. This requirement is easily satisfied as all
the components in PASSv2, including the client and the
server, communicate via the DPAPI. In fact, it was pre-
cisely this observation that motivated layering and the
use of the DPAPI as a universal interface.

6.1.2 DPAPI in NFS

pass_write: Supporting pass_write requires that we
transmit provenance with data to enforce consistency.
Accordingly, we created an NFS operation analogous to
the local pass_write, called OP_PASSWRITE, that
transmits both data and provenance to the server. As long
as the combined data and provenance size is less than the

138	 2009 USENIX Annual Technical Conference	 USENIX Association

NFSv4 client’s block size (typically 64 KB in NFSv4),
this approach is sufficient.

Unfortunately, not all data and provenance packets
satisfy this constraint. In these cases, we use NFS
transactions to encapsulate a collection of operations
that must be handled atomically by the server. To
support transactions, we introduced two new opera-
tions, OP_BEGINTXN and OP_PASSPROV, and two
new provenance record types, BEGINTXN and ENDTXN.
First, we invoke an OP_BEGINTXN operation to ob-
tain a transaction ID from the exported PASS vol-
ume. We record the transaction ID in a BEGINTXN
record at the server. Then, we send the provenance
records to the server in 64 KB chunks, using a se-
ries of OP_PASSPROV operations, each identified by
the transaction ID acquired by OP_BEGINTXN. Finally,
we invoke an OP_PASSWRITE operation that trans-
mits the data along with a single ENDTXN record. The
ENDTXN record contains the transaction ID obtained in
OP_BEGINTXN and signals the end of that transaction.
A corresponding ENDTXN record is written to the log at
the server.

We considered an alternate implementation that ob-
tains a mandatory lock on the file, writes the provenance,
and then writes the data as a separate operation. This ap-
proach would have provided the coupling between prove-
nance and data; however, it does not allow us to recover
from a client crash. If the client wrote the provenance,
crashed before sending the data, and then came back up,
there is no way for the server to determine that the prove-
nance must be discarded. Our implementation solves this
problem, because the transaction ID enables the server’s
Waldo daemon to identify the orphaned provenance.

pass_read: For NFS pass_read, we introduced a
new operation OP_PASSREAD, which returns both the
requested data and its pnode number and version.

pass_freeze: We send pass_freeze opera-
tions to the server as a provenance record type in
OP_PASSWRITE. When the analyzer at the client is-
sues a pass_freeze, the client increments the ver-
sion locally and attaches a freeze record to the file. The
client can then return the correct version of the file on a
pass_read without a trip to the server. Later, when
the client sends the file’s provenance to the server with
an OP_PASSWRITE, the server processes the freeze
records, incrementing its version number accordingly.

We implement freeze as a record type instead of an
operation because operations may arrive at the server
out of order. pass_freeze is order-sensitive with
respect to pass_write. pass_freeze breaks cy-
cles in the records that are about to be written with a
pass_write and an out of order arrival can result in a
failure to break cycles. Making pass_freeze a record
type couples pass_freeze with pass_write and

avoids the problem.
Due to the close-to-open consistency model that NFS

supports, two different clients can open the same ver-
sion of a file and concurrently make modifications to it.
Hence, our approach of versioning at the client and up-
dating versions at the server can lead to version branch-
ing, where two clients create independent copies of an
object with the same version. This has not caused any
problems in our existing applications, and given the over-
all lack of precise consistency semantics in NFS, we do
not expect it to be problematic for existing applications.

pass_mkobj: We added a new operation called
OP_PASSMKOBJ that returns a unique pnode referenc-
ing the object in future interactions. The client then con-
structs an in-memory anonymous inode that has a refer-
ence to the pnode and exports the inode to user-level as a
file.

We could have implemented pass_mkobj by creat-
ing a file handle at the server and returning it to the client.
The client would then use the handle to write provenance.
However, this approach would make it difficult to recover
from either a server or client crash. The advantage of our
approach is that the server only needs enough state to ver-
ify that the pnode is a valid on pass_reviveobj and
requires no complicated recovery. If the server crashes
and comes back up, the client can continue to use the pn-
ode as though the crash never happened, as the pnode is
just a number. Similarly, if the client crashes, the server
does not have to clean up state as it has only allocated a
(cheap) pnode number to the client.

pass_reviveobj: We added a new operation called
OP_PASSREVIVEOBJ that verifies that the given pn-
ode number is valid and returns an anonymous inode as
we do for pass_mkobj.

pass_sync: This is implemented by invoking the
OP_PASSPROV operation. When the provenance ex-
ceeds 64KB, we encapsulate the operation in a transac-
tion as we do for pass_write.

6.2 Provenance-Aware Kepler
Kepler records provenance for all communication be-
tween workflow operators, recording these events ei-
ther in a text file or relational database. We added a
third recording option: transmitting the provenance into
PASSv2 via the DPAPI. This integration was simple. We
implemented methods in Kepler’s provenance recording
interface that translate Kepler’s provenance events into
explicit ancestor-descendant relationships.

We create a PASS object for every workflow opera-
tor using pass_mkobj and set its properties, such as
NAME, TYPE, and PARAMS, which specify the names
and values of its parameters (such as “fileName” or “con-
firmOverwrite” for a file output operator). When an op-

USENIX Association	 2009 USENIX Annual Technical Conference	 139

erator produces a result, Kepler notifies our recording in-
terface with its event mechanism. Upon receipt of the
event, we add an ancestry relationship between this op-
erator and every recipient of the message by issuing a
pass_write call that records the ancestry between the
sender and the recipient. This is the only one of Kepler’s
recording operations that needs to send data to PASSv2.

Unfortunately, the recording interface does not pro-
vide methods to generate provenance for reading or writ-
ing files or downloading data from the Internet. In-
stead, Kepler knows about data sink and source opera-
tors, which open and close files. We modified the Kepler
routines used by these operators to infer the files that are
being read/written, linking Kepler’s provenance to that in
PASSv2.

6.3 Provenance-Aware links
We chose to add provenance collection to version 0.98 of
links, a text-based browser, as it had the simplest code
base of those browsers we examined. We are currently
exploring provenance collection in a Firefox [19].

A PA-browser can capture semantic information that
is invisible to PASS, such as:

• The URL of any file that a user downloads using the
browser;

• The web page a user was examining when she initi-
ated a download;

• The sequence of web pages a user visited before
downloading a file; and

• The set of pages that were active concurrently.

We group provenance by session, as it represents
a logical task performed by a user. On session cre-
ation, we create a PASS object that represents it (us-
ing pass_mkobj) and record the object TYPE (using
pass_write). Whenever a user visits a site, we gen-
erate a VISITED_URL record that describes the depen-
dency between the session and the URL and record it by
issuing the DPAPI call pass_write. These records
identify the sequence of URLs that a user visited before
downloading a file.

Each time the browser downloads a file, we generate
three records. An INPUT record captures the depen-
dency between the file and the session, connecting the
file to the sequence of URLs visited during the session,
before initiating the download. A FILE_URL record
captures the URL of the file itself. A CURRENT_URL
record captures the dependency between the file and the
page the user was viewing when she decided to down-
load the file. We replace the write that the browser
issues to record the file on disk with a pass_write
that transmits the data and the three provenance records
to PASSv2.

6.4 Provenance-Aware Python Apps

We discovered that a colleague had written a set of wrap-
pers to track provenance in Python applications. His goal
was to explicitly identify relationships between input and
output files using Python scripts that read in a large num-
ber of data files, but used only a subset of them.

To make the Python analysis program provenance-
aware, we created Python bindings for our DPAPI inter-
face. We also wrap objects, modules, basic types, and
output files with code that creates PASSv2 objects repre-
senting our Python objects (using pass_mkobj), inter-
cepts method invocations, and then records the relation-
ships between the objects. By wrapping a few modules
and objects we record the information flow pertaining to
those objects and methods and relate them to the files
they eventually affect. For every object, we record the
object TYPE (for example, FUNCTION) and the object
NAME. For modules and methods, we add an intercept
for each method so we can connect method invocations
to their inputs and outputs. On every method invocation,
we issue DPAPI pass_write calls to record INPUT
records describing the dependencies between each input
and its method invocation and between the method invo-
cation and each of its outputs.

6.5 Summary and Lessons Learned

While provenance-aware applications are generally use-
ful and many developers develop ad hoc solutions to the
problems they solve, the ability to integrate such solu-
tions with system-level approaches increases the value
of both the system-level provenance and the application-
level provenance. Our system has a simple architecture
and API that enables such an integration. We now dis-
cuss some of the lessons we learned.

Our experience with links, Kepler, and Python led
us to the following guidelines for making applications
provenance-aware. First, application developers have to
identify the provenance they want to collect. Next, they
have to replace read calls with pass_read calls and
write calls with pass_write calls, obtaining and for-
warding provenance to the layers around them. In or-
der to record semantic provenance, application develop-
ers can create objects using pass_mkobj and record
such provenance via pass_write calls on those ob-
jects. They can then link the semantic provenance with
the system objects by creating appropriate records and
storing them via pass_write calls. Finally, layers that
are a substrate to higher level applications (like an inter-
preter) must export the DPAPI. If they do not export the
DPAPI, the applications cannot layer provenance on top
of them.

It is not trivial to extend existing complex applications,

140	 2009 USENIX Annual Technical Conference	 USENIX Association

which were not designed to collect provenance, to make
them provenance aware. We observe this in our ongoing
work with Firefox. In Firefox, interesting provenance
events such as page loads, bookmarks, etc. occur in the
user interface modules. However, the I/O manipulation
events such as cache and file writes occur in completely
different modules. Connecting provenance collected in
the UI modules to data writes in the I/O modules entails a
significant amount of re-engineering of Firefox modules
and interfaces. We are currently working on this.

Considering that operating systems are, to this day,
introducing new system calls, we expect the DPAPI to
evolve over time. It has continued to evolve over the
course of the project and this paper. As we noted in
Section 5.2, we initially designed the objects returned by
pass_mkobj to be transient. However, while working
on Firefox provenance collection, we discovered that we
needed to revive these objects. For example, in Firefox,
we create an object per active session. Firefox stores the
sessions to disk and restores them when the user restarts
the browser. In this scenario, the application needs to
revive the objects used to record each session’s prove-
nance so as to record further provenance. Hence, in or-
der to support such scenarios, we extended the DPAPI to
include pass_reviveobj.

We initially believed that the Python wrappers we built
were sufficient to enable provenance-aware Python ap-
plications. We later realized that while we could wrap
functions, we lost provenance across built-in operators.
In retrospect, what we discovered with Python was the
difference between building a provenance-aware system
and provenance-aware applications. By wrapping func-
tion calls in Python, we make an application provenance-
aware, as we did for links and Kepler. Making Python
itself provenance-aware would require modifying the
Python interpreter, as we modified the operating sys-
tem to make it provenance-aware. While an interesting
project, we have left that undertaking for future research.

7 Performance Evaluation

While the main contribution of this work is in the new
capabilities available from the system, we wanted to ver-
ify that these capabilities do not impose excessive over-
heads. There are two concerns: the execution time over-
head due to the additional work done to collect prove-
nance and the space overhead for storing provenance.

We evaluate these overheads using five applications
representative of a broad range of workloads: 1) Linux
compile, in which we unpack and build Linux kernel ver-
sion 2.6.19.1. This represents a CPU intensive workload;
2) Postmark, that simulates the operation of an email
server. We ran 1500 transactions with file sizes rang-
ing from 4 KB to 1 MB, with 10 subdirectories and 1500

files. This benchmark is representative of an I/O inten-
sive workload; 3) Mercurial activity benchmark, where
we evaluate the overhead a user experiences in a nor-
mal development scenario. We start with a vanilla Linux
2.6.19.1 kernel and apply, as patches, each of the changes
that we committed to our own Mercurial-managed source
tree; 4) Blast, a biological workload used to find pro-
tein sequences in a species that are closely related to the
protein sequences in another species. The workload for-
mats two input data files with a tool called formatdb,
then processes the two files with Blast, and then mas-
sages the output data with a series of Perl scripts; and 5)
A PA-Kepler workload, that parses tabular data, extracts
values, and reformats it using a user-specified expres-
sion. The PA-Kepler workload, when located on a PA-
NFS volume, is similar to the situation presented in Sec-
tion 1, where provenance collection is integrated across
three layers.

We ran two batches of experiments: one comparing
PASSv2 to vanilla ext3 (in ordered mode) and another
on comparing provenance-aware NFS (PA-NFS) to NFS
exporting ext3 (also in ordered mode). We ran all local
benchmarks on a 3GHz Pentium 4 machine with 512MB
of RAM, an 80GB 7200 RPM Western Digital Caviar
WD800JB hard drive and with a kernel (Vanilla/PASS)
based on Linux 2.6.23.17. For experiments involving
NFS, we used the previous machine as the server and a
2.8GHz 2 CPU Opteron 254 machine with 3GB of RAM
as the client. The client machine has the same software
configuration as the server.

PASSv2 Elapsed Time Results: Table 2 shows the
elapsed time overheads. The general pattern we observed
is that the elapsed times are affected when provenance
writes interfere with the workload’s regular writes. The
Mercurial activity benchmark has the highest elapsed
time overhead of 23.1% despite having minimal space
overhead. This is because patch performs many meta-
data operations (it creates a temporary file, merges data
from the patch file and the original file into the tempo-
rary file, and finally renames the temporary file). The
provenance writes interfere with patch’s metadata I/O,
leading to extra seeks, which increase overhead. The
Linux kernel compile has an overhead of 15.6% due to
provenance writes. Postmark has an overhead of 11.5%,
and the overheads, unlike the former two benchmarks,
are due to the double buffering in Lasagna (stackable file
systems cache both their data pages and lower file system
data pages). Blast and PA-Kepler are heavily CPU bound
and hence their elapsed time are minimally affected due
to provenance writes.

PA-NFS Elapsed Time Results: The PA-NFS
elapsed time overheads are lower for Linux compile
and Mercurial activity benchmarks compared to PASSv2
overheads, as the additional delay introduced by the net-

USENIX Association	 2009 USENIX Annual Technical Conference	 141

Benchmark Ext3 PASSv2 Overhead NFS PA-NFS Overhead
Linux Compile 1746 2018 15.6% 3320 3353 11.0%
Postmark 453 505 11.5% 636 743 16.8%
Mercurial Activity 614 756 23.1% 2842 3089 8.7%
Blast 69 69.5 0.7% 52 53 1.9%
PA-Kepler 1246 1264 1.4% 160 164 2.5%

Table 2: Elapsed time overheads (in seconds).

Benchmark Ext3 Provenance Provenance+Indexes
Linux Compile 1287.9 88.9 (6.9%) 236.8 (18.4%)
Postmark 1289.5 0.8 (0.1%) 1.7 (0.1%)
Mercurial Activity 858.7 15.4 (1.8%) 28.9 (3.4%)
Blast 5.6 0.1 (1.1%) 0.2 (3.8%)
PA-Kepler 3.5 0.2 (4.7%) 0.5 (14.2%)

Table 3: Space overheads (in MB) for PASSv2. The space overheads for PA-NFS are similar.

work round trips affect both NFS and PA-NFS equally.
The Postmark overheads, though reasonable, are higher
in PA-NFS compared to PASSv2. Our experiments con-
firm that out of 16.8% overhead that Postmark incurs for
PA-NFS, 14.8% is due to the fact that Lasagna is imple-
mented as a stackable file system. The Blast and PA-
Kepler overheads remain minimal even in the PA-NFS
case.

Space Overheads: Table 3 shows the provenance
database space overhead and the total space overheads
(provenance database and indexes) for PASSv2. The
overheads are computed as a percentage of the Ext3
space utilization. Overall, the provenance database over-
heads are minimal with all overheads being less than
7%. The total space overheads are reasonable with Linux
compile having the highest overhead at 18.4%. PA-
Kepler combines both system provenance and applica-
tion provenance and has a total space overhead of 14.2%.
For the rest of the benchmarks, the space overhead is less
than 4%. The space overheads for PA-NFS as the over-
heads are similar to the overheads in PASSv2.

8 Related Work

Several systems have looked at propagating taint infor-
mation along with the data in order to debug applications
or to detect security violations [22, 30]. These systems
are, however, extremely slow as they track information
flow at a fine granularity and hence can never be used
in production systems. PASSv2 monitors only system
call events, which is much less expensive. The drawback
is that the information collected by PASSv2 can be less
accurate; but as we have shown in the use cases, it is
valuable nonetheless.

X-Trace [7] is a research prototype built to diagnose

problems in network applications that span multiple pro-
tocol layers and administrative domains. X-Trace’s ap-
proach is similar to ours in that it integrates information
from multiple layers in the system stack. The higher
layer generates a “taint” that is propagated through the
layers along with the data. The generated debug meta-
data is not sent with the data, but is instead sent out of
band to a destination. Hence the interface between lay-
ers can be much more limited compared to the DPAPI
in PASSv2. Furthermore, X-Trace does not need to deal
with cycles as the PASSv2 analyzer does.

Another class of systems that maintain dependencies
are software build systems such as Vesta [14]. These sys-
tems need the initial dependencies be specified manually.
Build systems maintain dependencies after those depen-
dencies have been specified; PASS derives dependencies
based upon program execution. As a result, while ex-
traordinarily useful for software development, they ig-
nore the central PASS challenge: automatically generat-
ing the derivation rules as a system runs.

Chanda et. al. [5] present a mechanism to use causal
information flow to introduce new functionality. For ex-
ample, one can send process priority along with data to
a socket. On receiving the data and the causal metadata
(priority), the server increases the priority for processing
this data. This mechanism is complementary to the ideas
we have explored in this work.

9 Conclusions

We have presented a provenance-aware storage system
that permits integration of provenance across multiple
layers of abstraction, ranging from Python applications
to network-attached storage. This integration requires a
layered architecture that dictates how provenance, data,

142	 2009 USENIX Annual Technical Conference	 USENIX Association

and versions must flow through the system. The archi-
tecture has proved versatile enough to facilitate integra-
tion with a variety of applications and NFS, providing
functionality not available in systems that cannot inte-
grate provenance across different layers of abstraction.

We have presented several use cases illustrating what
kinds of functionality this layering enables. The use
cases show efficacy in a variety of areas, such as mal-
ware tracking and scientific data processing. Finally,
we demonstrated an end-to-end system encompass-
ing provenance-aware applications and network-attached
storage, imposing reasonable space and time overheads
ranging between 1% and 23%.

Acknowledgments: We thank Stephen D. Holland for
providing us the PA-Python use cases and Joseph Bar-
illari for help with PA-Python development. We thank
Andrew Warfield, our shepherd, for repeated careful and
thoughtful reviews of our paper. We thank Keith Bostic,
Stephen D. Holland, Keith Smith, and Jonathan Ledlie
for their feedback on early drafts of the paper. We thank
the anonymous reviewers for the valuable feedback they
provided. This work was partially made possible thanks
to NSF grants CNS-0614784 and IIS-0849392.

References
[1] ABITEBOUL, S., QUASS, D., MCHUGH, J., WIDOM, J., AND

WIENER, J. L. The Lorel query language for semistructured data.
International Journal on Digital Libraries 1, 1 (1997), 68–88.

[2] ALTINTAS, I., BARNEY, O., AND JAEGER-FRANK, E. Prove-
nance collection support in the Kepler scientific workflow system.
In IPAW (2006), vol. 4145 of LNCS, Springer.

[3] BOSE, R., AND FREW, J. Composing lineage metadata with xml
for custom satellite-derived data products. In Proceedings of the
Sixteenth International Conference on Scientific and Statistical
Database Management (2004).

[4] BRAUN, U., SHINNAR, A., AND SELTZER, M. Securing Prove-
nance. In Proceedings of HotSec 2008 (July 2008).

[5] CHANDA, A., ELMELEEGY, K., COX, A. L., AND
ZWAENEPOEL, W. Causeway: operating system support for con-
trolling and analyzing the execution of distributed programs. In
HOTOS (2005).

[6] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLER, D., KOHLER, E., MAZIÈRES, D.,
KAASHOEK, F., AND MORRIS, R. Labels and event processes
in the asbestos operating system. In SOSP (2005).

[7] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND
STOICA, I. X-trace: A pervasive network tracing framework. In
In NSDI (2007).

[8] FOSTER, I., AND KESSELMAN, C. Globus: A metacomput-
ing infrastructure toolkit. International Journal of Supercomputer
Applications and High Performance Computing (Summer 1997).

[9] FOSTER, I., VOECKLER, J., WILDE, M., AND ZHAO, Y. The
Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration. In CIDR (Asilomar, CA, Jan. 2003).

[10] GenePattern. http://www.broad.mit.edu/cancer/
software/genepattern.

[11] GOEL, A., PO, K., FARHADI, K., LI, Z., AND DE LARA, E.
The Taser intrusion recovery system. In SOSP (2005).

[12] HALCROW, M. A. eCryptfs: An enterprise-class encrypted
filesystem for linux. Ottawa Linux Symposium (2005).

[13] HASAN, R., SION, R., AND WINSLETT, M. The Case of the
Fake Picasso: Preventing History Forgery with Secure Prove-
nance. In FAST (2009).

[14] HEYDON, A., LEVIN, R., MANN, T., AND YU, Y. The Vesta
Approach to Software Configuration Management. Technical Re-
port 168, Compaq Systems Research Center, March 2001.

[15] HOLLAND, D. A. PQL language guide and reference. http://
www.eecs.harvard.edu/syrah/pql/docs/. Harvard
University, 2009.

[16] HOLLAND, D. A., BRAUN, U., MACLEAN, D., MUNISWAMY-
REDDY, K.-K., AND SELTZER, M. I. A Data Model and Query
Language Suitable for Provenance. In Proceedings of the 2008
International Provenance and Annotation Workshop (IPAW).

[17] KING, S. T., AND CHEN, P. M. Backtracking Intrusions. In
SOSP (Bolton Landing, NY, October 2003).

[18] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Informa-
tion flow control for standard OS abstractions. In symposium on
Operating systems principles (2007).

[19] MARGO, D. W., AND SELTZER, M. The case for browser prove-
nance. In 1st Workshop on the Theory and Practice of Provenance
(2009).

[20] MUNISWAMY-REDDY, K.-K., AND HOLLAND, D. A.
Causality-Based Versioning. In Proceedings of the 7th USENIX
Conference on File and Storage Technologies (Feb 2009).

[21] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In Pro-
ceedings of the 2006 USENIX Annual Technical Conference.

[22] NEWSOME, J., AND SONG, D. X. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In NDSS (2005).

[23] Provenance aware service oriented architecture. http:
//twiki.pasoa.ecs.soton.ac.uk/bin/view/
PASOA/WebHome.

[24] The First Provenance Challenge. http://
twiki.ipaw.info/bin/view/Challenge/
FirstProvenanceChallenge.

[25] The Second Provenance Challenge. http://
twiki.ipaw.info/bin/view/Challenge/
SecondProvenanceChallenge.

[26] SHEPLER, S., CALLAGHAN, B., ROBINSON, D., THURLOW,
R., BEAME, C., EISLER, M., AND NOVECK, D. Network File
System (NFS) version 4 Protocol. http://www.ietf.org/
rfc/rfc3530.txt, April 2003.

[27] SUNDARARAMAN, S., SIVATHANU, G., AND ZADOK, E. Se-
lective versioning in a secure disk system. In Proceedings of the
17th USENIX Security Symposium (July-August 2008).

[28] VAHDAT, A., AND ANDERSON, T. Transparent result caching.
In ATEC ’98: Proceedings of the annual conference on USENIX
Annual Technical Conference (1998).

[29] WIDOM, J. Trio: A System for Integrated Management of Data,
Accuracy, and Lineage. In CIDR (Asilomar, CA, January 2005).

[30] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: capturing system-wide information flow for mal-
ware detection and analysis. In CCS (2007).

[31] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making information flow explicit in histar. In
OSDI (2006).

USENIX Association	 2009 USENIX Annual Technical Conference	 143

Object Storage on CRAQ
High-throughput chain replication for read-mostly workloads

Jeff Terrace and Michael J. Freedman
Princeton University

Abstract
Massive storage systems typically replicate and partition
data over many potentially-faulty components to provide
both reliability and scalability. Yet many commercially-
deployed systems, especially those designed for inter-
active use by customers, sacrifice stronger consistency
properties in the desire for greater availability and higher
throughput.

This paper describes the design, implementation, and
evaluation of CRAQ, a distributed object-storage system
that challenges this inflexible tradeoff. Our basic ap-
proach, an improvement on Chain Replication, maintains
strong consistency while greatly improving read through-
put. By distributing load across all object replicas, CRAQ
scales linearly with chain size without increasing consis-
tency coordination. At the same time, it exposes non-
committed operations for weaker consistency guarantees
when this suffices for some applications, which is espe-
cially useful under periods of high system churn. This
paper explores additional design and implementation con-
siderations for geo-replicated CRAQ storage across mul-
tiple datacenters to provide locality-optimized operations.
We also discuss multi-object atomic updates and multicast
optimizations for large-object updates.

1 Introduction
Many online services require object-based storage, where
data is presented to applications as entire units. Object
stores support two basic primitives: read (or query) oper-
ations return the data block stored under an object name,
and write (or update) operations change the state of a sin-
gle object. Such object-based storage is supported by
key-value databases (e.g., BerkeleyDB [40] or Apache’s
semi-structured CouchDB [13]) to the massively-scalable
systems being deployed in commercial datacenters (e.g.,
Amazon’s Dynamo [15], Facebook’s Cassandra [16], and
the popular Memcached [18]). To achieve the requisite re-
liability, load balancing, and scalability in many of these
systems, the object namespace is partitioned over many
machines and each data object is replicated several times.

Object-based systems are more attractive than their file-
system counterparts when applications have certain re-
quirements. Object stores are better suited for flat names-
paces, such as in key-value databases, as opposed to hi-
erarchical directory structures. Object stores simplify the
process of supporting whole-object modifications. And,
they typically only need to reason about the ordering of
modifications to a specific object, as opposed to the en-
tire storage system; it is significantly cheaper to provide
consistency guarantees per object instead of across all op-
erations and/or objects.

When building storage systems that underlie their myr-
iad applications, commercial sites place the need for high
performance and availability at the forefront. Data is
replicated to withstand the failure of individual nodes or
even entire datacenters, whether from planned mainte-
nance or unplanned failure. Indeed, the news media is rife
with examples of datacenters going offline, taking down
entire websites in the process [26]. This strong focus on
availability and performance—especially as such proper-
ties are being codified in tight SLA requirements [4, 24]—
has caused many commercial systems to sacrifice strong
consistency semantics due to their perceived costs (as at
Google [22], Amazon [15], eBay [46], and Facebook [44],
among others).

Recently, van Renesse and Schneider presented a chain
replication method for object storage [47] over fail-stop
servers, designed to provide strong consistency yet im-
prove throughput. The basic approach organizes all nodes
storing an object in a chain, where the chain tail handles
all read requests, and the chain head handles all write re-
quests. Writes propagate down the chain before the client
is acknowledged, thus providing a simple ordering of all
object operations—and hence strong consistency—at the
tail. The lack of any complex or multi-round protocols
yields simplicity, good throughput, and easy recovery.

Unfortunately, the basic chain replication approach has
some limitations. All reads for an object must go to the
same node, leading to potential hotspots. Multiple chains
can be constructed across a cluster of nodes for better load
balancing—via consistent hashing [29] or a more central-
ized directory approach [22]—but these algorithms might

144	 2009 USENIX Annual Technical Conference	 USENIX Association

still find load imbalances if particular objects are dispro-
portionally popular, a real issue in practice [17]. Perhaps
an even more serious issue arises when attempting to build
chains across multiple datacenters, as all reads to a chain
may then be handled by a potentially-distant node (the
chain’s tail).

This paper presents the design, implementation, and
evaluation of CRAQ (Chain Replication with Apportioned
Queries), an object storage system that, while maintaining
the strong consistency properties of chain replication [47],
provides lower latency and higher throughput for read op-
erations by supporting apportioned queries: that is, divid-
ing read operations over all nodes in a chain, as opposed
to requiring that they all be handled by a single primary
node. This paper’s main contributions are the following.

1. CRAQ enables any chain node to handle read op-
erations while preserving strong consistency, thus
supporting load balancing across all nodes stor-
ing an object. Furthermore, when workloads are
read mostly—an assumption used in other systems
such as the Google File System [22] and Mem-
cached [18]—the performance of CRAQ rivals sys-
tems offering only eventual consistency.

2. In addition to strong consistency, CRAQ’s design
naturally supports eventual-consistency among read
operations for lower-latency reads during write con-
tention and degradation to read-only behavior dur-
ing transient partitions. CRAQ allows applications
to specify the maximum staleness acceptable for read
operations.

3. Leveraging these load-balancing properties, we de-
scribe a wide-area system design for building CRAQ
chains across geographically-diverse clusters that
preserves strong locality properties. Specifically,
reads can be handled either completely by a local
cluster, or at worst, require concise metadata infor-
mation to be transmitted across the wide-area during
times of high write contention. We also present our
use of ZooKeeper [48], a PAXOS-like group mem-
bership system, to manage these deployments.

Finally, we discuss additional extensions to CRAQ,
including the integration of mini-transactions for multi-
object atomic updates, and the use of multicast to improve
write performance for large-object updates. We have not
yet finished implementing these optimizations, however.

A preliminary performance evaluation of CRAQ
demonstrates its high throughput compared to the basic
chain replication approach, scaling linearly with the num-
ber of chain nodes for read-mostly workloads: approxi-
mately a 200% improvement for three-node chains, and
600% for seven-node chains. During high write con-
tention, CRAQ’s read throughput in three-node chains still

outperformed chain replication by a factor of two, and
read latency remains low. We characterize its performance
under varying workloads and under failures. Finally,
we evaluate CRAQ’s performance for geo-replicated stor-
age, demonstrating significantly lower latency than that
achieved by basic chain replication.

The remainder of this paper is organized as follows.
Section §2 provides a comparison between the basic chain
replication and CRAQ protocols, as well as CRAQ’s sup-
port for eventual consistency. Section §3 describes scaling
out CRAQ to many chains, within and across datacenters,
as well as the group membership service that manages
chains and nodes. Section §4 touches on extensions such
as multi-object updates and leveraging multicast. Section
§5 describes our CRAQ implementation, §6 presents our
performance evaluation, §7 reviews related work, and §8
concludes.

2 Basic System Model
This section introduces our object-based interface and
consistency models, provides a brief overview of the stan-
dard Chain Replication model, and then presents strongly-
consistent CRAQ and its weaker variants.

2.1 Interface and Consistency Model
An object-based storage system provides two simple
primitives for users:

• write(objID, V): The write (update) operation stores
the value V associated with object identifier ob jID.

• V ← read(objID): The read (query) operation re-
trieves the value V associated with object id ob jID.

We will be discussing two main types of consistency,
taken with respect to individual objects.

• Strong Consistency in our system provides the guar-
antee that all read and write operations to an object
are executed in some sequential order, and that a read
to an object always sees the latest written value.

• Eventual Consistency in our system implies that
writes to an object are still applied in a sequential
order on all nodes, but eventually-consistent reads to
different nodes can return stale data for some period
of inconsistency (i.e., before writes are applied on
all nodes). Once all replicas receive the write, how-
ever, read operations will never return an older ver-
sion than this latest committed write. In fact, a client
will also see monotonic read consistency1 if it main-

1That is, informally, successive reads to an object will return either
the same prior value or a more recent one, but never an older value.

USENIX Association	 2009 USENIX Annual Technical Conference	 145

HEAD replica replica TAIL

Write Request Read Request

Figure 1: All reads in Chain Replication must be handled
by the tail node, while all writes propagate down the chain
from the head.

tains a session with a particular node (although not
across sessions with different nodes).

We next consider how Chain Replication and CRAQ pro-
vide their strong consistency guarantees.

2.2 Chain Replication
Chain Replication (CR) is a method for replicating data
across multiple nodes that provides a strongly consistent
storage interface. Nodes form a chain of some defined
length C. The head of the chain handles all write oper-
ations from clients. When a write operation is received
by a node, it is propagated to the next node in the chain.
Once the write reaches the tail node, it has been applied
to all replicas in the chain, and it is considered committed.
The tail node handles all read operations, so only values
which are committed can be returned by a read.

Figure 1 provides an example chain of length four. All
read requests arrive and are processed at the tail. Write re-
quests arrive at the head of the chain and propagate their
way down to the tail. When the tail commits the write, a
reply is sent to the client. The CR paper describes the
tail sending a message directly back to the client; be-
cause we use TCP, our implementation actually has the
head respond after it receives an acknowledgment from
the tail, given its pre-existing network connection with the
client. This acknowledgment propagation is shown with
the dashed line in the figure.

The simple topology of CR makes write operations
cheaper than in other protocols offering strong consis-
tency. Multiple concurrent writes can be pipelined down
the chain, with transmission costs equally spread over
all nodes. The simulation results of previous work [47]
showed competitive or superior throughput for CR com-
pared to primary/backup replication, while arguing a prin-
ciple advantage from quicker and easier recovery.

Chain replication achieves strong consistency: As all
reads go to the tail, and all writes are committed only
when they reach the tail, the chain tail can trivially ap-
ply a total ordering over all operations. This does come at
a cost, however, as it reduces read throughput to that of a
single node, instead of being able to scale out with chain

size. But it is necessary, as querying intermediate nodes
could otherwise violate the strong consistency guarantee;
specifically, concurrent reads to different nodes could see
different writes as they are in the process of propagating
down the chain.

While CR focused on providing a storage service, one
could also view its query/update protocols as an interface
to replicated state machines (albeit ones that affect distinct
object). One can view CRAQ in a similar light, although
the remainder of this paper considers the problem only
from the perspective of a read/write (also referred to as a
get/put or query/update) object storage interface.

2.3 Chain Replication with Apportioned
Queries

Motivated by the popularity of read-mostly workload en-
vironments, CRAQ seeks to increase read throughput by
allowing any node in the chain to handle read operations
while still providing strong consistency guarantees. The
main CRAQ extensions are as follows.

1. A node in CRAQ can store multiple versions of an
object, each including a monotonically-increasing
version number and an additional attribute whether
the version is clean or dirty. All versions are initially
marked as clean.

2. When a node receives a new version of an object (via
a write being propagated down the chain), the node
appends this latest version to its list for the object.

• If the node is not the tail, it marks the version as
dirty, and propagates the write to its successor.

• Otherwise, if the node is the tail, it marks the
version as clean, at which time we call the
object version (write) as committed. The tail
node can then notify all other nodes of the
commit by sending an acknowledgement back-
wards through the chain.

3. When an acknowledgment message for an object ver-
sion arrives at a node, the node marks the object ver-
sion as clean. The node can then delete all prior ver-
sions of the object.

4. When a node receives a read request for an object:

• If the latest known version of the requested ob-
ject is clean, the node returns this value.

• Otherwise, if the latest version number of the
object requested is dirty, the node contacts the
tail and asks for the tail’s last committed ver-
sion number (a version query). The node then
returns that version of the object; by construc-
tion, the node is guaranteed to be storing this

146	 2009 USENIX Annual Technical Conference	 USENIX Association

Read RequestRead RequestRead Request

HEAD replica replica TAIL

Read Request

Figure 2: Reads to clean objects in CRAQ can be com-
pletely handled by any node in the system.

replica TAIL

Clean ReadDirty ReadWrite Request

HEAD replica

1

K

K K V1V1
[K , V2]

K: V1,V2 K: V1,V2 K: V1 K: V1

Figure 3: Reads to dirty objects in CRAQ can be received
by any node, but require small version requests (dotted blue
line) to the chain tail to properly serialize operations.

version of the object. We note that although the
tail could commit a new version between when
it replied to the version request and when the
intermediate node sends a reply to the client,
this does not violate our definition of strong
consistency, as read operations are serialized
with respect to the tail.

Note that an object’s “dirty” or “clean” state at a node
can also be determined implicitly, provided a node deletes
old versions as soon as it receives a write commitment
acknowledgment. Namely, if the node has exactly one
version for an object, the object is implicitly in the clean
state; otherwise, the object is dirty and the properly-
ordered version must be retrieved from the chain tail.

Figure 2 shows a CRAQ chain in the starting clean
state. Each node stores an identical copy of an object,
so any read request arriving at any node in the chain will
return the same value. All nodes remain in the clean state
unless a write operation is received.2

In Figure 3, we show a write operation in the middle of
propagation (shown by the dashed purple line). The head
node received the initial message to write a new version
(V2) of the object, so the head’s object is dirty. It then
propagated the write message down the chain to the sec-

2There’s a small caveat about the system ordering properties for clean
reads. In traditional Chain Replication, all operations are handled by the
tail, so it explicitly defines a total ordering over all operations affecting
an object. In CRAQ, clean read operations to different nodes are exe-
cuted locally; thus, while one could define an (arbitrary) total ordering
over these “concurrent” reads, the system does not do such explicitly. Of
course, both systems explicitly maintain (at the tail) a total ordering with
respect to all read/write, write/read, and write/write relationships.

ond node, which also marked itself as dirty for that object
(having multiple versions [V1,V2] for a single object ID
K). If a read request is received by one of the clean nodes,
they immediately return the old version of the object: This
is correct, as the new version has yet to be committed at
the tail. If a read request is received by either of the dirty
nodes, however, they send a version query to the tail—
shown in the figure by the dotted blue arrow—which re-
turns its known version number for the requested object
(1). The dirty node then returns the old object value (V1)
associated with this specified version number. Therefore,
all nodes in the chain will still return the same version of
an object, even in the face of multiple outstanding writes
being propagated down the chain.

When the tail receives and accepts the write request, it
sends an acknowledgment message containing this write’s
version number back up the chain. As each predeces-
sor receives the acknowledgment, it marks the specified
version as clean (possibly deleting all older versions).
When its latest-known version becomes clean, it can sub-
sequently handle reads locally. This method leverages the
fact that writes are all propagated serially, so the tail is
always the last chain node to receive a write.

CRAQ’s throughput improvements over CR arise in
two different scenarios:

• Read-Mostly Workloads have most of the read re-
quests handled solely by the C−1 non-tail nodes (as
clean reads), and thus throughput in these scenarios
scales linearly with chain size C.

• Write-Heavy Workloads have most read requests to
non-tail nodes as dirty, thus require version queries
to the tail. We suggest, however, that these version
queries are lighter-weight than full reads, allowing
the tail to process them at a much higher rate be-
fore it becomes saturated. This leads to a total read
throughput that is still higher than CR.

Performance results in §6 support both of these claims,
even for small objects. For longer chains that are per-
sistently write-heavy, one could imagine optimizing read
throughput by having the tail node only handle version
queries, not full read requests, although we do not evalu-
ate this optimization.

2.4 Consistency Models on CRAQ
Some applications may be able to function with weaker
consistency guarantees, and they may seek to avoid the
performance overhead of version queries (which can be
significant in wide-area deployments, per §3.3), or they
may wish to continue to function at times when the system
cannot offer strong consistency (e.g., during partitions).
To support such variability in requirements, CRAQ simul-
taneously supports three different consistency models for

USENIX Association	 2009 USENIX Annual Technical Conference	 147

reads. A read operation is annotated with which type of
consistency is permissive.

• Strong Consistency (the default) is described in the
model above (§2.1). All object reads are guaranteed
to be consistent with the last committed write.

• Eventual Consistency allows read operations to a
chain node to return the newest object version known
to it. Thus, a subsequent read operation to a different
node may return an object version older than the one
previously returned. This does not, therefore, satisfy
monotonic read consistency, although reads to a sin-
gle chain node do maintain this property locally (i.e.,
as part of a session).

• Eventual Consistency with Maximum-Bounded
Inconsistency allows read operations to return newly
written objects before they commit, but only to a cer-
tain point. The limit imposed can be based on time
(relative to a node’s local clock) or on absolute ver-
sion numbers. In this model, a value returned from a
read operation is guaranteed to have a maximum in-
consistency period (defined over time or versioning).
If the chain is still available, this inconsistency is ac-
tually in terms of the returned version being newer
than the last committed one. If the system is parti-
tioned and the node cannot participate in writes, the
version may be older than the current committed one.

2.5 Failure Recovery in CRAQ
As the basic structure of CRAQ is similar to CR, CRAQ
uses the same techniques to recover from failure. Infor-
mally, each chain node needs to know its predecessor and
successor, as well as the chain head and tail. When a head
fails, its immediate successor takes over as the new chain
head; likewise, the tail’s predecessor takes over when the
tail fails. Nodes joining or failing from within the middle
of the chain must insert themselves between two nodes,
much like a doubly-linked list. The proofs of correct-
ness for dealing with system failures are similar to CR;
we avoid them here due to space limitations. Section §5
describes the details of failure recovery in CRAQ, as well
as the integration of our coordination service. In particu-
lar, CRAQ’s choice of allowing a node to join anywhere
in a chain (as opposed only to at its tail [47]), as well as
properly handling failures during recovery, requires some
careful consideration.

3 Scaling CRAQ
In this section, we discuss how applications can specify
various chain layout schemes in CRAQ, both within a sin-
gle datacenter and across multiple datacenters. We then

describe how to use a coordination service to store the
chain metadata and group membership information.

3.1 Chain Placement Strategies

Applications that use distributed storage services can be
diverse in their requirements. Some common situations
that occur may include:

• Most or all writes to an object might originate in a
single datacenter.

• Some objects may be only relevant to a subset of dat-
acenters.

• Popular objects might need to be heavily replicated
while unpopular ones can be scarce.

CRAQ provides flexible chain configuration strategies
that satisfy these varying requirements through the use
of a two-level naming hierarchy for objects. An object’s
identifier consists of both a chain identifier and a key iden-
tifier. The chain identifier determines which nodes in
CRAQ will store all keys within that chain, while the key
identifier provides unique naming per chain. We describe
multiple ways of specifying application requirements:

1. Implicit Datacenters & Global Chain Size:

{num_datacenters, chain_size}
In this method, the number of datacenters that will
store the chain is defined, but not explicitly which
datacenters. To determine exactly which datacen-
ters store the chain, consistent hashing is used with
unique datacenter identifiers.

2. Explicit Datacenters & Global Chain Size:

{chain_size, dc1, dc2, . . . , dcN}
Using this method, every datacenter uses the same
chain size to store replicas within the datacenter. The
head of the chain is located within datacenter dc1,
the tail of the chain is located within datacenter dcN ,
and the chain is ordered based on the provided list
of datacenters. To determine which nodes within a
datacenter store objects assigned to the chain, con-
sistent hashing is used on the chain identifier. Each
datacenter dci has a node which connects to the tail
of datacenter dci−1 and a node which connects to the
head of datacenter dci+1, respectively. An additional
enhancement is to allow chain_size to be 0 which
indicates that the chain should use all nodes within
each datacenter.

3. Explicit Datacenter Chain Sizes:

{dc1, chain_size1, . . . , dcN , chain_sizeN}

148	 2009 USENIX Annual Technical Conference	 USENIX Association

Here the chain size within each datacenter is spec-
ified separately. This allows for non-uniformity in
chain load balancing. The chain nodes within each
datacenter are chosen in the same manner as the pre-
vious method, and chain_sizei can also be set to 0.

In methods 2 and 3 above, dc1 can be set as a mas-
ter datacenter. If a datacenter is the master for a chain,
this means that writes to the chain will only be accepted
by that datacenter during transient failures. Otherwise, if
dc1 is disconnected from the rest of the chain, dc2 could
become the new head and take over write operations un-
til dc1 comes back online. When a master is not defined,
writes will only continue in a partition if the partition con-
tains a majority of the nodes in the global chain. Other-
wise, the partition will become read-only for maximum-
bounded inconsistent read operations, as defined in Sec-
tion 2.4.

CRAQ could easily support other more complicated
methods of chain configuration. For example, it might be
desirable to specify an explicit backup datacenter which
only participates in the chain if another datacenter fails.
One could also define a set of datacenters (e.g., “East
coast”), any one of which could fill a single slot in the
ordered list of datacenters of method 2. For brevity, we
do not detail more complicated methods.

There is no limit on the number of key identifiers
that can be written to a single chain. This allows for
highly flexible configuration of chains based on applica-
tion needs.

3.2 CRAQ within a Datacenter
The choice of how to distribute multiple chains across a
datacenter was investigated in the original Chain Repli-
cation work. In CRAQ’s current implementation, we
place chains within a datacenter using consistent hash-
ing [29, 45], mapping potentially many chain identifiers
to a single head node. This is similar to a growing number
of datacenter-based object stores [15, 16]. An alternative
approach, taken by GFS [22] and promoted in CR [47], is
to use the membership management service as a directory
service in assigning and storing randomized chain mem-
bership, i.e., each chain can include some random set of
server nodes. This approach improves the potential for
parallel system recovery. It comes at the cost, however,
of increased centralization and state. CRAQ could eas-
ily use this alternative organizational design as well, but
it would require storing more metadata information in the
coordination service.

3.3 CRAQ Across Multiple Datacenters
CRAQ’s ability to read from any node improves its latency
when chains stretch across the wide-area: When clients

have flexibility in their choice of node, they can choose
one that is nearby (or even lightly loaded). As long as
the chain is clean, the node can return its local replica of
an object without having to send any wide-area requests.
With traditional CR, on the other hand, all reads would
need to be handled by the potentially-distant tail node. In
fact, various designs may choose head and/or tail nodes in
a chain based on their datacenter, as objects may experi-
ence significant reference locality. Indeed, the design of
PNUTS [12], Yahoo!’s new distributed database, is moti-
vated by the high write locality observed in their datacen-
ters.

That said, applications might further optimize the se-
lection of wide-area chains to minimize write latency and
reduce network costs. Certainly the naive approach of
building chains using consistent hashing across the entire
global set of nodes leads to randomized chain successors
and predecessors, potentially quite distant. Furthermore,
an individual chain may cross in and out of a datacenter
(or particular cluster within a datacenter) several times.
With our chain optimizations, on the other hand, appli-
cations can minimize write latency by carefully selecting
the order of datacenters that comprise a chain, and we can
ensure that a single chain crosses the network boundary
of a datacenter only once in each direction.

Even with an optimized chain, the latency of write
operations over wide-area links will increase as more
datacenters are added to the chain. Although this in-
creased latency could be significant in comparison to
a primary/backup approach which disseminates writes
in parallel, it allows writes to be pipelined down the
chain. This vastly improves write throughput over the pri-
mary/backup approach.

3.4 ZooKeeper Coordination Service

Building a fault-tolerant coordination service for dis-
tributed applications is notoriously error prone. An ear-
lier version of CRAQ contained a very simple, centrally-
controlled coordination service that maintained member-
ship management. We subsequently opted to leverage
ZooKeeper [48], however, to provide CRAQ with a ro-
bust, distributed, high-performance method for tracking
group membership and an easy way to store chain meta-
data. Through the use of Zookeper, CRAQ nodes are guar-
anteed to receive a notification when nodes are added to or
removed from a group. Similarly, a node can be notified
when metadata in which it has expressed interest changes.

ZooKeeper provides clients with a hierarchical names-
pace similar to a filesystem. The filesystem is stored in
memory and backed up to a log at each ZooKeeper in-
stance, and the filesystem state is replicated across mul-
tiple ZooKeeper nodes for reliability and scalability. To
reach agreement, ZooKeeper nodes use an atomic broad-

USENIX Association	 2009 USENIX Annual Technical Conference	 149

cast protocol similar to two-phase-commit. Optimized for
read-mostly, small-sized workloads, ZooKeeper provides
good performance in the face of many readers since it can
serve the majority of requests from memory.

Similar to traditional filesystem namespaces,
ZooKeeper clients can list the contents of a direc-
tory, read the value associated with a file, write a value to
a file, and receive a notification when a file or directory
is modified or deleted. ZooKeeper’s primitive operations
allow clients to implement many higher-level seman-
tics such as group membership, leader election, event
notification, locking, and queuing.

Membership management and chain metadata across
multiple datacenters does introduce some challenges. In
fact, ZooKeeper is not optimized for running in a multi-
datacenter environment: Placing multiple ZooKeeper
nodes within a single datacenter improves Zookeeper
read scalability within that datacenter, but at the cost of
wide-area performance. Since the vanilla implementa-
tion has no knowledge of datacenter topology or notion
of hierarchy, coordination messages between Zookeeper
nodes are transmitted over the wide-area network mul-
tiple times. Still, our current implementation ensures
that CRAQ nodes always receive notifications from local
Zookeeper nodes, and they are further notified only about
chains and node lists that are relevant to them. We expand
on our coordination through Zookeper in §5.1.

To remove the redundancy of cross-datacenter
ZooKeeper traffic, one could build a hierarchy of
Zookeeper instances: Each datacenter could contain its
own local ZooKeeper instance (of multiple nodes), as
well as having a representative that participates in the
global ZooKeeper instance (perhaps selected through
leader election among the local instance). Separate
functionality could then coordinate the sharing of data
between the two. An alternative design would be to
modify ZooKeeper itself to make nodes aware of network
topology, as CRAQ currently is. We have yet to fully
investigate either approach and leave this to future work.

4 Extensions
This section discusses some additional extensions to
CRAQ, including its facility with mini-transactions and
the use of multicast to optimize writes. We are currently
in the process of implementing these extensions.

4.1 Mini-Transactions on CRAQ

The whole-object read/write interface of an object store
may be limiting for some applications. For example, a
BitTorrent tracker or other directory service would want
to support list addition or deletion. An analytics service

may wish to store counters. Or applications may wish
to provide conditional access to certain objects. None of
these are easy to provide only armed with a pure object-
store interface as described so far, but CRAQ provides key
extensions that support transactional operations.

4.1.1 Single-Key Operations

Several single-key operations are trivial to implement,
which CRAQ already supports:

• Prepend/Append: Adds data to the beginning or
end of an object’s current value.

• Increment/Decrement: Adds or subtracts to a key’s
object, interpreted as an integer value.

• Test-and-Set: Only update a key’s object if its cur-
rent version number equals the version number spec-
ified in the operation.

For Prepend/Append and Increment/Decrement opera-
tions, the head of the chain storing the key’s object can
simply apply the operation to the latest version of the ob-
ject, even if the latest version is dirty, and then propagate
a full replacement write down the chain. Furthermore, if
these operations are frequent, the head can buffer the re-
quests and batch the updates. These enhancements would
be much more expensive using a traditional two-phase-
commit protocol.

For the test-and-set operation, the head of the chain
checks if its most recent committed version number
equals the version number specified in the operation. If
there are no outstanding uncommitted versions of the ob-
ject, the head accepts the operation and propagates an up-
date down the chain. If there are outstanding writes, we
simply reject the test-and-set operation, and clients are
careful to back off their request rate if continuously re-
jected. Alternatively, the head could “lock” the object
by disallowing writes until the object is clean and re-
check the latest committed version number, but since it
is very rare that an uncommitted write is aborted and be-
cause locking the object would significantly impact per-
formance, we chose not to implement this alternative.

The test-and-set operation could also be designed to
accept a value rather than a version number, but this in-
troduces additional complexity when there are outstand-
ing uncommitted versions. If the head compares against
the most recent committed version of the object (by con-
tacting the tail), any writes that are currently in progress
would not be accounted for. If instead the head compares
against the most recent uncommitted version, this violates
consistency guarantees. To achieve consistency, the head
would need to temporarily lock the object by disallowing
(or temporarily delaying) writes until the object is clean.
This does not violate consistency guarantees and ensures

150	 2009 USENIX Annual Technical Conference	 USENIX Association

that no updates are lost, but could significantly impact
write performance.

4.1.2 Single-Chain Operations

Sinfonia’s recently proposed “mini-transactions” provide
an attractive lightweight method [2] of performing trans-
actions on multiple keys within a single chain. A mini-
transaction is defined by a compare, read, and write
set; Sinfonia exposes a linear address space across many
memory nodes. A compare set tests the values of the spec-
ified address location and, if they match the provided val-
ues, executes the read and write operations. Typically
designed for settings with low write contention, Sinfo-
nia’s mini-transactions use an optimistic two-phase com-
mit protocol. The prepare message attempts to grab a lock
on each specified memory address (either because differ-
ent addresses were specified, or the same address space is
being implemented on multiple nodes for fault tolerance).
If all addresses can be locked, the protocol commits; oth-
erwise, the participant releases all locks and retries later.

CRAQ’s chain topology has some special benefits for
supporting similar mini-transactions, as applications can
designate multiple objects be stored on the same chain—
i.e., those that appear regularly together in multi-object
mini-transactions—in such a way that preserves locality.
Objects sharing the same chainid will be assigned the
same node as their chain head, reducing the two-phase
commit to a single interaction because only one head node
is involved. CRAQ is unique in that mini-transactions that
only involve a single chain can be accepted using only the
single head to mediate access, as it controls write access
to all of a chain’s keys, as opposed to all chain nodes. The
only trade-off is that write throughput may be affected if
the head needs to wait for keys in the transaction to be-
come clean (as described in §4.1.1). That said, this prob-
lem is only worse in Sinfonia as it needs to wait (by ex-
ponentially backing off the mini-transaction request) for
unlocked keys across multiple nodes. Recovery from fail-
ure is similarly easier in CRAQ as well.

4.1.3 Multi-Chain Operations

Even when multiple chains are involved in multi-object
updates, the optimistic two-phase protocol need only be
implemented with the chain heads, not all involved nodes.
The chain heads can lock any keys involved in the mini-
transaction until it is fully committed.

Of course, application writers should be careful with
the use of extensive locking and mini-transactions: They
reduce the write throughput of CRAQ as writes to the
same object can no longer be pipelined, one of the very
benefits of chain replication.

4.2 Lowering Write Latency with Multicast

CRAQ can take advantage of multicast protocols [41] to
improve write performance, especially for large updates
or long chains. Since chain membership is stable between
node membership changes, a multicast group can be cre-
ated for each chain. Within a datacenter, this would prob-
ably take the form of a network-layer multicast protocol,
while application-layer multicast protocols may be better-
suited for wide-area chains. No ordering or reliability
guarantees are required from these multicast protocols.

Then, instead of propagating a full write serially down a
chain, which adds latency proportional to the chain length,
the actual value can be multicast to the entire chain. Then,
only a small metadata message needs to be propagated
down the chain to ensure that all replicas have received a
write before the tail. If a node does not receive the multi-
cast for any reason, the node can fetch the object from its
predecessor after receiving the write commit message and
before further propagating the commit message.

Additionally, when the tail receives a propagated write
request, a multicast acknowledgment message can be sent
to the multicast group instead of propagating it backwards
along the chain. This reduces both the amount of time
it takes for a node’s object to re-enter the clean state af-
ter a write, as well as the client’s perceived write delay.
Again, no ordering or reliability guarantees are required
when multicasting acknowledgments—if a node in the
chain does not receive an acknowledgement, it will re-
enter the clean state when the next read operation requires
it to query the tail.

5 Management and Implementation

Our prototype implementation of Chain Replication and
CRAQ is written in approximately 3,000 lines of C++ us-
ing the Tame extensions [31] to the SFS asynchronous I/O
and RPC libraries [38]. All network functionality between
CRAQ nodes is exposed via Sun RPC interfaces.

5.1 Integrating ZooKeeper

As described in §3.4, CRAQ needs the functionality
of a group membership service. We use a ZooKeeper
file structure to maintain node list membership within
each datacenter. When a client creates a file in
ZooKeeper, it can be marked as ephemeral. Ephemeral
files are automatically deleted if the client that cre-
ated the file disconnects from ZooKeeper. During ini-
tialization, a CRAQ node creates an ephemeral file in
/nodes/dc_name/node_id, where dc_name is the
unique name of its datacenter (as specified by an adminis-
trator) and node_id is a node identifier unique to the

USENIX Association	 2009 USENIX Annual Technical Conference	 151

node’s datacenter. The content of the file contains the
node’s IP address and port number.

CRAQ nodes can query /nodes/dc_name to de-
termine the membership list for its datacenter, but in-
stead of having to periodically check the list for changes,
ZooKeeper provides processes with the ability to cre-
ate a watch on a file. A CRAQ node, after cre-
ating an ephemeral file to notify other nodes it has
joined the system, creates a watch on the children list
of /nodes/dc_name, thereby guaranteeing that it re-
ceives a notification when a node is added or removed.

When a CRAQ node receives a request to create a new
chain, a file is created in /chains/chain_id, where
chain_id is a 160-bit unique identifier for the chain.
The chain’s placement strategy (defined in §3.1) deter-
mines the contents of the file, but it only includes this
chain configuration information, not the list of a chain’s
current nodes. Any node participating in the chain will
query the chain file and place a watch on it as to be noti-
fied if the chain metadata changes.

Although this approach requires that nodes keep track
of the CRAQ node list of entire datacenters, we chose this
method over the alternative approach in which nodes reg-
ister their membership for each chain they belong to (i.e.,
chain metadata explicitly names the chain’s current mem-
bers). We make the assumption that the number of chains
will generally be at least an order of magnitude larger
than the number of nodes in the system, or that chain
dynamism may be significantly greater than nodes join-
ing or leaving the system (recall that CRAQ is designed
for managed datacenter, not peer-to-peer, settings). De-
ployments where the alternate assumptions hold can take
the other approach of tracking per-chain memberships ex-
plicitly in the coordination service. If necessary, the cur-
rent approach’s scalability can also be improved by hav-
ing each node track only a subset of datacenter nodes:
We can partition node lists into separate directories within
/nodes/dc_name/ according to node_id prefixes,
with nodes monitoring just their own and nearby prefixes.

It is worth noting that we were able to integrate
ZooKeeper’s asynchronous API functions into our code-
base by building tame-style wrapper functions. This al-
lowed us to twait on our ZooKeeper wrapper functions
which vastly reduced code complexity.

5.2 Chain Node Functionality

Our chainnode program implements most of CRAQ’s
functionality. Since much of the functionality of Chain
Replication and CRAQ is similar, this program operates
as either a Chain Replication node or a CRAQ node based
on a run-time configuration setting.

Nodes generate a random identifier when joining the
system, and the nodes within each datacenter organize

themselves into a one-hop DHT [29, 45] using these iden-
tifiers. A node’s chain predecessor and successor are de-
fined as its predecessor and successor in the DHT ring.
Chains are also named by 160-bit identifiers. For a chain
Ci, the DHT successor node for Ci is selected as the
chain’s first node in that datacenter. In turn, this node’s S
DHT successors complete the datacenter subchain, where
S is specified in chain metadata. If this datacenter is the
chain’s first (resp. last), than this first (resp. last) node is
the chain’s ultimate head (resp. tail).

All RPC-based communication between nodes, or be-
tween nodes and clients, is currently over TCP connec-
tions (with Nagle’s algorithm turned off). Each node
maintains a pool of connected TCP connections with its
chain’s predecessor, successor, and tail. Requests are
pipelined and round-robin’ed across these connections.
All objects are currently stored only in memory, although
our storage abstraction is well-suited to use an in-process
key-value store such as BerkeleyDB [40], which we are in
the process of integrating.

For chains that span across multiple datacenters, the
last node of one datacenter maintains a connection to the
first node of its successor datacenter. Any node that main-
tains a connection to a node outside of its datacenter must
also place a watch on the node list of the external data-
center. Note, though, that when the node list changes in
an external datacenter, nodes subscribing to changes will
receive notification from their local ZooKeeper instance
only, avoiding additional cross-datacenter traffic.

5.3 Handling Memberships Changes

For normal write propagation, CRAQ nodes follow the
protocol in §2.3. A second type of propagation, called
back-propagation, is sometimes necessary during recov-
ery, however: It helps maintain consistency in response
to node additions and failures. For example, if a new
node joins CRAQ as the head of an existing chain (given
its position in the DHT), the previous head of the chain
needs to propagate its state backwards. But the system
needs to also be robust to subsequent failures during re-
covery, which can cascade the need for backwards prop-
agation farther down the chain (e.g., if the now-second
chain node fails before completing its back-propagation
to the now-head). The original Chain Replication pa-
per did not consider such recovery issues, perhaps be-
cause it only described a more centrally-controlled and
statically-configured version of chain membership, where
new nodes are always added to a chain’s tail.

Because of these possible failure conditions, when a
new node joins the system, the new node receives prop-
agation messages both from its predecessor and back-
propagation from its successor in order to ensure its cor-
rectness. A new node refuses client read requests for a

152	 2009 USENIX Annual Technical Conference	 USENIX Association

particular object until it reaches agreement with its suc-
cessor. In both methods of propagation, nodes may use
set reconciliation algorithms to ensure that only needed
objects are actually propagated during recovery.

Back-propagation messages always contain a node’s
full state about an object. This means that rather than just
sending the latest version, the latest clean version is sent
along with all outstanding (newer) dirty versions. This
is necessary to enable new nodes just joining the system
to respond to future acknowledgment messages. Forward
propagation supports both methods. For normal writes
propagating down the chain, only the latest version is sent,
but when recovering from failure or adding new nodes,
full state objects are transmitted.

Let us now consider the following cases from node N’s
point of view, where LC is the length of a chain C for
which N is responsible.

Node Additions. A new node, A, is added to the system.

• If A is N’s successor, N propagates all objects in C to
A. If A had been in the system before, N can perform
object set reconciliation first to identity the specified
object versions required to reach consistency with
the rest of the chain.

• If A is N’s predecessor:

– N back-propagates all objects in C to A for
which N is not the head.

– A takes over as the tail of C if N was the previ-
ous tail.

– N becomes the tail of C if N’s successor was
previously the tail.

– A becomes the new head for C if N was previ-
ously the head and A’s identifier falls between
C and N’s identifier in the DHT.

• If A is within LC predecessors of N:

– If N was the tail for C, it relinquishes tail duties
and stops participating in the chain. N can now
mark its local copies of C’s objects as deletable,
although it only recovers this space lazily to
support faster state reconciliation if it later re-
joins the chain C.

– If N’s successor was the tail for C, N assumes
tail duties.

• If none of the above hold, no action is necessary.

Node Deletions. A node, D, is removed from the system.

• If D was N’s successor, N propagates all objects in C
to N’s new successor (again, minimizing transfer to

only unknown, fresh object versions). N has to prop-
agate its objects even if that node already belongs to
the chain, as D could have failed before it propagated
outstanding writes.

• If D was N’s predecessor:

– N back-propagates all needed objects to N’s
new predecessor for which it is not the head.
N needs to back-propagate its keys because D
could have failed before sending an outstand-
ing acknowledgment to its predecessor, or be-
fore finishing its own back-propagation.

– If D was the head for C, N assumes head duties.

– If N was the tail for C, it relinquishes tail du-
ties and propagates all objects in C to N’s new
successor.

• If D was within LC predecessors of N and N was the
tail for C, N relinquishes tail duties and propagates
all objects in C to N’s new successor.

• If none of the above hold, no action is necessary.

6 Evaluation
This section evaluates the performance of our Chain
Replication (CR) and CRAQ implementations. At a high
level, we are interested in quantifying the read through-
put benefits from CRAQ’s ability to apportion reads. On
the flip side, version queries still need to be dispatched
to the tail for dirty objects, so we are also interested in
evaluating asymptotic behavior as the workload mixture
changes. We also briefly evaluate CRAQ’s optimizations
for wide-area deployment.

All evaluations were performed on Emulab, a con-
trolled network testbed. Experiments were run using the
pc3000-type machines, which have 3GHz processors and
2GB of RAM. Nodes were connected on a 100MBit net-
work. For the following tests, unless otherwise specified,
we used a chain size of three nodes storing a single object
connected together without any added synthetic latency.
This setup seeks to better isolate the performance char-
acteristics of single chains. All graphed data points are
the median values unless noted; when present, error bars
correspond to the 99th percentile values.

To determine maximal read-only throughput in both
systems, we first vary the number of clients in Figure 4,
which shows the aggregate read throughput for CR and
CRAQ. Since CR has to read from a single node, through-
put stays constant. CRAQ is able to read from all three
nodes in the chain, so CRAQ throughput increases to three
times that of CR. Clients in these experiments maintained

USENIX Association	 2009 USENIX Annual Technical Conference	 153

2 4 6 8 10

0
20

00
0

50
00

0

Number of Clients

R
ea

ds
/s

CRAQ
CR

Figure 4: Read throughput as the number of readers in-
crease: A small number of clients can saturate both CRAQ
and CR, although CRAQ’s asymptotic behavior scales with
chain size, while CR is constant.

Throughput (in operations/s)

Type 1st Median 99th

R
ea

d

CR–3 19,590 20,552 21,390

CRAQ–3 58,998 59,882 60,626

CRAQ–5 98,919 99,466 100,042

CRAQ–7 137,390 138,833 139,537

W
ri

te

CRAQ–3 5,480 5,514 5,544

CRAQ–5 4,880 4,999 5,050

CRAQ–7 4,420 4,538 4,619

Te
st

&
Se

t CRAQ–3 732 776 877

CRAQ–5 411 427 495

CRAQ–7 290 308 341

Figure 5: Throughput of read and write operations for a
500-byte object and throughput for a test-and-set operation
incrementing a 4-byte integer.

a maximum window of outstanding requests (50), so the
system never entered a potential livelock scenario.

Figure 5 shows throughput for read, write, and test-
and-set operations. Here, we varied CRAQ chains from
three to seven nodes, while maintaining read-only, write-
only, and transaction-only workloads. We see that read
throughput scaled linearly with the number of chain nodes
as expected. Write throughput decreased as chain length
increased, but only slightly. Only one test-and-set opera-
tion can be outstanding at a time, so throughput is much
lower than for writes. Test-and-set throughput also de-
creases as chain length increases because the latency for a
single operation increases with chain length.

To see how CRAQ performs during a mixed read/write
workload, we set ten clients to continuously read a 500-
byte object from the chain while a single client varied its
write rate to the same object. Figure 6 shows the aggre-
gate read throughput as a function of write rate. Note that

0 50 100 150 200 250

0
20

00
0

40
00

0
60

00
0

Writes/s

R
ea

ds
/s

CRAQ
CR

Figure 6: Read throughput on a length-3 chain as the write
rate increases (500B object).

0 20 40 60 80 100

0
50

00
10

00
0

15
00

0

Writes/s

R
ea

ds
/s

CRAQ−7
CRAQ−3
CR−3

Figure 7: Read throughput as writes increase (5KB object).

Chain Replication is not effected by writes, as all read re-
quests are handled by the tail. Although throughput for
CRAQ starts out at approximately three times the rate of
CR (a median of 59,882 reads/s vs. 20,552 reads/s), as
expected, this rate gradually decreases and flattens out to
around twice the rate (39,873 reads/s vs. 20,430 reads/s).
As writes saturate the chain, non-tail nodes are always
dirty, requiring them always to first perform version re-
quests to the tail. CRAQ still enjoys a performance benefit
when this happens, however, as the tail’s saturation point
for its combined read and version requests is still higher
than that for read requests alone.

Figure 7 repeats the same experiment, but using a 5 KB
object instead of a 500 byte one. This value was cho-
sen as a common size for objects such as small Web im-
ages, while 500 bytes might be better suited for smaller
database entries (e.g., blog comments, social-network sta-
tus information, etc.). Again, CRAQ’s performance in
read-only settings significantly outperforms that of CR
with a chain size of three (6,808 vs. 2,275 reads/s), while
it preserves good behavior even under high write rates
(4,416 vs. 2,259 reads/s). This graph also includes CRAQ
performance with seven-node chains. In both scenarios,

154	 2009 USENIX Annual Technical Conference	 USENIX Association

0 50 100 150 200 250

0
20

00
0

40
00

0
60

00
0

Writes/s

R
ea

ds
/s

Total
Dirty
Clean

Figure 8: Number of reads that are dirty vs. clean reads as
writes increase (500B key).

even as the tail becomes saturated with requests, its ability
to answer small version queries at a much higher rate than
sending larger read replies allows aggregate read through-
put to remain significantly higher than in CR.

Figure 8 isolates the mix of dirty and clean reads that
comprise Figure 6. As writes increase, the number of
clean requests drops to 25.4% of its original value, since
only the tail is clean as writes saturate the chain. The
tail cannot maintain its own maximal read-only through-
put (i.e., 33.3% of the total), as it now also handles ver-
sion queries from other chain nodes. On the other hand,
the number of dirty requests would approach two-thirds
of the original clean read rate if total throughput remained
constant, but since dirty requests are slower, the number
of dirty requests flattens out at 42.3%. These two rates
reconstruct the total observed read rate, which converges
to 67.7% of read-only throughput during high write con-
tention on the chain.

The table in Figure 9 shows the latency in milliseconds
of clean reads, dirty reads, writes to a 3-node chain, and
writes to a 6-node chain, all within a single datacenter.
Latencies are shown for objects of 500 bytes and 5 KB
both when the operation is the only outstanding request
(No Load) and when we saturate the CRAQ nodes with
many requests (High Load). As expected, latencies are
higher under heavy load, and latencies increase with key
size. Dirty reads are always slower than clean reads be-
cause of the extra round-trip-time incurred, and write la-
tency increases roughly linearly with chain size.

Figure 10 demonstrates CRAQ’s ability to recover from
failure. We show the loss in read-only throughput over
time for chains of lengths 3, 5, and 7. Fifteen seconds into
each test, one of the nodes in the chain was killed. After
a few seconds, the time it takes for the node to time out
and be considered dead by ZooKeeper, a new node joins
the chain and throughput resumes to its original value.
The horizontal lines drawn on the graph correspond to the

Latency (in ms)
Type Size Med 95th 99th

N
o

L
oa

d

R
ea

ds Clean
500 0.49 0.74 0.74
5KB 0.99 1.00 1.23

Dirty
500 0.98 0.99 0.99
5KB 1.24 1.49 1.73

W
ri

te
s Length 3

500 2.05 2.29 2.43
5KB 4.78 5.00 5.05

Length 6
500 4.51 4.93 5.01
5KB 9.09 9.79 10.05

H
ea

vy
L

oa
d R

ea
ds Clean

500 1.49 2.74 3.24
5KB 1.99 3.73 4.22

Dirty
500 2.98 5.48 6.23
5KB 3.50 6.23 7.23

W
ri

te
s Length 3

500 5.75 7.26 7.88
5KB 11.61 14.45 15.72

Length 6
500 20.65 21.66 22.09
5KB 33.72 42.88 43.61

Figure 9: CRAQ Latency by load, chain length, object
state, and object size within a single datacenter.

maximum throughput for chains of lengths 1 through 7.
This helps illustrate that the loss in throughput during the
failure is roughly equal to 1/C, where C is the length of
the chain.

To measure the effect of failure on the latency of read
and write operations, Figures 11 and 12 show the latency
of these operations during the failure of a chain of length
three. Clients that receive an error when trying to read an
object choose a new random replica to read from, so fail-
ures have a low impact on reads. Writes, however, cannot
be committed during the period between when a replica
fails and when it is removed from the chain due to time-
outs. This causes write latency to increase to the time it
takes to complete failure detection. We note that this is
the same situation as in any other primary/backup replica-
tion strategy which requires all live replicas to participate
in commits. Additionally, clients can optionally configure
a write request to return as soon as the head of the chain
accepts and propagates the request down to the chain in-
stead of waiting for it to commit. This reduces latency for
clients that don’t require strong consistency.

Finally, Figure 13 demonstrates CRAQ’s utility in
wide-area deployments across datacenters. In this experi-
ment, a chain was constructed over three nodes that each
have 80ms of round-trip latency to one another (approxi-
mately the round-trip-time between U.S. coastal areas), as
controlled using Emulab’s synthetic delay. The read client
was not local to the chain tail (which otherwise could
have just resulted in local-area performance as before).

USENIX Association	 2009 USENIX Annual Technical Conference	 155

0 10 20 30 40 50

0
20

00
0

40
00

0
60

00
0

Time (s)

R
ea

ds
/s

Length 7
Length 5
Length 3

Figure 10: CRAQ re-establishing normal read throughput
after a single node in a chain serving a 500-byte object fails.

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

Time (s)

R
ea

d
La

te
nc

y
(m

s)

Figure 11: CRAQ’s read latency (shown here under mod-
erate load) goes up slightly during failure, as requests to the
failed node need to be retried at a non-faulty node.

The figure evaluates read latency as the workload mixture
changes; mean latency is now shown with standard de-
viation as error bars (as opposed to median and 99th per-
centile elsewhere). Since the tail is not local, CR’s latency
remains constantly high, as it always incurs a wide-area
read request. CRAQ, on the other hand, incurs almost
no latency when no writes are occurring, as the read re-
quest can be satisfied locally. As the write rate increases,
however, CRAQ reads are increasingly dirty, so the aver-
age latency rises. Once the write rate reaches about 15
writes/s, the latency involved in propagating write mes-
sages down the wide-area chain causes the client’s local
node to be dirty 100% of the time, leading to a wide-
area version query. (CRAQ’s maximum latency is ever-
so-slightly less than CR given that only metadata is trans-
ferred over the wide area, a difference that would only
increase with larger objects, especially in slow-start sce-
narios.) Although this convergence to a 100% dirty state
occurs at a much lower write rate than before, we note that
careful chain placement allows any clients in the tail’s dat-
acenter to enjoy local-area performance. Further, clients

0 10 20 30 40 50

0
10

00
30

00
50

00

Time (s)

W
rit

e
La

te
nc

y
(m

s)

Figure 12: CRAQ’s write latency increases during failure,
since the chain cannot commit write operations.

0 5 10 15 20

0
20

40
60

80

Writes/s

M
ea

n
La

te
nc

y
(m

s)

CR
CRAQ

Figure 13: CR and CRAQ’s read latency to a local client
when the tail is in a distant datacenter separated by an RTT
of 80ms and the write rate of a 500-byte object is varied.

in non-tail datacenters that can be satisfied with a degree
of maximum-bounded inconsistency (per §2.4) can also
avoid wide-area requests.

7 Related Work
Strong consistency in distributed systems. Strong
consistency among distributed servers can be provided
through the use of primary/backup storage [3] and two-
phase commit protocols [43]. Early work in this area did
not provide for availability in the face of failures (e.g., of
the transaction manager), which led to the introduction
of view change protocols (e.g., through leader consen-
sus [33]) to assist with recovery. There has been a large
body of subsequent work in this area; recent examples in-
clude both Chain Replication and the ring-based protocol
of Guerraoui et al. [25], which uses a two-phase write
protocol and delays reads during uncommitted writes.
Rather than replicate content everywhere, one can explore
other trade-offs between overlapping read and write sets

156	 2009 USENIX Annual Technical Conference	 USENIX Association

in strongly-consistent quorum systems [23, 28]. Agree-
ment protocols have also been extended to malicious set-
tings, both for state machine replication [10, 34] and quo-
rum systems [1, 37]. These protocols provide lineariz-
ability across all operations to the system. This paper
does not consider Byzantine faults—and largely restricts
its consideration of operations affecting single objects—
although it is interesting future work to extend chain repli-
cation to malicious settings.

There have been many examples of distributed filesys-
tems that provide strong consistency guarantees, such
as the early primary/backup-based Harp filesystem [35].
More recently, Boxwood [36] explores exporting various
higher-layer data abstractions, such as a B-tree, while
offering strict consistency. Sinfonia [2] provides light-
weight “mini-transactions” to allow for atomic updates to
exposed memory regions in storage nodes, an optimized
two-phase commit protocol well-suited for settings with
low write contention. CRAQ’s use of optimistic lock-
ing for multi-chain multi-object updates was heavily in-
fluenced by Sinfonia.

CRAQ and Chain Replication [47] are both exam-
ples of object-based storage systems that expose whole-
object writes (updates) and expose a flat object names-
pace. This interface is similar to that provided by key-
value databases [40], treating each object as a row in these
databases. As such, CRAQ and Chain Replication focus
on strong consistency in the ordering of operations to each
object, but does not generally describe ordering of oper-
ations to different objects. (Our extensions in §4.1 for
multi-object updates are an obvious exception.) As such,
they can be viewed in light of casual consistency taken
to the extreme, where only operations to the same object
are causally related. Causal consistency was studied both
for optimistic concurrency control in databases [7] and for
ordered messaging layers for distributed systems [8]. Ya-
hoo!’s new data hosting service, PNUTs [12], also pro-
vides per-object write serialization (which they call per-
record timeline consistency). Within a single datacen-
ter, they achieve consistency through a messaging ser-
vice with totally-ordered delivery; to provide consistency
across datacenters, all updates are sent to a local record
master, who then delivers updates in committed order to
replicas in other datacenters.

The chain self-organization techniques we use are
based on those developed by the DHT community [29,
45]. Focusing on peer-to-peer settings, CFS pro-
vides a read-only filesystem on top of a DHT [14];
Carbonite explores how to improve reliability while
minimizing replica maintenance under transient fail-
ures [11]. Strongly-consistent mutable data is consid-
ered by OceanStore [32] (using BFT replication at core
nodes) and Etna [39] (using Paxos to partition the DHT
into smaller replica groups and quorum protocols for con-

sistency). CRAQ’s wide-area solution is more datacenter-
focused and hence topology-aware than these systems.
Coral [20] and Canon [21] both considered hierarchical
DHT designs.

Weakening Consistency for Availability. TACT [49]
considers the trade-off between consistency and availabil-
ity, arguing that weaker consistency can be supported
when system constraints are not as tight. eBay uses a
similar approach: messaging and storage are eventually-
consistent while an auction is still far from over, but use
strong consistency—even at the cost of availability—right
before an auction closes [46].

A number of filesystems and object stores have traded
consistency for scalability or operation under partitions.
The Google File System (GFS) [22] is a cluster-based ob-
ject store, similar in setting to CRAQ. However, GFS sac-
rifices strong consistency: concurrent writes in GFS are
not serialized and read operations are not synchronized
with writes. Filesystems designed with weaker consis-
tency semantics include Sprite [6], Coda [30], Ficus [27],
and Bayou [42], the latter using epidemic protocols to
perform data reconciliation. A similar gossip-style anti-
entropy protocol is used in Amazon’s Dynamo object ser-
vice [15], to support “always-on” writes and continued
operation when partitioned. Facebook’s new Cassandra
storage system [16] also offers only eventual consistency.
The common use of memcached [18] with a relational
database does not offer any consistency guarantees and in-
stead relies on correct programmer practice; maintaining
even loose cache coherence across multiple datacenters
has been problematic [44].

CRAQ’s strong consistency protocols do not support
writes under partitioned operation, although partitioned
chain segments can fall back to read-only operation. This
trade-off between consistency, availability, and partition-
tolerance was considered by BASE [19] and Brewer’s
CAP conjecture [9].

8 Conclusions

This paper presented the design and implementation of
CRAQ, a successor to the chain replication approach for
strong consistency. CRAQ focuses on scaling out read
throughput for object storage, especially for read-mostly
workloads. It does so by supporting apportioned queries:
that is, dividing read operations over all nodes of a chain,
as opposed to requiring that they all be handled by a single
primary node. While seemingly simple, CRAQ demon-
strates performance results with significant scalability im-
provements: proportional to the chain length with lit-
tle write contention—i.e., 200% higher throughput with
three-node chains, 600% with seven-node chains—and,

USENIX Association	 2009 USENIX Annual Technical Conference	 157

somewhat surprisingly, still noteworthy throughput im-
provements when object updates are common.

Beyond this basic approach to improving chain replica-
tion, this paper focuses on realistic settings and require-
ments for a chain replication substrate to be useful across
a variety of higher-level applications. Along with our
continued development of CRAQ for multi-site deploy-
ments and multi-object updates, we are working to in-
tegrate CRAQ into several other systems we are build-
ing that require reliable object storage. These include a
DNS service supporting dynamic service migration, ren-
dezvous servers for a peer-assisted CDN [5], and a large-
scale virtual world environment. It remains as interest-
ing future work to explore these applications’ facilities in
using both CRAQ’s basic object storage, wide-area opti-
mizations, and higher-level primitives for single-key and
multi-object updates.

Acknowledgments
The authors would like to thank Wyatt Lloyd, Muneeb
Ali, Siddhartha Sen, and our shepherd Alec Wolman for
helpful comments on earlier drafts of this paper. We
also thank the Flux Research Group at Utah for provid-
ing access to the Emulab testbed. This work was partially
funded under NSF NeTS-ANET Grant #0831374.

References
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter,

and J. Wylie. Fault-scalable Byzantine fault-tolerant ser-
vices. In Proc. Symposium on Operating Systems Princi-
ples (SOSP), Oct. 2005.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In Proc. Symposium on Op-
erating Systems Principles (SOSP), Oct. 2007.

[3] P. Alsberg and J. Day. A principle for resilient sharing of
distributed resources. In Proc. Intl. Conference on Soft-
ware Engineering, Oct. 1976.

[4] Amazon. S3 Service Level Agreement. http://aws.
amazon.com/s3-sla/, 2009.

[5] C. Aperjis, M. J. Freedman, and R. Johari. Peer-assisted
content distribution with prices. In Proc. SIGCOMM Con-
ference on Emerging Networking Experiments and Tech-
nologies (CoNEXT), Dec. 2008.

[6] M. Baker and J. Ousterhout. Availability in the Sprite
distributed file system. Operating Systems Review, 25(2),
Apr. 1991.

[7] P. A. Bernstein and N. Goodman. Timestamp-based algo-
rithms for concurrency control in distributed database sys-
tems. In Proc. Very Large Data Bases (VLDB), Oct. 1980.

[8] K. P. Birman. The process group approach to reliable dis-
tributed computing. Communications of the ACM, 36(12),
1993.

[9] E. Brewer. Towards robust distributed systems. Principles
of Distributed Computing (PODC) Keynote, July 2000.

[10] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In Proc. Operating Systems Design and Implemen-
tation (OSDI), Feb. 1999.

[11] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weather-
spoon, F. Kaashoek, J. Kubiatowicz, and R. Morris. Effi-
cient replica maintenance for distributed storage systems.
In Proc. Networked Systems Design and Implementation
(NSDI), May 2006.

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s Hosted Data Serving
Platform. In Proc. Very Large Data Bases (VLDB), Aug.
2008.

[13] CouchDB. http://couchdb.apache.org/, 2009.
[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-

ica. Wide-area cooperative storage with CFS. In Proc.
Symposium on Operating Systems Principles (SOSP), Oct.
2001.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lak-shman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In Proc. Symposium on Operat-
ing Systems Principles (SOSP), Oct. 2007.

[16] Facebook. Cassandra: A structured storage system on
a P2P network. http://code.google.com/p/
the-cassandra-project/, 2009.

[17] Facebook. Infrastructure team. Personal Comm., 2008.
[18] B. Fitzpatrick. Memcached: a distributed memory

object caching system. http://www.danga.com/
memcached/, 2009.

[19] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-based scalable network services.
In Proc. Symposium on Operating Systems Principles
(SOSP), Oct. 1997.

[20] M. J. Freedman, E. Freudenthal, and D. Mazières. De-
mocratizing content publication with Coral. In Proc. Net-
worked Systems Design and Implementation (NSDI), Mar.
2004.

[21] P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon in
G Major: Designing DHTs with hierarchical structure. In
Proc. Intl. Conference on Distributed Computing Systems
(ICDCS), Mar. 2004.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In Proc. Symposium on Operating Systems
Principles (SOSP), Oct. 2003.

[23] D. K. Gifford. Weighted voting for replicated data. In Proc.
Symposium on Operating Systems Principles (SOSP), Dec.
1979.

[24] Google. Google Apps Service Level Agreement.
http://www.google.com/apps/intl/en/
terms/sla.html, 2009.

[25] R. Guerraoui, D. Kostic, R. R. Levy, and V. Quéma. A
high throughput atomic storage algorithm. In Proc. Intl.
Conference on Distributed Computing Systems (ICDCS),
June 2007.

158	 2009 USENIX Annual Technical Conference	 USENIX Association

[26] D. Hakala. Top 8 datacenter disasters of 2007. IT Manage-
ment, Jan. 28 2008.

[27] J. Heidemann and G. Popek. File system development with
stackable layers. ACM Trans. Computer Systems, 12(1),
Feb. 1994.

[28] M. Herlihy. A quorum-consensus replication method for
abstract data types. ACM Trans. Computer Systems, 4(1),
Feb. 1986.

[29] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In Proc. Symposium on the Theory of
Computing (STOC), May 1997.

[30] J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system. ACM Trans. Computer Systems,
10(3), Feb. 1992.

[31] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can
make sense. In Proc. USENIX Annual Technical Confer-
ence, June 2007.

[32] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao. OceanStore:
An architecture for global-scale persistent storage. In Proc.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Nov 2000.

[33] L. Lamport. The part-time parliament. ACM Trans. Com-
puter Systems, 16(2), 1998.

[34] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. Programming Language
Systems, 4(3), 1982.

[35] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the harp file system.
In Proc. Symposium on Operating Systems Principles
(SOSP), Aug. 1991.

[36] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath,
and L. Zhou. Boxwood: Abstractions as the foundation for
storage infrastructure. In Proc. Operating Systems Design
and Implementation (OSDI), Dec. 2004.

[37] D. Malkhi and M. Reiter. Byzantine quorum systems. In
Proc. Symposium on the Theory of Computing (STOC),
May 1997.

[38] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file system
security. In Proc. Symposium on Operating Systems Prin-
ciples (SOSP), Dec 1999.

[39] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna:
a fault-tolerant algorithm for atomic mutable DHT data.
Technical Report MIT-LCS-TR-993, MIT, June 2005.

[40] Oracle. BerkeleyDB v4.7, 2009.
[41] C. Patridge, T. Mendez, and W. Milliken. Host anycasting

service. RFC 1546, Network Working Group, Nov. 1993.
[42] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, , and

A. Demers. Flexible update propagation for weakly consis-
tent replication. In Proc. Symposium on Operating Systems
Principles (SOSP), Oct. 1997.

[43] D. Skeen. A formal model of crash recovery in a dis-
tributed system. IEEE Trans. Software Engineering, 9(3),
May 1983.

[44] J. Sobel. Scaling out. Engineering at Facebook blog, Aug.
20 2008.

[45] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup protocol for Internet applications.
IEEE/ACM Trans. Networking, 11, 2002.

[46] F. Travostino and R. Shoup. eBay’s scalability odyssey:
Growing and evolving a large ecommerce site. In
Proc. Large-Scale Distributed Systems and Middleware
(LADIS), Sept. 2008.

[47] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proc. Op-
erating Systems Design and Implementation (OSDI), Dec.
2004.

[48] Yahoo! Hadoop Team. Zookeeper. http://hadoop.
apache.org/zookeeper/, 2009.

[49] H. Yu and A. Vahdat. The cost and limits of availability
for replicated services. In Proc. Symposium on Operating
Systems Principles (SOSP), Oct. 2001.

USENIX Association	 2009 USENIX Annual Technical Conference	 159

Census: Location-Aware Membership Management for
Large-Scale Distributed Systems

James Cowling Dan R. K. Ports Barbara Liskov

Raluca Ada Popa Abhijeet Gaikwad†

MIT CSAIL École Centrale Paris†

Abstract
We present Census, a platform for building large-scale

distributed applications. Census provides a membership
service and a multicast mechanism. The membership ser-
vice provides every node with a consistent view of the sys-
tem membership, which may be global or partitioned into
location-based regions. Census distributes membership
updates with low overhead, propagates changes promptly,
and is resilient to both crashes and Byzantine failures. We
believe that Census is the first system to provide a consis-
tent membership abstraction at very large scale, greatly
simplifying the design of applications built atop large
deployments such as multi-site data centers.

Census builds on a novel multicast mechanism that is
closely integrated with the membership service. It orga-
nizes nodes into a reliable overlay composed of multiple
distribution trees, using network coordinates to minimize
latency. Unlike other multicast systems, it avoids the cost
of using distributed algorithms to construct and maintain
trees. Instead, each node independently produces the
same trees from the consistent membership view. Census
uses this multicast mechanism to distribute membership
updates, along with application-provided messages.

We evaluate the platform under simulation and on a
real-world deployment on PlanetLab. We find that it
imposes minimal bandwidth overhead, is able to react
quickly to node failures and changes in the system mem-
bership, and can scale to substantial size.

1 Introduction
Today’s increasingly large-scale distributed systems must
adapt to dynamic membership, providing efficient and
reliable service despite churn and failures. Such systems
typically incorporate or rely on some sort of membership
service, which provides the application with information
about the nodes in the system. The current shift toward
cloud computing and large multi-site data centers provides
further motivation for a system designed to manage node
membership at this large scale.

Many membership services exist, with varying seman-
tics. Some, such as those based on virtual synchrony, pro-
vide strict semantics, ensuring that each node sees a con-
sistent view of the system membership, but operate only at
small scales [3, 14, 37]. Because maintaining consistency
and global membership knowledge is often perceived as
prohibitively expensive, many recently proposed systems
provide weaker semantics. These systems provide greater
scalability, but make no guarantees about members having
consistent views [16, 17], and some provide only partial
views of system membership [36, 23, 32].

We argue that it is both feasible and useful to maintain
consistent views of system membership even in large-
scale distributed systems. We present Census, a new
platform for constructing such applications, consisting
of a membership management system and a novel multi-
cast mechanism. The membership management system
follows the virtual synchrony paradigm: the system di-
vides time into epochs, and all nodes in the same epoch
have identical views of system membership. This glob-
ally consistent membership view represents a powerful
abstraction that simplifies the design of applications built
atop our platform. In addition to eliminating the need for
applications to build their own system for detecting and
tracking membership changes, globally consistent views
can simplify application protocol design.

Census is designed to work at large scale, even with
highly-dynamic membership, and to tolerate both crashes
and Byzantine failures. It uses three main techniques to
achieve these goals.

First, Census uses a locality-based hierarchical organi-
zation. Nodes are grouped into regions according to their
network coordinates. Even in small systems, this hierar-
chical structure is used to reduce the costs of aggregating
reports of membership changes. For systems so large that
it is infeasible to maintain a global membership view, we
provide a partial knowledge deployment option, where
nodes know the full membership of their own region but
only a few representative nodes from each other region.

160	 2009 USENIX Annual Technical Conference	 USENIX Association

Second, Census uses a novel multicast mechanism that
is closely intertwined with the membership management
service. The membership service relies on the multi-
cast mechanism to distribute update notifications, and
the multicast system constructs its distribution trees us-
ing node and location information from the membership
service. The overlay topology, made up of redundant
interior-disjoint trees, is similar to other systems [7, 40].
However, the trees are constructed in a very different way:
each node independently carries out a deterministic tree
construction algorithm when it receives a membership
update. This eliminates the need for complex and poten-
tially expensive distributed tree-building protocols, yet
it produces efficient tree structures and allows the trees
to change frequently to improve fault-tolerance. We also
take advantage of global membership and location infor-
mation to keep bandwidth overhead to a minimum by
ensuring that each node receives no redundant data, while
keeping latency low even if there are failures.

Finally, Census provides fault-tolerance. Unlike sys-
tems that require running an agreement protocol among
all nodes in the system [30, 20], Census uses only a small
subset of randomly-chosen nodes, greatly reducing the
costs of membership management while still providing
correctness with high probability. In most cases, we use
lightweight quorum protocols to avoid the overhead of
full state machine replication. We also discuss several
new issues that arise in a Byzantine environment.

Census exposes the region abstraction and multicast
mechanism to applications as additional services. Regions
can be a useful organizing technique for applications.
For example, a cooperative caching system might use
regions to determine which nodes share their caches. The
multicast system provides essential functionality for many
applications that require membership knowledge, since a
membership change may trigger a system reconfiguration
(e.g. changing responsible nodes in a distributed storage
system) that must be announced to all nodes.

Our evaluation of Census, under simulation and in a
real-world deployment on PlanetLab, indicates that it
imposes low bandwidth overhead per node (typically less
than 1 KB/s even in very large systems), reacts quickly to
node failures and system membership changes, and can
scale to substantial size (over 100,000 nodes even in a
high-churn environment).

The remainder of this paper is organized as follows.
We define our assumptions in Section 2. Sections 3–5
describe Census’s architecture, multicast mechanism, and
fault-tolerance strategy in detail. Section 6 presents per-
formance results based on both theoretical analysis and a
deployment on PlanetLab. We sketch some ways appli-
cations can use the platform in Section 7, discuss related
work in Section 8, and conclude in Section 9.

2 Model and Assumptions
Census is intended to be used in an asynchronous network
like the Internet, in which messages may be corrupted,
lost or reordered. We assume that messages sent repeat-
edly will eventually be delivered. We also assume nodes
have loosely synchronized clock rates, such that they can
approximately detect the receipt of messages at regular
intervals. Loosely synchronized clock rates are easy to
guarantee in practice, unlike loosely synchronized clocks.

Every node in our platform has an IP address, a unique
random ID, and network coordinates. Tolerating Byzan-
tine failures adds a few more requirements. Each node
must have a public key, and its unique ID is assigned by
taking a collision-resistant hash of the public key. Fur-
thermore, we require admission control to prevent Sybil
attacks [13], so each joining node must present a certifi-
cate signed by a trusted authority vouching for its identity.

All nodes have coordinates provided by a network co-
ordinate system such as Vivaldi [11]. We describe the
system in terms of a two-dimensional coordinate system
plus height, analogous to the last-hop network delay. This
follows the model used in Vivaldi, but our system could
easily be modified to use a different coordinate space.
We assume coordinates reflect network latency, but their
accuracy affects only performance, not correctness.

Traditional network coordinate systems do not function
well in a Byzantine environment since malicious nodes
can influence the coordinates of honest nodes [38]. We
have developed a protocol [39] that ensures that honest
nodes’ coordinates accurately reflect their locations by
using a group of landmark nodes, some of which are
permitted to be faulty. Another approach is described
in [34]. These techniques do not provide any guarantees
about the accuracy of a Byzantine node’s coordinates, and
we do not assume any such guarantees.

3 Platform Architecture
Our system moves through a sequence of epochs, num-
bered sequentially. Each epoch has a particular mem-
bership view. One of the members acts as the leader.
Nodes inform the leader of membership events (nodes
joining or leaving) and the leader collects this informa-
tion for the duration of the epoch. The epoch length is
a parameter whose setting depends on application needs
and assumptions about the environment; for example, our
experiments use 30s epochs. Users may opt to place the
leader on a fixed node, or select a new leader each epoch
based on the system membership and epoch number.

At the end of an epoch, the leader creates an item con-
taining the membership changes and next epoch number,
and multicasts this information as described in Section 4.
The item can also include data provided by the applica-
tion. The leader makes an upcall to the application code
at its node to obtain this data and includes it in the item.

USENIX Association	 2009 USENIX Annual Technical Conference	 161

In addition, the system can perform additional multicasts
within an epoch to propagate application data if desired.

When a node receives an item, it updates its view of
the membership to reflect the latest joins and departures,
then enters the next epoch. It can only process the item
if it knows the system state of the previous epoch; nodes
keep a few recent items in a log to enable nodes that are
slightly behind to obtain missing information.

Our system ensures consistency: all nodes in the same
epoch have identical views of the membership. The mul-
ticast mechanism delivers items quickly and reliably, so
that nodes are likely to be in the same epoch at the same
time. Messages include the epoch number at the point
they were sent, to ensure they are routed and processed
with respect to the correct membership view. Applications
that require consistency also include the current epoch
number in application messages, only processing mes-
sages when the sender and receiver agree on the epoch.

In this section, we describe how the system is organized.
We begin in Section 3.1 with a simplified version with
only a simple region. In Section 3.2, we introduce the
multi-region structure, which improves scalability even
though all nodes still know the membership of the entire
system. Finally, in Section 3.3, we describe an optional
extension to the system for extremely large or dynamic
environments, where each node has full membership in-
formation only for its own region.

3.1 Single-Region Deployment
In a one-region system, all membership events are pro-
cessed directly by the leader. The leader gathers notifica-
tions of node joins and departures throughout the epoch,
then aggregates them into an item and multicasts the item
to the rest of the system, starting the next epoch.

To join the system, a node sends a message identifying
itself to the leader, providing its network coordinates and
identity certificate (if tolerating Byzantine faults). The
leader verifies the certificate, adds the node to a list of new
joiners, and informs the new node of the epoch number
and a few current members. The new node obtains the
current membership from one of these nodes, reducing
the load on the leader.

To remove a node, a departure request is sent to the
leader identifying the node to be removed. A node can
leave the system gracefully by requesting its own removal
(in a Byzantine environment, this request must be signed).
Nodes that do not fail gracefully are reported by other
nodes; Section 5 describes this process. If the request is
valid, the leader adds the node to a list of departers.

Nodes include their coordinates in the join request, en-
suring that all nodes see a consistent view of each other’s
coordinates. Node locations can change over time, how-
ever, and coordinates should continue to reflect network
proximity. Each node monitors its coordinates and reports

changes, which are propagated in the next item. To avoid
instability, nodes report only major location changes, us-
ing a threshold.

3.2 Multi-Region Deployment
Even at relatively high churn, with low available band-
width and CPU resources, our analysis indicates that the
single-region structure scales to beyond 10,000 nodes.
As the system grows, however, the request load on the
leader, and the overhead in computing distribution trees,
increases. To accommodate larger systems, we provide a
structure in which the membership is divided into regions
based on proximity. Each region has a region ID and ev-
ery node belongs to exactly one region. Even in relatively
small systems, the multi-region structure is useful to re-
duce load on the leader, and to provide the application
with locality-based regions.

In a multi-region system each region has its own local
leader, which can change each epoch. This region leader
collects joins and departures for nodes in its region. To-
wards the end of the epoch, it sends a report listing these
membership events to the global leader, and the leader
propagates this information in the next item. Any mem-
bership events that are received too late to be included in
the report are forwarded to the next epoch’s leader.

Even though all nodes still know the entire system
membership, this architecture is more scalable. It offloads
work from the global leader in two ways. First, the leader
processes fewer messages, since it only handles aggregate
information about joins and departures. Second, it can
offload some cryptographic verification tasks, such as
checking a joining node’s certificate, to the region leaders.
Moreover, using regions also reduces the CPU costs of
our multicast algorithm, as Section 4 describes: nodes
need not compute full distribution trees for other regions.

To join the system, a node contacts any member of the
system (discovered out-of-band) and sends its coordinates.
The member redirects the joining node to the leader of the
region whose centroid is closest to the joining node. When
a node’s location changes, it may find that a different
region is a better fit for it. When this happens, the node
uses a move request to inform the new region’s leader that
it is leaving another region. This request is sent to the
global leader and propagated in the next item.

3.2.1 Region Dynamics: Splitting and Merging

Initially, the system has only one region. New regions
are formed by splitting existing regions when they grow
too large. Similarly, regions that grow too small can be
removed by merging them into other regions.

The global leader tracks the sizes of regions and when
one of them exceeds a split threshold, it tells that region
to split by including a split request in the next item. This
request identifies the region that should split, and provides

162	 2009 USENIX Annual Technical Conference	 USENIX Association

the ID to used be for the newly formed region. When a
region’s size falls below a merge threshold, the leader
selects a neighboring region for it to merge into, and
inserts a merge request containing the two region IDs
in the next item. The merge threshold is substantially
smaller than the split threshold, to avoid oscillation.

Whenever a node processes an item containing a split
or merge request, it carries out the split or merge compu-
tation. For a split, it computes the centroid and the widest
axis, then splits the region into two parts. The part to the
north or west retains the region ID, and the other part is
assigned the new ID. For a merge, nodes from one region
are added to the membership of the second region. As
soon as this item is received, nodes consider themselves
members of their new region.

3.3 Partial Knowledge
Even with the multi-region structure, scalability is ulti-
mately limited by the need for every membership event
in an epoch to be broadcast in the next item. The band-
width costs of doing so are proportional to the number
of nodes and the churn rate. For most systems, this cost
is reasonable; our analysis in Section 6.1 shows, for ex-
ample, that for systems with 100,000 nodes, even with
a very short average node lifetime (30 minutes), average
bandwidth overhead remains under 5 KB/s. However, for
extremely large, dynamic, and/or bandwidth-constrained
environments, the updates may grow too large.

For such systems, we provide a partial knowledge de-
ployment option. Here, nodes have complete knowledge
of the members of their own region, but know only sum-
mary information about other regions. We still provide
consistency, however: in a particular epoch, every node in
a region has the same view of the region, and every node
in the system has the same view of all region summaries.

In this system, region leaders send the global leader
only a summary of the membership changes in the last
epoch, rather than the full report of all joins and depar-
tures. The summary identifies the region leader for the
next epoch, provides the size and centroid of the region,
and identifies some region members that act as its global
representatives. The global leader includes this message
in the next item, propagating it to all nodes in the system.

As we will discuss in Section 4, the representatives are
used to build distribution trees. In addition, the represen-
tatives take care of propagating the full report, containing
the joins and leaves, to nodes in their region; this way
nodes in the region can compute the region membership.
The region leader sends the report to the representatives at
the same time it sends the summary to the global leader.

3.3.1 Splitting and Merging with Partial Knowledge

Splits and merges are operations involving the member-
ship of multiple regions, so they are more complex in a

partial knowledge deployment where nodes do not know
the membership of other regions. We extend the proto-
cols to transfer the necessary membership information
between the regions involved.

When a region s is merged into neighboring region t,
members of both regions need to learn the membership
of the other. The representatives of s and t communicate
to exchange this information, then propagate it on the
tree for their region. The leader for t sends the global
leader a summary for the combined region, and nodes in s
consider themselves members of t as soon as they receive
the item containing this summary.

A split cannot take place immediately because nodes
outside the region need to know the summary information
(centroid, representatives, etc.) for the newly-formed
regions and cannot compute it themselves. When the
region’s leader receives a split request, it processes joins
and leaves normally for the remainder of the epoch. At
the end of the epoch, it carries out the split computation,
and produces two summaries, one for each new region.
These summaries are distributed in the next item, and the
split takes effect in the next epoch.

4 Multicast
This section describes our multicast mechanism, which
is used to disseminate membership updates and applica-
tion data. The goals of the design are ensuring reliable
delivery despite node failures and minimizing bandwidth
overhead. Achieving low latency and a fair distribution
of forwarding load are also design considerations.

Census’s multicast mechanism uses multiple distribu-
tion trees, like many other multicast systems. However,
our trees are constructed in a different way, taking advan-
tage of the fact that membership information is available
at all nodes. Trees are constructed on-the-fly using a de-
terministic algorithm on the system membership: as soon
as a node receives the membership information for an
epoch from one of its parents, it can construct the distri-
bution tree, and thereby determine which nodes are its
children. Because the algorithm is deterministic, each
node computes exactly the same trees.

This use of global membership state stands in contrast
to most multicast systems, which instead try to minimize
the amount of state kept by each node. Having global
membership information allows us to run what is essen-
tially a centralized tree construction algorithm at each
node, rather than a more complex distributed algorithm.

Our trees are constructed anew each epoch, ignoring
their structure from the previous epoch. This may seem
surprising, in light of the conventional wisdom that “sta-
bility of the routing trees is very important to achieve
workable, reliable routing” [2]. However, this statement
applies to multicast protocols that require executing costly
protocols to change the tree structure, and may experi-

USENIX Association	 2009 USENIX Annual Technical Conference	 163

Message: 10110 01100 11011

r1

r2

r1

r3

r2 r3 r1 r2 r3y1 y2

y3

y1

y2

y3g1 g2 g3 g1 g2 g3

g1

g2 g3

y1 y2 y3

red tree yellow tree green tree

Figure 1: Distribution trees for a 3-color deployment. All
nodes are members of each tree, but an internal node in
only one. For example, the red nodes r1–r3 are interior
nodes in the red tree, and leaves in the other two.

ence oscillatory or transitory behavior during significant
adjustments. Our approach allows the trees to be recom-
puted with no costs other than those of maintaining the
membership information. Changing the trees can also
improve fault-tolerance and load distribution because dif-
ferent nodes are located at or near the root of the tree [24].

4.1 Multiple-Tree Overlay
A multicast overlay consisting of a single tree is insuffi-
cient to ensure reliability and fair load distribution: the
small group of interior nodes bears all the forwarding load
while the leaves bear none, and an interior node failure
leads to loss of data at all its descendants. Instead, Cen-
sus uses multiple trees, as in SplitStream [7], to spread
forwarding load more evenly and enhance reliability.

Our overlay consists of a set of trees, typically between
4 and 16. The trees are interior-node-disjoint: each node
is an interior node in at most one tree. We refer to each
tree by a color, with each node in the system also assigned
a color. The interior of the red tree is composed com-
pletely of red nodes, ensuring our disjointness constraint.
The nodes of other colors form the leaves of the red tree,
and the red nodes are leaf nodes in all other trees. Using
an even distribution of node colors and a fan-out equal to
the number of trees provides load-balancing: each node
forwards only as many messages as it receives. Figure 1
illustrates the distribution trees in a 3-color system.

The membership update in each item must be sent in
full along each tree, since it is used to construct the trees.
The application data in an item, however, is split into
a number of erasure-coded fragments, each of which is
forwarded across a different tree. This provides redun-
dancy while imposing minimal bandwidth overhead on
the system. With n trees, we use m of n erasure coding,
so that all nodes are able to reconstruct the original data
even with failures in n − m of the trees. This leads to
a bandwidth overhead for application data of close to
n/m, with overhead of n for the replicated membership

update. However, as Section 4.4 describes, we are able
to eliminate nearly all of this overhead under normal cir-
cumstances by suppressing redundant information.

We employ a simple reconstruction optimization that
provides a substantial improvement in reliability. If a node
does not receive the fragment it is supposed to forward,
it can regenerate and forward the fragment once it has
received m other fragments. This localizes a failure in a
given tree to nodes where an ancestor in the current tree
failed, and where each parent along the path to the root
has experienced a failure in at least n−m trees.

In the case of more than n −m failures, a node may
request missing fragments from nodes chosen randomly
from its membership view. Section 6.2.1 shows such
requests are unnecessary with up to 20% failed nodes.

4.2 Building Trees within a Region
In this section, we describe the algorithm Census uses
to build trees. The algorithm must be a deterministic
function of the system membership. We use a relatively
straightforward algorithm that our experiments show is
both computationally efficient and effective at offering
low-latency paths, but more sophisticated algorithms are
possible at the cost of additional complexity. We first
describe how the tree is built in a one-region system;
Section 4.3 extends this to multiple regions.

The first step is to color each node, i.e. assign it to a
tree. This is accomplished by sorting nodes in the region
by their ID, then coloring them round-robin, giving an
even distribution of colors. Each node then computes all
trees, but sends data only on its own tree.

The algorithm uses a hierarchical decomposition of the
network coordinate space to exploit node locality. We
describe how we build the red tree; other trees are built
similarly. The tree is built by recursively subdividing
the coordinate space into F sub-regions (where F is the
fan-out, typically equal to the number of trees). This is
performed by repeatedly splitting sub-regions through the
centroid, across their widest axis. One red node from
each sub-region is chosen to be a child of the root, and
the process continues within each sub-region for the sub-
tree rooted at each child, fewer than F red nodes remain
in each sub-region. Figure 2 illustrates the hierarchical
decomposition of regions into trees for a fan-out of 4.

Once all red nodes are in the tree, we add the nodes of
other colors as leaves. We iterate over the other-colored
nodes in ID order, adding them to the red node with free
capacity that minimizes the distance to the root via that
parent. Our implementation allows nodes to have a fan-
out of up to 2F when joining leaf nodes to the internal
trees, allowing us to better place nodes that are in a sub-
region where there is a concentration of a particular color.

As mentioned in Section 2, we use coordinates consist-
ing of two dimensions plus a height vector [11]. Height is

164	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 2: Hierarchical subdivision used to build interior
tree with fan-out 4. Each region with more than 4 mem-
bers is recursively split into smaller sub-regions.

ignored when splitting regions, since it does not reflect the
geographic locality of nodes. However, it is used when
computing the distance between two nodes, such as when
picking the root of a sub-region.

4.3 Building Multi-Region Trees
In the multi-region system, we build an inter-region tree
of each color. The nodes in the inter-region tree then serve
as roots of the intra-region trees of that color.

The inter-region tree of a particular color is composed
of one representative of that color from each region. The
representatives are computed by the leader in a global
knowledge system, and specified in the summaries in a
partial knowledge system. The representatives can be
thought of as forming their own “super” region, and we
build the tree for that region using recursive subdivision
as within a region. The only difference is that we use
a smaller fan-out parameter for the inter-region tree, be-
cause each node in that tree also acts as a root for a tree
within its region, and therefore has descendants in that
region as well as descendants in the inter-region tree.

As mentioned in Section 3.3, representatives in the
partial knowledge deployment are responsible for prop-
agating the full report that underlies the summary to the
members of the region. The extra information is added to
the item by the root node of each tree for the region, and
thus reaches all the nodes in the region.

4.4 Reducing Bandwidth Consumption
Using erasure coded fragments allows Census to provide
high reliability with reasonably low overhead, but is not
without bandwidth overhead altogether. In a configuration
where 8 out of 16 fragments are required to reconstruct
multicast data, each node sends twice as many fragments

as strictly required in the non-failure case. Furthermore,
membership updates are transmitted in full on every tree,
giving even greater overhead.

We minimize bandwidth overhead by observing that
redundant fragments and updates are necessary only if
there is a failure. Instead of having each parent always
send both a membership update and fragment, we desig-
nate only one parent per child to send the update and m
parents per child to send the fragment. The other parents
instead send a short “ping” message to indicate to their
child that they have the update and fragment. A child who
fails to receive the update or sufficient fragments after a
timeout requests data from the parents who sent a ping.

This optimization has the potential to increase latency.
Latency increases when there are failures, because a node
must request additional fragments from its parents after a
timeout. Even without failures, a node must wait to hear
from the m parents that are designated to send a fragment,
rather than just the first m parents that it hears from.

Fortunately, we are able to exploit membership knowl-
edge to optimize latency. Each parent uses network coor-
dinates to estimate, for each child, the total latency for a
message to travel from the root of each tree to that child.
Then, it sends a fragment only if it is on one of the m
fastest paths to that child. The estimated latencies are also
used to set the timeouts for requesting missing fragments.
This optimization is possible because Census provides
a globally consistent view of network coordinates. Sec-
tion 6.2.3 shows that it eliminates nearly all redundant
bandwidth overhead without greatly increasing latency.

5 Fault Tolerance
In this section we discuss how node and network fail-
ures are handled. We consider both crash failures and
Byzantine failures, where nodes may behave arbitrarily.

5.1 Crash Failures
Census masks failures of the global leader using repli-
cation. A group of 2fGL + 1 nodes is designated as the
global leader group, with one member acting as the global
leader. Here, fGL is not the maximum number of faulty
nodes in the entire system, but rather the number of faulty
nodes in the particular leader group; thus the group is
relatively small. The members of the leader group use a
consensus protocol [25, 21] to agree on the contents of
each item: the leader forwards each item to the members
of the global leader group, and waits for fGL acknowl-
edgments before distributing it on the multicast trees. The
members of the global leader group monitor the leader
and select a new one if it appears to have failed.

Tolerating crashes or unexpected node departures is
relatively straightforward. Each parent monitors the live-
ness of its children. If the parent does not receive an ac-
knowledgment after several attempts to forward an item,

USENIX Association	 2009 USENIX Annual Technical Conference	 165

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 0.05 0.1 0.15 0.2

E
xp

ec
te

d
R

eg
io

n
Li

fe
tim

e
(e

po
ch

s)

Fraction of Bad Nodes

fRL=1
fRL=3
fRL=5

Figure 3: Expected time until a bad leader group (leader
and f leader group members faulty) is chosen, in epochs

it reports the absence of the child to the region leader. The
child will be removed from the system in the subsequent
membership update; if it was only temporarily partitioned
from the network, it can rejoin the region. In each epoch,
the parent of a particular color is designated as monitor, to
prevent multiple parents from reporting the same failure.

Region leaders are not replicated in the global knowl-
edge system; a new region leader is chosen in each epoch,
so a failed leader only causes updates to be delayed until
it is replaced. In the partial knowledge system, how-
ever, we must also ensure that if a region leader sends a
summary to the global leader, the corresponding report
survives, even if the region leader fails; otherwise, the
system would be in an inconsistent state. Census uses
a region leader group of 2fRL + 1 nodes to solve this
problem. The region leader sends the report to members
of its leader group and waits for fRL acknowledgments
before sending the summary to the global leader. Thus, if
the representatives receive an item containing a summary
for their region, they are guaranteed to be able to retrieve
the corresponding report from the leader group, even if
the region leader failed, provided that no more than fRL
members of the leader group have failed.

Census can select leader groups at random from the
system membership, using a deterministic function of the
epoch number and region membership. If this approach
is used, each summary in the partial knowledge system
announces the region’s next leader group, and the global
leader group is chosen deterministically from the nodes
in the region leader groups.

The size of the leader groups (i.e. the values of fRL
and fGL) depends on the fraction of nodes expected to
be failed concurrently, since faulty nodes are removed
from the system. Figure 3 shows the expected number
of leader groups that can be chosen before choosing a
bad group. Because Census detects and removes crashed
nodes within a couple of epochs, we can expect the frac-
tion of failed nodes to remain small (e.g. under 1%), and

therefore a small value for f will be sufficient even in a
very long lived system.

Many applications have some infrastructure nodes that
are expected to be very reliable. If so, using these as
replicas in leader groups, especially for the global leader,
can provide even better reliability. Using infrastructure
nodes is particularly well-suited for applications that send
multicast data, since they may benefit from having the
global leader co-located with the source of multicast data.

5.2 Byzantine Failures
Our solution for Byzantine fault tolerance builds on the
approaches used for crash failures, with the obvious ex-
tensions. For example, we require signed reports from
fM + 1 parents monitoring a failed node to remove it. If
this exceeds the number of trees, the node’s predecessors
in the region ID space provide additional reports.

We use region leader groups in both the global knowl-
edge and partial knowledge deployments. Since bad
nodes may misbehave in ways that cannot be proven, and
thus may not be removed from the system, all architec-
tures such as ours must assume the fraction of Byzantine
nodes is small. Figure 3 shows that this requirement is
fairly constraining if we want the system to be long-lived.
For example, with f = 5, we must assume no more than
3% faulty nodes to achieve an expected system lifetime of
10 years (with 30-second epochs). Therefore, it would be
wise to choose leader groups from infrastructure nodes.

The size of a region leader group is still only 2fRL +
1, since the group does not run agreement. Instead, a
region leader obtains signatures from fRL+1 leader group
members, including itself, before sending a summary or
report to the global leader. These signatures certify that
the group members have seen the updates underlying the
report or summary. If the leader is faulty, it may not send
the report or summary, but this absence will be rectified
in subsequent epochs when a different leader is chosen.

To ensure that a faulty region leader cannot increase the
probability that a region leader group contains more than
fRL faulty nodes, we choose leader group members based
on their IDs, using a common technique from peer-to-peer
systems [18, 36]: the first 2fRL+1 nodes with IDs greater
than the hash of the epoch number (wrapping around if
necessary) make up the leader group. A Byzantine region
leader cannot invent fictitious joins or departures, because
these are signed, and therefore it has no way to control
node IDs. It might selectively process join and departure
requests in an attempt to control the membership of the
next leader group, but this technique is ineffective.

We increase the size of the global leader group to
3fGL + 1 nodes. The global group runs a Byzantine
agreement protocol [9] once per epoch to agree on which
summaries will be included in the next item. The next
item includes fGL + 1 signatures, ensuring that the pro-

166	 2009 USENIX Annual Technical Conference	 USENIX Association

tocol ran and the item is valid. The group members also
monitor the leader and carry out a view change if it fails.
We have developed a protocol that avoids running agree-
ment but requires 2fGL + 1 signatures, but omit it due
to lack of space. Because the failure of the global leader
group can stop the entire system, and the tolerated failure
level is lower, it is especially important to use trusted
infrastructure nodes or other nodes known to be reliable.

5.2.1 Ganging-Up and Duplicates

Two new issues arise because of Census’s multi-region
structure. The first is a ganging-up attack, where a dispro-
portionate number of Byzantine nodes is concentrated in
one region. If so, the fraction of bad nodes in the region
may be too high to ensure that region reports are accurate
for any reasonable value of fRL. This may occur if an
attacker controls many nodes in a particular location, or
if Byzantine nodes manipulate their network coordinates
to join the region of their choice.

The second problem is that bad nodes might join many
regions simultaneously, allowing a small fraction of bad
nodes to amplify their population. Such duplicates are a
problem only in the partial knowledge deployment, where
nodes do not know the membership of other regions.

To handle these problems, we exploit the fact that faulty
nodes cannot control their node ID. Instead of selecting
a region’s leader group from the region’s membership,
we select it from a subset of the global membership: we
identify a portion of the ID space, and choose leaders
from nodes with IDs in this partition. IDs are not under
the control of the attacker, so it is safe to assume only a
small fraction of nodes in this partition are corrupt, and
thus at most fRL failures will occur in a leader group.

Nodes in the leader partition are globally known, even
in the partial knowledge system: when a node with an ID
in the leader partition joins the system, it is reported to
the global leader and announced globally in the next item.
These nodes are members of their own region (based on
their location), but may also be assigned to the leader
group for a different region, and thus need to track that
region membership state as well. Nodes in the leader par-
tition are assigned to the leader groups of regions, using
consistent hashing, in the same way values are assigned
to nodes in distributed hash tables [36]. This keeps assign-
ments relatively stable, minimizing the number of state
transfers. When the leader group changes, new members
need to fetch matching state from fRL + 1 old members.

To detect duplicates in the partial knowledge system,
we partition the ID space, and assign each partition to a
region, again using consistent hashing. Each region tracks
the membership of its assigned partition of the ID space.
Every epoch, every region leader reports new joins and de-
partures to the regions responsible for the monitoring the
appropriate part of the ID space. These communications

must contain fRL + 1 signatures to prevent bad nodes
from erroneously flagging others as duplicates. The leader
of the monitoring region reports possible duplicates to
the regions that contain them; they confirm that the node
exists in both regions, then remove and blacklist the node.

5.3 Widespread Failures and Partitions
Since regions are based on proximity, a network partition
or power failure may affect a substantial fraction of nodes
within a particular region. Short disruptions are already
handled by our protocol. When a node recovers and
starts receiving items again, it will know from the epoch
numbers that it missed some items, and can recover by
requesting the items in question from other nodes.

Nodes can survive longer partitions by joining a differ-
ent region. All nodes know the epoch duration, so they
can use their local clock to estimate whether they have
gone too many epochs without receiving an item. The
global leader can eliminate an entire unresponsive region
if it receives no summary or report for many epochs.

6 Evaluation
This section evaluates the performance of our system.
We implemented a prototype of Census and deployed it
on PlanetLab to evaluate its behavior under real-world
conditions. Because PlanetLab is much smaller than the
large-scale environments our system was designed for, we
also examine the reliability, latency, and bandwidth over-
head of Census using simulation and theoretical analysis.

6.1 Analytic Results
Figure 4 presents a theoretical analysis of bandwidth over-
head per node for a multi-region system supporting both
fail-stop and Byzantine failures. The analysis used 8 trees
and an epoch interval of 30 seconds. Our figures take
all protocol messages into consideration, including UDP
overhead, though Figure 4(c) does not include support for
preventing ganging-up or for duplicate detection.

Bandwidth utilization in Census is a function of both
system membership and churn. These results represent
a median node lifetime of 30 minutes, considered a high
level of churn with respect to measurement studies of
the Gnutella peer-to-peer network [33]. This serves as
a “worst-case” figure; in practice, we expect most Cen-
sus deployments (e.g. those in data center environments)
would see far lower churn.

The results show that overhead is low for all config-
urations except when operating with global knowledge
on very large system sizes (note the logarithmic axes).
Here the global leader needs to process all membership
updates, as well as forward these updates to all 8 distri-
bution trees. The other nodes in the system have lower
overhead because they forward updates on only one tree.
The overhead at the global leader is an order of magni-

USENIX Association	 2009 USENIX Annual Technical Conference	 167

 0.01

 0.1

 1

 10

 100 1000 10000 100000

B
an

dw
id

th
 O

ve
rh

ea
d

(K
B

/s
)

Number of Nodes

Global Leader
Region Leader
Regular Node

(a) Crash Fault Tolerance, Global Knowledge

 0.01

 0.1

 1

 10

 100 1000 10000 100000

B
an

dw
id

th
 O

ve
rh

ea
d

(K
B

/s
)

Number of Nodes

Global Leader
Region Leader
Regular Node

(b) Crash Fault Tolerance, Partial Knowledge

 0.01

 0.1

 1

 10

 100 1000 10000 100000

B
an

dw
id

th
 O

ve
rh

ea
d

(K
B

/s
)

Number of Nodes

Global Leader
Region Leader
Regular Node

(c) Byz. Fault Tolerance, Partial Knowledge

Figure 4: Mean bandwidth overhead with high churn. 30 minute session lengths, 30 second epochs, 8 trees and f = 3.

tude lower in the partial knowledge case, where it only
receives and distributes the compact region summaries.

In the partial knowledge cases (Figures 4(b) and 4(c))
the region leader incurs more overhead than the regular
nodes, primarily due to forwarding each report to the
leader group and representatives before sending a sum-
mary to the global leader. Supporting Byzantine fault
tolerance imposes little additional overhead for the region
leaders and global leader, because the cost of the addi-
tional signatures and agreement messages are dominated
by the costs of forwarding summaries and reports.

These results are sensitive to region size, particularly
in large deployments, as this affects the trade-off between
load on the region leaders and on the global leader. For
the purpose of our analysis we set the number of regions
to 3

√
nodes, mimicking the proportions of a large-scale

deployment of 100 regions each containing 10,000 nodes.

6.2 Simulation Results
We used a discrete-event simulator written for this project
to evaluate reliability, latency, and the effectiveness of
our selective fragment transmission optimization. The
simulator models propagation delay between hosts, but
does not model queuing delay or network loss; loss due
to bad links is represented by overlay node failures.

Two topologies were used in our simulations: the
King topology, and a random synthetic network topol-
ogy. The King topology is derived from the latency ma-
trix of 1740 Internet DNS servers used in the evaluation
of Vivaldi [11], collected using the King method [15].
This topology represents a typical distribution of nodes in
the Internet, including geographical clustering. We also
generate a number of synthetic topologies, with nodes
uniformly distributed within the coordinate space. These
random topologies allow us to examine the performance
of the algorithm when nodes are not tightly clustered
into regions, and to freely experiment with network sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

S
uc

ce
ss

 R
at

e

Fraction of Bad Nodes

2/4 coding (data)
3/4 coding (data)

8/16 coding (data)
12/16 coding (data)

4 trees (membership)
16 trees (membership)

Figure 5: Fraction of nodes that receive tree data in the
presence of faulty nodes, with 10 regions of 1,000 nodes.

without affecting the distribution of nodes.
While our simulator measures network delays using

latencies, our algorithms operate solely in the coordinate
domain. We generated coordinates from the King data
using a centralized version of the Vivaldi algorithm [11].
Coordinates consist of two dimensions and a height vector,
as was found to effectively model latencies in Vivaldi.
These coordinates do not perfectly model actual network
delays, as discussed in Section 6.2.2.

6.2.1 Fault Tolerance

Figure 5 examines the reliability of our distribution trees
for disseminating membership updates and application
data under simulation. In each experiment we operate
with 10 regions of 1,000 nodes each; single-region deploy-
ments see equivalent results. The reliability is a function
only of the tree fan-out and our disjointness constraint,
and does not depend on network topology.

The leftmost four lines show the fraction of nodes that
are able to reconstruct application data under various era-
sure coding configurations. Census achieves very high

168	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 o

f
N

o
d
e
s

Stretch

Single region (Synth)
10 regions (Synth)

Single region (King)
10 regions (King)

Figure 6: CDF of multicast transmission stretch in King
and 10,000 node synthetic topologies. 4/8 erasure coding.

success rates with up to 30% failed nodes in the 16-tree
configuration, with 2× redundancy (8/16 coding). This
high failure rate is unlikely, since our membership man-
agement protocol removes failed nodes promptly. The
primary factor influencing reliability is the redundancy
rate. Increasing the number of trees also improves reli-
ability, even with the same level of redundancy: using
16 trees instead of 4 tolerates nearly 10% more failures.
Additional trees improve reliability by reducing the prob-
ability of n−m parents failing, but comes with the cost
of more messages and more representatives to maintain.

The rightmost two lines show the fraction of nodes that
receive membership update information, which is sent in
full on each tree. In a 16-tree deployment, we find that
every non-faulty node receives membership information
on at least one tree, even if as many as 70% of the region
members have failed. Even on a 4-tree deployment, all
nodes receive membership information in the presence of
upwards of 20% failed nodes.

The high reliability exhibited in Figure 5 is partially
due to our reconstruction optimization, discussed in Sec-
tion 4.1. An 8/16 deployment using reconstruction allows
all non-faulty nodes to receive application data with as
many as 22% failed nodes, but tolerates only 7.5% fail-
ures without reconstruction. Reconstruction mitigates the
effects of a failure by allowing a tree to heal below a faulty
node, using fragments from other trees.

6.2.2 Latency

Census’s multicast mechanism must not impose excessive
communication delay. We evaluate this delay in terms
of stretch, defined as the total time taken for a node to
receive enough fragments to reconstruct the data, divided
by the unicast latency between the server and the node.

Figure 6 shows stretch on both the King and synthetic
topologies, assuming no failures and using 8 trees; results
for 16 trees are similar. The figure shows that stretch

is close to 1 on the synthetic topology, indicating that
our tree-building mechanism produces highly efficient
trees. Stretch is still low on the King topology, at an
average of 2, but higher than in the synthetic topology.
This reflects the fact that the coordinates generated for
the King topology are not perfect predictors of network
latency, while the network coordinates in the synthetic
topology are assumed perfect. The small fraction of nodes
with stretch below 1 are instances where node latencies
violate the triangle inequality, and the multicast overlay
achieves lower latency than unicast transmission.

Stretch is slightly higher in the multi-region deploy-
ment with the synthetic topology because the inter-region
tree must be constructed only of representatives. In the
synthetic topology, which has no geographic locality,
stretch increases because the representatives may not be
optimally placed within each region. However, this ef-
fect is negligible using the King topology, because nodes
within a region are clustered together and therefore the
choice of representatives has little effect on latency.

Our stretch compares favorably with existing multicast
systems, such as SplitStream [7], which also has a stretch
of approximately 2. In all cases, transmission delay over-
head is very low compared to typical epoch times.

6.2.3 Selective Fragment Transmission

Figure 7(a) illustrates the bandwidth savings of our opti-
mization to avoid sending redundant fragments (described
in Section 4.4), using 2× redundancy and 8 trees on the
King topology. In the figure, bandwidth is measured rel-
ative to the baseline approach of sending all fragments.
We see a 50% reduction in bandwidth with this optimiza-
tion; overhead increases slightly at higher failure rates, as
children request additional data after timeouts.

Figure 7(b) shows this optimization’s impact on latency.
It adds negligible additional stretch at low failure rates, be-
cause Census chooses which fragments to distribute based
on accurate predictions of tree latencies. At higher failure
rates, latency increases as clients are forced to request ad-
ditional fragments from other parents, introducing delays
throughout the distribution trees.

The figures indicate that the optimization is very ef-
fective in the expected deployments where the failure
rate is low. If the expected failure rate is higher, sending
one extra fragment reduces latency with little impact on
bandwidth utilization.

6.3 PlanetLab Experiments
We verify our results using an implementation of our
system, deployed on 614 nodes on PlanetLab. While this
does not approach the large system sizes for which our
protocol was designed, the experiment provides a proof
of concept for a real widespread deployment, and allows

USENIX Association	 2009 USENIX Annual Technical Conference	 169

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.02 0.04 0.06 0.08 0.1

R
el

at
iv

e
ba

nd
w

id
th

 o
ve

rh
ea

d

Failure rate

All fragments
Minimum fragments

Minimum fragments + 1

(a) Relative Bandwidth

 0

 0.5

 1

 1.5

 2

 0 0.02 0.04 0.06 0.08 0.1

R
el

at
iv

e
S

tre
tc

h
(d

el
ay

)

Failure rate

All fragments
Minimum fragments

Minimum fragments + 1

(b) Relative Stretch

Figure 7: Performance impact of avoiding redundant fragments in multicast trees. (4 of 8 coding)

us to observe the system under realistic conditions such
as non-uniform node failures.

Our implementation supports multiple regions, with
dynamic splits and joins, but we found that a single region
was sufficient for the number of nodes in our PlanetLab
deployment, and more representative of region sizes that
would be seen in larger deployments. The implementation
currently supports fail-stop failures, moving the leader
each epoch, but does not tolerate Byzantine failures.

We configured the system to use 6 distribution trees,
with an epoch time of 30 seconds. In addition to mem-
bership information, we distributed a 1 KB application
message each epoch using 3-of-6 erasure coding, to test
the reliability and overhead of this part of our system.

We ran Census for 140 epochs of 30 seconds each.
As indicated in Figure 8(a), during the experiment, we
failed 10% of the nodes simultaneously, then restarted
them; we then did the same with 25% of the nodes. The
graph shows the number of nodes reported in our system’s
membership view. Census reacts quickly to the sudden
membership changes; the slight delay reflects the time
needed for parents to decide that their children are faulty.

Figure 8(b) shows the average total bandwidth usage
(both upstream and downstream) experienced by nodes in
our system. Each node uses about 0.1 KB/s at steady-state,
much of which is due to the size of the multicast data;
the shaded region of the graph represents the theoretical
minimum cost of disseminating a 1 KB message each
epoch. Bandwidth usage increases for a brief time after
our sudden membership changes, peaking at 0.9 KB/s
immediately after 25% of the nodes rejoin at once. Node
rejoins are more costly than node failures, because more
information needs to be announced globally for a newly-
joined node and the new node needs to obtain the system
membership. We have also run the system for much
longer periods, with similar steady-state bandwidth usage.

7 Applications
Knowledge of system membership is a powerful tool that
can simplify the design of many distributed systems. An
obvious application of Census is to support administration
of large multi-site data centers, where Byzantine failures
are rare (but do occur), and locality is captured by our
region abstraction. Census is also useful as an infrastruc-
ture for developing applications in such large distributed
systems. In this section, we describe a few representative
systems whose design can be simplified with Census.

7.1 One-Hop Distributed Hash Tables
A distributed hash table is a storage system that uses a
distributed algorithm, usually based on consistent hash-
ing [18], to map item keys to the nodes responsible for
their storage. This abstraction has proven useful for orga-
nizing systems at scales ranging from thousands of nodes
in data centers [12] to millions of nodes in peer-to-peer
networks [23]. The complexity in such systems lies pri-
marily in maintaining membership information to route
requests to the correct node, a straightforward task with
the full membership information that Census provides.

Most DHTs do not maintain full membership knowl-
edge at each host, so multiple (e.g. O(log N)) routing
steps are required to locate the node responsible for an
object. Full global knowledge allows a message to be
routed in one step. In larger systems that require partial
knowledge, messages can be routed in two steps. The
key now identifies both the responsible region and a node
within that region. A node first routes a message to any
member of the correct region, which then forwards it
to the responsible node, much like the two-hop routing
scheme of Gupta et al. [16]. Although our membership
management overhead does not scale asymptotically as
well as many DHT designs, our analysis in Section 6.1
shows that the costs are reasonable in most deployments.

From a fault-tolerance perspective, Census’s member-

170	 2009 USENIX Annual Technical Conference	 USENIX Association

 350

 400

 450

 500

 550

 600

 650

 0 20 40 60 80 100 120 140

R
ep

or
te

d
m

em
be

rs
hi

p
(n

od
es

)

Epochs (1 epoch = 30 seconds)

10%
fail

10%
rejoin

25%
fail

25%
rejoin

(a) System Membership

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

M
ea

n
ba

nd
w

id
th

 p
er

 n
od

e
(K

B
/s

)

Epochs (1 epoch = 30 seconds)

(b) Bandwidth Usage

Figure 8: Results of a 614-node, 70-minute PlanetLab deployment with 10% and 25% correlated failures.

ship views provide several advantages. Single-hop rout-
ing eliminates the possibility of a malicious intermediate
node redirecting a request [35]. The fault-tolerance of our
protocol prevents Eclipse attacks, where malicious nodes
influence an honest node’s routing table [6]. Applica-
tions that use replication techniques to ensure consistency
across replicas benefit from Census’s consistent member-
ship views, since all nodes in the system agree on the
identity of the replicas for each epoch.

Finally, our use of full membership information can
enable more sophisticated placement algorithms than the
standard consistent hashing approach. Any deterministic
function of the membership view, including location in-
formation, suffices. For example, we might choose one
replica for a data item based on its key, and the others
based on location: either nearby nodes (for improved
performance) or distant ones (for failure-independence).

7.2 Application-Layer Multicast
Census allows applications to disseminate information
on multicast trees by piggybacking it on items. The ap-
plication can do this as needed: occasionally, on every
item, or more frequently. An example of where more
frequent multicast is needed is to broadcast video. For
high-bandwidth multicast like video streaming, the costs
of maintaining membership become less significant.

Compared to other scalable multicast systems, Cen-
sus’s multicast trees can provide higher reliability, using
optimizations like reconstruction and selective fragment
transmission, and can tolerate Byzantine behavior. The
availability of consistent membership views keeps the
multicast protocol relatively simple, while still providing
strong performance and reliability guarantees.

Census can also be used to construct a publish-
subscribe system where only certain nodes are interested
in receiving each message. One node is designated as
responsible for each interest group, and other nodes con-
tact it to publish or subscribe. When this node receives
a message to distribute, it constructs multicast trees over

just the subscribers, using them to disseminate both the
message and changes in subscriber membership. This
multicast is independent of the one we use to distribute
membership information, but the trees can be constructed
using the same algorithm.

7.3 Cooperative Caching
We are currently developing a wide-scale storage appli-
cation where a small set of nodes act as servers, storing
the definitive copy of system data. The other nodes in
the system are clients. To perform operations, they fetch
pages of data from the server into local caches and exe-
cute operations locally; they write back modified pages
to the server when the computation is finished.

To reduce load on the storage servers, clients share
their caches, fetching missing pages from nearby clients.
A partial knowledge Census deployment makes it easy
for clients to identify other nearby clients. We are investi-
gating two approaches to finding pages. In one, nodes an-
nounce pages they are caching on the multicast tree within
a region, so each node in the region always knows which
pages are cached nearby. The other uses an approach
similar to peer-to-peer indexing systems (e.g. [10]): we
use consistent hashing [18] to designate for each page one
node per region that keeps track of which region members
have that page cached. Members register with this node
once they have fetched a page, and check with it when
they are looking for a page.

Cached information inevitably becomes stale, render-
ing it useless for computations that require consistency.
To keep caches up to date, storage servers in this system
use Census’s multicast service to distribute an invalida-
tion stream. This consists of periodic notices listing the
set of recently modified pages; when a node receives such
a notice, it discards the invalid pages from its cache.

8 Related Work
There is a long history of research in group communica-
tion systems, which provide a multicast abstraction along

USENIX Association	 2009 USENIX Annual Technical Conference	 171

with a membership management service [14, 37, 19, 2,
26, 29]. Many of these systems provide support for group
communication while maintaining virtual synchrony [3], a
model similar to our use of epochs to establish consistent
views of system information. Such systems are typically
not designed to scale to large system populations, and
often require dedicated membership servers, which do not
fit well with our decentralized model.

Spread [2] and ISIS [4] use an abstraction of many
lightweight membership groups mapping onto a smaller
set of core groups, allowing the system to scale to large
numbers of multicast groups, but not large membership
sizes. We take a different approach in using regions to
group physical nodes, and scale to large system mem-
berships, without providing a multiple-group abstraction.
Quicksilver [26] aims to scale in both the number of
groups and the number of nodes, but does not exploit our
physical hierarchy to minimize latency and communica-
tion overhead in large system deployments.

Prior group communication systems have also aimed
to tolerate Byzantine faults, in protocols such as Ram-
part [30] and SecureRing [20]. Updating the membership
view in these systems requires executing a three-phase
commit protocol across all nodes, which is impractical
with more than a few nodes. By restricting our protocol
to require Byzantine agreement across a small subset of
nodes, we achieve greater scalability. Rodrigues proposed
a membership service using similar techniques [31], but it
does not provide locality-based regions or partial knowl-
edge, and assumes an existing multicast mechanism.

Many large-scale distributed systems employ ad-hoc
solutions to track dynamic membership. A common ap-
proach is to use a centralized server to maintain the list
of active nodes, as in Google’s Chubby lock service [5].
Such an approach requires all clients to communicate di-
rectly with a replicated server, which may be undesirable
from a scalability perspective. An alternative, decentral-
ized approach seen in Amazon’s Dynamo system [12]
is to track system membership using a gossip protocol.
This approach provides only eventual consistency, which
is inadequate for many applications, and can be slow to
converge. These systems also typically do not tolerate
Byzantine faults, as evidenced by a highly-publicized
outage of Amazon’s S3 service [1]

Distributed lookup services, such as Chord [36] and
Pastry [32], provide a scalable approach to distributed sys-
tems management, but none of these systems provides a
consistent view of membership. They are also vulnerable
to attacks in which Byzantine nodes cause requests to be
misdirected; solving this problem involves trading-off per-
formance for probabilistic guarantees of correctness [6].

Fireflies [17] provides each node with a view of system
membership, using gossip techniques that tolerate Byzan-
tine failures. However, it does not guarantee a consistent

global membership view, instead giving a probabilistic
agreement. Also, our location-aware distribution trees
offer faster message delivery and reaction to changes.

Our system’s multicast protocol for disseminating
membership updates builds on the multitude of recent
application-level multicast systems. Most (but not all) of
these systems organize the overlay as a tree to minimize
latency; the tree can be constructed either by a centralized
authority [28, 27] or by a distributed algorithm [8, 7, 22].
We use a different approach: relying on the availability
of global, consistent membership views, we run what is
essentially a centralized tree-building algorithm indepen-
dently at each node, producing identical, optimized trees
without a central authority.

SplitStream [7] distributes erasure-coded fragments
across multiple interior-node-disjoint multicast trees in or-
der to improve resilience and better distribute load among
the nodes. Our overlay has the same topology, but it is
constructed in a different manner. We also employ new
optimizations, such as selective fragment distribution and
fragment reconstruction, which provide higher levels of
reliability with lower bandwidth overhead.

9 Conclusions
Scalable Internet services are often built as distributed
systems that reconfigure themselves automatically as new
nodes become available and old nodes fail. Such sys-
tems must track their membership. Although many mem-
bership services exist, all current systems are either im-
practical at large scale, or provide weak semantics that
complicate application design.

Census is a membership management platform for
building distributed applications that provides both strong
semantics and scalability. It provides consistent mem-
bership views, following the virtual synchrony model,
simplifying the design of applications that use it. The
protocol scales to large system sizes by automatically
partitioning nodes into proximity-based regions, which
constrains the volume of membership information a node
needs to track. Using lightweight quorum protocols and
agreement across small groups of nodes, Census can main-
tain scalability while tolerating crash failures and a small
fraction of Byzantine-faulty nodes.

Census distributes membership updates and application
data using a unconventional multicast protocol that takes
advantage of the availability of membership data. The key
idea is that the distribution tree structure is determined
entirely by the system membership state, allowing nodes
to independently compute identical trees. This approach
allows the tree to be reconstructed without any overhead
other than that required for tracking membership. As our
experiments show, using network coordinates produces
trees that distribute data with low latency, and the multiple-
tree overlay structure provides reliable data dissemination

172	 2009 USENIX Annual Technical Conference	 USENIX Association

even in the presence of large correlated failures.
We deployed Census on PlanetLab and hope to make

the deployment available as a public service. We are cur-
rently using it as the platform for a large-scale storage
system we are designing, and expect that it will be simi-
larly useful for other reconfigurable distributed systems.

Acknowledgments
We thank our shepherd Marvin Theimer, Austin Clements,
and the anonymous reviewers for their valuable feedback.
This research was supported by NSF ITR grant CNS-
0428107.

References
[1] Amazon Web Services. Amazon S3 availability event:

July 20, 2008. http://status.aws.amazon.com/
s3-20080720.html, July 2008.

[2] Y. Amir and J. Stanton. The Spread wide area group communica-
tion system. Technical Report CNDS-98-4, The Johns Hopkins
University, Baltimore, MD, 1998.

[3] K. Birman and T. Joseph. Exploiting virtual synchrony in dis-
tributed systems. In Proc. SOSP ’87, Nov. 1987.

[4] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and
atomic group multicast. In Transactions on Computer Systems,
volume 9, Aug. 1991.

[5] M. Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In Proc. OSDI ’06, Seattle, WA, Nov. 2006.

[6] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Secure routing for structured peer-to-peer overlay networks.
In Proc. OSDI ’02, Boston, MA, Nov. 2002.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: high-bandwidth multicast in coop-
erative environments. In Proc. SOSP ’03, Bolton Landing, NY,
2003.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe: A large-scale and decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in Communica-
tions, 20(8):100–110, Oct. 2002.

[9] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance and
Proactive Recovery. ACM Transactions on Computer Systems,
20(4):398–461, Nov. 2002.

[10] A. T. Clements, D. R. K. Ports, and D. R. Karger. Arpeggio:
Metadata searching and content sharing with Chord. In Proc.
IPTPS ’05, Ithaca, NY, Feb. 2005.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decen-
tralized network coordinate system. In Proc. ACM SIGCOMM
2004, Portland, OR, Aug. 2004.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store. In Proc.
SOSP ’07, Stevenson, WA, Oct. 2007.

[13] J. R. Douceur. The Sybil attack. In Proc. IPTPS ’02, Cambridge,
MA, Feb. 2002.

[14] B. B. Glade, K. P. Birman, R. C. B. Cooper, and R. van Renesse.
Lightweight process groups in the ISIS system. Distributed Sys-
tems Engineering, 1:29–36, 1993.

[15] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating
latency between arbitrary internet end hosts. In Proc. IMW ’02,
Marseille, France, Nov. 2002.

[16] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for peer-
to-peer overlays. In Proc. NSDI ’04, San Francisco, CA, Mar.
2004.

[17] H. Johansen, A. Allavena, and R. van Renesse. Fireflies: Scalable
support for intrusion-tolerant network overlays. In Proc. EuroSys

’06, Leuven, Belgium, Apr. 2006.

[18] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the World Wide Web.
In Proc. STOC ’97, El Paso, TX, May 1998.

[19] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. Moshe: A group
membership service for WANs. ACM Transactions on Computer
Systems, 20:191–238, 2002.

[20] K. Kihlstrom, L. Moser, and P. Melliar-Smith. The SecureRing
Protocols for Securing Group Communication. In Proc. HICSS

’98, Hawaii, Jan. 1998.
[21] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16(2):133–169, May 1998.
[22] J. Liang, S. Y. Ko, I. Gupta, and K. Nahrstedt. MON: On-demand

overlays for distributed system management. In Proc. WORLDS
’05, San Francisco, CA, Dec. 2005.

[23] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer
information system based on the XOR metric. In Proc. IPTPS ’02,
Cambridge, MA, Feb. 2002.

[24] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Incentives-
compatible peer-to-peer multicast. In Proc. P2PEcon ’04, Cam-
bridge, MA, June 2004.

[25] B. Oki and B. Liskov. Viewstamped Replication: A New Primary
Copy Method to Support Highly-Available Distributed Systems.
In Proc. PODC ’88, 1988.

[26] K. Ostrowski, K. Birman, and D. Dolev. QuickSilver scalable
multicast. In Proc. NCA ’08, Cambridge, MA, July 2008.

[27] V. N. Padmanabhan, H. J. Wang, and P. A. Chou. Resilient peer-
to-peer streaming. In Proc. ICNP ’03, Atlanta, GA, Nov. 2003.

[28] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An
application level multicast infrastructure. In Proc. USITS ’01, San
Francisco, CA, Mar. 2001.

[29] D. Powell, D. Seaton, G. Bonn, P. Verı́ssimo, and F. Waeselynck.
The Delta-4 approach to dependability in open distributed com-
puting systems. In Proc. FTCS ’88, June 1988.

[30] M. Reiter. A secure group membership protocol. IEEE Transac-
tions on Software Engineering, 22(1):31–42, Jan. 1996.

[31] R. Rodrigues. Robust Services in Dynamic Systems. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, June
2005.

[32] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems.
In Proc. Middleware ’01, Heidelberg, Nov. 2001.

[33] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. MMCN ’02,
San Jose, CA, June 2002.

[34] M. Sherr, B. T. Loo, and M. Blaze. Veracity: A fully decentralized
service for securing network coordinate systems. In Proc. IPTPS

’08, Feb. 2008.
[35] E. Sit and R. Morris. Security concerns for peer-to-peer distributed

hash tables. In Proc. IPTPS ’02, Cambridge, MA, Feb. 2002.
[36] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scalable
peer-to-peer lookup protocol for internet applications. IEEE/ACM
Trans. Networking, 11(1):149–160, Feb. 2003.

[37] R. van Renesse, K. P. Birman, and S. M. Eis. Horus: A flexi-
ble group communication system. Communications of the ACM,
39:76–83, 1996.

[38] D. Zage and C. Nita-Rotaru. On the accuracy of decentralized
network coordinate systems in adversarial networks. In Proc. CCS

’07, Alexandria, VA, Oct. 2007.
[39] Y. Zhou. Computing network coordinates in the presence of

Byzantine faults. Master’s thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, June 2008. Available as technical report
MIT-CSAIL-TR-2009-015.

[40] Y. Zhu, B. Li, and J. Guo. Multicast with network coding in
application-layer overlay networks. IEEE Journal on Selected
Areas in Communications, 22(1), Jan. 2004.

USENIX Association	 2009 USENIX Annual Technical Conference	 173

Veracity: Practical Secure Network Coordinates via Vote-based Agreements

Micah Sherr Matt Blaze Boon Thau Loo
University of Pennsylvania

Abstract
Decentralized network coordinate systems promise ef-
ficient network distance estimates across Internet end-
hosts. These systems support a wide range of net-
work services, including proximity-based routing, neigh-
bor selection in overlays, network-aware overlays, and
replica placement in content-distribution networks.

This paper describes Veracity, a practical fully-
decentralized service for securing network coordinate
systems. In Veracity, all advertised coordinates and sub-
sequent coordinate updates must be independently veri-
fied by a small set of nodes via a voting scheme. Un-
like existing approaches, Veracity does not require any
a priori secrets or trusted parties, and does not depend
on outlier analysis of coordinates based on a fixed set of
neighbors. We have implemented Veracity by modify-
ing an open-source network coordinate system, and have
demonstrated within a simulated network environment
and deployment on PlanetLab that Veracity mitigates at-
tacks for moderate sizes of malicious nodes (up to 30%
of the network), even when coalitions of attackers coor-
dinate their attacks. We further show that Veracity resists
high levels of churn and incurs only a modest communi-
cation overhead.

1 Introduction
Decentralized network coordinate systems such as Vi-
valdi [7], PIC [6], ICS [19], Big-bang simulation [29],
and NPS [22] have been proposed as a means of effi-
ciently estimating network distances without having to
explicitly contact the end-hosts involved. Distributed al-
gorithms map nodes to n-dimensional coordinates such
that the distance between two nodes’ coordinates corre-
sponds to a network distance (e.g., latency) between the
pair. For a network with N nodes, coordinate systems
linearize the information necessary to compute pairwise

network distances, allowing nodes to estimate N2 dis-
tances using N embedded coordinates.

Coordinate systems support a wide range of net-
work services, including proximity-based routing [31],
neighbor selection in overlays [9], network-aware over-
lays [23], and replica placement in content-distribution
networks [8, 37]. Several large-scale coordinate sys-
tems are currently deployed on the Internet. For exam-
ple, the Vuze client (formally called Azureus) for Bit-
Torrent uses coordinate systems for efficient distributed
hash table (DHT) traversal [2] and locality-based neigh-
bor selection [35], and currently operates on more than
one million nodes [18].

Unfortunately, the distributed nature of coordinate
systems make them particularly vulnerable to insider ma-
nipulation. To illustrate, recent studies [16] on Vivaldi
have shown that when 30% of nodes lie about their coor-
dinates, Vivaldi’s accuracy decreases by a factor of five.
When attackers collude, even 5% malicious nodes have
a sizable impact on the system’s accuracy.

In addition to causing significantly decreased accu-
racy and performance, corrupted coordinate systems may
serve as stepping stones for attacks against the applica-
tions that rely on them. Attackers who control the coor-
dinate system may advertise attractive (but false) coordi-
nates for nodes under their control, increasing the like-
lihood that such hosts will be selected for routes, neigh-
bors, or replicas. Such compromises enable myriad at-
tacks against the overlying services. For example, ma-
licious nodes may misdirect intercepted messages sent
via overlay routing, return false data when serving as a
replica in a content distribution network, or partition the
keyspace in a distributed hash table.

This paper presents Veracity, a fully decentralized ser-
vice for securing network coordinate systems. Verac-
ity provides a practical deployment path while provid-

174	 2009 USENIX Annual Technical Conference	 USENIX Association

ing equivalent (or greater) security than previously pro-
posed coordinate security systems. Unlike prior propos-
als, Veracity does not require either pre-selected trusted
nodes [15], the triangle inequality test [6], or outlier
detection based on a fixed neighbor set [40], allow-
ing Veracity to be practically deployed and react more
rapidly to changes in network conditions. Veracity is
also agnostic to the type of decentralized coordinate sys-
tem being deployed, and can be employed as a protec-
tion service over existing decentralized coordinate sys-
tems [7, 6, 19, 22].

At a high-level, Veracity utilizes a two-step verifica-
tion process. The first step involves a majority vote-
based scheme in which a published coordinate has to be
independently verified by a deterministically assigned set
of verification nodes before it is used by peers. An adver-
sary who attempts to disrupt the network by publishing
inconsistent coordinates will fail this verification step,
and consequently its coordinates will be ignored. As an
additional measure, a second verification step utilizes a
set of randomly chosen peers to independently compute
the estimation error due to a new coordinate, and reject
the coordinate if the error is above a threshold. This sec-
ond protection mechanism detects attacks in which mali-
cious nodes delay responses to measurement probes. The
combination of the two techniques ensures that Veracity
can tolerate a high fraction of malicious nodes that con-
currently report false coordinates and delay latency mea-
surements.

In this paper, we focus our implementation and eval-
uation on Vivaldi since it is widely used [3] and has
been the focus of recent work [15, 40] on securing co-
ordinate systems. We demonstrate via execution in a
simulated network environment using realistic network
traces [38, 17] and a deployment on PlanetLab that Ve-
racity mitigates attacks for moderate sizes of malicious
nodes (up to 30% of the network), even when coalitions
of attackers coordinate their attacks. We further show
that Veracity is resistant to high levels of churn and in-
curs only a modest communication overhead.

2 Background
In this section, we present a brief introduction to the Vi-
valdi system and outline threat models and metrics.

2.1 Vivaldi Coordinate System
Vivaldi uses a fully distributed spring relaxation algo-
rithm, requiring no fixed network infrastructure and no
distinguished nodes. The system envisions a spring be-
tween each pair of nodes, with the resting position of
the spring equaling the network latency between the pair.
At any point in time, the distance between the nodes in

the coordinate space determines the current length of the
spring connecting the nodes.

Nodes adjust their coordinates after collecting pub-
lished coordinate and latency measurements from a ran-
domly chosen neighbor. Consider a node i that wishes
to update its coordinate Ci. It picks a randomly cho-
sen neighbor j, retrieves its coordinate Cj and performs
a round-trip measurement RTTij from itself to j. The
squared error function, Eij = (RTTij − ||Ci − Cj ||)2
(where ||Ci − Cj || is the distance between their coordi-
nates) denotes the estimation error between the coordi-
nates of i and j. Using Vivaldi’s spring relaxation al-
gorithm, Eij reflects the potential energy of the spring
connecting the two nodes. Vivaldi attempts to minimize
the potential energies over all springs. In each timestep
of the algorithm, nodes allow themselves to be pulled
or pushed by a connected spring. The system converges
when the squared error function (i.e., the potential ener-
gies) is minimized below a threshold.

2.2 Attacker Model
Prior studies [16, 15] have demonstrated that coordinate
systems are susceptible to three classes of attacks: dis-
order attacks in which malicious insiders attempt to de-
crease the accuracy of the system by advertising false co-
ordinates and delaying RTT responses, and isolation and
repulsion attacks in which the attacker respectively at-
tempts to isolate or repulse a subset of targeted nodes.
Veracity’s general approach defends against malicious
nodes that falsify their coordinates or induce/report artifi-
cially inflated latencies. Hence, the techniques described
in this paper can mitigate all three attacks.

We adopt the constrained-collusion Byzantine model
proposed by Castro et al. [5] in which malicious nodes
can insert, delete, or delay messages. Given a network of
size N , and some fraction (f < 1) of malicious attack-
ers, there exist independent coalitions of size cN , where
1/N ≤ c ≤ f .

2.3 Metrics
To assess the accuracy of a virtual coordinate, we mea-
sure the median error ratio of a node ni, defined as the
median over the error ratios

RTT (ni, nj)− ||Cni
− Cnj

||


RTT (ni, nj)
(1)

between ni and all other nodes nj (ni = nj). Concep-
tually, Equation 1 computes the difference between the
computed latency between ni and nj based on coordi-
nates (Cni

−Cnj
) and the actual measured RTT (denoted

by RTT (ni, nj)). The accuracy of a node’s coordinate

USENIX Association	 2009 USENIX Annual Technical Conference	 175

increases inversely with its median error ratio. The use
of median provides an intuitive measure of a coordinate’s
accuracy and is more robust than average to the effects
of outlier errors. Previous approaches [7, 22, 40] define
similar metrics.

To gauge the accuracy of the system as a whole, we de-
fine the system error ratio as the median over all peers’
median error ratios. The system error ratio enables us
to quantitatively compare the performance and security
of Veracity and Vivaldi. To show lower performance
bounds, we also consider the 90th percentile error ratio
– i.e., the 90th percentile of nodes’ median error ratios.

3 Overview of Veracity
We first provide an overview of Veracity’s security mech-
anisms. We base our description on Vivaldi’s coordi-
nate update model. While other decentralized coordinate
systems [6, 19, 22] differ in their implementations, the
update models are conceptually similar to Vivaldi’s, and
hence, Veracity’s techniques are applicable to these sys-
tems as well.

To update its coordinate, a participating node (the in-
vestigator) periodically obtains the coordinate of a se-
lected peer (the publisher) and measures the RTT be-
tween the two nodes. In most implementations, the pub-
lisher is typically a pre-assigned neighbor node of the
investigator. In Veracity, we relax the requirement that
a publisher has to be a fixed neighbor of the investiga-
tor and instead use a distributed directory service (Sec-
tion 4.2) to enable investigators to scalably select random
publishers on demand.

The basic update model of Vivaldi leads to two possi-
ble avenues of attacks: first, if the publisher is dishonest,
it may report inaccurate coordinates. Second, the pub-
lisher may delay the RTT probe response to increase the
error of the investigator’s updated coordinate. To defend
against such attacks, Veracity protects the underlying co-
ordinate system through a two-step verification process
in which groups of nodes independently verify the cor-
rectness of another node’s coordinates. We outline these
two processes below, with additional details presented in
Section 4.

• Publisher coordinate verification: When an inves-
tigator requests a coordinate from a publisher, a deter-
ministic set of peers called the verification set (VSet)
verifies the publisher’s claimed coordinate. Veracity as-
signs each publisher a unique VSet. Each VSet mem-
ber independently assesses the accuracy of the coordi-
nate by conducting its own empirical measurements to
the publisher and computes the coordinate’s estimation

error. If a majority of the VSet does not accept the pub-
lisher’s coordinate, the investigator discards the coordi-
nate.

• Candidate coordinate verification: Once an investi-
gator verifies the publisher’s coordinate, it proceeds to
update its own coordinate based on its empirical RTT
measurement between itself and the publisher. To de-
tect cases in which the publisher purposefully delays the
RTT probe response, the investigator updates its coor-
dinate to a new one only if the new coordinate results in
no more than a small increase in estimation error com-
puted amongst an independent and randomly chosen set
of peers (the RSet).

An important benefit of Veracity is that it makes no dis-
tinction between intentionally falsified coordinates and
those that are inaccurate due to limitations of the coordi-
nate embedding process. In either case, Veracity prevents
the use of inaccurate coordinates.

4 Veracity Verification Protocols
This section presents details of Veracity’s two-step ver-
ification protocol. We first focus on various mecha-
nisms necessary to realize publisher coordinate verifica-
tion that prevents investigators from considering inaccu-
rate coordinates. We then motivate and describe the can-
didate coordinate verification that protects against mali-
cious RTT probe delays by the publisher.

4.1 VSet Construction
When a Veracity node joins the network, it computes
a globally unique identifier (GUID) by applying a
collision-resistant cryptographic hash function H (e.g.,
SHA-1) to its network address. (To prevent malicious
peers from strategically positioning their GUIDs, Verac-
ity restricts allowable port numbers to a small range.)
Given a node with GUID g, the members of its VSet are
the peers whose GUIDs are closest to h1, ..., hΓ, deter-
mined using the recurrence:

hi =


H(g) if i = 1
H(hi−1) if i > 1 (2)

where i ranges from 1 to the VSet size, Γ. A larger Γ
increases the trustworthiness of coordinates (since more
nodes are required in the verification process) at the ex-
pense of additional communication.

VSet construction utilizes a hash function to increase
the difficulty of stacking VSets with collaborating ma-
licious nodes. Attackers who control large coalitions
of peers may be able to populate a majority of a par-
ticular malicious node’s VSet (for example, by strategi-
cally choosing IP addresses within its assigned range),

176	 2009 USENIX Annual Technical Conference	 USENIX Association

VSet

Publisher

(g,Τ,C,ip)

(g,Τ,C,ip)

(g,Τ,C,ip)

(g,Τ,C,ip)

PublisherInvestigator

(g,Γ,Τ,C,ip)

VSet

Investigator

(g,Τ)

(g,Τ)

(g,Τ)

(g,Τ)

VSet

Investigator

(g,Τ,C,ip,δ1)

(g,Τ,C,ip,δ2)

(g,Τ,C,ip,δ3)

(g,Τ,C,ip,δ4)

VSet

Publisher

(a) (b) (c) (d) (e)

Figure 1: Publisher coordinate verification. Solid lines denote messages sent via deliver and dotted lines represent
messages sent via direct IP. (a) Publisher distributes update tuple to VSet members using deliver messages ad-
dressed to GUIDs based on recursive hashes. (b) VSet members measure the RTT between themselves and Publisher.
(c) Investigator queries Publisher and Publisher responds with claim tuple. (d) Investigator sends evidence query to
Publisher’s VSet members. (e) VSet members send evidence tuples to investigator.

but such VSet stacking requires at a minimum Γ2  peers
per VSet. In practice, many more malicious peers are
required since the attacker does not have complete dis-
cretion over the IP addresses of its coalition members.
Moreover, as nodes join and leave the network, VSet
members change (since the nodes whose GUIDs are clos-
est to h1, ..., hΓ also change), significantly impairing the
ability to persistently stack VSets.

4.2 Locating and Updating VSet Members
Veracity utilizes a distributed directory service to re-
solve VSet members and route messages based on node
GUIDs. The directory service implements a single API
function, deliver(g,m), which delivers the message
m to the peer whose GUID is closest to g according
to a keyspace distance metric. Veracity is compatible
with any distributed directory service that supports the
deliver function. We explore the implementation of
distributed directory services in Section 5.

As shown in Figure 1(a), when a publisher updates its
coordinate, it transmits an update tuple (g, τ, C, ip) to
members of its VSet using the deliver function pro-
vided by the directory service. The update tuple contains
the following values: g is the publisher’s GUID, τ is a
logical timestamp incremented whenever the publisher
updates his coordinate, C is the new coordinate, and ip
is the publisher’s network address. Upon receiving the
update tuple, each VSet member vi measures the RTT
between itself and ip (Figure 1(b)), and computes the er-
ror ratio

δ(vi,g) =

RTT (vi, ip)− ||C − Cvi ||


RTT (vi, ip)

where Cvi
is vi’s coordinate and ||C − Cvi

|| is the dis-

tance between the coordinates. Finally, vi locally stores
the evidence tuple (g, τ, C, ip, δ(vi,g)). Nodes periodi-
cally purge tuples that have not recently been queried to
reduce storage costs.

4.3 Publisher Coordinate Verification
To update its coordinate, the investigator queries a ran-
dom node (via a deliver message to a random GUID
g) in the network (i.e., the publisher). As depicted in
Figure 1(c), the publisher replies with a claim tuple
(g,Γ, τ, C, ip). The investigator immediately discards
the publisher’s coordinates if the publisher’s IP address
is not ip, g = H(ip), or it deems Γ (VSet size) insuffi-
ciently large to offer enough supporting evidence for the
coordinate.

Otherwise, the investigator transmits the evidence
query (g, τ) to each member of the publisher’s VSet,
constructed on demand given g according to Eq. 2 (Fig-
ure 1(d)). If a VSet member vi stores an evidence tuple
containing both g and τ (logical timestamp), it returns
that tuple to the investigator (Figure 1(e)). The investi-
gator then checks that the GUID, network address, and
coordinates in the publisher’s claim tuple matches those
in the evidence tuple. If there is a discrepancy, the evi-
dence tuple is ignored.

After querying all members of the publisher’s VSet,
the investigator counts the number of non-discarded ev-
idence tuples for which δ(vi,g) ≤ δ̂, where δ̂ is the in-
vestigator’s chosen ratio cutoff parameter. Intuitively,
this parameter gauges the investigator’s tolerance of co-
ordinate errors: a large δ̂ permits fast convergence times
when all nodes are honest, but risks increased likelihood
of accepting false coordinates. If the count of passing
evidence tuples meets or exceeds the investigator’s evi-

USENIX Association	 2009 USENIX Annual Technical Conference	 177

of Pairwise Latency System
Dataset Nodes Avg. Median Err. Ratio
Meridian 500 71.3 55.0 ms 0.15

King 500 72.7 63.0 ms 0.09
S3 359 85.8 67.9 ms 0.17
PL 124 316.4 134.0 ms 0.10

Table 1: Properties of the Meridian, King, S3, and PL
pairwise latency datasets, and Vivaldi’s system error ra-
tios for each dataset.

dence cutoff parameter, R, the coordinate is considered
verified. Otherwise, the publisher’s coordinate is dis-
carded.

4.4 Tuning VSet Parameters
To determine an appropriate value for the ratio cutoff
parameter δ̂, we examined Vivaldi’s system error ra-
tio when run against the Meridian [38], King [17], and
Scalable Sensing Service (S3) [39] datasets, as well as
a pairwise latency experiment that we executed on Plan-
etLab [24] (PL). Simulations and the PlanetLab experi-
ment used Bamboo [3], a DHT with a Vivaldi implemen-
tation and a simulation mode that takes as input a matrix
of pairwise latencies. Due to scalability limitations, the
simulator used the first 500 nodes from the Meridian and
King datasets. Simulation results were averaged over 10
runs. Table 1 provides the properties of the four datasets
as well as Vivaldi’s achieved system error ratio.

An appropriate value for δ̂ should be sufficiently large
to accommodate baseline errors. For example, in our Ve-
racity implementation (see Section 6.1), we use a ratio
cutoff parameter δ̂ of 0.4, well above the system error
ratio for all datasets.

In the absence of network churn, the VSet member-
ship of a publisher remains unchanged. With network
churn, some of the VSet members may be modified as
the keyspace of the directory service is reassigned. New
VSet members may not have stored any evidence tuples,
but as long as R (evidence cutoff parameter) VSet mem-
bers successfully verify the coordinate, the coordinate
can be used. In our experiments, we note that even when
R is 4 for a VSet size of 7, Veracity can tolerate moder-
ate to high degrees of churn while ensuring convergence
in the coordinate system.

4.5 Candidate Coordinate Verification
The publisher coordinate verification scheme described
in Section 4.3 provides the investigator with evidence
that a publisher’s coordinate is accurate. This does not

prevent a malicious publisher from deliberately delaying
an investigator’s RTT probe, thereby causing the investi-
gator to update its own coordinate erroneously. (Recall
that to update its coordinate, the investigator must mea-
sure the RTT between itself and the publisher after hav-
ing obtained the publisher’s coordinate.)

Once an investigator has validated the publisher’s co-
ordinate, the candidate coordinate verification scheme
compares coordinate estimation errors among the inves-
tigator and a random subset of nodes (the RSet) using
the investigator’s current coordinate (CI) and a new can-
didate coordinate (C I) calculated using the publisher’s
verified coordinate and the measured RTT.

The investigator queries for the coordinates of Λ RSet
members by addressing deliver messages to random
GUIDs (Figures 2(a) and 2(b)). As with Γ (VSet size),
a larger Λ (RSet size) increases confidence in the can-
didate coordinate at the expense of additional commu-
nication. In our experimentation, we found that setting
Λ = Γ = 7 provides reasonable security without incur-
ring significant bandwidth overhead. The investigator (I)
measures the RTT between itself and each RSet member
(Figure 2(c)) and computes the average error ratio

err(C,RSet) =

 
rj∈RSet

RTTIrj
−||C−Crj

||


RTTIrj



Λ

for both CI and C I . If the new coordinate causes the
error ratio to increase by a factor of more than the tol-
erable error factor ∆, then C I is discarded and the in-
vestigator’s coordinate remains CI . Otherwise, the in-
vestigator sets C I as his new coordinate. The value of ∆
must be sufficiently large to permit normal oscillations
(e.g., caused by node churn) in the coordinate system.
Setting ∆ ≥ 0.2 enabled Veracity to converge at approx-
imately the same rate as Vivaldi for all tested topologies
(we investigate Veracity’s effect on convergence time in
Section 6.2.2).

5 Distributed Directory Services
Veracity utilizes DHTs to implement its distributed di-
rectory service, which supports the deliver messag-
ing functionality described in Section 4.1. While one can
adopt a centralized or semi-centralized directory service,
a fully-decentralized solution ensures scalability, allow-
ing Veracity’s security mechanisms to be deployable at
Internet scale. DHTs are ideal because they scale grace-
fully with network size, requiring O(lgN) messages to
resolve a GUID [34, 26, 25].

While DHTs ensure scalability, they are vulnerable to
insider manipulation [36] due to their distributed nature.
Malicious nodes can conduct Sybil attacks to increase

178	 2009 USENIX Annual Technical Conference	 USENIX Association

RSet

Investigator

RSet

Investigator

C1

C2

C3

C4

RSet

Investigator

(a) (b) (c)

Figure 2: Candidate coordinate verifica-
tion. Solid lines denote messages sent via
deliver and dotted lines represent messages
sent via direct IP. (a) Investigator queries ran-
dom nodes (the RSet) for their coordinates. (b)
RSet members report their coordinates to In-
vestigator. (c) Investigator measures the RTTs
between itself and RSet members, and then
calculates the error ratios for the current (CI)
and candidate (C 

I) coordinates.

their influence by registering multiple identities in the
network [13], eclipse attacks in which they falsify rout-
ing update messages to corrupt honest nodes’ routing ta-
bles [33], and routing attacks in which they inject spuri-
ous responses to messages that cross their paths [5]. For-
tunately, well-studied techniques exist that defend DHTs
against such attacks [11, 10, 4, 14, 5, 1]. We describe de-
fenses that are compatible with Veracity’s design below.

Sybil attack countermeasures that are compatible with
a decentralized architecture include distributed registra-
tion in which registration nodes, computed using itera-
tive hashing of a new node’s IP address, vote on whether
the new node can join the system based on the number
of similar requests it has received from the same IP ad-
dress [11]. Alternatively, Danezis et al. propose using
bootstrap graphs that capture the relationships between
joining nodes and the nodes through which they join to
construct trust profiles [10]. Finally, Borisov suggests
the use of cryptographic puzzles (e.g., finding a string in
which the last p bits of a cryptographic hash are zero) to
increase the cost of joining the network [4].

There are also several security techniques that mitigate
eclipse and routing attacks. The S-Chord system pro-
posed by Fiat et al. organizes the network into swarms
based on GUIDs [14]. Lookups are relayed between
swarms and are forwarded only if the lookup was sent
from a majority of the members of the previous swarm.
S-Chord is resilient to attacks in which the adversary
controls (1/4 − 0)z nodes, where 0 > 0, z is the min-
imum number of nodes in the network at any time, k is
a tunable parameter, and the number of honest nodes is
less than or equal to zk. Castro et al. propose the use of
redundant routing in which queries are sent via diverse
paths [5], reaching the intended recipient if all nodes on
at least one path are honest. Sanchez et al. improve the
redundant routing technique in their Cyclone system [1],
showing that 85% of requests were correctly delivered
when attackers controlled 30% of a 1024 node network
and nodes sent messages using 8 redundant paths.

The impact of utilizing the above secure routing tech-
niques is minimal. All of the above approaches operate
below the Veracity protocol and do not affect Veracity’s
operation. Approaches that rely on redundant messag-
ing incur a linear increase in bandwidth overhead, since
all deliver messages must be reliably communicated.
As we show in Section 6.5.1, Veracity’s communica-
tion costs (measured using uncompressed messages) are
within the tolerances of even dial-up Internet users. A
small linear increase in bandwidth can likely be com-
pensated for by using less expensive message formats
(our implementation currently uses Java serialization li-
braries) and data compression.

We argue that the above DHT security techniques are
sufficient to provide the reliability required of Veracity’s
deliver messaging functionality. Furthermore, un-
foreseen attacks that manage to circumvent such mech-
anisms have the effect of artificially increasing the frac-
tion of malicious nodes in the network (since a greater
fraction of messages will be misdirected towards misbe-
having nodes), and such attacks can be compensated for
by increasing R (the number of VSet members that must
support a publisher’s claimed coordinate for it to be ac-
cepted) and Λ (the RSet size).

Finally, to our best knowledge, Veracity is one of the
first attempts at directly addressing the problem of se-
cure distributed directory services and secure neighbor
selection in the context of coordinate systems. Exist-
ing proposals for securing network coordinate systems
either rely on a priori trusted nodes [15, 28] or utilize
decentralized architectures while ignoring the mecha-
nisms used to locate peers [6, 40], implicitly assuming
in the latter case that the underlying coordinate system
provides some distributed techniques to securely pop-
ulate neighbor sets. Unfortunately, such an assump-
tion does not hold as none of the existing systems
(Vivaldi [7], PIC [6], ICS [19], the Big-bang simula-
tion [29], nor NPS [22]) describe mechanisms for ensur-
ing that neighbor selection cannot be influenced by mis-

USENIX Association	 2009 USENIX Annual Technical Conference	 179

behaving nodes. Veracity utilizes the distributed direc-
tory service for both neighbor location and VSet resolu-
tion, but other coordinate systems that rely on a directory
service solely to determine neighbor sets risk significant
vulnerability if the neighbor sets are easily populated by
malicious nodes.

6 Implementation and Evaluation
In this section, we evaluate Veracity’s ability to miti-
gate various forms of attacks in the presence of network
churn. We have implemented Veracity by modifying
the Vivaldi implementation that is packaged with Bam-
boo [3], an open-source DHT that is resilient to high lev-
els of node churn [25] and functions either in simulation
mode or over an actual network.

6.1 Experimental Setup
Veracity uses Vivaldi as the underlying coordinate sys-
tem with a 5-dimensional coordinate plane (the recom-
mended configuration in the Bamboo source code [3]).
Each node attempted to update its coordinate every 10
seconds. The size of VSets and RSets were both fixed at
7 (Γ = Λ = 7). We used a ratio cutoff parameter δ̂ of 0.4
and an evidence cutoff parameter R of 4. That is, at least
4 of the 7 VSet members had to report error ratios less
than 0.4 for a coordinate to be verified. The maximum
tolerable increase in error (∆) for the candidate coordi-
nate verification was set to 0.2.

Our experiments are carried out using Bamboo’s sim-
ulation mode as well as on PlanetLab. In the simulation
mode, we instantiated 500 nodes with pairwise latencies
from the Meridian and King datasets. Due to space con-
straints, simulation results are shown only for the Merid-
ian dataset. Similar conclusions were drawn from the
King dataset and are available in the technical report ver-
sion of this paper [30]. To distribute the burden of boot-
strapping peers, a node joins the simulated network every
second until all 500 nodes are present. Nodes join via an
already joined peer selected uniformly at random.

In our PlanetLab experiments, the 100 participating
nodes joined within 3 minutes of the first node. The se-
lected PlanetLab nodes were chosen in a manner to maxi-
mize geographic diversity. The simulation and PlanetLab
experiments share a common code base, with the excep-
tion of the simulator’s virtualized network layer.

In Sections 6.2 through 6.4, we present our results
in simulation mode in the absence and presence of at-
tackers, followed by an evaluation on PlanetLab in Sec-
tion 6.5. We focus our evaluation on comparing Vivaldi
(with no protection scheme) and Veracity based on the
accuracy of the coordinate system, convergence time,
ability to handle churn, and communication overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio

Vivaldi
Veracity

Figure 3: CDFs for median error ratios.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-100 0 100 200 300 400 500 600 700 800

S
y
s
te

m
 e

rr
o

r
ra

ti
o

Seconds since nodes join

Veracity, new nodes
Vivaldi, new nodes
Veracity, all nodes

Vivaldi, all nodes

Figure 4: The system error ratio after 10 new nodes
join the network (at t = 0). The median of the 10
new nodes’ median error ratios is also shown. The
coordinate system had stabilized prior to t = −100.

 0.12

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

 0.4

 0.44

 0.48

 0 20 40 60 80 100

S
y
s
te

m
 e

rr
o

r
ra

ti
o

Inter-event period (secs)

Veracity, 90th percentile
Vivaldi, 90th percentile

Veracity, system error ratio
Vivaldi, system error ratio

Figure 5: System error ratio for Vivaldi and Veracity
under various degrees of churn.

6.2 Veracity in the Absence of Attacks

Before evaluating the effectiveness of Veracity at mit-
igating various attacks, we first provide a performance
comparison between Veracity and Vivaldi in the absence
of any attackers within the simulation environment.

180	 2009 USENIX Annual Technical Conference	 USENIX Association

6.2.1 Accuracy of Network Coordinates
Figure 3 shows the cumulative distribution functions
(CDFs) of the median error ratios for Vivaldi and Verac-
ity, computed after the system stabilizes. Veracity raises
the system error ratio (the median of the nodes’ median
error ratio) by 4.6% (0.79ms) – a negligible difference
given latencies over the wide-area. We observe that Ve-
racity and Vivaldi have near identical CDFs, indicating
that Veracity’s protection schemes do not significantly
influence nodes’ coordinates in the absence of an attack.

6.2.2 Convergence Time
To study how Veracity affects the rate at which the un-
derlying coordinate system converges, we introduce 10
new nodes into the network after the remaining 490 peers
have stabilized. Figure 4 plots the system error ratios
for Vivaldi and Veracity before and after the new nodes
join the network (“all nodes”). The system error ratios of
both systems modestly increase when the new nodes are
introduced and converge at approximately the same rate.
The Figure also shows the median of the 10 new peers’
median error ratios (“new nodes”). Although Veracity
incurs a small initial lag in convergence time, the 10 new
coordinates quickly reach within 15% of their stabilized
(final) value in less than 200 seconds.

The polling frequency – the rate at which nodes at-
tempt to update their coordinate – is directly proportional
to the system’s convergence time. Higher polling fre-
quencies enable faster convergence time at the expense
of bandwidth. Although the values of the x-axis can
be increased or decreased by adjusting the polling fre-
quency, the shape of the curves remain fixed. Repeating
our experiments with smaller and larger polling frequen-
cies produced similar results.

6.2.3 Churn Effects
We next compare Vivaldi and Veracity’s ability to handle
churn. We adopt the methodology described by Rhea et
al. [25] for generating churn workloads: a Poisson pro-
cess schedules events (“node deaths”) in which a node
leaves the network. To keep the simulated network fixed
at 500 nodes, a fresh node immediately takes the place
of a node that leaves. The input to the Poisson process is
the expected median inter-event period.

Figure 5 shows the system error ratio for Vivaldi and
Veracity for various inter-event periods. Note that the
level of churn is inversely proportional to the inter-event
period. To illustrate near-worstcase performance, the fig-
ure also plots the 90th percentile error ratio.

Both Vivaldi and Veracity are able to tolerate high lev-
els of churn. The “breaking” point of both systems occur

when the inter-event period is less than five seconds, re-
flecting a rate at which approximately a quarter of the
network is replaced every 10 minutes. Churn affects Ve-
racity since the joining and leaving of nodes may cause
the members of a VSet to more rapidly change, reducing
the investigator’s ability to verify a coordinate. Even at
this high churn rate, Veracity’s system error ratio (0.19)
is only slightly worse than its error ratio (0.15) when
there is no churn. It is worth emphasizing that such high
churn (i.e., 25% of the network is replaced every 10 min-
utes) is unlikely for real-world deployments. The near
0-slope in Figure 5 for inter-event periods greater than
10 seconds shows that neither Vivaldi nor Veracity are
significantly affected by more realistic churn rates.

6.3 Disorder Attacks
In this section, we evaluate Veracity’s ability to mitigate
disorder attacks in which malicious peers report a falsi-
fied coordinate chosen at random from a five dimensional
hypersphere centered at the origin of the coordinate sys-
tem. Points are chosen according to Muller’s uniform
hypersphere point generation technique [21] with dis-
tances from the origin chosen uniformly at random from
[0, 2000). Additionally, attackers delay RTT responses
by between 0 and 2000 ms, choosing uniformly at ran-
dom from that range. Malicious nodes immediately be-
gin their attack upon joining the network.

To emulate realistic network conditions, all simula-
tions experience moderate churn at a median rate of one
churn event (a node leaving, immediately followed by a
new node joining) every 120 seconds. This churn rate
replaces 10% of the nodes during the lifetime of our ex-
periments (100 minutes).

6.3.1 Uncoordinated Attacks
Figure 6 shows the effectiveness of Veracity at mitigat-
ing attacks when 10%, 20%, and 30% of peers are ma-
licious. The attackers report a new randomly generated
(and false) coordinate whenever probed, randomly delay
RTT responses, and are uncoordinated (i.e., they do not
cooperate). As our baseline, we also include the CDF for
Vivaldi in the absence of any attackers.

Malicious attackers significantly reduce Vivaldi’s ac-
curacy, resulting in a 387% increase in the system er-
ror ratio (relative to Vivaldi when no attack takes place)
even when just 10% of nodes are malicious. When 30%
of nodes are malicious, the system error ratio increases
dramatically by 1013%. In contrast, Veracity easily miti-
gates such attacks since the coordinate discrepancies are
discernible in evidence tuples, causing inconsistently ad-
vertised coordinates to be immediately discarded by in-
vestigators. At low rates of attack (10%), the system er-

USENIX Association	 2009 USENIX Annual Technical Conference	 181

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio

Vivaldi, no malicious
Vivaldi, 10% malicious

Veracity, 10% malicious

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio

Vivaldi, no malicious
Vivaldi, 20% malicious

Veracity, 20% malicious

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio

Vivaldi, no malicious
Vivaldi, 30% malicious

Veracity, 30% malicious

Figure 6: Honest peers’ median error ratios achieved
by Vivaldi and Veracity when malicious nodes constitute
10% (top), 20% (middle), and 30% (bottom) of the net-
work. Median error ratios observed when using Vivaldi
in a network with no attackers is shown for comparison.

ror ratio increases by only 6% (representing a negligible
system-wide median latency error of 4ms). When 30%
of the network is malicious, Veracity limits the increase
in system error ratio to 32% (5.7ms), an 88% improve-
ment over Vivaldi under the same attack.

Malicious nodes may conduct a more intelligent attack

by randomly delaying probes while reporting consistent
but erroneous coordinates. That is, each malicious node
randomly generates a coordinate and reports the identical
(and false) coordinate whenever probed. Such a strategy
eliminates coordinate inconsistencies among VSet mem-
bers. Compared to the previously described attack, this
strategy results in lower estimation errors for Vivaldi but
does slightly better against Veracity. Here, the increase in
Vivaldi’s system error ratio is 163% for 10% malicious
nodes and 368% for 30% malicious. Veracity success-
fully defends against heavy network infiltrations, yield-
ing an increase in the system error ratio of just 39% when
30% of the network is malicious. Veracity reaches its tip-
ping point when 40% of nodes are malicious, incurring
an increase of 118%. We note that this increase is still
far below the 497% increase experienced by Vivaldi.

6.3.2 Coordinated Attacks
We next consider coordinated attacks in which malicious
nodes cooperate to increase the effectiveness of their at-
tack. Malicious nodes offer supportive evidence for co-
ordinates advertised by other dishonest nodes and do
not offer any evidence for honest peers. That is, when
queried, they provide evidence tuples with low (passing)
error ratios for malicious nodes and do not respond to re-
quests when the publisher is honest. We conservatively
model an attack in which all malicious nodes belong to
the same attack coalition. To further maximize their at-
tack, each malicious node randomly generates a fixed er-
roneous coordinate and advertises it for the duration of
the experiment. Additionally, attackers randomly delay
RTT responses.

Figure 7 shows Veracity’s performance (measured by
the cumulative distribution of median error ratios) when
the malicious nodes cooperate. For comparison, the Fig-
ure also plots the CDFs for equally sized uncoordinated
attacks against Veracity and Vivaldi. Since Vivaldi does
not collaborate with peers to asses the truthfulness of ad-
vertised coordinates, there is no equivalent “coordinated”
attack against Vivaldi.

For all tested attack strengths, the coordinated attacks
did not induce significantly more error than uncoordi-
nated attacks. The resultant system error ratios differed
little: when attackers control 30% of the network, the
system error ratios are 0.202 and 0.201 for the uncoordi-
nated and coordinated attacks, respectively (for compar-
ison, Vivaldi’s system error ratio is 0.679).

6.3.3 Rejected: VSet-only and RSet-only Veracity
The previous sections show that Veracity’s two protec-
tions schemes – publisher coordinate verification and
candidate coordinate verification – effectively mitigate

182	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio (10% malicious)

Vivaldi
Veracity, uncoordinated

Veracity, coordinated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio (20% malicious)

Vivaldi
Veracity, uncoordinated

Veracity, coordinated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio (30% malicious)

Vivaldi
Veracity, uncoordinated

Veracity, coordinated

Figure 7: Honest peers’ median error ratios when at-
tackers conduct uncoordinated and coordinated attacks.
Attackers comprise 10% (top), 20% (middle), and 30%
(bottom) of network peers.

attacks when the adversary controls a large fraction of
the network. In this section, we investigate whether it
is sufficient to apply only one of the two techniques to
achieve similar security.

Figure 8 shows the cumulative distribution of median
error ratios when nodes utilize only publisher coordinate
verification (“VSet-only”) or candidate coordinate verifi-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Median error ratio

Veracity
VSet-only
RSet-only

Figure 8: CDF of median error ratios for Veracity, Ve-
racity without Candidate Coordinate Verification (“VSet-
only”), and Veracity without Publisher Coordinate Veri-
fication (“RSet-only”). The attacker controls 20% of the
network and conducts a coordinated attack.

cation (“RSet-only”). We model the attack scenario from
Section 6.3.2 in which 20% of the nodes are malicious
and cooperating. For comparison, we also show the CDF
when both strategies are utilized (“Veracity”). The VSet-
only technique achieves nearly the same system error ra-
tio as Veracity (0.19 and 0.17, respectively). However,
using only publisher coordinate verification results in a
very long tail of median error ratios. In particular, the
90th percentile error ratio is 0.29 for Veracity and 4.42
for VSet-only. Hence, publisher coordinate verification
protects the accuracy of most nodes, but permits a signif-
icant degradation in accuracy for a minority of peers.

By itself, candidate coordinate verification results in
a higher system error ratio (0.42) than VSet-only or Ve-
racity. Additionally, RSet-only has a longer tail than Ve-
racity, resulting in a 90th percentile error ratio of 1.05
during the attack.

By combining both techniques, Veracity better pro-
tects the underlying coordinate system, achieving error
ratios that nearly mirror those produced by Vivaldi in the
absence of attack (see Figures 6 and 7).

6.3.4 Summary of Results
To summarize the performance of Veracity under disor-
der attacks, Table 2 shows the relative system error ra-
tio for various attacker scenarios that we have described,
where each system error ratio is normalized by that ob-
tained by Vivaldi under no attacks.

Overall we observe that Veracity is effective at miti-
gating the effects of disorder attacks. Even under heavy
attack (40% malicious nodes), disorder attacks result in a
relative system error of 1.54, far below Vivaldi’s relative
median error of 13.9.

USENIX Association	 2009 USENIX Annual Technical Conference	 183

Percentage of Inconsistent coords Consistent coords Consistent coords
malicious nodes (Uncoordinated) (Uncoordinated) (Coordinated)

Vivaldi Veracity Vivaldi Veracity Veracity
0% 1.00 1.05 1.00 1.05 1.05

10% 4.87 1.06 2.63 1.11 1.10
20% 8.18 1.12 4.21 1.25 1.22
30% 11.13 1.32 4.68 1.39 1.48
40% 13.90 1.54 5.97 2.18 2.37

Table 2: Relative system error ratios (system error ratio of the tested system divided by the system error ratio of Vivaldi
when no attack takes place) for various attacker scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40

M
e
d
ia

n
 o

f
3
 v

ic
ti
m

s
’
m

e
d
ia

n
 e

rr
o
r

ra
ti
o
s

% of malicious nodes

Vivaldi
Veracity

Figure 9: Effects of a combined repulsion and isolation
attack against three victim nodes. Points represent the
median with error bars denoting the 10th and 90th per-
centile of the median error ratios of the three victims.
For readability, datapoints are slightly shifted along the
x-axis by −0.5 for Vivaldi and +0.5 for Veracity.

Veracity’s effectiveness matches or exceeds that of
the prior proposals discussed in Section 7. In contrast
to existing coordinate protection systems, Veracity does
not require pre-selected trusted nodes, triangle inequality
testing, nor outlier detection based on a fixed neighbor
set, and is therefore better suited for practical deploy-
ment.

6.4 Repulsion and Isolation Attacks
While Veracity is intended primarily to defend against
disorder attacks, our next experiment demonstrates the
effectiveness of Veracity for protecting against repulsion
and isolation attacks. We carry out a combined repulsion
and isolation attack as follows: malicious nodes are par-
titioned into three coalitions, each of which attempts to
repulse and isolate a single victim node. Attackers at-
tempt to repulse the targeted node towards an extremely
negative coordinate (i.e., having−1000 in all five dimen-
sions) by using the following heuristic: if the victim is

closer than the attacker to the negative coordinate, the at-
tacker behaves honestly. Otherwise, the attacker reports
his accurate coordinate but delays the victim investiga-
tor’s RTT probe response by 1000ms, causing the victim
to migrate his coordinate (provided it passes candidate
coordinate verification) towards the negative coordinate.

Figure 9 shows the median of the three victim nodes’
median error ratios achieved during the combined repul-
sion and isolation attack. In contrast to previous experi-
ments, we do not use the system error ratio (the median
over all peers’ median error ratios), as repulsion and iso-
lation attacks target specific victims and need not cause
a significant degradation in coordinate accuracy for the
remaining peers.

Veracity consistently offers lower median error ratios
than Vivaldi. While Veracity does not completely mit-
igate the effects of repulsion and isolation attacks, our
results suggest that the vote-based verification scheme is
amenable to defending against such attacks.

6.5 PlanetLab Results
In our last experiment, we validate our simulation results
by deploying Veracity on the PlanetLab testbed.

6.5.1 Communication Overhead
To quantitatively measure Veracity’s communication
overhead in practice, we analyze packet traces recorded
on approximately 100 PlanetLab nodes for both Vivaldi
and Veracity. Traces are captured using tcpdump and
analyzed using the tcpdstat network flow analyzer [12].
Figure 10 shows the per-node bandwidth (averaged over
all nodes) utilization (KBps) for Vivaldi and Veracity.

Veracity incurs a communication overhead since pub-
lishers’ coordinates must be verified by VSets and in-
vestigators’ candidate coordinates must be assessed by
RSets. Since Veracity uses a DHT as its directory ser-
vice, it leverages the scalability of DHTs: each verifi-
cation step requires O((Γ + Λ) lgN), where Γ and Λ
denotes the VSet and RSet sizes respectively.

184	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

K
B

p
s

Nodes

Vivaldi
Veracity

Figure 10: Bandwidth (KBps) on PlanetLab.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

K
B

p
s

Nodes X 1000

Vivaldi
Veracity

Figure 11: Extrapolated bandwidth (KBps) for large
networks.

Based on the PlanetLab measurements, we performed
logarithmic regression analysis to extrapolate the per-
node bandwidth requirements of Veracity as the num-
ber of nodes increases: 0.1895 log N + 1.228 KBps
(r2 = 0.998) for Vivaldi and 3.591 log N − 6.499 KBps
(r2 = 0.994) for Veracity. Figure 11 shows the ex-
trapolated bandwidth utilization of Vivaldi and Veracity
for large networks. For a large network consisting of
100,000 nodes, Veracity’s expected per-node bandwidth
requirement is a modest 35KBps, making it accessible to
typical broadband users.

6.5.2 Accuracy Under Disorder Attacks
Figure 12 plots the system error ratio achieved on Plan-
etLab for varying attacker infiltrations. Malicious nodes
advertise inaccurate (but consistent) coordinates, delay
RTT responses, and do not coordinate their attack. To
calculate error ratios (which requires knowledge of ac-
tual pairwise RTT measurements), we utilize RTT data
from our PlanetLab “all-pairs-ping” experiment (see Fig-
ure 1). We observe that Veracity effectively mitigates at-
tacks, yielding an increase in system error ratio (relative
to Vivaldi under no attack) of just 38% when 32% of the
network is malicious. In contrast, Vivaldi suffers an in-
crease of 1679% when 31% of the nodes are dishonest.
(The slight differences between attacker percentages is
due to the intermittent availability of PlanetLab nodes.)

7 Related Work
Kaafar et al. [16] first identified the vulnerability of co-
ordinate systems, in which just 5% of the participat-
ing nodes can render the system unusable simply by ei-
ther lying about its coordinates or delaying RTT probe
replies. Subsequently, there have been several recent pro-
posals targeted at securing coordinate systems.

PIC detects dishonest nodes by observing that falsified
coordinates or delayed measurements likely induce trian-

 0

 1

 2

 3

 4

 5

 0 10 20 30 40

S
y
s
te

m
 e

rr
o
r

ra
ti
o

% of malicious nodes

Vivaldi
Veracity

Figure 12: System error ratio achieved on PlanetLab. Er-
ror bars denote the 10th and 90th percentile error ratios.

gle inequality violations (TIVs) [6]. To verify peers’ co-
ordinates and measurements, honest nodes use distances
to trusted landmarks to detect TIVs. Using a generated
transit-stub topology of 2000 nodes, PIC is able to toler-
ate attacks when up to 20% of the network was controlled
by colluding adversaries [6]. However, more recent work
has indicated that TIVs can potentially be common and
persistent [20], reducing the practicality of PIC’s protec-
tion scheme on real-world networks.

Kaafar et al. propose the use of trusted surveyor nodes
to detect malicious behavior [15]. Surveyor nodes posi-
tion themselves in the coordinate space using only other
trusted surveyors. Nodes profile surveyors to model hon-
est behavior, detecting falsified coordinates and mea-
surements as behavior that differs from their constructed
model. Kaafar et al. conclude that their approach is ef-
fective when 30% or less of the network is controlled by
malicious and cooperating nodes [15]. Their technique
requires 8% of the nodes to be a priori trusted survey-
ors [15] – a nontrivial fraction when the network consists
of 100,000 or more nodes.

USENIX Association	 2009 USENIX Annual Technical Conference	 185

The RVivaldi system proposed by Saucez et al. pro-
tect coordinate systems using surveyors as well as cen-
tralized Reputation Computation Agents (RCAs), the lat-
ter of which assigns reputations (trust profiles) to co-
ordinates [28, 27]. Their technique is evaluated only
against non-cooperating adversaries, and tolerates up to
20% malicious nodes [28].

Like Veracity, the system proposed by Zage and Nita-
Rotaru is fully distributed and designed for potentially
wide-scale deployments [40]. Their approach relies on
outlier detection, reducing the influence of nodes whose
coordinates are too distant (spatial locality) or whose
values change too rapidly in short periods of time (tem-
poral locality). Their technique successfully mitigates
attacks when 30% or fewer of the nodes are under an
attacker’s control [40]. However, the temporal locality
heuristic requires that each node maintains an immutable
neighborset, a list of neighbors that a node uses to up-
date its coordinates. Wide-scale deployments involving
hundreds of thousands of nodes are likely to be dynamic
with nodes frequently joining and leaving the system.
The high rate of churn will lessen the opportunities for
temporal analysis as nodes leave the system (since less
history is available), and cause errors in such analysis
for newly joined nodes for which frequent changes in
coordinates are expected. In contrast, Veracity does not
discriminate against spatial or temporal outliers, and as
described in Section 6.2.3, tolerates high levels of churn.

This paper extends our original position paper [32]
that outlines our initial design of Veracity. This paper
additionally proposes a second verification step geared
towards ensuring the correctness of coordinate updates
in the presence of malicious delays in latency measure-
ments. This paper further presents a full-fledged imple-
mentation that is experimented within a network simula-
tion environment and on PlanetLab.

8 Conclusion
This paper proposes Veracity, a fully distributed service
for securing network coordinates. We have demonstrated
through extensive network simulations on real pairwise
latency datasets as well as PlanetLab experiments that
Veracity effectively mitigates various forms of attack.
For instance, Veracity reduces Vivaldi’s system error ra-
tio by 88% when 30% of the network misbehaves by
advertising inconsistent coordinates and adding artificial
delay to RTT measurements. Veracity performs well
even against cooperating attackers, reducing Vivaldi’s
system error ratio by 70% when 30% of the network is
corrupt and coordinates its attacks.

We argue that Veracity provides a more practical path
to deployment while providing equivalent (or greater) se-

curity than previously proposed coordinate security sys-
tems. Unlike PIC, Veracity does not associate triangle-
inequality violations (TIVs) with malicious behavior [6],
and as indicated by our simulation and PlanetLab results,
does not impose additional inaccuracies in the coordi-
nate system when TIVs do exist. Veracity is fully decen-
tralized, requiring no a priori shared secrets or trusted
nodes. In comparison to techniques that require special-
ized trusted nodes [28, 27, 15], Veracity is well-suited
for applications for which centralized trust models are in-
compatible (e.g., anonymity networks [31]), and in gen-
eral, removes central points of trust that may serve as
focal points of attack. Veracity’s use of distributed direc-
tory services enables graceful scalability, and hence the
system can easily be applied to wide-scale virtual coor-
dinate system deployments.

Our most immediate future work entails the use of se-
cure network coordinate systems to permit applications
to intelligently form routes that meet specific latency
and bandwidth requirements. We are also investigating
anonymity services [31] that may leverage Veracity to
produce high-performance anonymous paths. Finally,
we expect to release an open-source implementation of
Veracity in the near future.

Acknowledgments
The authors are grateful to our shepherd, Kenneth
Yocum, for his insightful comments and advice. We also
thank the anonymous reviewers for their many helpful
suggestions. This work is partially supported by NSF
Grants CNS-0831376, CNS-0524047, CNS-0627579,
and NeTS-0721845.

References

[1] M. S. Artigas, P. G. Lopez, and A. F. G. Skarmeta. A
Novel Methodology for Constructing Secure Multipath
Overlays. IEEE Internet Computing, 9(6):50–57, 2005.

[2] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica. Looking Up Data in P2P Systems. Commu-
nications of the ACM, Vol. 46, No. 2, Feb. 2003.

[3] The Bamboo Distributed Hash Table. http://
bamboo-dht.org/.

[4] N. Borisov. Computational Puzzles as Sybil Defenses. In
IEEE International Conference on Peer-to-Peer Comput-
ing, pages 171–176, 2006.

[5] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure Routing for Structured Peer-to-Peer
Overlay Networks. In OSDI, 2002.

[6] M. Costa, M. Castro, R. Rowstron, and P. Key. PIC:
Practical Internet Coordinates for Distance Estimation. In
ICDCS, 2004.

186	 2009 USENIX Annual Technical Conference	 USENIX Association

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. SIGCOMM,
34(4):15–26, 2004.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-Area Cooperative Storage with CFS. In
SOSP, 2001.

[9] F. Dabek, J. Li, E. Sit, F. Kaashoek, R. Morris, and
C. Blake. Designing a DHT for Low Latency and High
Throughput. In NSDI, 2004.

[10] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. Anderson. Sybil-Resistant DHT Routing. In European
Symposium On Research In Computer Security, 2005.

[11] J. Dinger and H. Hartenstein. Defending the Sybil At-
tack in P2P Networks: Taxonomy, Challenges, and a Pro-
posal for Self-Registration. In International Conference
on Availability, Reliability and Security, pages 756–763,
2006.

[12] D. Dittrich. tcpdstat. http://staff.washington.
edu/dittrich/talks/core02/tools/tools.
html.

[13] J. R. Douceur. The Sybil Attack. In First International
Workshop on Peer-to-Peer Systems, March 2002.

[14] A. Fiat, J. Saia, and M. Young. Making Chord Robust to
Byzantine Attacks. In Proc. of the European Symposium
on Algorithms, 2005.

[15] M. A. Kaafar, L. Mathy, C. Barakat, K. Salamatian,
T. Turletti, and W. Dabbous. Securing Internet Coordi-
nate Embedding Systems. In ACM SIGCOMM, August
2007.

[16] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous. Real
Attacks on Virtual Networks: Vivaldi out of Tune. In SIG-
COMM Workshop on Large-Scale Attack Defense, 2006.

[17] “King” Data Set. http://pdos.csail.mit.edu/
p2psim/kingdata/.

[18] J. T. Ledlie. A Locality-Aware Approach to Distributed
Systems. PhD thesis, Harvard University, September
2007.

[19] H. Lim, J. C. Hou, and C.-H. Choi. Constructing Inter-
net Coordinate System Based on Delay Measurement. In
IMC, 2003.

[20] E. K. Lua, T. G. Griffin, M. Pias, H. Zheng, and
J. Crowcroft. On the Accuracy of Embeddings for In-
ternet Coordinate Systems. In IMC, 2005.

[21] M. E. Muller. A Note on a Method for Generating Points
Uniformly on n-dimensional Spheres. Communications
of the ACM, 2(4):19–20, 1959.

[22] T. S. E. Ng and H. Zhang. A Network Positioning Sys-
tem for the Internet. In USENIX Annual Technical Con-
ference, 2004.

[23] P. Pietzuch, J. Ledlie, M. Mitzenmacher, and M. Seltzer.
Network-Aware Overlays with Network Coordinates. In
Distributed Computing Systems Workshops, July 2006.

[24] PlanetLab Global Testbed. http://www.
planet-lab.org/.

[25] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Han-
dling Churn in a DHT. In USENIX Technical Conference,

June 2004.
[26] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, De-

centralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In Middleware, pages 329–350,
2001.

[27] D. Saucez. Securing Network Coordinate Systems. Mas-
ter’s thesis, Université Catholique de Louvain, June 2007.

[28] D. Saucez, B. Donnet, and O. Bonaventure. A
Reputation-Based Approach for Securing Vivaldi Embed-
ding System. In Dependable and Adaptable Networks
and Services, 2007.

[29] Y. Shavitt and T. Tankel. Big-bang Simulation for Em-
bedding Network Distances in Euclidean Space. In IEEE
Infocom, April 2003.

[30] M. Sherr, M. Blaze, and B. T. Loo. Verac-
ity: A Fully Decentralized Secure Network Co-
ordinate Service. Technical Report TR-CIS-08-
28, University of Pennsylvania, August 2008.
http://www.cis.upenn.edu/˜msherr/
papers/veracity-tr-cis-08-28.pdf.

[31] M. Sherr, B. T. Loo, and M. Blaze. Towards Application-
Aware Anonymous Routing. In HotSec, August 2007.

[32] M. Sherr, B. T. Loo, and M. Blaze. Veracity: A Fully
Decentralized Service for Securing Network Coordinate
Systems. In IPTPS, February 2008.

[33] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach.
Eclipse Attacks on Overlay Networks: Threats and De-
fenses. In 25th IEEE International Conference on Com-
puter Communications (INFOCOM), 2006.

[34] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In SIGCOMM, 2001.

[35] Vuze Bittorrent Client. http://azureus.
sourceforge.net/.

[36] D. S. Wallach. A Survey of Peer-to-Peer Security Issues.
Software Security – Theories and Systems, 2609:253–
258, 2003.

[37] L. Wang, V. Pai, and L. Peterson. The Effectiveness of
Request Redirecion on CDN Robustness. In OSDI, 2002.

[38] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
Lightweight Network Location Service without Virtual
Coordinates. In SIGCOMM, 2005.

[39] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and
S. Lee. S3: A Scalable Sensing Service for Monitoring
Large Networked Systems. In SIGCOMM Internet Net-
work Management Workshop, 2006.

[40] D. Zage and C. Nita-Rotaru. On the Accuracy of Decen-
tralized Virtual Coordinate Systems in Adversarial Net-
works. In CCS, 2007.

USENIX Association	 2009 USENIX Annual Technical Conference	 187

Decaf: Moving Device Drivers to a Modern Language
Matthew J. Renzelmann and Michael M. Swift

University of Wisconsin–Madison
{mjr, swift}@cs.wisc.edu

Abstract

Writing code to interact with external devices is inher-
ently difficult, and the added demands of writing device
drivers in C for kernel mode compounds the problem.
This environment is complex and brittle, leading to in-
creased development costs and, in many cases, unreli-
able code. Previous solutions to this problem ignore the
cost of migrating drivers to a better programming envi-
ronment and require writing new drivers from scratch or
even adopting a new operating system.

We present Decaf Drivers, a system for incremen-
tally converting existing Linux kernel drivers to Java
programs in user mode. With support from program-
analysis tools, Decaf separates out performance-sensitive
code and generates a customized kernel interface that
allows the remaining code to be moved to Java. With
this interface, a programmer can incrementally convert
driver code in C to a Java decaf driver. The Decaf
Drivers system achieves performance close to native ker-
nel drivers and requires almost no changes to the Linux
kernel. Thus, Decaf Drivers enables driver program-
ming to advance into the era of modern programming
languages without requiring a complete rewrite of oper-
ating systems or drivers.

With five drivers converted to Java, we show that De-
caf Drivers can (1) move the majority of a driver’s code
out of the kernel, (2) reduce the amount of driver code,
(3) detect broken error handling at compile time with ex-
ceptions, (4) gracefully evolve as driver and kernel code
and data structures change, and (5) perform within one
percent of native kernel-only drivers.

1 Introduction
Our research is motivated by three factors. First, writ-
ing quality device driver code is difficult, as evidenced
by the many books and conferences devoted to the sub-
ject. The net result of this difficulty is unreliability and
unavailability [45]. Second, device drivers are a critical
part of operating systems yet are developed by a broad
community. Early versions of Unix had only a handful of
drivers, totaling a few kilobytes of code, that were writ-
ten by a single developer–Dennis Ritchie [39]. In con-
trast, modern versions of Linux include over 3200 driver
versions in the kernel source tree, developed by over
300 people and entailing 3 million lines of code [46].
Similarly, Windows Vista was released with over 30,000

available device drivers [2]. As a result, the difficulty
of writing drivers has a wide impact. Third, despite at-
tempts to change how drivers are developed, they con-
tinue to be written as they have been: in the kernel and
in C. A glance at early Unix source code [39] shows that,
despite decades of engineering, driver code in modern
versions of Linux bears a striking resemblance to drivers
in the original versions of Unix.

Efforts at providing a cross-platform driver inter-
face [25, 38], moving driver code to user mode [14, 21,
25, 26, 33, 49] or into type-safe languages or extensions
to C [5, 9, 25, 42, 51] have had niche successes but have
not seen widespread adoption. While we cannot be sure
of the reason, we speculate that use of unfamiliar pro-
gramming languages and the lack of a migration path
have stifled use of these approaches. Prior efforts at re-
using existing driver code relied on C extensions not in
widespread use, such as CCured [9]. In contrast, systems
using popular languages generally require that drivers
be written from scratch to gain any advantage [25, 51].
However, many drivers are written by copying and past-
ing existing code [15, 28]. Thus, it may still be easier for
a driver developer to modify an existing C driver than to
write a new driver from scratch, even if the environment
is simpler to program.

Decaf Drivers takes a best-effort approach to simplify-
ing driver development by allowing most driver code to
be written at user level in languages other than C. Decaf
Drivers sidesteps many of the above problems by leav-
ing code that is critical to performance or compatibil-
ity in the kernel in C. All other code can move to user
level and to another language; we use Java for our im-
plementation, as it has rich tool support for code gener-
ation, but the architecture does not depend on any Java
features. The Decaf architecture provides common-case
performance comparable to kernel-only drivers, but reli-
ability and programmability improve as large amounts of
driver code can be written in Java at user level.

The goal of Decaf Drivers is to provide a clear migra-
tion path for existing drivers to a modern programming
language. User-level code can be written in C initially
and converted entirely to Java over time. Developers can
also implement new user-level functionality in Java.

We implemented Decaf Drivers in the Linux 2.6.18.1
kernel by extending the Microdrivers infrastructure [19].
Microdrivers provided the mechanisms necessary to con-

188	 2009 USENIX Annual Technical Conference	 USENIX Association

vert existing drivers into a user-mode and kernel-mode
component. The resulting driver components were writ-
ten in C, consisted entirely of preprocessed code, and of-
fered no path to evolve the driver over time.

The contributions of our work are threefold. First,
Decaf Drivers provides a mechanism for converting the
user-mode component of microdrivers to Java through
cross-language marshaling of data structures. Second,
Decaf supports incremental conversion of driver code
from C to Java on a function-by-function basis, which
allows a gradual migration away from C. Finally, the re-
sulting driver code can easily be modified as the operat-
ing system and supported devices change, through both
editing of driver code and modification of the interface
between user and kernel driver portions.

We demonstrate this functionality by converting five
drivers to decaf drivers, and rewriting either some or all
of the user-mode C code in each into Java. We find that
converting legacy drivers to Java is straightforward and
quick.

We analyze the E1000 gigabit network driver for con-
crete evidence that Decaf simplifies driver development.
We find that using Java exceptions reduced the amount
of code and fixed 28 cases of missing error handling.
Furthermore, updating the driver to a recent version pre-
dominantly required changes to the Java code, not kernel
C code. Using standard workloads, we show while decaf
drivers are slower to initialize, their steady-state perfor-
mance is within 1% of native kernel drivers.

In the following section we describe the Decaf archi-
tecture. Section 3 provides a discussion of our Decaf
Drivers implementation. We evaluate performance in
Section 4, following with a case study applying Decaf
Drivers to the E1000 driver. We present related work in
Section 6, and then conclude.

2 Design of Decaf Drivers
The primary goal of Decaf Drivers is to simplify device
driver programming. We contend that the key to dra-
matically improving driver reliability is to simplify their
development, and that requires:
• User-level development in a modern language.

• Near-kernel performance.

• Incremental conversion of existing drivers.

• Support for evolution as driver and kernel data
structures and interfaces change.

User-level code removes the restrictions of the ker-
nel environment, and modern languages provide garbage
collection, rich data structures, and exception handling.
Many of the common bugs in drivers relate to improper
memory access, which is solved by type-safe languages;
improper synchronization, which can be improved with

language support for mutual exclusion; improper mem-
ory management, addressed with garbage collection; and
missing or incorrect error handling, which is aided by use
of exceptions for reporting errors.

Moving driver code to advanced languages within the
kernel achieves some of our goals, but raises other chal-
lenges. Support for other languages is not present in op-
erating system kernels, in part because the kernel envi-
ronment places restrictions on memory access [51]. No-
tably, most kernels impose strict rules on when memory
can be allocated and which memory can be touched at
high priority levels [11, 32]. Past efforts to support Java
in the Solaris kernel bears this out [36]. In addition, ker-
nel code must deal gracefully with low memory situa-
tions, which may not be possible in all languages [6].

The Decaf architecture balances these conflicting re-
quirements by partitioning drivers into a small kernel
portion that contains performance-critical code and a
large, user-level portion that can be written in any lan-
guage. In support of the latter two goals, Decaf provides
tools to support migration of existing code out of the ker-
nel and to generate and re-generate marshaling code to
pass data between user mode and the kernel.

2.1 Microdrivers

We base Decaf Drivers on Microdrivers, a user-level
driver architecture that provides both high perfor-
mance and compatibility with existing driver and kernel
code [19]. Microdrivers partition drivers into a kernel-
level k-driver, containing only the minimum code re-
quired for high-performance and to satisfy OS require-
ments, and a user-level u-driver with everything else.
The k-driver contains code with high bandwidth or low-
latency requirements, such as the data-handling code and
driver code that executes at high priority, such as inter-
rupt handlers. The remaining code, which is often the
majority of code in a driver, executes in a user-level pro-
cess. While the kernel is isolated from faults in the user-
level code, systems such as SafeDrive [52] or XFI [16]
can be used to isolate and recover from faults in the ker-
nel portion.

To maintain compatibility with existing code, the
DriverSlicer tool can create microdrivers from existing
driver code. This tool identifies high-priority and low-
latency code in drivers that must remain in the kernel
and creates two output files: one with functions left in
the kernel (the k-driver), and one with everything else
(the u-driver). With assistance from programmer annota-
tions, DriverSlicer generates RPC-like stubs for commu-
nication between the k-driver and u-driver. The kernel
invokes microdrivers normally by either calling into the
k-driver or into a stub that passes control to the u-driver.

The Microdrivers architecture does not support several
features necessary for widespread use. First, after split-

USENIX Association	 2009 USENIX Annual Technical Conference	 189

User-level Driver

Driver
Nucleus (C)

Stubs

Kernel/User XPC

Decaf
Driver
(Java)

Driver
Library

(C)

Kernel

Kernel/User XPC

Stubs
Application

J
a

v
a

/C
X

P
C

Figure 1: The Decaf Drivers architecture. The OS
kernel invokes driver nucleus code or stubs that com-
municate with the decaf driver via an extension pro-
cedure call (XPC).

ting the driver, Microdrivers produces only preprocessed
C output, which is unsuitable for evolving the driver once
split. Second, Microdrivers only supports C in the u-
driver, and provides no facility for moving to any other
language.

2.2 Decaf Drivers Overview

Decaf Drivers extends Microdrivers by addressing the
deficiencies outlined previously: Decaf Drivers supports
(1) writing user-level code in a language other than C, (2)
incremental conversion of a legacy driver to a new driver
architecture, and (3) evolving the driver as interfaces and
data structures change.

Decaf Drivers partitions drivers into two major com-
ponents: the driver nucleus1 that executes in the kernel
for performance and compatibility; and the user-level de-
caf driver written in any language that supports marshal-
ing/unmarshaling of data structures. However, user-level
driver code may need to perform actions that are not ex-
pressible in all languages, such as directly controlling
the hardware with instructions such as outb. This code
resides in the user-level driver library, which executes
normal C code. The driver library also provides a staging
ground when migrating C code out of the kernel, where it
can execute before being converted to another language.

While the architecture supports any language, our im-
plementation is written for Java and we refer to code in
the decaf driver as being written in Java. Using Java
raises the issue of communicating data structures be-
tween languages, in contrast to C++. We believe that
other languages that provide mechanisms for invoking
native C code, such as Python, would also work well with
the Decaf Drivers architecture.

At runtime, all requests to the driver enter through

1We re-christened the k-driver and u-driver from Microdrivers to
more descriptive names reflecting their purpose and implementation,
not just their execution mode.

the kernel. The kernel directly invokes functionality im-
plemented by the driver nucleus. Functionality imple-
mented at user level enters through a stub that transfers
control to user level and dispatches it to the driver library
or the decaf driver. The user-level components may in-
voke each other or call back into the kernel while pro-
cessing a request.

The Decaf architecture consists of two major compo-
nents:

1. Extension Procedure Call (XPC) for communica-
tion between kernel/user level and between C and
Java.

2. DriverSlicer to generate marshaling code for XPC.
We next discuss these two components in detail.

2.3 Extension Procedure Call

Extension procedure call, created as part of the Nooks
driver isolation subsystem [45], provides procedure calls
between protection domains. XPC in Decaf Drivers pro-
vides five services to enable this cooperation: control
transfer to provide procedure call semantics (i.e., block
and wait); object transfer to pass language-level objects,
such as structures, between domains; object sharing to
allow an object to exist in multiple domains; and syn-
chronization to ensure consistency when multiple do-
mains access a shared object. Stubs invoke XPC services
for communication between domains.

The two primary domains participating in driver exe-
cution are the driver nucleus and the decaf driver. How-
ever, driver functionality may also exist in the driver li-
brary, both when migrating code to another language
or for functionality reasons. For example, code shared
across operating systems may be left in C. Thus, the De-
caf architecture also provides XPC between the decaf
driver and the driver library to provide access to complex
data structures requiring conversion between languages.
The decaf driver may directly invoke code in the driver
library for simple library calls.

Cross-Domain Control Transfer. The control-
transfer mechanism performs the actions of the runtime
in an RPC system [4] to pass control from the calling
thread to a thread in the target domain. If the decaf
driver and the driver library execute in a single process,
the control transfer mechanism can be optimized to
re-use the calling thread rather than scheduling a new
thread to handle the request.

Cross-Domain Object Transfer. XPC provides cus-
tomized marshaling of data structures to copy only those
fields actually accessed at the target. Thus, structures de-
fined for the kernel’s internal use but shared with drivers
are passed with only the driver-accessed fields. In addi-
tion, XPC provides cross-language conversion, convert-
ing structures making heavy use of C language features

190	 2009 USENIX Annual Technical Conference	 USENIX Association

for performance (e.g., bit fields) to languages without
such control over memory layout.

Object Sharing. Driver components may simultane-
ously process multiple requests that reference the same
object. If two threads are accessing the same object, they
should work on a single copy of this object, as they would
in the kernel, rather than on two separate copies. Similar
to Nooks [45], Decaf Drivers XPC uses an object tracker
that records each shared object, extended to support two
user-level domains. When transferring objects into a do-
main, XPC consults the object tracker to find whether
the object already exists. If so, the existing object can be
updated, and if not, a new object must be allocated.

Synchronization. Synchronized access to data is a
challenging problem for regular device drivers because
they are reentrant. For example, a device may generate
an interrupt while a driver is processing an application
request, and the interrupt handler and the request handler
may access the same data. To prevent corruption, driver
writers must choose from a variety of locking mecha-
nisms based on the priority of the executing code and of
potential sharers [29].

The Decaf Drivers synchronization mechanism pro-
vides regular locking semantics. If code in one domain
locks an object, code in other domains must be prevented
from accessing that object while the lock is held. Fur-
thermore, Decaf ensures that the holder of a lock has the
most recent version of the objects it protects.

Stubs. Similar to RPC stubs, XPC stubs contain calls
specific to a single remote procedure: calls into marshal-
ing code, object tracking code, and control transfer code.
These can be written by hand or generated by the Driver-
Slicer tool. Calls to native functions must be replaced
with calls to stubs when the function is implemented in
another domain.

2.4 DriverSlicer

The XPC mechanism supports the execution of Decaf
Drivers, but does little on its own to simplify the writing
of drivers. This task is achieved by the DriverSlicer tool,
which enables creation of decaf drivers from existing
kernel code written in C. DriverSlicer provides three key
functions: (1) partitioning, to identify code that may run
outside the kernel, (2) stub generation to enable commu-
nication across language and process boundaries, and (3)
generation of the driver nucleus and user-level C code to
start the porting process. Furthermore, DriverSlicer can
regenerate stubs as the set of supported devices, driver
data structures, and kernel interfaces change.

Partitioning. Given an existing driver, DriverSlicer
automatically partitions the driver into the code that must
remain in the kernel for performance or functionality rea-
sons and the code that can move to user level. This fea-

ture is unchanged from the Microdrivers implementation
of DriverSlicer. As input, it takes an existing driver and
type signatures for critical root functions, i.e., functions
in the kernel-driver interface that must execute in the
kernel for performance or functionality reasons. Driver-
Slicer outputs the set of functions reachable from critical
root functions, all of which must remain in the kernel.
The remaining functions can be moved to user level. In
addition, DriverSlicer outputs the set of entry-point func-
tions, where control transfers between kernel mode and
user mode. The user-mode entry points are the driver in-
terface functions moved to user mode. The kernel entry
points are OS kernel functions and critical driver func-
tions called from user mode.

Stub Generation. DriverSlicer creates stubs automat-
ically based on the set of kernel and user entry points
output from the partitioning stage. With the guidance
of programmer annotations [19], DriverSlicer automat-
ically generates marshaling code for each entry-point
function. In addition, DriverSlicer emits code to mar-
shal and unmarshal data structures in both C and Java,
allowing complex data structures to be accessed natively
in both languages.

Driver Generation. DriverSlicer emits C source code
for the driver nucleus and the driver library. The driver
library code can be ignored when functions are rewrit-
ten in another language. The source code produced is a
partitioning of the original driver source code into two
source trees. Files in each tree contain the same include
files and definitions, but each function is in only one of
the versions, according to where it executes.

To support driver evolution, DriverSlicer can be in-
voked repeatedly to generate new marshaling code as
data structures change. The generated driver files need
only be produced once since the marshaling code is seg-
regated from the rest of the driver code.

2.5 Summary

The Decaf architecture achieves our four requirements.
The decaf driver itself may be implemented in any lan-
guage and runs at user level. The driver nucleus provides
performance near that of native kernel drivers. Driver-
Slicer provides incremental conversion to C through au-
tomatic generation of stubs and marshaling code both for
kernel-user communication and C-Java communication.
Finally, DriverSlicer supports driver evolution through
regeneration of stubs and marshaling code as the driver
changes.

3 Implementation
We implemented the Decaf Drivers architecture for the
Linux 2.6.18.1 kernel and re-wrote five device drivers
into decaf drivers. We use a modified version of Driver-
Slicer from Microdrivers [19] to generate code for XPC

USENIX Association	 2009 USENIX Annual Technical Conference	 191

stubs and marshaling, and implemented extensions to
generate similar code between the driver library and de-
caf driver.

The driver nucleus is a standard Linux kernel module
and the decaf driver and driver library execute together
as a multithreaded Java application. Our implementation
relies on Jeannie [22] to simplify calling from C into
Java and back. Jeannie is a compiler that allows mix-
ing Java and C code at the expression level, which sim-
plifies communication between the two languages. Lan-
guages with native support for cross-language calls, such
as C [34], provide the ability to call functions in dif-
ferent languages, but do not allow mixing expressions in
different languages.

Decaf Drivers provides runtime support common to all
decaf drivers. The runtime for user-level code, the decaf
runtime, contains code supporting all decaf drivers. The
kernel runtime is a separate kernel module, called the
nuclear runtime, that is linked to every driver nucleus.
These runtime components support synchronization, ob-
ject sharing, and control transfer.

3.1 Extension Procedure Call

Decaf Drivers uses two versions of XPC: one between
the driver nucleus and the driver library, for crossing the
kernel boundary; and another between the driver library
and the decaf driver, for crossing the C-Java language
boundary. XPC between kernel and user mode is sub-
stantially similar to that in Microdrivers, so we focus our
discussion on communication between C and Java.

The Decaf implementation always performs XPCs to
and from the kernel in C, which allows us to leverage
existing stub and marshaling support from Microdrivers.
An upcall from the kernel always invokes C code first,
which may then invoke Java code. Similarly, downcalls
always invoke C code first before invoking the kernel.
While this adds extra steps when invoking code in the
decaf driver, it adds little runtime overhead as shown by
the experiments in Section 4.

3.1.1 Java–C Control and Data Transfer

Decaf Drivers provides two mechanisms for the decaf
driver to invoke code in the driver library: direct cross-
language function calls and calls via XPC. Direct calls
may be used when arguments are scalar values that can
be trivially converted between languages, such as argu-
ments to low-level I/O routines. XPC must be used when
arguments contain pointers or complex data structures to
provide cross-language translation of data types. In ad-
dition, downcalls from the decaf driver to the driver nu-
cleus require XPC.

In both cases, Decaf Drivers relies on the Jeannie lan-
guage [22] to perform the low-level transfer between C
and Java. Jeannie enables C and Java code to be mixed in

a source file at the granularity of a single expression. The
backtick operator (‘) switches between languages. From
a combined source file, the Jeannie compiler produces a
C file, a Java file, and Java Native Interface code allowing
one to call the other. Jeannie provides a clean syntax for
invoking a Java function from C and vice versa. When
invoking simple functionality in C, the decaf driver can
inline the C code right into a Java function.

When invoking a function through XPC, Decaf
Drivers uses RPC-style marshaling to transfer complex
objects between Java and C. While Jeannie allows code
in one language to read variables declared in the other, it
does not allow modifications of those variables. Instead,
Decaf uses the XDR marshaling standard [13] to mar-
shal data between the driver library and the decaf driver,
which we discuss in Section 3.2.3.

We write Decaf stubs in Jeannie to allow pure Java
code to invoke native C code. The stubs invoke XDR
marshaling code and the object tracker. Figure 2 shows
an example of a stub in Jeannie. As shown in this fig-
ure, the following steps take place when calling from the
decaf driver to the driver nucleus:

1. The decaf driver calls the Jeannie stub.

2. The stub invokes the object tracker to translate any
parameters to their equivalent C pointers.

3. The stub, acting as an XPC client, invokes an XDR
routine to marshal the Java parameters.

4. While marshaling these parameters, the XDR code
uses inheritance to execute the appropriate marshal-
ing routine for the object.

5. The same stub then acts as an XPC server, and un-
marshals the Java objects into C.

6. While unmarshaling return values, the C stubs call
specialized functions for each type.

We write stubs by hand because our code generation
tools can only produce pure Java or C code, but the pro-
cess could be fully automated.

3.1.2 Java-C Object Sharing

Object sharing maintains the relationship between data
structures in different domains with an object tracker.
This service logically stores mappings between C point-
ers in the driver library, and Java objects in the decaf
driver. Marshaling code records the caller’s local ad-
dresses for objects when marshaling data. Unmarshaling
code checks the object tracker before unmarshaling each
object. If found, the code updates the existing object with
its new contents. If not found, the unmarshaling code al-
locates a new object and adds an association to the object
tracker. For kernel/user XPC, the unmarshaling code in
the kernel consults the object tracker with a simple pro-
cedure call, while unmarshaling code in the driver library

192	 2009 USENIX Annual Technical Conference	 USENIX Association

Consult object tracker

Marshal arguments

Call C function

Marshal out parameters

Class Ens1371 {

 ...

 public static int snd_card_register(snd_card java_card) {

 CPointer c_card = JavaOT.xlate_j_to_c (java_card);

 int java_ret;

 begin_marshaling ();

 copy_XDR_j2c (java_card);

 end_marshaling ();

 java_ret = `snd_card_register ((void *) `c_card.get_c_ptr());

 begin_marshaling ();

 java_card = (snd_card) copy_XDR_c2j (java_card, c_card);

 end_marshaling ();

 return java_ret;

 }

Figure 2: Sample Jeannie stub code for calling from Java to C. The backtick operator ‘ switches the language
for the following expression, and is needed only to invoke the C function.

must call into the kernel.
The different data representations in C and Java raise

two difficulties. First, Java objects do not have unique
identifiers, such as the address of a structure in C. Thus,
the decaf runtime uses a separate user-level object tracker
written in Java, which uses object references to identify
Java objects. C objects are identified by their address,
cast to an integer.

Second, a single C pointer may be associated with
multiple Java objects. When a C structure contains an-
other structure as its first member, both inner and outer
structures have the same address. In Java, however, these
objects are distinct. This difference becomes a problem
when a decaf driver passes the inner structure as an argu-
ment to a function in the driver library or driver nucleus.
The user-level object tracker disambiguates the uses of
a C pointer by additionally storing a type identifier with
each C pointer.

When an object is initially copied from C to Java,
marshaling code adds entries to the object tracker for
its embedded structures. When an embedded structure
is passed back from Java to C, the marshaling code will
search for a C pointer with the correct type identifier. The
object tracker uses the address of the C XDR marshaling
function for a structure as its identifier.

Once an object’s reference is removed from the ob-
ject tracker, Java’s garbage collection can free it nor-
mally. We have not yet implemented automatic collec-
tion of shared objects, so decaf drivers must currently
free shared objects explicitly. Implementing the object
tracker with weak references [20] and finalizers would
allow unreferenced objects to be removed from the ob-
ject tracker automatically.

3.1.3 Synchronization

Decaf Drivers relies on kernel-mode combolocks from
Microdrivers to synchronize access to shared data across
domains [19]. When acquired only in the kernel, a com-
bolock is a spinlock. When acquired from user mode,
a combolock is a semaphore, and subsequent kernel

threads must wait for the semaphore. Combolocks also
provide support for multiple threads in the decaf driver
and allow these threads to share data with the driver nu-
cleus and driver library.

However, combolocks alone do not completely ad-
dress the problem. The driver nucleus must not invoke
the decaf driver while executing high priority code or
holding a spinlock. We use three techniques to pre-
vent high-priority code from invoking user-level code.
First, we direct the driver to avoid interrupting itself:
the nuclear runtime disables interrupts from the driver’s
device with disable irq while the decaf driver runs.
Since user-mode code runs infrequently, we have not ob-
served any performance or functional impact from defer-
ring code.

Second, we modify the kernel in some places to not
invoke the driver with spinlocks held. For example, we
modified the kernel sound libraries to use mutexes, which
allowed more code to execute in user mode. In its orig-
inal implementation, the sound library would often ac-
quire a spinlock before calling the driver. Driver func-
tions called with a spinlock held would have to remain
in the kernel because invoking the decaf driver would re-
quire invoking the scheduler. In contrast, mutexes allow
blocking operations while they are held, so we were able
to move additional driver functions into the decaf driver.

Third, we deferred some driver functionality to a
worker thread. For example, the E1000 driver uses a
watchdog timer that executes every two seconds. Since
the kernel runs timers at high priority, it cannot call up
to the decaf driver when the timer fires. Instead, we con-
vert timers to enqueue a work item, which executes on
a separate thread and allows blocking operations. Thus,
the watchdog timer can execute in the decaf driver.

3.2 DriverSlicer Implementation

DriverSlicer automates much of the work of creating de-
caf drivers. The tool is a combination of OCaml code
written for CIL [35] to perform static analysis and gener-
ate C code, Python scripts to post-process the generated

USENIX Association	 2009 USENIX Annual Technical Conference	 193

C code, and XDR compilers to produce cross-language
marshaling code. DriverSlicer takes as input a legacy
driver with annotations to specify how C pointers and
arrays should be marshaled and emits stubs, marshaling
routines, and separate user and kernel driver source code
files.

3.2.1 Generating Readable Code

A key goal of Decaf Drivers is support for continued
modification to drivers. A major problem with Driver-
Slicer from microdrivers is that it only generated prepro-
cessed driver code, which is difficult to modify. The De-
caf DriverSlicer instead patches the original source, pre-
serving comments and code structure. It produces two
sets of files; one set for the driver nucleus and one set for
the driver library, to be ported to the decaf driver. This
patching process consists of three steps.

First, scripts parse the preprocessed CIL output to ex-
tract the generated code (as compared to the original
driver source). This code includes marshaling stubs and
calls to initialize the object tracker. Other preprocessed
output, such as driver function implementations, are ig-
nored, as this code will be taken from the original driver
source files instead.

Second, DriverSlicer creates two copies (user and ker-
nel) of the original driver source. From these copies, the
tool removes function implemented by the other copy.
Any functions in the driver nucleus source tree that are
now implemented in the driver library and any functions
in the driver library source tree that are implemented in
the driver nucleus or the kernel are either replaced with
stubs or removed entirely. The stubs containing marshal-
ing code are placed in a separate file to preserve the read-
ability of the patched driver.

Finally, DriverSlicer makes several other minor mod-
ifications to the output. It adds #include directives to
provide definitions for the functions used in the marshal-
ing code, and adds a function call in the driver nucleus
init module function to provide additional initializa-
tion.

3.2.2 Generating XDR Interface Specifications

The decaf driver relies on XDR marshaling to access ker-
nel data structures. DriverSlicer generates an XDR spec-
ification for the data types used in user-level code from
the original driver and kernel header files. The exist-
ing annotations needed for generating kernel marshaling
code are sufficient to emit XDR specifications.

Unfortunately, XDR is not C and does not support all
C data structures, specifically strings and arrays. Driver-
Slicer takes additional steps to convert C data types to
compatible XDR types with the same memory layout.
First, DriverSlicer discards most of the original code ex-
cept for typedefs and structure definitions. Driver-

Original Structure:
struct e1000_adapter {

 ...

 struct e1000_tx_ring test_tx_ring;

 struct e1000_rx_ring test_rx_ring;

 uint32_t * __attribute__((exp(PCI_LEN)))

 config_space;

 int msg_enable;

 ...

};

XDR input:
struct array256_uint32_t {

 uint32_t array[256] ;

};

typedef struct array256_uint32_t

*array256_uint32_ptr;

struct e1000_adapter_autoxdr_c {

 ...

 struct e1000_tx_ring test_tx_ring ;

 struct e1000_rx_ring test_rx_ring ;

 array256_unit32_ptr config_space ;

 int msg_enable ;

 ...

};

Figure 3: Portions of a driver data structure above,
and the generated XDR input below. The names have
been shortened for readability. The annotation in the
original version is required for DriverSlicer to gener-
ate marshaling code between kernel and user levels.

Slicer then rewrites these definitions to avoid function-
ality that XDR does not support. For example, a driver
data structure may include a pointer to a fixed length ar-
ray. DriverSlicer cannot output the original C definition
because XDR would interpret it as a pointer to a single
element. Instead, DriverSlicer generates a new structure
definition containing a fixed length array of the appro-
priate type, and then substitutes pointers to the old type
with a pointer to the new structure type.

As shown in Figure 3, DriverSlicer converts pointers
to an array into a pointer to a structure, allowing XDR
to produce marshaling code. This transformation does
not affect the in-memory layout. In this way, the gen-
erated marshaling code will properly marshal the entire
contents of the array. After generating the C output, a
script runs which makes a few syntactic transformations,
such as converting C’s long long type to XDR’s hyper
type. The result is a valid XDR specification.

3.2.3 Generating XDR Marshaling Routines

DriverSlicer incorporates modified versions of the
rpcgen [43] and jrpcgen [1] XDR interface compil-
ers to generate C and Java marshaling code respectively.
These modifications to the original tools support object

194	 2009 USENIX Annual Technical Conference	 USENIX Association

tracking and recursive data structures.
As previously mentioned in Section 3.1.2, the tools

emit calls into the object tracker to locate existing ver-
sions of objects passed as parameters. The generated un-
marshaling code consults the object tracker before allo-
cating memory for a structure. If one is found, the exist-
ing structure is used.

The DriverSlicer XDR compilers support recursive
data structures, such as circular linked lists. The mar-
shaling code checks each object against a list of the ob-
jects that have already been marshaled. When the tool
encounters an object again, it inserts a reference to the
existing copy instead of marshaling the structure again.
This feature extends also across all parameters to a func-
tion, so that passing two structures that both reference a
third results in marshaling the third structure just once.

The output of DriverSlicer is a set of functions that
marshal or unmarshal each data structure used by the
functions in the interface. It also emits a Java class for
each C data type used by the driver. These classes are
containers of public fields for every element of the orig-
inal C structures. The generated classes provide a useful
starting point for writing driver code in Java, but do not
take advantage of Java language features. For example,
all member variables are public. We expect developers
to rewrite these classes when doing more development in
Java.

3.2.4 Regenerating Stubs and Marshaling Code

As drivers evolve, the functions implemented in the
driver nucleus or the data types passed between the driver
nucleus and the decaf driver may change. Consequently,
the stubs and marshaling code may need to be updated
to reflect new data structures or changed use of existing
data structures. While this could be performed manu-
ally, DriverSlicer provides automated support for regen-
erating stubs and marshaling code. Simply re-running
DriverSlicer may not produce correct marshaling code
for added fields unless it observes code in the user-level
partition accessing that field. If this is Java code, it is not
visible to CIL, which only processes C code.

When the decaf driver requires access to fields not pre-
viously referenced, whether they are new or not, a pro-
grammer must inform DriverSlicer to produce marshal-
ing code. DriverSlicer supports an annotation to the orig-
inal driver code to indicate that a field may be referenced
by the decaf driver. A programmer adds the annotation
DECAF XVAR (y); where X is an R, W, or RW depend-
ing on whether the Java code will read, write, or read and
write the variable, and y is the variable name. These an-
notations must be placed in entry-point functions through
which new fields are referenced.

Thus, the new annotations ensure that DriverSlicer
generates marshaling code to allow reading and/or writ-

Source Components # Lines
Runtime support

Jeannie helpers 1,976
XPC in Decaf runtime 2,673
XPC in Nuclear runtime 4,661

DriverSlicer
CIL OCaml 12,465
Python scripts 1,276
XDR compilers 372

Total number of lines of code 23,423

Table 1: The number of non-comment lines of code
in the Decaf runtime and DriverSlicer tools. For the
XDR compilers, the number of additional lines of
code is shown.

ing the new variables in the decaf driver. A programmer
can add new functions to the user/kernel interface with
similar annotations. In the future, we plan to automati-
cally analyze the decaf driver source code to detect and
marshal these fields. In addition, we plan to produce a
concise specification of the entry points for regenerat-
ing marshaling code, rather than relying on the original
driver source.

3.3 Code Size

Table 1 shows the size of the Decaf Drivers implemen-
tation. The runtime code, consisting of user-level helper
functions written in Jeannie and XPC code in user and
kernel mode, totals 9,310 lines. This code, shared by all
decaf drivers, is comparable to a moderately sized driver.

DriverSlicer consists of OCaml code for CIL, Python
scripts for processing the output, and XDR compilers.
As the XDR compilers are existing tools, we report the
amount of code we added. In total, DriverSlicer com-
prises 14,113 lines.

4 Experimental Results
The value of Decaf Drivers lies in simplified program-
ming. The cost of using Decaf Drivers comes from
the additional complexity of partitioning driver code and
the performance cost of communicating across domain
boundaries. We have converted four types of drivers
using Decaf Drivers, and report on the experience and
the performance of the resulting drivers here. We give
statistics for the code we have produced, and answer
three questions about Decaf Drivers: how hard is it to
move driver code to Java, how much driver code can be
moved to Java, and what is the performance cost of Decaf
Drivers?

We experimented with the five drivers listed in Table 2.
Starting with existing drivers from the CentOS 4.2 Linux
distribution (compatible with RedHat Enterprise Linux
4.2) with the 2.6.18.1 kernel, and we converted them to
Decaf Drivers using DriverSlicer. All our experiments

USENIX Association	 2009 USENIX Annual Technical Conference	 195

except those for the E1000 driver are run on a 3.0GHz
Pentium D with 1GB of RAM. The E1000 experiments
are run on a 2.5GHz Core 2 Quad with 4GB of RAM. We
used separate machines because the test devices were not
all available on either machine individually.

4.1 Conversion to Java

Table 2 shows for each driver, how many lines of code
required annotations and how many functions were in
the driver nucleus, driver library, and decaf driver. After
splitting code with DriverSlicer, we converted to Java all
the functions in user level that we observed being called.
Many of the remaining functions are specific to other de-
vices served by the same driver. The column “Lines of
Code” reports the quantity of code in the original driver.
The final column, “Orig. LoC” gives the amount of C
code converted to Java.

The annotations affect less than 2% of the driver
source on average. These results are lower than for Mi-
crodrivers because of improvements we made to Driver-
Slicer to more thoroughly analyze driver code. In ad-
dition to the annotations in individual drivers, we anno-
tated 25 lines in common kernel headers that were shared
by multiple drivers. These results indicate that annotat-
ing driver code is not a major burden when converting
drivers to Java. We also changed six lines of code in the
8139too and uhci-hcd driver nuclei to defer functions
executed at high priority to a worker thread while the de-
caf driver or driver library execute; the code is otherwise
the same as that produced by DriverSlicer.

While we converted the 8139too and ens1371 to
Java during the process of developing Decaf Drivers,
we converted the other two drivers after its design was
complete. For uhci-hcd, a driver previously converted
to a microdriver, the additional conversion of the user-
mode code to a decaf driver took approximately three
days. The entire conversion of the psmouse driver, in-
cluding both annotation and conversion of its major rou-
tines to Java, took roughly two days. This experience
confirms our goal that porting legacy driver code to Java,
when provided with appropriate infrastructure support, is
straightforward.

In four of the five drivers, we were able to move
more than 75% of the functions into user mode. How-
ever, we were only able to convert 4% of the functions
in uhci-hcd to Java because the driver contained sev-
eral functions on the data path that could potentially call
nearly any code in the driver. We expect that redesign-
ing the driver would allow additional code to move to
user level. In the psmouse driver, we found that most of
the user-level code was device-specific. Consequently,
we implemented in Java only those functions that were
actually called for our mouse device.

The majority of the code that we converted from C to

Java is initialization, shutdown, and power management
code. This is ideal code to move, as it executes rarely yet
contains complicated logic that is error prone [40].

4.2 Performance of Decaf Drivers

The Decaf architecture seeks to minimize the perfor-
mance impact of user-level code by leaving critical path
code in the kernel. In steady-state behavior, the decaf
driver should never or only rarely be accessed. However,
during initialization and shutdown, the decaf driver exe-
cutes frequently. We therefore measure both the latency
to load and initialize the driver and its performance on a
common workload.

We measure driver performance with workloads ap-
propriate to each type of driver. We use netperf [12]
sending and receiving TCP/IP data to evaluate the
8139too and E1000 network drivers with the default
send and receive buffer sizes of 85 KB and 16 KB.
We measure the ens1371 sound driver by playing a
256Kbps MP3 file. The uhci-hcd driver controls low-
bandwidth USB 1.0 devices and requires few CPU re-
sources. We measure its performance by untaring a large
archive onto a portable USB flash drive and record the
CPU utilization. We do not measure the performance
of the mouse driver, as its bandwidth is too low to be
measurable, and we measure its CPU utilization while
continuously moving the mouse for 30 seconds. For all
workloads except netperf, we repeated the experiment
three times. We executed the netperf workload for a
single 600-second iteration because it performs multiple
tests internally.

We measure the initialization time for drivers by mea-
suring the latency to run the insmod module loader.
While some drivers perform additional startup activities
after module initialization completes, we found that this
measurement provides an accurate representation of the
difference between native and Decaf Drivers implemen-
tations.

Table 3 shows the results of our experiments. As
expected, performance and CPU utilization across the
benchmarks was unchanged. With E1000, we also tested
UDP send/receive performance with 1 byte messages.
The throughput is the same as the native driver and CPU
utilization is slightly higher.

To understand this performance, we recorded how of-
ten the decaf driver is invoked during these workloads.
In the ens1371 driver, the decaf driver was called 15
times, all during playback start and end. A watchdog
timer in the decaf driver executes every two seconds in
the E1000 driver. The other workloads did not invoke the
decaf driver at all during testing. Thus, the added cost of
communication with Java has no impact on application
performance.

However, the latency to initialize the driver was sub-

196	 2009 USENIX Annual Technical Conference	 USENIX Association

Driver Lines of DriverSlicer Driver nucleus Driver library Decaf driver
Name Type code Annotations Funcs LoC Funcs LoC Funcs LoC Orig. LoC
8139too Network 1,916 17 12 389 16 292 25 541 570
E1000 Network 14,204 64 46 1715 0 0 236 7804 8693
ens1371 Sound 2,165 18 6 140 0 0 59 1049 1068
uhci-hcd USB 1.0 2,339 94 68 1537 12 287 3 188 168
psmouse Mouse 2,448 17 15 501 74 1310 14 192 250

Table 2: The drivers converted to the Decaf architecture, and the size of the resulting driver components.

Driver Workload Relative CPU Utilization Init. Latency User/Kernel
Name Performance native Decaf native Decaf Crossings

8139too netperf-send 1.00 14 % 13 % 0.02 sec. 1.02 sec. 40
netperf-recv 1.00 17 % 15 % – – –

E1000 netperf-send 0.99 2.8 % 3.7 % 0.42 sec. 4.87 sec. 91
netperf-recv 1.00 20 % 21 % – – –

ens1371 mpg123 – 0.0 % 0.1 % 1.12 sec. 6.34 sec. 237
uhci-hcd tar 1.03 0.1 % 0.1 % 1.32 sec. 2.67 sec 49
psmouse move-and-click – 0.1 % 0.1 % 0.04 sec. 0.40 sec. 24

Table 3: The performance of Decaf Drivers on common workloads and driver initialization.

stantially higher, averaging 3 seconds. The increase
stems from cross-domain communication and marshal-
ing driver data structures. Table 3 includes the number
of call/return trips between the driver nucleus and the
decaf driver during initialization. We expect that opti-
mizing our marshaling interface to transfer data directly
between the driver nucleus and the decaf driver, rather
than unmarshaling at user-level in C and re-marshaling
in Java, would significantly reduce the cost of invoking
decaf driver code.

5 Case Study: E1000 Network Driver
To evaluate the software engineering benefits of devel-
oping drivers in Java, we analyze the Intel E1000 gigabit
Ethernet decaf driver. We selected this driver because:
• it is one of the largest network drivers with over

14,200 lines of code.

• it supports 50 different chipsets.

• it is actively developed, with 340 revisions between
the 2.6.18.1 and 2.6.27 kernels.

• it has high performance requirements that empha-
size the overhead of Decaf Drivers.

With this case study, we address three questions:
1. What are the benefits of writing driver code in Java?

2. How hard is it to update driver code split between
the driver nucleus and the decaf driver?

3. How difficult is it to mix C and Java in a driver?
We address these questions by converting the E1000
driver from the Linux 2.6.18.1 kernel to a decaf driver.
Overall, we converted 236 functions to Java in the decaf
driver and left 46 functions in the driver nucleus. There
are no E1000-specific functions in the driver library. Of

the 46 kernel functions, 42 are there for performance or
functionality reasons. For example, many are called from
interrupt handlers or with a spinlock held.

The four remaining functions are left in the driver nu-
cleus because of an explicit data race that our implemen-
tation does not handle. These functions, in the ethtool
interface, wait for an interrupt to fire and change a vari-
able. However, the interrupt handler changes the variable
in the driver nucleus; the copy of the variable in the decaf
driver remains unchanged, and hence the function waits
forever. This could be addressed with an explicit call into
the driver nucleus to wait for the interrupt.

5.1 Benefits from Java

We identified three concrete benefits of moving E1000
code to Java, and one potential benefit we plan to explore.

Error handling. We found the biggest benefit of mov-
ing driver code to Java was improved error handling. The
standard practice to handle errors in Linux device drivers
is through goto statements to a set of labels based on
when the failure occurred. In this idiom, an if statement
checks a return value, and jumps to a label near the end
of the function on error. The labels are placed such that
only the necessary subset of cleanup operations are per-
formed. This system is brittle because the developer can
easily jump to an incorrect label or forget to test an error
condition [44].

Using exceptions to signal errors and nested handlers
to catch errors, however, ensures that no error conditions
are ignored, and that cleanup operations take place in the
proper order. We rewrote 92 functions to use checked
exceptions instead of integer return codes. The compiler
requires the program to handle these exceptions. In this
process, we found 28 cases in which error codes were ig-

USENIX Association	 2009 USENIX Annual Technical Conference	 197

Decaf driver code:

public static void e1000_open(net_device netdev)

 throws E1000HWException {

 e1000_adapteradapter = netdev.priv;

 int err;

 try {

 /* allocate transmit descriptors */

 e1000_setup_all_tx_resources(adapter);

 try {

 /* allocate receive descriptors */

 e1000_setup_all_rx_resources(adapter);

 try {

 e1000_request_irq(adapter);

 e1000_power_up_phy(adapter);

 e1000_up(adapter);

 ...

 } catch (E1000HWException e) {

 e1000_free_all_rx_resources(adapter);

 throw e;

 }

 } catch (E1000HWException e) {

 e1000_free_all_tx_resources(adapter);

 throw e;

 }

 } catch (E1000HWException e) {

 e1000_reset(adapter);

 throw e;

 }

 }

Figure 4: Code converted to nested exception han-
dling.

nored or handled incorrectly. Some, but not all, of these
have been fixed in recent Linux kernels.

Figure 4 shows an example from the e1000 open

function. This code catches and re-throws the excep-
tions; using a finally block would either incorrectly
free the resources under all circumstances, or require ad-
ditional code to ensure the resources are freed only in the
face of an error.

Checked exceptions also reduce the amount of code in
the driver. Figure 5 shows an example. By switching to
exceptions instead of integer return values, we cut 675
lines of code, or approximately 8%, from e1000 hw.c

by removing code to check for an error and return. We
anticipate that converting the entire driver to use excep-
tions would eliminate more of these checks.

Object orientation. We found benefits from object
orientation in two portions of the E1000 driver. In
e1000 param.c, functions verify module parameters
using range and set-membership tests. We use three
classes to process parameters during module initializa-
tion. A base class provides basic parameter checking,
and the two derived classes provide additional function-
ality. The appropriate class checks each module param-
eter automatically. The resulting code is shorter than the
original C code and more maintainable, because the pro-
grammer is forced by the type system to provide ranges
and sets when necessary.

In addition, we restructured the hardware accessor
functions as a class. In the original E1000 driver,

Original Code:
if(hw->ffe_config_state == e1000_ffe_config_active) {

 ret_val = e1000_read_phy_reg(hw, 0x2F5B,

 &phy_saved_data);

 if(ret_val) return ret_val;

 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

 if(ret_val) return ret_val;

 msec_delay_irq(20);

 ret_val = e1000_write_phy_reg(hw, 0x0000,

 IGP01E1000_IEEE_FORCE_GIGA);

 if(ret_val) return ret_val;

Decaf driver Code:
if(hw.ffe_config_state.value == e1000_ffe_config_active) {

 e1000_read_phy_reg(0x2F5B, phy_saved_data);

 e1000_write_phy_reg((short) 0x2F5B, (short) 0x0003);

 e1000_write_phy_reg((short) 0x2F5B, (short) 0x0003);

 DriverWrappers.Java_msleep (20);

 e1000_write_phy_reg((short) 0x0000,

 (short) IGP01E1000_IEEE_FORCE_GIGA);

Figure 5: Code from e1000 config dsp after -
link change in e1000 hw.c. The upper box shows
the original code with error handling code. The lower
box shows the same code rewritten to use exceptions.

these functions all required a parameter pointing to an
e1000 hw structure. Just rewriting this code as a class
removed 6.5KB of code that passes this structure as a pa-
rameter to other internal functions. This syntactic change
does not affect code quality, but makes the resulting code
more readable.

Standard libraries. In comparison to the Java collec-
tions library, the Linux kernel and associated C libraries
provide limited generic data-structure support. We found
that the Java collections library provides a useful set of
tools for simplifying driver code. In addition to rewriting
the parameter code to use inheritance, we also used Java
hash tables in the set-membership tests.

Potential Benefit: Garbage collection. While the
E1000 decaf driver currently manages shared objects
manually, garbage collection provides a mechanism to
simplify this code and prevent resource leaks. When
allocating data structures shared between the driver nu-
cleus and decaf driver, the decaf drivers use a custom
constructor that also allocates kernel memory at the same
time and creates an association in the object tracker.

Rather than relying on the decaf driver to explicitly
release this memory, we can write a custom finalizer to
free the associated kernel memory when the Java garbage
collector frees the object. This approach can simplify
exception-handling code and prevent resource leaks on
error paths, a common driver problem [31].

198	 2009 USENIX Annual Technical Conference	 USENIX Association

Category Lines of Code Changed
Driver nucleus 381
Decaf driver 4690
User/kernel interface 23

Table 4: Statistics for patches applied to E1000: the
lines changed in the driver nucleus, in the decaf
driver, and to shared data structures requiring new
marshaling code.

5.2 Driver Evolution

We evaluate the ability of Decaf Drivers to support driver
evolution by applying all changes made to the E1000
driver between kernel versions 2.6.18.1 and 2.6.27. Be-
cause we continue to use the 2.6.18.1 kernel, we omit-
ted the small number of driver changes related to ker-
nel interface updates. We applied all 320 patches in two
batches: those before the 2.6.22 kernel and those after.
Overall, we found that modifying the driver was sim-
ple, and that the driver nucleus and decaf driver could
be modified and compiled separately.

The changes are summarized in Table 4. The vast ma-
jority of code changes were at user level. Thus, the bulk
of the development on E1000 since the 2.6.18.1 kernel
would have been performed in Java at user level, rather
than in the kernel in C. Furthermore, only 23 changes af-
fected the kernel-user interface, for example by adding
or removing fields from shared structures.

In these cases, we modified the kernel implementation
of the data structure, and re-split the driver to produce
updated versions of the Java data structures. To ensure
that new structure fields are marshaled between the driver
nucleus and decaf driver, we added one additional anno-
tation for each new field to the original driver. These an-
notations ensure that DriverSlicer generates marshaling
code to allow reading and/or writing the new variables in
the decaf driver.

5.3 Mixing C and Java

A substantial portion of the Decaf architecture is devoted
to enabling a mix of Java and C to execute at user level.
We have found two reasons to support both languages.
First, when migrating code to Java, it is convenient to
move one function at a time and then test the system,
rather than having to convert all functions at once (as re-
quired by most user-level driver frameworks). This code
is temporary and exists only during the porting process.
We initially ran all user-mode E1000 functions in this
mode and then incrementally converted them to Java,
starting with leaf functions and then advancing up the
call graph. Our current implementation has no driver
functionality implemented in the driver library.

Jeannie makes this transition phase simple because of
its ability to mix Java and C code without explicitly us-

ing the Java Native Interface. The ability to execute ei-
ther Java or C versions of a function during development
greatly simplified conversion, as it allowed us to elimi-
nate any new bugs in our Java implementation by com-
paring its behavior to that of the original C code.

Second, and more important, there may be function-
ality necessary for communicating with the kernel or the
device that is not possible to express in Java. These func-
tions are helper routines that do not contain driver logic
but provide an escape from the limits of a managed lan-
guage. Some examples we have observed include access-
ing the sizeof() operator in C, which is necessary for
allocating some kernel data structures, and for perform-
ing programmed I/O with I/O ports or memory-mapped
I/O regions. While some languages, including C, sup-
port unsafe memory access, Java does not. However, we
found that none of these helper routines are specific to
the E1000 driver, and as a result placed them in the decaf
runtime to be shared with other decaf drivers. As be-
fore, Jeannie makes using these helper routines in Java a
straightforward matter.

Jeannie also simplifies the user-level stub functions
significantly. These stubs include a simple mixture of
C and Java code, whereas using JNI directly would sig-
nificantly complicate the stubs.

6 Related Work
Decaf Drivers differs from past work on driver reliability
and type-safe kernel programming in many respects. Un-
like past approaches that are either compatible or trans-
formative, we desire both compatibility with existing
code and the opportunity to completely rewrite drivers.

Driver reliability. Driver reliability systems focus on
tolerating faults in existing drivers with hardware mem-
ory protection [45, 50], language-based isolation [52], or
private virtual machines [17, 18, 27]. However, these
systems all leave driver code in C and in the kernel and
thus do not ease driver programming.

Driver safety. Another approach to improving relia-
bility is to prevent drivers from executing unsafe ac-
tions. Safety can be achieved by executing drivers in
user mode [21, 26], with type safety in the kernel [9],
or by formally verifying driver safety [41]. However,
these approaches either require writing a completely new
driver, or rewriting the entire kernel. With Decaf Drivers,
drivers may be incrementally converted to any language
because C is still available for helper routines.

Simplifying driver code. Many projects promise to
simplify driver programming through new driver inter-
faces [3, 33, 38, 25, 51, 42, 30]. These systems of-
fer advanced languages [51, 42]; domain-specific lan-
guages for hardware access [30] and for common driver
logic [7, 10]; simplified programming interfaces at user-

USENIX Association	 2009 USENIX Annual Technical Conference	 199

level [3, 8, 33]; and cross-platform interfaces [38, 25].
Like Decaf Drivers, Linux UIO drivers leave part of
the driver in the kernel, while the bulk executes at user
level [47]. Coccinelle [37] simplifies patching a large set
of drivers at once. The features offered by these systems
are complementary to Decaf Drivers, and the ability to
gradually rewrite driver code in a new language may pro-
vide a route to their use. However, these systems either
require writing new drivers for a new interface, or they
simplify existing drivers but not enough: drivers are left
in C and in the kernel.

Type-safe kernel programming. SPIN [23], the J Ker-
nel [48], and Singularity [24] have kernels written in
type safe languages. More recently, a real-time JVM was
ported to the Solaris kernel [36]. In contrast to these sys-
tems, Decaf Drivers enables the use of modern languages
for drivers without rewriting or substantially adding to
the OS kernel.

7 Conclusion
Device drivers are a major expense and cause of failure
for modern operating systems. With Decaf Drivers, we
address the root of both problems: writing kernel code in
C is hard. The Decaf architecture allows large parts of
existing drivers to be rewritten in a better language, and
supports incrementally converting existing driver code.
Drivers written for Decaf retain the same kernel inter-
face, enabling them to work with unmodified kernels,
and can achieve the same performance as kernel drivers.
Furthermore, tool support automates much of the task of
converting drivers, leaving programmers to address the
driver logic but not the logistics of conversion.

Writing drivers in a type-safe language such as Java
provides many concrete benefits to driver programmers:
improved reliability due to better compiler analysis, sim-
plified programming due to richer runtime libraries, and
better error handling with exceptions. In addition, many
tools for user-level Java programming may be used for
debugging.

Acknowledgments. We would like to thank our shep-
herd, Robert Grimm, for his useful comments and for
his help, along with Martin Hirzel, in resolving Jeannie
bugs. This work was supported in part by NSF grant
CSR 0745517. Swift has a financial interest in Microsoft
Corp.

References
[1] H. Albrecht. Remote Tea.

http://remotetea.sourceforge.net/.

[2] J. Allchin. Windows Vista team blog: Up-
dating a brand-new product, Nov. 2006.
http://windowsvistablog.com/blogs/windowsvista/archive/
2006/11/17/updating-a-brand-new-product.aspx.

[3] F. Armand. Give a process to your drivers! In Proc. of
the EurOpen Autumn 1991, Sept. 1991.

[4] A. D. Birrell and B. J. Nelson. Implementing remote pro-
cedure calls. ACM Transactions on Computer Systems,
2(1):39–59, Feb. 1984.

[5] E. Brewer, J. Condit, B. McCloskey, and F. Zhou. Thirty
years is long enough: getting beyond c. In Proc. of the
Tenth IEEE HOTOS, 2005.

[6] A. Catorcini, B. Grunkemeyer, and B. Grunkemeyer.
CLR inside out: Writing reliabile .NET code. MSDN
Magazine, Dec. 2007. http://msdn2.microsoft.com/en-
us/magazine/cc163298.aspx.

[7] P. Chandrashekaran, C. Conway, J. M. Joy, and S. K. Ra-
jamani. Programming asynchronous layers with CLAR-
ITY. In Proc. of the 15th ACMFSE, Sept. 2007.

[8] P. Chubb. Get more device drivers out of the kernel! In
Ottawa Linux Symp., 2004.

[9] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the real world. In Proc. of the
ACM SIGPLAN ’03 ACM Conference on Programming
Language Design and Implementation, June 2003.

[10] C. L. Conway and S. A. Edwards. NDL: a domain-
specific language for device drivers. In Proc. of the ACM
SIGPLAN/SIGBED Conference on Languages, Compil-
ers, and Tools for Embedded Systems, June 2004.

[11] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux De-
vice Drivers, 3rd Edition. O’Reilly Associates, Feb. 2005.

[12] I. N. Division. Netperf: A network performance bench-
mark. http://www.netperf.org.

[13] M. Eisler. XDR: External data representation standard.
RFC 4506, Internet Engineering Task Force, May 2006.

[14] J. Elson. FUSD: A Linux framework for user-space de-
vices, 2004. User manual for FUSD 1.0.

[15] D. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent
behavior: A general approach to inferring errors in sys-
tems code. In Proc. of the 18th ACM SOSP, Oct. 2001.

[16] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: software guards for system address spaces.
In Proc. of the 7th USENIX OSDI, 2006.

[17] Ú. Erlingsson, T. Roeder, and T. Wobber. Virtual environ-
ments for unreliable extensions. Technical Report MSR-
TR-05-82, Microsoft Research, June 2005.

[18] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. In Workshop on Operating Sys-
tem and Architectural Support for the On-Demand IT In-
frastructure, 2004.

[19] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M.
Swift, and S. Jha. The design and implementation of mi-
crodrivers. In Proc. of the Thirteenth ACM ASPLOS, Mar.
2008.

[20] B. Goetz. Plugging memory leaks with weak refer-
ences. http://www.ibm.com/developerworks/java/library/j-
jtp11225/index.html, 2005.

200	 2009 USENIX Annual Technical Conference	 USENIX Association

[21] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Failure resilience for device drivers. In Proc.
of the 2007 IEEE DSN, June 2007.

[22] M. Hirzel and R. Grimm. Jeannie: Granting Java native
interface developers their wishes. In Proc. of the ACM
OOPSLA ’07, Oct. 2007.

[23] W. Hsieh, M. Fiuczynski, C. Garrett, S. Savage,
D. Becker, and B. Bershad. Language support for ex-
tensible operating systems. In Proc. of the Workshop on
Compiler Support for System Software, Feb. 1996.

[24] G. Hunt, J. Larus, M.Abadii, M. A. andPP. Barham,
M. Fähdrich, C. Hawblitzel, O. Hodson, S. L. andNi.
Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and
B. Zill. An overview of the Singularity project. Techni-
cal Report MSR-TR-2005-135, Microsoft Research, Oct.
2005.

[25] Jungo. Windriver cross platform device driver develop-
ment environment. Technical report, Jungo Corporation,
Feb. 2002. http://www.jungo.com/windriver.html.

[26] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved perfor-
mance. Jour. Comp. Sci. and Tech., 20(5), 2005.

[27] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodified
device driver reuse and improved system dependability
via virtual machines. In Proc. of the 6th USENIX OSDI,
2004.

[28] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in operating
system code. In Proc. of the 6th USENIX OSDI, 2004.

[29] R. Love. Kernel locking techniques. Linux Journal, Aug.
2002. http://www.linuxjournal.com/article/5833.

[30] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming.
In Proc. of the 4th USENIX OSDI, Oct. 2000.

[31] Microsoft Corp. PREfast for drivers.
http://www.microsoft.com/whdc/devtools/tools/prefast.mspx.

[32] Microsoft Corporation. Windows Server 2003 DDK.
http://www.microsoft.com/whdc/DevTools/ddk/default.mspx,
2003.

[33] Microsoft Corporation. Architecture
of the user-mode driver framework.
http://www.microsoft.com/whdc/driver/wdf/UMDF-
arch.mspx, May 2006. Version 0.7.

[34] Microsoft Corporation. Interoperating with un-
managed code. http://msdn.microsoft.com/en-
us/library/sd10k43k(VS.71).aspx, 2008.

[35] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and
transformation of C programs. In Intl. Conf. on Compiler
Constr., 2002.

[36] T. Okumura, B. R. Childers, and D. Mosse. Running a
Java VM inside an operating system kernel. In Proc. of
the 4th ACM VEE, Mar. 2008.

[37] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
linux device drivers. In Proc. of the 2008 EuroSys Con-
ference, apr 2008.

[38] Project UDI. Uniform Driver Interface: Introduction to
UDI version 1.0. http://udi.certek.cc/Docs/pdf/UDI tech -
white paper.pdf, Aug. 1999.

[39] D. Richie. The Unix tree: the ’nsys’ kernel, Jan. 1999.
http://minnie.tuhs.org/UnixTree/Nsys/.

[40] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Tam-
ing device drivers. In Proc. of the 2009 EuroSys Confer-
ence, Apr. 2009.

[41] L. Ryzhyk, I. Kuz, and G. Heiser. Formalising device
driver interfaces. In Proc. of the Workshop on Program-
ming Languages and Systems, Oct. 2007.

[42] M. Spear, T. Roeder, O. Hodson, G. Hunt, and S. Levi.
Solving the starting problem: Device drivers as self-
describing artifacts. In Proc. of the 2006 EuroSys Con-
ference, Apr. 2006.

[43] Sun Microsystems. UNIX programmer’s supple-
mentary documents: rpcgen programming guide.
http://docs.freebsd.org/44doc/psd/22.rpcgen/paper.pdf.

[44] M. Susskraut and C. Fetzer. Automatically finding and
patching bad error handling. In Proceedings of the Sixth
European Dependable Computing Conference, 2006.

[45] M. M. Swift, B. N. Bershad, and H. M. Levy. Improv-
ing the reliability of commodity operating systems. ACM
Transactions on Computer Systems, 23(1), Feb. 2005.

[46] L. Torvalds. Linux kernel source tree.
http://www.kernel.org.

[47] L. Torvalds. UIO: Linux patch for user-mode I/O, July
2007.

[48] T. von Eicken, C.-C. Chang, G. Czajkowski, C. Haw-
blitzel, D. Hu, and D. Spoonhower. J-Kernel: a
capability-based operating system for Java. In Secure In-
ternet Programming: Security Issues for Distributed and
Mobile Objects, volume 1603 of LNCS, pages 369–393.
Springer-Verlag, 1999.

[49] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference val-
idation mechanism. In Proc. of the 8th USENIX OSDI,
Dec. 2008.

[50] E. Witchel, J. Rhee, and K. Asanovic. Mondrix: Memory
isolation for Linux using Mondriaan memory protection.
In Proc. of the 20th ACM SOSP, 2005.

[51] H. Yamauchi and M. Wolczko. Writing Solaris device
drivers in Java. Technical Report TR-2006-156, Sun Mi-
crosystems, Apr. 2006.

[52] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe
and recoverable extensions using language-based tech-
niques. In Proc. of the 7th USENIX OSDI, 2006.

USENIX Association	 2009 USENIX Annual Technical Conference	 201

Rump File Systems: Kernel Code Reborn

Antti Kantee
Helsinki University of Technology

pooka@cs.hut.fi

Abstract
When kernel functionality is desired in userspace, the
common approach is to reimplement it for userspace in-
terfaces. We show that use of existing kernel file sys-
tems in userspace programs is possible without modify-
ing the kernel file system code base. Two different op-
erating modes are explored: 1) a transparent mode, in
which the file system is mounted in the typical fashion
by using the kernel code as a userspace server, and 2) a
standalone mode, in which applications can use a kernel
file system as a library. The first mode provides isola-
tion from the trusted computing base and a secure way
for mounting untrusted file systems on a monolithic ker-
nel. The second mode is useful for file system utilities
and applications, such as populating an image or view-
ing the contents without requiring host operating system
kernel support. Additional uses for both modes include
debugging, development and testing.
The design and implementation of the Runnable

Userspace Meta Program file system (rump fs) frame-
work for NetBSD is presented. Using rump, ten disk-
based file systems, a memory file system, a network file
system and a userspace framework file system have been
tested to be functional. File system performance for an
estimated typical workload is found to be ±5% of ker-
nel performance. The prototype of a similar framework
for Linux was also implemented and portability was ver-
ified: Linux file systems work on NetBSD and NetBSD
file systems work on Linux. Finally, the implementation
is shown to be maintainable by examining the 1.5 year
period it has been a part of NetBSD.

1 Introduction

Motivation. “Userspace or kernel?” A typical case
of driver development starts with this exact question.
The tradeoffs are classically well-understood: speed, ef-
ficiency and stability for the kernel or ease of program-

ming and a more casual development style for userspace.
The question stems from the different programming en-
vironments offered by the two choices. Even if code
written for the kernel is designed to be run in userspace
for testing, it is most likely implemented with #ifdef,
crippled and does not support all features of kernel mode.
Typical operating system kernels offer multitudes of

tested and working code with reuse potential. A good
illustration is file system code, which in the case of most
operating systems also comes with a virtual file system
abstraction [18] making access file system independent.
By making kernel file systems function in userspace,

existing code can be utilized for free in applications. We
accomplished this by creating a shim layer to emulate
enough of the kernel to make it possible to link and run
the kernel file system code. Additionally, we have cre-
ated supplementary components necessary to integrate
the file system code with a running system, i.e. mount it
as a userspace file server. Our scheme requires no modi-
fications to existing kernel file system code.
We define a Runnable Userspace Meta Program

file system (rump fs) to be kernel file system code used
in a userspace application or as a userspace file server.
Results. NetBSD [20] is a free 4.4BSD derived OS run-
ning on over 50 platforms and used in the industry es-
pecially in embedded systems and servers. A real world
usable implementation of rump file systems, included in
NetBSD since August 2007, has been written.
The following NetBSD kernel file systems are us-

able and mountable in userspace without source mod-
ifications: cd9660, EFS, Ext2fs, FFS, HFS+, LFS,
MSDOSFS, NFS (client1), NTFS, puffs, SysVBFS,
tmpfs, and UDF. All are supported from the same code-
base without file system specific custom code.

Additionally, a quick prototype of a similar system
for the Linux kernel was implemented. Under it, the
relatively simple jffs2 [31] journaling file system from
the Linux kernel is mountable as a userspace server on
NetBSD. Other Linux file systems could also be made

202	 2009 USENIX Annual Technical Conference	 USENIX Association

to work using the same scheme, but since they are more
complex than jffs2, additional effort would be required.

Finally, we introduce the fs-utils suite and an improved
makefs utility [19]. Both use rump for generic file sys-
tem access and do not implement private userspace file
system drivers. In contrast, software packages such as
mtools and e2fsprogs reimplement thousands of lines of
file system code to handle a single file system.
Contributions. This paper shows that it is possible and
convenient to run pre-existing kernel file system code in
a userspace application. This approach has been desired
before: Yang et al. described it as ideal for their needs
but rated implementation hopelessly difficult [32].

We also describe a way to make a monolithic style ker-
nel operate like a multiserver microkernel. In contrast to
previous work, our approach gives the user the choice of
micro- or monolithic kernel operation, thereby avoiding
the need for the performance discussion.
The paper also shows it is possible to use kernel code

in userspace on top of a POSIX environment irrespec-
tive of the kernel platform the code was originally writ-
ten for. This paves way to thinking about kernel modules
as reusable operating system independent components.
Userspace file systems. This paper involves file systems
in userspace but it is not a paper on userspace fs frame-
works. Userspace fs frameworks provide a programming
interface for the file server to attach to and a method for
transporting file system requests in and out of the ker-
nel. This paper explores running kernel file system code
as an application in userspace. Our approach requires
a userspace fs framework only in case mounting the re-
sulting rump file system is desired. The choice of the
framework is mostly orthogonal. puffs [15] was chosen
because of the author’s familiarity and because it is the
native solution on NetBSD. Similarly, would the focus
of implementation have been Linux or Windows NT, the
choice could have been FUSE [28] or FIFS [3].
Paper organization. The rest of this paper is orga-
nized as follows: Section 2 deals with architecture is-
sues. Some major details of the implementation are dis-
cussed in Section 3. The work is measured and evaluated
in Section 4. Section 5 surveys related work and finally
Section 6 provides conclusions and outlines future work.

2 Architecture

Before going into details about the architecture of the
implementation, let us recall how file systems are imple-
mented in a monolithic kernel such as NetBSD or Linux.

• The interface through which the file system is ac-
cessed is the virtual file system interface [18]. It
provides virtual nodes as abstract objects for access-
ing files independent of the file system type.

• To access the file system backend, the file system
implementation uses the necessary routines from
the kernel. These are for example the disk driver for
a disk-based file system such as FFS, sockets and
the networking stack for NFS or the virtual memory
subsystem for tmpfs [27]. Access is usually done
through the buffer cache.

• For file content caching and memory mapped I/O a
file system is heavily tied to the virtual memory sub-
system [25]. In addition to the pager’s get and put
routines, various supporting routines are required.
This integration also provides the page cache.

• Finally, a file system uses various kernel services.
Examples range from a hashing algorithm to timer
routines and memory allocation. The kernel also
performs access brokering and makes sure the same
image is not mounted twice.

If the reuse of file system code in userspace is desired,
all of these interfaces must be provided in userspace. As
most parts of the kernel do not have anything to do with
hardware but rather just implement algorithms, they can
be simply linked to a userspace program. We define such
code to be environment independent (EI). On the other
hand, for example device drivers, scheduling routines
and CPU routines are environment dependent (ED) and
must be reimplemented.

2.1 Kernel and Userspace Namespace
To be able to understand the general architecture, it is
important to note the difference between the namespaces
defined by the C headers for kernel and for user code.
Selection of the namespace is usually done with the pre-
processor, e.g. -D KERNEL. Any given module must be
compiled in either the kernel or user namespace. After
compilation the modules from different namespaces can
be linked together, assuming that the application binary
interface (ABI) is the same.
To emulate the kernel, we must be able to make user

namespace calls, such as memory allocation and I/O.
However, code cannot use kernel and user namespaces
simultaneously due to collisions. For example, on a
BSD-based system, the libc malloc() takes one pa-
rameter while the kernel interface takes three. To solve
the problem, we identify components which require the
kernel namespace and components which require the
user namespace and compile them as separate compila-
tion units. We let the linker handle unification.
The namespace collision issue is even more severe if

we wish to use rump file systems on foreign platforms.
We cannot depend on anything in the NetBSD kernel
namespace to be available on other systems. Worse,

USENIX Association	 2009 USENIX Annual Technical Conference	 203

app

syscall entry
vfs

kernel fs
kernel

app

syscall entry
vfs

puffs
kernel

libpuffs
libp2k

kernel fs
librump

app
libukfs

kernel fs
librump

user

kernel

Case 0: Regular
File System

Case 1: Mounted rump
File System Using puffs

Case 2: Standalone rump
File System Using ukfs

Figure 1: Rump File System Architecture

we cannot include any headers from the NetBSD ker-
nel namespace in applications on other platforms, since
it will create conflicts. For example, think what will
happen if an application includes both the native and
NetBSD <sys/stat.h>. To address this, we provide
a namespace which applications can use to make calls
to the rump kernel namespace. For example, the ker-
nel vnode operation VOP READ() is available under the
name RUMP VOP READ().

2.2 Component Overview
The architecture of the framework is presented in Fig-
ure 1 using three different cases to illuminate the situ-
ation. Analogous parts between the three are signaled.
The differences are briefly discussed below before mov-
ing to further dissect the components and architecture.
Regular File System (Case 0). To give context, “Regu-
lar File System” shows a file system in the kernel. Re-
quests from an application are routed through the system
call layer and vfs to be handled by the file system driver.
Mounted rump File System Using puffs (Case 1).
From the application perspective, a mounted rump file
system behaves like the same file system running in the
kernel. The NetBSD userspace file systems framework,
puffs [15], is used to attach the file system to the kernel.
Standalone rump File System Using ukfs (Case 2). A
standalone rump file system is not mounted into the file
system namespace. Rather, applications use a special
API to mount and access the file system. While this re-
quires code level awareness, it allows complete freedom,
including the ability to target a certain file system and
make calls past the virtual file system abstraction. The
key benefits of standalone rump file systems are that they
do not require kernel support or the use of operations nor-
mally reserved for the superuser, e.g. mount().

int rumpuser_gettimeofday(struct timeval *tv,
int *error);

ssize_t rumpuser_pread(int fd, void *buf,
size_t bufsize, off_t offset, int *error);

int rumpuser_thread_create(void *(*f)(void*), void*);

void rumpuser_mutex_enter(struct rumpuser_mtx *);

Figure 2: Examples of rumpuser interfaces

2.3 The File System Driver
The file system driver is compiled as a regular userspace
shared library. It can be linked directly into the file server
or loaded dynamically at runtime using dlopen().

2.4 librump
The interfaces required by a file system were classified
in the beginning of Section 2. The component to pro-
vide these interfaces in the absence of the real kernel is
librump. It emulates enough of the kernel environment
for the file system code to be able to run.
To solve the namespace problem described in Sec-

tion 2.1, librump is split into two: rumpkern and
rumpuser. The first is compiled as a kernel component
and the latter as a userspace component. Both must be
linked into rump file systems.

Figure 2 presents examples of routines provided by
rumpuser. There are two main classes of calls provided
by rumpuser: system calls and thread library calls. Ad-
ditionally, support calls such as memory allocation exist.
A convenient observation is to note that the file sys-

tems only call routines within themselves and interfaces
in our case provided by rumpkern. Rumpkern only calls
routines within itself, the file system (via callbacks) and

204	 2009 USENIX Annual Technical Conference	 USENIX Association

Component # of lines
rumpuser 491
rumpkern (ED) 3552
std kern (EI) 27137
puffs (kernel) 3411
FFS 14912

Table 1: rump library size analysis

rumpuser. Therefore, by closure, rumpuser is the com-
ponent defining the portability of a rump file system.

Librump was engineered bottom-up to provide kernel
interfaces for file systems. Most of the interfaces could
be used from the kernel source tree as such (environ-
ment independent), but some had to be reimplemented
for userspace (environment dependent). For example, the
vm subsystem was completely reimplemented for rump
and could be simplified from tens of thousands of lines of
code to just hundreds of lines because of most vm func-
tionality being irrelevant in userspace. Table 1 shows ef-
fort in lines of code without comments or empty lines.
Two kernel file systems are included for comparison.
Code size is revisited in Section 4.5.

2.5 libp2k
Mounted rump file systems (Case 1, Figure 1) use the
NetBSD userspace file systems framework, puffs [15].
We rely on two key features. The first one is transporting
file system requests to userspace, calling the file server,
and sending the results back. The second one is handling
an abruptly unmounted file system, such as a file server
crash. The latter prevents any kernel damage in the case
of a misbehaving file server.

puffs provides an interface for implementing a
userspace file systems. While this interface is clearly
heavily influenced by the virtual file system interface,
there are multiple differences. For example, the ker-
nel virtual file system identifies files by a struct
vnode pointer, whereas puffs identifies files using a
puffs cookie t value. Another example of a param-
eter difference is the struct uio parameter. In the
kernel this is used to inform the file system how much
data to copy and in which address space. puffs passes
this information to the read interface as a pointer where
to copy to along with the byte count - the address space
would make no difference since a normal userspace pro-
cess can only copy to addresses mapped in its vmspace.
In both cases the main idea is the same but details differ.
The p2k, or puffs-to-kernel, library is a request transla-

tor between the puffs userspace file system interface and
the kernel virtual file system interface. It also interprets
the results from the kernel file systems and converts them

int
p2k_node_read(struct puffs_usermount *pu,

puffs_cookie_t opc, uint8_t *buf,
off_t offset, size_t *resid,
const struct puffs_cred *pcr, int ioflag)

{
kauth_cred_t cred;
struct uio *uio;
int rv;

cred = cred_create(pcr);
uio = rump_uio_setup(buf, *resid, offset,

RUMPUIO_READ);
VLS(opc);
rv = RUMP_VOP_READ(opc, uio, ioflag, cred);
VUL(opc);
*resid = rump_uio_free(uio);
cred_destroy(cred);
return rv;

}

Figure 3: p2k node read() Implementation

back to a format that puffs understands.
To give an example of p2k operation, we discuss

reading a file. This is illustrated by the p2k read rou-
tine in Figure 3. We see the uio structure created by
rump uio setup() before calling the vnode operation
and freed after the call while saving the results. We
also notice the puffs credit type being converted to the
opaque kauth cred t type used in the kernel. This is done
by the p2k library’s cred create() routine, which in
turn uses rump cred create(). The VLS() and VUL()
macros in p2k to deal with NetBSD kernel virtual file
system locking protocol. They take a shared (read) lock
on the vnode and unlock it, respectively.

Mount utilities and file servers

Standard kernel file systems are mounted with utilities
such as mount efs, mount tmpfs, etc. These util-
ities parse the command line arguments and call the
mount() system call.
Our equivalent mountable rump file system counter-

parts are called rump efs, rump tmpfs, etc. Instead
of calling the regular mount call, they attach to the sys-
tem by p2k and rump. To maximize integration, these
file servers share the same command line argument pars-
ing code with the regular mount utilities. This was done
by restructuring the mount utilities to provide an inter-
face for command line argument parsing.

Sharing the argument parsing means that the
file servers have the same syntax and makes usage in-
terchangeable just by altering the command name. We
also modified the system to handle a rump option in
/etc/fstab. This allows to toggle certain mount-
points such as USB devices and CD/DVD to be handled
using rump file systems by just adding one option.

USENIX Association	 2009 USENIX Annual Technical Conference	 205

struct ukfs *ukfs_mount(const char *fstype,
const char *devpath, const char *mntpath,
int mntflag, void *arg, size_t arglen);

int ukfs_modload(const char *libpath);
int ukfs_modload_dir(const char *directory);

ssize_t ukfs_read(struct ukfs *u, const char *file,
off_t off, uint8_t *buf, size_t bufsize);

int ukfs_rmdir(struct ukfs *u, const char *dir);

Figure 4: Examples of ukfs interfaces

2.6 libukfs
The ukfs library, or user-kernel file system, provides a
standalone approach (Case 2 from Figure 1). Two classes
of interfaces are provided by libukfs, both having exam-
ples in Figure 4, and are discussed below:
Initialization. To use a file system, it must be virtually
mounted. The mount call returns a struct ukfs han-
dle which is passed to all other calls. This handle is anal-
ogous to the mountpoint path in a mounted file system.
Additionally, routines for dynamically loading file

system libraries are provided. This is similar to loading
kernel modules, but since we are in userspace, dlopen()
is used for loading.
File system access. Accessing file system contents is
done with calls in this class. Most calls have an interface
similar to system calls, but as they are self-contained,
they take a filename instead of for example requiring a
separate open before passing a file descriptor to a call.
The rootpath is the root of the file system, but the li-
brary provides tracking of the current working directory,
so passing non-absolute paths is possible.

If an application wishes to do low level calls such as
vfs operations for performance or functionality reasons,
it is free to do so even if it additionally uses ukfs routines.

3 Implementation

This section deals with major points of interest in the
implementation. While the discussion is written with
NetBSD terminology, it attempts to take into account the
general case with all operating systems.

3.1 Disk Driver
A disk block device driver provides storage medium ac-
cess and is instrumental to the operation of disk-based
file systems. The main interface is simple: a request in-
structs the driver to read or write a given number of sec-
tors at a given offset. The disk driver queues the request
and returns. The request is handled in an order according
to a set policy, e.g. the disk head elevator. The request

must be handled in a timely manner, since during the pe-
riod that the disk driver is handling the request the object
the data belongs to (e.g. vm page) is held locked. Once
the request is complete, the driver signals the kernel that
the request has been completed. In case the caller waits
for the request to complete, the request is said to be syn-
chronous, otherwise asynchronous.
There are two types of backends: buffered and un-

buffered. A buffered backend stores writes to a buffer
and flushes them to storage later. An unbuffered backend
will write to storage immediately. Examples are a regular
file and a character device representing a disk partition,
respectively. A block driver signals a completed write
only after data has hit the disk. This means that a disk
driver operating in userspace must make sure the data is
not still in a kernel cache before it issues the signal.
There are three approaches to implementing the block

driver using standard userspace interfaces.

• Use read() and write() in caller context: this
is the simplest method. However, it effectively
makes all requests synchronous and kills write per-
formance.

• Asynchronous read/write: in this model the re-
quest is handed off to an I/O thread. When the re-
quest has been completed, the I/O thread issues an
“interrupt” to signal completion.
A buffered backend must flush synchronously ex-
ecuted writes. The only standard interface avail-
able for this is fsync(). However, it will flush
all buffered data before returning, including previ-
ous asynchronous writes. Non-standard ranged in-
terfaces such as fsync_range() exist, but they
usually flush at least some file metadata in addition
the the actual data causing extra unnecessary I/O.
A userlevel write to an unbuffered backend goes di-
rectly to storage. The system call will return only
after the write has been completed. No flushing
is required, but since userlevel I/O is serialized in
Unix, it is not possible to issue another write before
the first one finishes. This means that a synchronous
write must block and wait until an ongoing asyn-
chronous write has been fully executed.
The O_DIRECT file descriptor flag causes a write
on a buffered backend to bypass cache and go di-
rectly to storage. The use of the flag also invali-
dates the cache for the written range, so it is safe to
use in conjunction with buffered I/O. However, the
flag is advisory. If conditions are not met, the I/O
will silently fall back to the buffer. This method can
therefore be used only when it applies for sure.

• Memory-mapped I/O: this method works only for
regular files. The benefits are that the medium ac-

206	 2009 USENIX Annual Technical Conference	 USENIX Association

cess fastpath does not involve any system calls and
that the msync() system call can be portably used
to flush ranges instead of the whole memory cache.

The file can be mapped using windows. This pro-
vides two advantages. First, files larger than the
available VA can be used. Second, in case of a
crash, the core dump is only increased by the size of
the windows instead of the size of the image. This is
a very important pragmatic benefit. We found that
the number of windows does not make a huge dif-
ference; we default to 16 1MB windows with LRU.

The downside of the memory mapping approach is
that to overwrite data, the contents must first be
paged in, then modified, and only after that writ-
ten. This is to be contrasted to explicit I/O requests,
where it is possible to decide if a whole page is be-
ing overwritten, and skip pagein before overwrite.

Of the above, we found that on buffered backends
O_DIRECT works best. Ranged syncing and memory
mapped I/O have roughly equal performance and full
syncing performs poorly. The disk driver question is re-
visited in Section 4.6, where we compare performance
against a kernel mount.

3.2 Locking and Multithreading
File systems make use of locking to avoid data corrup-
tion. Most file systems do not create separate threads, but
use the context of the requesting thread to do the opera-
tions. In case of multiple requests there may be multiple
threads in the file system and they must synchronize ac-
cess. Also, some file systems create explicit threads, e.g.
for garbage collection.
To support multithreaded file systems in userspace, we

must solve various subproblems: locks, threads, legacy
interfaces and the kernel giantlock. We rely on the
userspace pthread library instead of implementing our
own set of multithreading and synchronization routines.
Locks and condition variables. There are three differ-
ent primitives in NetBSD: mutexes, rwlocks and condi-
tion variables. These map to pthread interfaces. The
only differences are that the kernel routines are of type
void while the pthread routines return a success value.
However, an error from e.g. pthread mutex lock()
means a program bug such as deadlock and in case of
failure, the program is aborted and core is dumped.
Threads. The kernel provides interfaces to create and
destroy threads. Apart from esoteric arguments such as
binding the thread to a specific CPU, which we ignore,
the kernel interfaces can be mapped to a pthread library
calls. This means that kthread_create() will call
pthread create() with suitable arguments.

Kernel giantlock. Parts of the NetBSD kernel not con-
verted to fine grained locking are still under the kernel
biglock. This lock is special, as it is recursive and must
be completely released when blocking. As all the system
calls rump makes are in rumpuser, the blocking points
are there also. We wrap the potentially blocking calls to
drop and retake the biglock.
Legacy interfaces A historic BSD interface still in use
in some parts of the kernel is tsleep(). It is a facil-
ity for waiting for events and maps to pthread condition
variables.
Observations. It is clear that the NetBSD kernel and
pthread locking and threading interfaces are very close to
each other. However, there are minimal differences such
as the naming and of course under the hood the imple-
mentations are different. Providing a common interface
for both [8] would be a worthwhile exercise in engineer-
ing for a platform where this was not considered initially.

3.3 puffs as a rump file system

Using rump, puffs can be run in userspace on top of rump
and a regular userspace file system on top of it. It gives
the benefit of being able to access any file system via
ukfs, regardless of whether it is a kernel file system or a
userspace file system. Since puffs provides emulation for
the FUSE interface [16] as well, any FUSE file system
is usable through the same interface too. For instance, a
utility which lists the directory tree of a file system works
regardless of if the file system is the NetBSD kernel FFS
or FUSE ntfs-3g.
Naturally, it would be possible to call userspace file

system interfaces from applications without a system as
complex as rump. However, since we already do have
rump, we can provide total integration for all file sys-
tems with this scheme. It would be entirely possible to
make ukfs use different callpaths based on the type of
file system used. However, that would require protocol
conversion in ukfs to e.g. FUSE. Since the puffs stack
already speaks all the necessary protocols, it is more el-
egant to run everything through it.

3.4 Installation and Linking

Rump file systems are installed for userspace consumers
as a number of separate libraries. The base libraries are:
librump (rumpkern), librumpuser (rumpuser), libukfs
and libp2k. Additionally, there are all the individual file
system drivers such as librumpfs efs, librumpfs ntfs and
so forth. To use rump file systems, the base libraries
should be linked in during compilation. The file system
driver libraries may be linked in during compilation or
loaded dynamically.

USENIX Association	 2009 USENIX Annual Technical Conference	 207

The NetBSD kernel expects all built-in file systems to
be stored in a link set for bootstrap initialization. A link
set is a method for a source module to store information
to a specific section in the object. A static linker unifies
the section contents from all source modules into a link
set when the program is linked. However, this scheme is
not fully compatible with dynamic linking: the dynamic
loader would have to create storage to accommodate for
section information from each shared library. We discov-
ered that a link set entry only from the first shared library
on the linker command line is present runtime. We could
have attempted to modify the dynamic linker to support
this non-standard feature, but instead we chose to require
dynamic loading of file systems when support for more
than one is required. Loading is done using the ukfs in-
terfaces described in Section 2.6.
Since the kernel environment is in constant flux, the

standard choice of bumping the major library version for
each ABI change did not seem reasonable. Instead, cur-
rently the compatibility between librump and the file sys-
tem libraries is handled exactly like for kernel modules:
both librump and the file system libraries are embedded
with the ABI version they were built against. When a
file system library is attached to librump the versions are
compared and if incompatible the attach routine returns
EPROGMISMATCH.

3.5 Foreign Platforms
Different kernel version. An implication of rump file
systems is the ability to use file system code from a dif-
ferent OS version. While it is possible to load and unload
kernel modules on the fly, they are closely tied by the
kernel ABI. Since a rump file system is a self-contained
userspace entity, it is possible to use a file system from a
newer or older kernel. Reasons include taking advantage
of a new file system feature without having to reboot or
avoiding a bug present in newer code.
NetBSD rump file systems on Linux. This means us-
ing NetBSD kernel file systems on a Linux platform. As
Linux does not support puffs, libp2k cannot be used. A
port to FUSE would be required. Despite this, the file
system code can be used via ukfs and accessing a file
system using NetBSD kernel code on Linux has been
verified to work. A notable fact is that structures are
returned from ukfs using the ABI from the file system
platform, e.g. struct dirent is in NetBSD format
and must be interpreted by callers as such. Eventually, a
component translating structures between different oper-
ating systems will be provided.
Linux kernel file systems on NetBSD. Running Linux
kernel file systems on NetBSD is interesting because
there are several file systems written against the Linux
kernel which are not available natively in NetBSD or in

more portable environments such as userspace via FUSE.
Currently, our prototype Linux implementation supports
only jffs2 [31]. This file system was chosen as the initial
target because of its relative simplicity and because it has
potential real-world use in NetBSD, as NetBSD lacks a
wear-leveling flash file system.

An emulation library targeted for Linux kernel inter-
faces, lump, was created from scratch. In addition, a
driver emulating the MTD flash interface used by jffs2
for the backend storage was implemented.

Finally, analogous to libp2k, we had to match the in-
terface of puffs to the Linux kernel virtual file system
interface. The main difference was that the Linux kernel
has the dcache name cache layer in front of the virtual
file system nodes instead of being controlled from within
each file system individually. Other tasks were straight-
forward, such as converting the struct kstat type
received from Linux to the struct vattr type ex-
pected by puffs and the NetBSD kernel.
ABI Considerations. Linking objects compiled against
NetBSD headers to code compiled with Linux headers is
strictly speaking not correct: there are no guarantees that
the application binary interfaces for both are identical
and will therefore work when linked together. However,
the only problem encountered when testing on i386 hard-
ware was related to the off_t type. On Linux, off_t
is 32bit by default, while it is 64bit on NetBSD. Making
the type 64bit on Linux made everything work.

If mixing components from different NetBSD ver-
sions, care must be taken. For example, time_t in
NetBSD was recently changed from 32bit to 64bit. We
must translate time_t in calls crossing this boundary.

4 Evaluation

To evaluate the usefulness of rump file systems, we dis-
cuss them from the perspectives of security, develop-
ment uses, application uses, maintenance cost, and per-
formance. We estimate the differences between a rump
environment and a real kernel environment and the im-
pact of the differences and provide anecdotal information
on fixing several real world bugs using rump file systems.

4.1 Security
General purpose OS file systems are commonly written
assuming that file system images contain trusted input.
While this was true long ago, in the age of USB sticks
and DVDs it no longer holds. Still, users mount untrusted
file systems using kernel code. The BSD and Linuxman-
ual pages for mount warn: “It is possible for a corrupted
file system to cause a crash”. Worse, arbitrary memory
access is known to be possible and fixing each file system
to be bullet-proof is at best extremely hard [32].

208	 2009 USENIX Annual Technical Conference	 USENIX Association

In a mounted rump file system the code dealing with
the untrusted image is isolated in its own process, thus
mitigating an attack. As was seen in Table 1, the size dif-
ference between a real kernel file system and the kernel
portion of puffs is considerable, about five-fold. Since an
OS usually supports more than one file system, the real
code size difference is much higher. Additionally, puffs
was written from ground up to deal with untrusted input.
To give an example of a useful scenario, a recent mail-

ing list posting described a problemwith mounting a FAT
file system from a USB stick causing a kernel crash. By
using a mountable rump file system, this problem was
reduced to an application core dump. The problematic
image was received from the reporter and problem in the
kernel file system code was debugged and dealt with.

golem> rump_msdos ˜/img/msdosfs.img /mnt
panic: buf mem pool index 23
Abort (core dumped)
golem>

4.2 Development and Debugging
Anyone who has ever done kernel development knows
that the kernel is not the most pleasant environment for
debugging and iteration. A common approach is to first
develop the algorithms in userspace and later integrate
them into the kernel, but this adds an extra phase.
The following items capture ways in which rump file

systems are superior to any single existing method.

• No separate development cycle: There is no need
to prototype with an ad-hoc userspace implementa-
tion before writing kernel code.

• Same environment: userspace operating systems
and emulators provide a separate environment. Mi-
grating applications (e.g. OpenOffice or FireFox)
and network connections there may be challenging.
Since rump integrates as a mountable file system on
the development host, this problem does not exist.

• No bit-rot: There is no maintenance cost for case-
specific userspace code because it does not exist.

• Short test cycle: The code-recompile-test cycle
time is short and a crash results in a core dump and
inaccessible files, not a kernel panic and total appli-
cation failures.

• Userspace tools: dynamic analysis tools such as
Valgrind [21] can be used to instrument the code.
A normal debugger can be used.

• Complete isolation: Changing interface behavior
for e.g. fault and crash injection [14, 23] purposes
can be done without worrying about bringing the
whole system down.

To give an example, support for allocating an in-fs
journal was added to NetBSD ffs journaling. The au-
thor, Simon Burge, is a kernel developer who normally
does not work on file systems. He used rump and ukfs for
development and described the process thusly: “Instead
of rebooting with a new kernel to test new code, I was
just able to run a simple program, and debug any issues
with gdb. It was also a lot safer working on a simple file
system image in a file.” [4].
Another benefit is prototyping. One of the reasons

for implementing the 4.4BSD log-structured file system
cleaner in userspace was the ability to easily try different
cleaning algorithms [24]. Using rump file systems this
can easily be done without having to split the runtime
environment and pay the overhead for easy development
during production use.

Although it is impossible to measure the ease of devel-
opment by any formal method, we would like to draw the
following analogy: kernel development on real hardware
is to using emulators as using emulators is to developing
as a userspace program.

Differences between environments

rump file systems do not duplicate all corner cases accu-
rately with respect to the kernel. For example, Zhang and
Ghose [34] list problems related to flushing resources as
the challenging implementation issues with using BSD
VFS. Theoretically, flushing behavior can be different if
the file system code is running in userspace, and there-
fore bugs might be left unnoticed. On the flip-side,
the potentially different behavior exposes bugs otherwise
very hard to detect when running in the kernel. Rump file
systems do not possess exactly the same timing proper-
ties and details of the real kernel environment. Our posi-
tion is that this is not an issue.
Differences can also be a benefit. Varying usage

patterns can expose bugs where they were hidden be-
fore. For example, the recent NetBSD problem report2
kern/38057 described a FFS bug which occurs when the
file system device node is not on FFS itself, e.g. /dev
on tmpfs. Commonly, /dev is on FFS, so regular use did
not trigger the problem. However, since this does not
hold when using FFS through rump, the problem was
triggered more easily. In fact, this problem was discov-
ered by the author while working on the aforementioned
journaling support by using rump file systems.

Another bug which triggered much more frequently
by using rump file systems was a race which involved
taking a socket lock in the nfs timer and the data being
modified while blocking for the socket lock. This bug
was originally described by the author in a kernel mail-
ing list post entitled “how can the nfs timer work?”. It
caused the author to be pointed at a longstanding NFS

USENIX Association	 2009 USENIX Annual Technical Conference	 209

problem of unknown cause described in kern/38669. A
more detailed report was later filed under kern/40491 and
the problem subsequently fixed.
In our final example the kernel FAT file system driver

used to ignore an out-of-space error when extending a
file. The effect was that written data was accepted into
the page cache, but could not be paged out to disk and
was discarded without flagging an application error. The
rump vnode pager is much less forgiving than the kernel
vnode pager and panics if it does not find blocks which
it can legally assume to be present. This drew attention
to the problem and it was fixed by the author in revision
1.53 of the source module msdosfs vnops.c.

Locks: Bohrbugs and Heisenbugs

Next we describe cases in which rump file systems have
been used to debug real world file system locking prob-
lems in NetBSD.
The most reliably repeatable bugs in a kernel environ-

ment and a rump file system are ones which depend only
on the input parameters and are independent of the en-
vironment and timing. Problem report kern/38219 de-
scribed a situation where the tmpfs memory file system
would try to lock against itself if given suitable argu-
ments. This made it possible for an unprivileged user to
panic the kernel with a simple program. A problem de-
scribed in kern/41006 caused a dangling lock when the
mknod() system call was called with certain parame-
ters. Both cases were reproduced by running a regular
test program against a mounted rump file systems, de-
bugged, fixed and tested.
Triggering race conditions depends on being able to

repeat timing details. Problem report kern/40948 de-
scribed a bug which turned out to be a locking problem
in an error branch of the FFS rename vnode operation. It
was triggered when the rename source file was removed
halfway through the operation. While this is a race con-
dition, it was equally triggerable by using a kernel file
system and a mounted rump file system. After being de-
bugged by using rump and fixed, the same problem was
reported for tmpfs in kern/41128. It was similarly de-
bugged and dealt with.

Even if the situation depends on components not avail-
able in rump file systems, using rump may be helpful.
Problem report kern/40389 described a bug which caused
a race condition deadlock between the file system driver
and the virtual memory code due to lock order reversal.
The author wrote a patch which addressed the issue in
the file system driver, but did not have a system for full
testing available at that time. The suggested patch was
tested by simulating the condition in rump. Later, when
it was tested by another person in a real environment, the
patch worked as expected.

Preventing undead bugs with regression testing

When a bug is fixed, it is good practice to make sure it
does not resurface [17] by writing a regression test.

In the case of kernel regression tests, the test is com-
monly run against a live kernel. This means that to run
the test, the test setup must first be upgraded with the test
kernel, bootstrapped, and only then can the test be exe-
cuted. In case the test kernel crashes, it is difficult to get
an automatic report in batch testing.

Using a virtual machine helps a little, but issues still
remain. Consider a casual open source developer who
adds a feature or fixes a bug and to run the regression
tests must 1) download or create a full OS configuration
2) upgrade the installation kernel and test programs 3)
run tests. Most likely steps “1” and “2” will involveman-
ual work and lead to a diminished likelihood of testing.
Standalone rump file systems are standalone pro-

grams, so they do not have the above mentioned setup
complications. In addition to the test program, file sys-
tem tests require an image to mount. This can be solved
by creating a file system image dynamically in the test
program and removing it once the test is done.

For example, our regression test for the ffs rename race
(kern/40948) creates a 5MB FFS image to a regular file
and runs the test against it. If the test survives for 10 sec-
onds without crashing, it is deemed as successful. Oth-
erwise, an error is reported:

Tests root: /srcs/tests/fs/ffs

t_renamerace (1/1): 1 test cases
renamerace: Failed: Test case did not exit

cleanly: Abort trap (core dumped)

4.3 File system access utilities: fs-utils
Several application suites exist for accessing and modi-
fying file system images purely from userspace programs
without having to mount the image. For example, Mtools
accesses FAT file systems, ntfsprogs is used with NTFS
and LTOOLS can access Ext2/3 and ReiserFS. While
these suites generally provide the functionality of POSIX
command line file utilities such as ls and cp, the name
and usage of each command varies from suite to suite.
The fs-utils [33] suite envisioned by the author and im-

plemented by Arnaud Ysmal has been done using stan-
dalone rump file systems. The utilities provide file sys-
tem independent command line utilities with the same
functionality and usage as the POSIX counterparts. The
code from the POSIX utilities were used as a base for
the implementation and the I/O calls were modified from
system calls to ukfs calls.

For example, the fsu ls program acts like regular
ls and provides the same 31 flags as ls. The command
fsu ls ˜/img/ffs2.img -laF temp produces

210	 2009 USENIX Annual Technical Conference	 USENIX Association

the long listing of the contents of the “/temp” directory
of an FFS image located in the user’s home directory and
fsu ls /dev/rsd0e -laF temp does the same
for a FAT located on a USB stick. The file system type
is autodetected based on the image contents. Other ex-
amples of utilities provided by fs-utils are fsu cat,
fsu find, fsu chown and fsu diff.

Additionally, fs-utils provides utilities which are nec-
essary to move data over the barrier between the host
system fs namespace and the image. To illustrate the
problem, let us consider fsu cp. Like with cp, all path-
names given to it are either relative to the current working
directory or absolute with respect to the root directory.
Since for a standalone rump file system the root direc-
tory is the file system image root directory, fsu cp can
be used only to copy files within the image. Conversely,
command output redirection (>) will write to a file on the
host, not the image. To remedy these problems, fs-utils
provides utilities such as fsu ecp, which copies files
over the boundary, as well as fsu write, which reads
from standard input and writes to a given file in the file
system. For example, the command ls | fsu write
˜/img/ffs2.img ls.txt “redirects” the output of
ls to the file /ls.txt on the image.

4.4 makefs
NetBSD is fully cross-compilable without superuser
privileges on a POSIX system [19]. This capability is
commonly referred to as build.sh after the shell script
which bootstraps the build process. For the system to
be cross-buildable the build process cannot rely on any
non-standard kernel functionality to be available, since it
might not exist on a non-NetBSD build host.
The canonical way to build a file system image for

boot media used to be to create a regular file, mount it
using the loopback driver, copy the files to the file sys-
tem and unmount the image. This required the target file
system to be supported on the build host and was not
compatible with the goals of build.sh.

When build.sh was originally introduced to NetBSD,
it came with a tool called makefs, which creates a file
system image from a given directory tree using only ap-
plication code. In other words, the makefs application
contains the file system driver. This approach does not
require privileges to mount a file system or support for
the target file system in the kernel. The original utility
had support for Berkeley FFS and was implemented by
modifying and reimplementing the FFS kernel code to
be able to run in userspace. This was the only good ap-
proach available at the time. Support for the ISO9660
CD file system was added later.
The process of makefs consists of four phases:

1. scan the source directory

original rump
FFS SLOC 1748 247
supported
file systems

FFS, iso9660 FFS, ext2, iso9660,
FAT, SysVBFS

FFS effort > 2.5 weeks
or 100 hours

2 hours

total effort 7 weeks or
280 hours

2 days or 16 hours

Table 2: Comparison between original and rumpmakefs.
Implementation effort for the original was provided by
Luke Mewburn, the author of the original utility. The
FFS figure stands only for driver implementation and
does not include additional time spent debugging.

2. calculate target image size based on scan data
3. create the target image
4. copy source directory files to the target image

In the original version of makefs all of the phases as
implemented in a single C program. Notably, phase 4 is
the only one that requires a duplicate implementation of
features offered by the kernel file system driver.

For comparison, we have implemented makefs us-
ing kernel file system drivers for phase 4. It is cur-
rently available as an unofficial alternative to the orig-
inal makefs. We partially reuse code from the original
makefs, since we need to analyze the source tree to de-
termine the image size (phases 1&2). We rely on an ex-
ternal newfs/mkfs program for creating an empty file sys-
tem image (phase 3). For phase 4 we use fs-utils and the
fsu put utility, which copies a directory hierarchy to
a file system image. The exception is ISO9660 support,
for which we use the original makefs utility; the kernel
CD file system driver is read-only.
For phase 3, we had to make sure that the mkfs/newfs

utility can create a file system to a regular file – typically
such utilities operate on device special files. Out of the
supported file systems, we had to add support for this
to the NetBSD FAT and SysVBFS utilities. Support for
each was approximately 100 lines of modification.
We compare the two implementations in Table 2. As

can be observed, over a third of the original effort was
for implementing support for a single file system driver.
Since we reuse the kernel driver, we get this functional-
ity for free. Additionally, fsu put from fs-utils could
be used as such. All of the FFS code for the rump im-
plementation is involved in calculating the image size
and was available from makefs. If code for this had not
been available, we most likely would have implemented
it using shell utilities. However, since determining the
size involves multiple calculations such as dealing with
hard links and rounding up directory entry sizes, we con-
cluded that reusing working code was a better option.

USENIX Association	 2009 USENIX Annual Technical Conference	 211

Total commits to the kernel 9640
Total commits to rump 438
Commits touching only rump 347
Build fixes 17
Functionality fixes 5
Unique committers 30

Table 3: Commit analysis for the rump source tree from
August 2007 to December 2008.

4.5 Maintaining rump in NetBSD
As rump implements environment dependent code in
parallel with the the kernel, the implementation needs
to keep up. There are two kinds breakage: the kind re-
sulting in compile failure and the kind resulting in non-
functional compiled code. The numbers in Table 3 have
been collected from version control logs from the period
August 2007 - December 2008, during which rump has
been part of the official NetBSD source tree. The com-
mits represent the number of changes on the main trunk.
The number of build fixes is calculated from the

amount of commits that were done after the kernel was
changed and rump not build anymore as a result. For ex-
ample, a file system being changed to require a kernel
interface not yet supported by rump is this kind of fail-
ure. Commits in which rump was patched along with the
kernel proper were not counted in with this figure.
Similarly, functionality fixes include changes to kernel

interfaces which prevented rump from working, in other
words the build worked but running the code failed. Reg-
ular bugs are not included in this figure.

Unique committers represents the number of people
from the NetBSD community who committed changes
to the rump tree. The most common case was to keep up
with changes in other parts of the kernel.

Based on observations, the most important factor in
keeping rump functional in a changing kernel is educat-
ing developers about its existence and how to test it. Ini-
tially there was a lot of confusion in the community about
how to test rump, but things have since gotten better.

It should be kept in mind that over the same time frame
the NetBSD kernel underwent very heavy restructuring
to better support multicore. As it was the heaviest set of
changes over the past 15 years, the data should be con-
sidered “worst case” instead of “typical case”.

For an idea of how much code there is to maintain,
Figure 5 displays the number of lines of code lines in for
rump in the NetBSD source tree. The count is without
empty lines or comments. The number of lines of en-
vironment dependent code (rumpkern + rumpuser) has
gone up from 1443 to 4043 (281%) while the number of
code lines used directly from the kernel has gone up from
2894 to 27137 (938%). Features have been added, but

0

5000

10000

15000

20000

25000

30000

08/07 12/07 04/08 08/08 12/08

Lines

Date

std kern
rumpkern
rumpuser

Figure 5: Lines of Code History

much of this has been done with environment indepen-
dent code. Not only does this reduce code duplication,
but it makes rump file systems behave closer to kernel
file systems on a detailed level.
There have been two steep increases in code size. The

first one was in January 2008, when all of the custom file
system code written for userspace, such as namei, was
replaced with kernel code. While functionality provided
by the interfaces remained equivalent, the special case
implementation for userspace was much smaller than the
more general kernel code. The general code also required
more complex emulation. The second big increase was in
October 2008, when the kernel TCP/IP networking stack
and support for socket I/O was added to rumpkern.

4.6 Performance
We measure the performance of three macro level op-
erations: directory traversal with ls -lR, recursively
copying a directory hierarchy containing both small and
large files with cp -R and copying a large file with cp.
For testing rump, standalone rump file systems were used
with fs-utils. Mounted rump file systems were not mea-
sured, as they mostly test the performance of puffs and
its kernel cache. For the copy operations the source data
was precached. The figures are the duration from mount
to operation to unmount.
The hardware used was a 2GHz Core2Duo PC lap-

top with a 100GB ATA drive. We performed the mea-
surements on a 4GB FFS disk image hosted on a regular
file and a 20GB FFS partition directly on the hard disk.
Both file systems were aged [26]: the first one artificially

212	 2009 USENIX Annual Technical Conference	 USENIX Association

ls bigcp treecp

se
co

nd
s

0

10

20

30

40

50

60

70

80

kern rump r/w rump mmio

Figure 6: FFS on a regular file (buffered). rump r/w uses
direct I/O, as discussed in Section 3.1.

by copying and deleting files. The latter one is in daily
use on the author’s laptop and has aged through natural
use. The file systems were always mounted so that I/O
is performed in the classic manner, i.e. FFS integrity is
maintained by performing key metadata operations syn-
chronously. This is to exacerbate the issues with a mix
of async and sync I/O requests.
The results are presents in Figure 6 and Figure 7. The

figures between the graphs are not directly comparable,
as the file systems have a different layout and different
aging. The CD image used for the large copy and the
kernel source tree used for the treecopy are the same.
The file systems have different contents, so the listing
figures are not comparable at all.
Analysis. The results are in line with the expectations.

• The directory traversal shows that the read opera-
tions perform roughly the same on a regular file and
6% slower for an unbuffered backend. This differ-
ence is explained by the fact that the buffered file in-
cludes read ahead for a userspace consumer, while
the kernel mount accesses the disk unbuffered.

• Copying the large file is 98.5% asynchronous data
writes. Memorymapped I/O is almost twice as slow
as read/write, since as explained in Section 3.1, the
relevant parts of the image must be paged in be-
fore they can be overwritten and thus I/O band-
width requirement is double. Unbuffered userspace
read/write is 1.5% slower than the kernel mount.

• Copying a directory tree is a mix of directory meta-
data and file data operations and one third of the

ls bigcp treecp

se
co

nd
s

0

10

20

30

40

50

60

70

80

kern rump r/w

Figure 7: FFS on a HD partition (unbuffered), accessed
through a character device.

I/O is done synchronously in this case. The mem-
ory mapped case does not suffer as badly as the
large copy, as locality is better. The rump read/write
case performs 10% better than the kernel due to a
buffered backend. The tradeoff is increased mem-
ory use. In the unbuffered case the problem of not
being able to execute a synchronous write operation
while an asynchronous one is in progress shows.

Notably, we did not look into modifying the NetBSD
kernel to provide better system call interfaces for selec-
tive cache flushing and I/O to character devices. For now,
we maintain that performance for the typical workload is
acceptable when compared to a kernel mount.

5 Related Work

The Alpine [9] network protocol development infrastruc-
ture provides an environment for running kernel code in
userspace. It is implemented before the system call layer
by overriding libc and is run in application process con-
text. This approach both makes it unsuitable for stati-
cally linked programs and creates difficulties with shared
global resources such as the read()/write() calls used
for I/O beyond networking. Furthermore, from a file sys-
tem perspective, this kind of approach shuts out kernel-
initiated file system access, e.g. NFS servers.
Rialto [8] is an operating system with a unified inter-

face both for userspace and the kernel making it possible
to run most code in either environment. However, this
system was designed from ground-up that way. Inter-
esting ideas include the definition of both internal and

USENIX Association	 2009 USENIX Annual Technical Conference	 213

external linkage for an interface. While the ideas are in-
spiring, we do not have the luxury to redo everything.

Mach is capable of running Unix as a user pro-
cess [11]. Lites [12] is a Mach server based on the
4.4BSD Lite code base. Debugging and developing
4.4BSD file systems under Mach/Lites is possible by us-
ing two Lites servers: one for the debugger and one for
the file system being developed, including applications
using the file system. If the Lites server being debugged
crashes, applications inside it will be terminated. Being a
single server solution, it does not provide isolation from
the trusted computing base, either. A multiserver micro-
kernel such as SawMill [10] addresses the drawbacks of
a single server, but does not permit a monolithic mode or
use of the file system code as an application library.
Operating systems running in userspace, such as User

Mode Linux [7], make it possible to run the entire operat-
ing system as a userspace process. The main aims in this
are providing better debugging & development support
and isolation between instances. However, for develop-
ment purposes, this approach does not provide isolation
between the component under development and the core
of the operating system - rather, they both run in the same
process. This results in complexity in, for example, using
fault injection and dynamic analysis tools. Neither does
a userspace operating system integrate into the host, i.e.
it is not possible to mount the userspace operating system
as a file server. Even if that could be addressed, booting
an entire kernel every time a ukfs application is run is a
very heavyweight solution.
Sun’s ZFS file system ships with a userspace testing

library, libzpool [1]. In addition to kernel interface emu-
lation routines, it consists of the Data Management Unit
and Storage Pool Allocator components of ZFS compiled
from the kernel sources. The ztest program plugs directly
to these components. This approach has several short-
comings compared to rump file systems. First, it does
not include the entire file system architecture, e.g. the
VFS layer. The effort of implementing the VFS interface
(in ZFS terms the ZFS POSIX Layer) was specifically
listed as the hardest part of porting ZFS to FreeBSD [6].
Second, it does not facilitate userspace testing with real
applications because it cannot be mounted. Third, the
test program is specific to ZFS.
Many projects reimplement file system code for

userspace purposes. Examples include e2fsprogs [30]
and mtools [22]. Their implementation overlaps that
which is readily already provided by the kernel. Espe-
cially e2fsprogs must track Linux kernel features and
perform an independent reimplementation.
fuse-ext2 [2] is a userspace file server built on top

of e2fsprogs. It implements a translator from FUSE
to e2fsprogs. The functionality provided by fuse-ext2
is the same as that if rump ext2fs, but requires specifi-

cally written code. The ChunkFS [13] prototype is fully
mountable, but it is implemented on FUSE and userspace
interfaces instead of the kernel interfaces.
Simulators [5, 29] can be used to run traces on file

systems. Thekkath et al. [29] go as far as to run the
HPUX FFS implementation in userspace. However,
these tools execute against a recorded trace and do not
permit mounting.

6 Conclusions and Future Work

In this paper we described the Runnable Userspace Meta
Program file system (rump fs) method for using preex-
isting kernel file system code in userspace. There are
two different modes of use for the framework: the p2k
mode in which file systems are mounted so that they can
be accessed transparently from any application, and a
standalone mode in which applications can use file sys-
tem routines through the ukfs library interface. The first
mode brings a multiserver microkernel touch to a mono-
lithic kernel Unix OS, but preserves a user option for
monolithic operation. The second mode enables reuse
of the available kernel code in applications such as those
involved in image access. Implementations discussed in
this paper were makefs and fs-utils.
The NetBSD implementation was evaluated. We dis-

covered that rump file systems have security benefits es-
pecially with untrusted removable media. Rump file sys-
tems made debugging and developing kernel file system
code easier and more convenient, and did not require ad-
ditional case-specific “glue code” for making kernel code
runnable in userspace. The issues regarding the mainte-
nance of the rump shim were examined by looking at
over a year’s worth of version control system commits.
The build had broken 17 times and functionality 5 times.
These were attributed to the lack of a full regression test-
ing facility and developer awareness.
The performance of rump file systems using FFS was

measured to be dependent of the type of backend. For
file system images on a buffered regular file, properly
synchronized performance was at best 10% faster than
a kernel mount. Conversely, for a an unbuffered char-
acter device backend the performance was at worst 40%
slower. We attribute lower unbuffered performance to
there being no standard interfaces for intermingling syn-
chronous and asynchronous writes. We estimate typical
workload performance to be ±5% of kernel mount per-
formance. Future work may include optimizing perfor-
mance, although for now we are fully content with it.

As a concluding remark, the technology has shown
real world use and having kernel file systems from ma-
jor open source operating systems available as portable
userspace components would vastly increase system
cross-pollination and reduce the need for reimplemen-

214	 2009 USENIX Annual Technical Conference	 USENIX Association

tations. We encourage kernel programmers to not only
think about code from the classical machine depen-
dent/machine independent viewpoint, but also from the
environment dependent/environment independent per-
spective to promote code reuse.

Acknowledgments

This work has been funded by the Finnish Cultural Foun-
dation, The Research Foundation of Helsinki University
of Technology and Google Summer of Code.
The author thanks the anonymous reviewers for their

comments and Remzi H. Arpaci-Dusseau, the shepherd,
for his guidance in improving the final paper.

A special thank you goes to Arnaud Ysmal for imple-
menting fs-utils. Additionally, the author thanks Simon
Burge, André Dolenc, Johannes Helander, Luke Mew-
burn, Heikki Saikkonen, Chuck Silvers, Bill Stouder-
Studenmund, Valeriy E. Ushakov and David Young for
ideas, conversations, inspiring questions and answers.

Availability

The source code described in this paper is avail-
able for use and examination under the BSD license
from the NetBSD source repository in the directory
src/sys/rump. See http://www.NetBSD.org/
for more information on how to obtain the source code.

References
[1] ZFS source tour. http://www.opensolaris.org/os /commu-

nity/zfs/source/.
[2] AKCAN, A. fuse-ext2. http://sourceforge.net/projects/fuse-ext2/.
[3] ALMEIDA, D. FIFS: a framework for implementing user-mode

file systems in windows NT. In WINSYM’99: Proc. of USENIX
Windows NT Symposium (1999).

[4] BIANCUZZI, F. Interview about NetBSD WAPBL. BSD Maga-
zine 2, 1 (2009).

[5] BOSCH, P., AND MULLENDER, S. J. Cut-and-paste file-systems:
Integrating simulators and file-systems. In Proc. of USENIX
(1996), pp. 307–318.

[6] DAWIDEK, P. J. Porting the ZFS file system to the FreeBSD
operating system. In Proc. of AsiaBSDCon (2007), pp. 97–103.

[7] DIKE, J. A user-mode port of the Linux kernel. In ALS’00: Proc.
of the 4th Annual Linux Showcase & Conference (2000).

[8] DRAVES, R., AND CUTSHALL, S. Unifying the user and kernel
environments. Tech. Rep. MSR-TR-97-10, Microsoft, 1997.

[9] ELY, D., SAVAGE, S., AND WETHERALL, D. Alpine: A User-
Level infrastructure for network protocol development. In Proc.
of USITS’01 (2001), pp. 171–184.

[10] GEFFLAUT, A., JAEGER, T., PARK, Y., LIEDTKE, J., ELPHIN-
STONE, K. J., UHLIG, V., TIDSWELL, J. E., DELLER, L., AND
REUTHER, L. The sawmill multiserver approach. In Proc. of the
9th ACM SIGOPS Europ. workshop (2000), pp. 109–114.

[11] GOLUB, D. B., DEAN, R. W., FORIN, A., AND RASHID, R. F.
UNIX as an application program. In Proc. of USENIX Summer
(1990), pp. 87–95.

[12] HELANDER, J. Unix under Mach: The Lites server. Master’s
thesis, Helsinki University of Technology, 1994.

[13] HENSON, V., VAN DE VEN, A., GUD, A., AND BROWN, Z.
ChunkFS: using divide-and-conquer to improve file system relia-
bility and repair. In Proc. of HOTDEP’06 (2006).

[14] HSUEH, M.-C., TSAI, T. K., AND IYER, R. K. Fault injection
techniques and tools. IEEE Computer 30, 4 (1997), 75–82.

[15] KANTEE, A. puffs - Pass-to-Userspace Framework File System.
In Proc. of AsiaBSDCon (2007), pp. 29–42.

[16] KANTEE, A., AND CROOKS, A. ReFUSE: Userspace FUSE
Reimplementation Using puffs. In EuroBSDCon 2007 (2007).

[17] KERNIGHAN, B. Code testing and its role in teaching. ;login:
The USENIX Magazine 31, 2 (Apr. 2006), 9–18.

[18] KLEIMAN, S. R. Vnodes: An architecture for multiple file sys-
tem types in sun UNIX. In Proc. of USENIX (1986), pp. 238–247.

[19] MEWBURN, L., AND GREEN, M. build.sh: Cross-building
NetBSD. In Proc. of BSDCon (2003), pp. 47–56.

[20] NETBSD PROJECT. http://www.NetBSD.org/.
[21] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework for

heavyweight dynamic binary instrumentation. In Proc. of PLDI
(2007), pp. 89–100.

[22] NIEMI, D., AND KNAFF, A. Mtools, 2007.
http://mtools.linux.lu/.

[23] PRABHAKARAN, V., BAIRAVASUNDARAM, L. N., AGRAWAL,
N., GUNAWI, H. S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. IRON file systems. SIGOPS OSR 39, 5 (2005),
206–220.

[24] SELTZER, M. I., BOSTIC, K., MCKUSICK, M. K., AND
STAELIN, C. An implementation of a log-structured file system
for UNIX. In Proc. of USENIX Winter (1993), pp. 307–326.

[25] SILVERS, C. UBC: An efficient unified I/O and memory caching
subsystem for NetBSD. In Proc. of USENIX, FREENIX Track
(2000), pp. 285–290.

[26] SMITH, K. A., AND SELTZER, M. I. File system aging—
increasing the relevance of file system benchmarks. SIGMET-
RICS Perform. Eval. Rev. 25, 1 (1997), 203–213.

[27] SNYDER, P. tmpfs: A virtual memory file system. In Proc.
EUUG Conference (1990), pp. 241–248.

[28] SZEREDI, M. Filesystem in USErspace.
http://fuse.sourceforge.net/.

[29] THEKKATH, C. A., WILKES, J., AND LAZOWSKA, E. D. Tech-
niques for file system simulation. Software - Practice and Expe-
rience 24, 11 (1994), 981–999.

[30] TS’O, T. E2fsprogs: Ext2/3/4 Filesystem Utilities, 2008.
http://e2fsprogs.sourceforge.net/.

[31] WOODHOUSE, D. Jffs2 the journalling flash file system. In Ot-
tawa Linux Symposium (2001).

[32] YANG, J., SAR, C., TWOHEY, P., CADAR, C., AND ENGLER,
D. Automatically generating malicious disks using symbolic ex-
ecution. In SP ’06: Proc. of 2006 IEEE Symp. on Security and
Privacy (2006), IEEE Computer Society, pp. 243–257.

[33] YSMAL, A. FS Utils. http://NetBSD.org/˜stacktic/fs-utils.html.
[34] ZHANG, Z., AND GHOSE, K. hFS: a hybrid file system prototype

for improving small file and metadata performance. In Proc. of
EuroSys (2007), pp. 175–187.

Notes
1 The kernel NFS server works in userspace, but is not yet part of

the official source tree. There are conflicts between the RPC portmap-
per and mount protocol daemon for user- and kernel space nfs service.
Basically, there is currently no way to differentiate if an exported di-
rectory hierarchy should be served by the kernel or userspace daemon.

2 The NetBSD problem report database can be viewed with a web
browser by accessing http://gnats.NetBSD.org/<num>, e.g.
in the case of kern/38057 the URL is http://gnats.NetBSD.org/38057.
The string “kern” stands for kernel and signifies the relevant subsystem.

USENIX Association	 2009 USENIX Annual Technical Conference	 215

CiAO: An Aspect-Oriented Operating-System Family
for Resource-Constrained Embedded Systems∗

Daniel Lohmann, Wanja Hofer, Wolfgang Schröder-Preikschat
{lohmann, hofer, wosch}@cs.fau.de

FAU Erlangen–Nuremberg

Jochen Streicher, Olaf Spinczyk
{jochen.streicher, olaf.spinczyk}@tu-dortmund.de

TU Dortmund

Abstract

This paper evaluates aspect-oriented programming (AOP)
as a first-class concept for implementing configurability
in system software for resource-constrained embedded
systems. To compete against proprietary special-purpose
solutions, system software for this domain has to be highly
configurable. Such fine-grained configurability is usually
implemented “in-line” by means of the C preprocessor.
However, this approach does not scale – it quickly leads to
“#ifdef hell” and a bad separation of concerns. At the same
time, the challenges of configurability are still increasing.
AUTOSAR OS, the state-of-the-art operating-system stan-
dard from the domain of automotive embedded systems,
requires configurability of even fundamental architectural
system policies.

On the example of our CiAO operating-system family
and the AUTOSAR-OS standard, we demonstrate that
AOP – if applied from the very beginning – is a pro-
found answer to these challenges. Our results show that
a well-directed, pragmatic application of AOP leads to
a much better separation of concerns than does #ifdef-
based configuration – without compromising on resource
consumption. The suggested approach of aspect-aware
operating-system development facilitates providing even
fundamental system policies as configurable features.

1 Introduction

The design and implementation of operating systems has
always been challenging. Besides the sheer size and the
inherent asynchronous and concurrent nature of operating-
system code, developers have to deal with lots of crucial
nonfunctional requirements such as performance, relia-
bility, and maintainability. Therefore, researchers have
always tried to exploit the latest advances in programming

∗This work was partly supported by the German Research Council
(DFG) under grants no. SCHR 603/4, SCHR 603/7-1, and SP 968/2-1.

languages and software engineering (such as object orien-
tation [6], meta-object protocols [26], or virtual execution
environments [14]) in order to reduce the complexity of
operating system development and to improve the sys-
tems’ nonfunctional properties.

1.1 Operating Systems for Small
Embedded Systems

This paper focuses on small (“deeply”) embedded sys-
tems. More than 98 percent of the worldwide annual
production of microprocessors ends up in small embed-
ded systems [24] – typically employed in products such
as cars, appliances, or toys. Such embedded systems are
subject to an enormous hardware-cost pressure. System
software for this domain has to cope not only with strict
resource constraints, but especially with a broad variety
of application requirements and platforms. So to allow
for reuse, an operating system for the embedded-systems
domain has to be developed as a system-software product
line that is highly configurable and tailorable. Further-
more, resource-saving static configuration mechanisms
are strongly favored over dynamic (re-)configuration.

A good example for this class of highly configurable
systems with small footprint is the new embedded
operating-system standard specified by AUTOSAR, a con-
sortium founded by all major players in the automotive
industry [3]. The goal of AUTOSAR is to continue the
success story of the OSEK-OS specification [19]. OSEK-
compliant operating systems have been used in almost
all European cars over the past ten years, which led to an
enormous productivity gain in automotive software devel-
opment. AUTOSAR extends the OSEK-OS specification
in order to cover the whole system-software stack includ-
ing communication services and a middleware layer.

Even in this restricted domain, there is already a huge
variety of application requirements on operating systems.
For instance, power-train applications are typically safety-
critical and have to deal with real-time requirements,

1

216	 2009 USENIX Annual Technical Conference	 USENIX Association

1 Cyg_Mutex::Cyg_Mutex() {
2 CYG_REPORT_FUNCTION();
3 locked = false;
4 owner = NULL;
5 #if defined(CYGSEM_PRI_INVERSION_PROTO_DEFAULT) && \
6 defined(CYGSEM_PRI_INVERSION_PROTO_DYNAMIC)
7 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_INHERIT
8 protocol = INHERIT;
9 #endif

10 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_CEILING
11 protocol = CEILING;
12 ceiling = CYGSEM_PRI_INVERSION_PROTO_DEFAULT_PRI;
13 #endif
14 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_NONE
15 protocol = NONE;
16 #endif
17 #else // not (DYNAMIC and DEFAULT defined)
18 #ifdef CYGSEM_PRI_INVERSION_PROTO_CEILING
19 #ifdef CYGSEM_DEFAULT_PRIORITY
20 ceiling = CYGSEM_DEFAULT_PRIORITY;
21 #else
22 ceiling = 0; // Otherwise set it to zero.
23 #endif
24 #endif
25 #endif // DYNAMIC and DEFAULT defined
26 CYG_REPORT_RETURN();
27 }

Figure 1: ”#ifdef hell” example from eCos [18]

while car body systems are far less critical. Hardware
platforms range from 8-bit to 32-bit systems. Some ap-
plications require a task model with synchronization and
communication primitives, whereas others are much sim-
pler control loops. In order to reduce the number of elec-
tronic control units (up to 100 in modern cars [5]), some
manufacturers have the requirement to run multiple appli-
cations on the same unit, which is only possible with guar-
anteed isolation; others do not have this requirement. To
fulfill all these varying requirements, the AUTOSAR-OS
specification [2] describes a family of systems defined by
so-called scalability classes. It not only requires config-
urability of simple functional features, but also of all poli-
cies regarding temporal and spatial isolation. To achieve
this within a single kernel implementation is challenging.
The decision about fundamental operating-system poli-
cies (like the question if and how address-space protection
boundaries should be enforced) is traditionally made in
the early phases of operating-system development and is
deeply reflected in its architecture, which in turn has an
impact on many other parts of the kernel implementation.
In AUTOSAR-OS systems, these decisions have to be
postponed until the application developer configures the
operating system.

1.2 The Price of Configurability

In a previous paper [17], we analyzed the implementation
of static configurability in the popular eCos operating
system [18], which also targets small embedded systems.

The system implements configurability in the familiar
way with #ifdef-based conditional compilation (in C++).
Even though eCos does not support configurability of
architectural concerns as required by AUTOSAR (such as
the memory or timing protection model), we have found
an “#ifdef hell”, which illustrates that these techniques do
not scale well enough. Maintainability and evolvability
of the implementation suffer significantly. As an example,
Figure 1 shows the “#ifdef hell” in the constructor of
the eCos mutex class, caused by just four variants of the
optional protcol for the prevention of priority inversion.
However, the configurability of this protocol does not only
affect the constructor code – a total of 34 #ifdef-blocks
is spread over 17 functions and data structures in four
implementation files.

As a solution, we proposed aspect-oriented program-
ming (AOP) [15] and analyzed the code size and perfor-
mance impact of applying AOP to factor out the scattered
implementation of configurable eCos features into distinct
modules called aspects.

1.3 Aspect-Oriented Programming

AOP describes a programming paradigm especially de-
signed to tackle the implementation of crosscutting con-
cerns – concerns that, even though conceptually distinct,
overlap with the implementation of other concerns in the
code by sharing the same functions or classes, such as the
mutex configuration options in eCos.

In AOP, aspects encapsulate pieces of code called ad-
vice that implement a crosscutting concern as a distinct
module. A piece of advice targets a number of join points
(points in the static program structure or in the dynamic
execution flow) described by a predicate called pointcut
expression. Pointcut expressions are evaluated by the
aspect weaver, which weaves the code from the advice
bodies to the join points that are matched by the respective
predicates.

As pointcuts are described declaratively, the target code
itself does not have to be prepared or instrumented to be
affected by aspects. Furthermore, the same aspect can
affect various and even unforeseen parts of the target code.
In the AOP literature [10], this is frequently referred to as
the obliviousness and quantification properties of AOP.

The AOP language and weaver used in the eCos study
and in the development of CiAO is AspectC++ [22],
a source-to-source weaver that transforms AspectC++
sources to ISO C++ code, which can then be compiled by
any standard-compliant C++ compiler.

Figure 2 illustrates the syntax of aspects written in
AspectC++. The (excerpted) aspect Priority_Ceiling
implements the priority ceiling variant of the eCos mu-
tex class. For this purpose, it introduces a slice of addi-
tional elements (the member variable ceiling) into the

2

USENIX Association	 2009 USENIX Annual Technical Conference	 217

Figure 2: Syntactical elements of an aspect

class Cyg_Mutex and gives a piece of advice to initialize
ceiling after each construction of a Cyg_Mutex instance.
The targets of the introduction and the piece of construc-
tion advice are given by pointcut expressions.

In AspectC++, pointcut expressions are built from
match expressions and pointcut functions. The match
expression "Cyg_Mutex", for instance, returns a pointcut
containing just the class Cyg_Mutex. Match expressions
can also be fed into pointcut functions to yield pointcuts
that represent events in the control flow of the running
program, such as the event where some function is about
to be called (call() advice) or an object instance is about
to be constructed (see construction("Cyg_Mutex") in
Figure 2). In most cases, the join points for a given point-
cut can be derived statically by the aspect weaver so that
the respective advice is also inserted statically at compile
time without any run-time overhead.

The construction pointcut in the example is used to
specify some after advice – that is, additional behavior
to be triggered after the event occurrence. Other types
of advice include before advice (speaks for itself) and
around advice (replaces the original behavior associated
with the event occurrence).

Inside the advice body, the type and pointer JoinPoint
*tjp provide an interface to the event context. The aspect
developer can use this join-point API to retrieve (and
partly modify) contextual information associated with
the event, such as the arguments or return value of the
intercepted function call (tjp->arg(i), tjp->result()).
The tjp->that() in Figure 2 returns the this pointer
of the affected object instance, which is used here to
initialize the ceiling member variable (which in this
case was introduced by the aspect itself).

1.4 Contribution and Outline
The results of applying AOP to eCos were very promis-
ing [17]. The refactored eCos system was much better
structured than the original; the number of configuration
points per feature could be drastically reduced. At the
same time, we found that there is no negative impact on
the system’s performance or code size.

However, we also found that not all configurable fea-
tures could be refactored into a modular aspect-oriented
implementation. The main reason was that eCos did
not expose enough unambiguous join points. We took
this as a motivation to work on “aspect-aware operating
system design”. This led to the development of funda-
mental design principles and the implementation of the
CiAO1 OS family for evaluation purposes. The idea was
to build an operating system in an aspect-oriented way
from scratch, considering AOP and its mechanisms from
the very beginning of the development process. The re-
sulting CiAO system is aspect-aware in the sense that it
was analyzed, designed, and implemented with AOP prin-
ciples in mind. In order to avoid evaluation results biased
by the eCos implementation, CiAO was newly designed
after the AUTOSAR-OS standard introduced above [2].

Our main goal is to evaluate the suitability of aspect-
oriented software development as a first-class concept
for the design and implementation of highly configurable
embedded system software product-lines. The research
contributions of this work are the following:

• Deeper insights on reasons for the #ifdef hell and the
value of AOP in this context (Section 2).

• Design principles for aspect-aware operating system
development (Section 4).

• CiAO: The first complete implementation of an oper-
ating system kernel developed with AOP concepts2

(Section 5).

• A discussion of our results from CiAO (Section 6)
and general experiences with the approach (Sec-
tion 7).

For each of the topics, there is a dedicated section in the
remaining part of this paper. In addition to that, Section 3
discusses relevant related work. The paper ends with our
conclusions in Section 8.

2 Problem Analysis

Why exactly do state-of-the-art configurable systems like
eCos exhibit badly modularized code termed as “#ifdef
hell”? Is this an inherent property of highly configurable
operating systems or just a matter of implementation
means? In order to examine these questions, we took
a detailed look at an abstract system specification, namely
the AUTOSAR-OS standard introduced in Section 1.

1CiAO is Aspect-Oriented
2The CiAO-OS family is freely available for research purposes from

the authors.

3

218	 2009 USENIX Annual Technical Conference	 USENIX Association

!

System abstractions (functional) Callbacks Protection facilities (architectural) Internal

O
S
c
o
n
tr
o
l

T
a
s
k
s

IS
R
s
c
a
te
g
o
ry

1

IS
R
s
c
a
te
g
o
ry

2

R
e
s
o
u
rc
e
s

E
v
e
n
ts

A
la
rm

s

H
o
o
k
s

... T
im
in
g
p
ro
te
c
ti
o
n

In
v
a
lid

p
a
ra
m
e
te
rs

W
ro
n
g
c
o
n
te
x
t

In
te
rr
u
p
ts
d
is
a
b
le
d

F
o
re
ig
n
O
S
o
b
je
c
ts

... P
re
e
m
p
ti
o
n

...

... <3 OS services> ⊕ �� ... �� �� �� ��

ActivateTask() ⊕ �� ... �� �� �� �� ... �� ...

TerminateTask() ⊕ �� ... �� �� ... �� ...

Schedule() ⊕ �� ... �� �� ... �� ...

... <3 more task services> ⊕ �� ... �� �� �� �� ... �� ...

ResumeAllInterrupts() ⊕ ... �� ��

SuspendAllInterrupts() ⊕ ... �� ��

... <7 more ISR services> ⊕ ⊕ �� ... � �� �� �� ��

GetResource() ⊕ �� ... �� �� �� �� ��

ReleaseResource() ⊕ �� ... �� �� �� �� �� ... �� ...

... <4 event services> ⊕ �� ... �� �� �� �� ... �� ...

... <6 alarm services> ⊕ �� ... �� �� �� �� ... �� ...

... <7 schedule table services> ⊕ �� ... �� �� �� ��

... <7 OS application services> �� ... �� �� �� ��

TaskType ⊕ � � ... � � ... � ...

ResourceType ⊕ ... �

... <4 more structures> ⊕ � ⊕ � ⊕ ... � �

System startup �� �� ��

Task switch � ... �

Protection violation ��

... <4 more internal points> �� �� �� ... � �� ... �� ...

"

#

Table 1: Influence of configurable concerns (columns) on system services, system types, and internal events (rows) in
AUTOSAR OS [2, 19]; kind of influence: ⊕ = extension of the API by a service or type,  = extension of an existing
type,  = modification after service or event,  = modification before,  = modification before and after

2.1 Why #ifdef Hell Appears
to Be Unavoidable

The AUTOSAR-OS standard proposes a set of scalability
classes for the purpose of system tailoring. These classes
are, however, relatively coarse-grained (there are only
four of them) and do not clearly separate between con-
ceptually distinct concerns. CiAO provides a much better
granularity; each AUTOSAR-OS concern is represented
as an individual feature in CiAO, subject to application-
dependent configuration.

In order to be able to grasp all concerns and their inter-
actions, we have developed a specialized analysis method
termed concern impact analysis (CIA) [13]. The idea be-
hind CIA is to consider requirement documents together
with domain-expert knowledge to develop a matrix of
concerns and their influences in an iterative way. In the
analysis of the AUTOSAR-OS standard, CIA yielded a
comprehensive matrix, which is excerpted in Table 1.

The rows show the AUTOSAR OS system services
(API functions) and system abstractions (types) in groups
that represent distinct features. AUTOSAR OS is a stat-
ically configured operating system with static task pri-
orities; hence, at run time, only services that alter the
status of a task (e.g., setting it ready or suspended) are
available. Interrupt service routines (ISRs), in contrast,
are triggered asynchronously; the corresponding system
functionality allows the application to prohibit their occur-

rence collectively or on a per-source basis. AUTOSAR
OS distinguishes between two categories of ISRs that are
somewhat comparable to top halves and bottom halves in
Linux: Category-1 ISRs are scheduled by the hardware
only and must not interact with the kernel. Category-2
ISRs, in contrast, run under the control of the kernel and
may invoke other AUTOSAR-OS services. The third type
of control flows supported by the AUTOSAR-OS kernel
are hooks. Hooks define a callback interface for applica-
tions to be notified about kernel-internal events, such as
task switch events or error conditions (see Column 8 in
Table 1).

Resources are the means for AUTOSAR applications
to ensure mutual exclusion to synchronize concurrent ac-
cess to data structures or hardware periphery. They are
comparable to mutex objects in other operating systems.
In order to avoid priority inversion and deadlocks, AU-
TOSAR prescribes a stack-based priority ceiling protocol,
which adapts task priorities at run time. Hence, a task
never blocks on GetResource(). The only way for ap-
plication tasks to become blocked is by waiting for an
AUTOSAR-OS event; another task or ISR that sets that
event can unblock that task.

Alarms allow applications to take action after a speci-
fied period of time; a schedule table is an abstraction that
encapsulates a series of alarms. Finally, tasks, ISRs, and
data can be partitioned into OS applications, which define
a spatial and temporal protection boundary to be enforced

4

USENIX Association	 2009 USENIX Annual Technical Conference	 219

by the operating system.
The table lists selected identified concerns of AU-

TOSAR OS (column headings) and how we can expect
them to interact with the named entities of the specifi-
cation (row headings); that is, the 44 system services
(e.g., ActivateTask()) and the relevant system abstrac-
tions (e.g., TaskType) as specified in [19, 2]. Furthermore,
the lower third lists how we can expect concerns to im-
pact system-internal transitions, which are not visible
in the system API that is specified by the standard. Ta-
ble 1 thereby provides an overview of how we can expect
AUTOSAR-OS concerns to crosscut with each other in
the structural space (abstractions, services) and behavioral
space (control flow events) of the implementation.

The comprehensive table shows that a system that is
built according to that specification will inherently exhibit
extensive crosscutting between its concern implementa-
tions, leading to code tangling (many different concerns
implemented in a single implementation module) and
scattering (distribution of a single concern implementa-
tion across multiple implementation artifacts). This is
because services like ReleaseResource() (see Table 1,
row ) and types like TaskType (see Table 1, row ), for
instance, are affected by as many as nine different con-
cerns! That means that these implementations will exhibit
at least nine #ifdef blocks – in the ideal case that each
concern can be encapsulated in a single block, completely
independent of the other concerns (which is unrealistic,
of course). In fact, there is not a single AUTOSAR-OS
service that is influenced by only one concern, which
means that a straight-forward implementation using the C
preprocessor will have numerous #ifdefs in every imple-
mentation entity. Thus, “#ifdef hell” seems unavoidable
for the class of special-purpose, tailorable operating sys-
tems.

2.2 Why AOP Is a Promising Solution
There are several properties inherent in AOP that are
promising with respect to overcoming the drawbacks in
#ifdef-based configuration techniques that were detailed
above.

First, AOP introduces a new kind of binding between
modules. In traditional programming paradigms, the
caller module P (event producer) knows and has to know
the callee module C (event consumer); that is, its name
and interface (see Figure 3.a):

void C::callee() {

<additional feature>

}

void P::caller() {

...

C::callee(); // has to know C to bind feature

}

C

callee()

P

caller()

ca
lle

e

kn
ow

s

(a)

«aspect»
C

exec("caller")

P

caller()

know
s

"caller"

(b)

«aspect»
C

exec("%::caller")

P1

caller()

Pn

caller()
. . .

(c)

. . .

Figure 3: The mechanisms offered by AOP: advice-based
binding and implicit per–join-point instantiation of advice

The advice-based binding mechanism offered by AOP
can effectively invert that relationship: The callee (i.e.,
the aspect module C) can integrate itself into the caller
(i.e., the base code P) without the caller having to know
about the callee (see Figure 3.b):

advice execution("void P::caller()") : after() {

<additional feature>

}

void P::caller() {

...

// feature binds "itself"

}

If module C is optional and configurable, this loose cou-
pling is an ideal mechanism for integration, because the
call is implicit in the callee module. Using the tradi-
tional mechanisms, the call has to be included in the base
module P and therefore has to be explicitly omitted if
the feature implemented by module C is not in the cur-
rent configuration. This configurable omission is realized
by #ifdefs in state-of-the-art systems, bearing the signifi-
cant disadvantages described above. A similar advantage
of advice-based binding applies to configurable static
program entities like classes or structures; aspects can
integrate the state and operations needed to implement
the corresponding feature into those entities themselves
through slice introductions.

Second, by offering the mechanism of quantification
through pointcut-expression matching, AOP allows for
a modularized implementation of crosscutting concerns,
which is also one of its main proclaimed purposes. This
mechanism provides a flexible and implicit instantiation
of additional implementation elements at compile-time
(see Figure 3.c), ideally suited for the integration of con-
cern implementations into configurable base code where
the number of junction points (i.e., AOP join points) is
flexible, ranging from zero to n:

advice execution("void %::caller()") : after() {

<additional feature> // binds to any "caller()"

}

As we have seen in Table 1, most concerns in an
AUTOSAR-OS implementation have a crosscutting im-

5

220	 2009 USENIX Annual Technical Conference	 USENIX Association

pact on many different points in the system in a simi-
lar way. An example is the policy that system services
must not be called while interrupts are disabled (see Ta-
ble 1, column ). In the requirements specification of
AUTOSAR OS, this policy is defined by requirement
OS093:

If interrupts are disabled and any OS services,
excluding the interrupt services, are called out-
side of hook routines, then the operating system
shall return E_OS_DISABLEDINT. [2, p. 40]

This requirement can be translated almost “literally” to a
single, modularized AspectC++ aspect:

aspect DisabledIntCheck {

advice call(pcOSServices() && !pcISRServices())

&& !within(pcHooks()) : around() {

if(interruptsDisabled())

*tjp->result() = E_OS_DISABLEDINT;

else

tjp->proceed();

} };

For convenience and the sake of separation of concerns,
the aspect uses predefined named pointcuts, which are
defined separately from the aspects in a global header
file and specify which AUTOSAR-OS service belongs to
which group:

pointcut pcOSServices() = "% ActivateTask()" || ...

pointcut pcISRServices() = ...

...

Using these named pointcuts, the aspect gives advice to
all points in the system where any OS service but not the
interrupt services are called:

call(pcOSServices() && !pcISRServices()) ...

The resulting set of join points is further filtered to exclude
all events from within a hook routine:

... && !within(pcHooks())

Thus, we eventually get all calls outside of hook routines
that are made to any service that is not an ISR service.
The piece of around advice given to these join points
performs a test whether the interrupts are currently dis-
abled: If positive, the return code is set to the prescribed
error code and the call is aborted; if negative, the call is
performed as normal. (Around advice replaces the orig-
inal processing of the intercepted event; however, it is
possible to invoke the original processing explicitly with
tjp->proceed().)
The complete concern is encapsulated in this single aspect.
The result is an enhanced separation of concerns in the
system implementation. Layered, configurable systems
can especially benefit from AOP mechanisms by being
able to flexibly omit parts of the system without breaking
caller–callee relationships.

3 Related Work

There are several other research projects that investigate
the applicability of aspects in the context of operating
systems. Among the first was the α-kernel project [7], in
which the evolution of four scattered OS concern imple-
mentations (namely: prefetching, disk quotas, blocking,
and page daemon activation) between versions 2 and 4
of the FreeBSD kernel is analyzed retroactively. The re-
sults show that an aspect-oriented implementation would
have led to significantly better evolvability of these con-
cerns. Around the same time, our own group experi-
mented with AspectC++ in the PURE OS product line
and later with aspect-refactoring eCos [17]. Our results
from analyzing the AspectC++ implementation of var-
ious previously hard-wired crosscutting concerns show
that this new paradigm leads to no overhead in terms of
resource consumption per se.

Not a general-purpose AOP language but an AOP-
inspired language of temporal logic is used in the Bossa
project to integrate the Bossa scheduler framework into
the Linux kernel [1]. Another example for a special-
purpose AOP-inspired language is C4 [12, 21], which is
intended for the application of kernel patches in Linux.
The same goal of smarter patches (with a focus on “col-
lateral evolutions” – changes to the kernel API that have
to be caught up in dozens or hundreds of device drivers)
is followed by Coccinelle [20]. Although the input lan-
guage for the Coccinelle engine “SmPL” is not called
an AOP language, it supports the modular implementa-
tion of crosscutting kernel modifications (i.e., quantifi-
cation). Other related work concentrates on dynamic
aspect weaving as a means for run-time adaptation of
operating-system kernels: TOSKANA provides an infras-
tructure for the dynamic extension of the FreeBSD kernel
by aspects [9]; KLASY is used for aspect-based dynamic
instrumentation in Linux [25].

All these studies demonstrate that there are good cases
for aspects in system software. However, both Bossa and
our own work on eCos show that a useful application
of AOP to existing operating systems requires additional
AOP expressivity that results in run-time overheads (e.g.,
temporal logic or dynamic instrumentation). So far no
study exists that analyzes the effects of using AOP for the
development of an operating-system kernel from the very
beginning. This paper explores just that.

4 Aspect-Aware Operating-System
Development

The basic idea behind aspect-aware operating-system de-
velopment is the strict separation of concerns in the im-
plementation. Each implementation unit provides exactly
one feature; its mere presence or absence in the config-

6

USENIX Association	 2009 USENIX Annual Technical Conference	 221

ured source tree decides on the inclusion of the particular
feature into the resulting system variant.

Technically, this comes down to a strict decoupling of
policies and mechanisms by using aspects as the primary
composition technique: Kernel mechanisms are glued
together and extended by aspects; they support aspects by
ensuring that all relevant internal control-flow transitions
are available as unambigious and statically evaluable join
points.

However, this availability cannot be taken for granted.
Improving the configurability of eCos even further did not
work as good as expected because of join-point ambigu-
ity [17]. For instance, eCos does not expose a dedicated
user API to invoke system services. This means that, on
the join-point level, userkernel transitions are not stati-
cally distinguishable from the kernel-internal activation
and termination of system services. The consequence is
that policy aspects that need to hook into these events
become more expensive than necessary – for instance,
an aspect that implements a new kernel-stack policy by
switching stacks when entering/leaving the kernel. The
ideal implementation of the kernel-stack feature had a per-
formance overhead of 5% for the actual stack switches,
whereas the aspect implementation induced a total over-
head of 124% only because of unambiguous join points.
The aspect had to use dynamic pointcut functions to dis-
ambiguate at run time: It used cflow(), a dynamic point-
cut function that induces an extra internal control-flow
counter that has to be incremented, decremented, and
tested at run time to yield the join points.However, in
other cases it was not possible at all to disambiguate,
rendering an aspect-based implementation of new config-
uration options impossible.

We learned from this that the exposure of all relevant
gluing and extension points as statically evaluable and
unambigious join points has to be understood as a primary
design goal from the very beginning. The key premise
for such aspect awareness is a component structure that
makes it possible to influence the composition and shape
of components as well as all run-time control flows that
run through them by aspects [16].

4.1 Design Principles

The eCos experience led us to the three fundamental prin-
ciples of aspect-aware operating-system development:

The principle of loose coupling. Make sure that aspects
can hook into all facets of the static and dynamic
integration of system components. The binding of
components, but also their instantiation (e.g, place-
ment in a certain memory region) and the time and
order of their initialization should all be established
(or at least be influenceable) by aspects.

The principle of visible transitions. Make sure that as-
pects can hook into all control flows that run through
the system. All control-flow transitions into, out of,
and within the system should be influenceable by
aspects. For this they have to be represented on the
join-point level as statically evaluable, unambiguous
join points.

The principle of minimal extensions. Make sure that
aspects can extend all features provided by the sys-
tem on a fine granularity. System components and
system abstractions should be fine-grained, sparse,
and extensible by aspects.

Aspect awareness, as described by these principles, means
that we moderate the AOP ideal of obliviousness, which is
generally considered by the AOP community as a defining
characteristic of AOP [11]. CiAO’s system components
and abstractions are not totally oblivious to aspects – they
are supposed to provide explicit support for aspects and
even depend on them for their integration.

4.2 Role and Types of Classes and Aspects
The relationship between aspects and classes is asymmet-
rical in most AOP languages: Aspects augment classes,
but not vice versa. This gives rise to the question which
features are best to be implemented as classes and which
as aspects and how both should be applied to meet the
above design principles.

The general rule we came up with in the development
of CiAO is to provide some feature as a class if – and only
if – it represents a distinguishable instantiable concept of
the operating system. Provided as classes are:

1. System components, which are instantiated on be-
half of the kernel and manage its run-time state (such
as the Scheduler or the various hardware devices).

2. System abstractions, which are instantiated on be-
half of the application and represent a system object
(such as Task, Resource, or Event).

However, the classes for system components and system
abstractions are sparse and to be further “filled” by ex-
tension slices. The main purpose of these classes is to
provide a distinct scope with unambiguous join points for
the aspects (that is, visible transitions).

All other features are implemented as aspects. Dur-
ing the development of CiAO we came up with three
idiomatic roles of aspects:

1. Extension aspects add additional features to a sys-
tem abstraction or component (minimal extensions),
such as extending the scheduler by means for task
synchronization (e.g., AUTOSAR-OS resources).

7

222	 2009 USENIX Annual Technical Conference	 USENIX Association

2. Policy aspects “glue” otherwise unrelated system
abstractions or components together to implement
some kernel policy (loose coupling), such as activat-
ing the scheduler from a periodic timer to implement
time-triggered preemptive scheduling.

3. Upcall aspects bind behavior defined by higher lay-
ers to events produced in lower layers of the system,
such as binding a driver function to interrupt events.

The effect of extension aspects typically becomes visible
in the API of the affected system component or abstrac-
tion. Policy aspects, in contrast, lead to a different system
behavior. We will see examples for extension and pol-
icy aspects in the following section. Upcall aspects do
not contribute directly to a design principle, but have a
more technical purpose: they exploit advice-based bind-
ing and the fact that AspectC++ inlines advice code at
the respective join point for flexible, yet very efficient
upcalls.

5 Case Study: CiAO-AS

CiAO is designed and implemented as a family of operat-
ing systems and has been developed from scratch using
the principles of aspect-aware operating-system devel-
opment. Note, however, that the application developer
does not have to have any AOP expertise to use the OS.
A concrete CiAO variant is configured statically by se-
lecting features from a feature model in an Eclipse-based
graphical configuration tool [4].

The CiAO-AS family member implements an operating-
system kernel according to the AUTOSAR-OS stan-
dard3 [2], including configurable protection policies
(memory protection, timing protection, service protec-
tion). The primary target platform for CiAO is the Infi-
neon TriCore, an architecture of 32-bit microcontrollers
that also serves as a reference platform for AUTOSAR
and is widely used in the automotive industry.

5.1 Overview

Figure 4 shows the basic structure of the CiAO-AS kernel.
Like most operating systems, CiAO is designed with a
layered architecture, in which each layer is implemented
using the functionality of the layers below. The only ex-
ceptions to this are the aspects implementing architectural
policies, which may affect multiple layers.

On the coarse level, we have three layers. From bottom
up these are: the hardware access layer, the system layer
(the operating system itself), and the API layer.

3Because of legal issues, we do not claim full conformance; we have
not performed any formal conformance testing.

Figure 4: Structure of the CiAO-AS kernel

In CiAO, however, layers do not just serve conceptual
purposes, but also are a means of aspect-aware develop-
ment. With regard to the principle of visible transitions,
each layer is represented as a separate C++ namespace
in the implementation (hw::hal, os::krn, AS). Thereby,
cross-layer control-flow transitions (especially into and
out of os::krn) can be grasped by statically evaluable
pointcut expressions. The following expression, for in-
stance, yields all join points where a system-layer compo-
nent accesses the hardware:

pointcut pcOStoHW() = call("% hw::hal::%(...)")

&& within("% os::krn::%(...)");

5.2 The Kernel

In its full configuration, the system layer bears three
logical system components (displayed as columns in Fig-
ure 4):

1. The scheduler (Scheduler) takes care of the dis-
patching of tasks and the scheduling strategy.

2. The synchronization facility (Synchronizer) takes
care of the management of events, alarms, and the
underlying (hardware / software) counters.

3. The OS control facility (OSControl) provides ser-
vices for the controlled startup and shutdown of the
system and the management of OSEK/AUTOSAR
application modes.

However, as pointed out in Section 4.2, these classes are
sparse or even empty. If at all, they implement only a
minimal base of their respective concern. All further con-
cerns and variants (depicted in dark grey in Figure 4) are
brought into the system by aspects, most of which touch
multiple system components and system abstractions.

8

USENIX Association	 2009 USENIX Annual Technical Conference	 223

«policy aspect»
MixedPreemption

exec(...)

«slice»
MixedPreemption_Task

preemptable_

M
ixedP

reem
ption_Task

«policy aspect»
ResourceSupport_PIP

exec("getResource)
exec("releaseResource)

Scheduler

activate()
reschedule()
setNeedReschedule()

«extension aspect»
ResourceSupport

intro("Sched")
intro("Task")
...

«policy aspect»
FullPreemption

call(...)

Task

priority_

«slice»
ResourceSupport_Sched

getResource()
releaseResource()

«slice»
ResourceSupport_Task

occupied_
originalPri_

«policy aspect»
ResourceSupport_PCP

exec("getResource)
exec("releaseResource)

ResourceSupport_Task Resource-
Support_Sched

"getResource"

"releaseResource"

"activate"
"releaseResource"
"setEvent"

Figure 5: Interactions between optional policies and extensions of the CiAO scheduler

5.3 Aspect-Aware Development Applied
Figure 5 demonstrates how components, abstractions, and
aspects engage with each other on a concrete example.
The central element is the system component Scheduler.
However, Scheduler provides only the minimal base of
the scheduling facility, which is nonpreemptive schedul-
ing:

class Sched {

Tasklist ready_;

Task::Id running_;

public:

void activate(Task::Id whom);

void reschedule();

void setNeedReschedule();

...

};

Support for preemption and further abstractions is pro-
vided by additional extension aspects and policy aspects.

ResourceSupport is an example for an extension as-
pect. It extends the Task system abstraction Scheduler

system component with support for resources. For this
purpose, it introduces some state variables (occupied_,
originalPri_) and operations (getResource(), re-

leaseResource()).4 The elements to introduce are given
by respective extension slices:

slice struct ResourceSupport_Task {

ResourceMask occupied_;

Pri originalPri_;

};

4ResourceSupport furthermore extends the API on the inter-
face layer (it introduces the respective AUTOSAR-OS services
Get-/ReleaseResource() and the ResourceType abstraction) so that
applications can use the new functionality. For the sake of simplicity,
this cross-layer extension is omitted here.

slice struct ResourceSupport_Sched {

void getResource(Resource::Id resid) {...}

void releaseResource(Resource::Id resid) {...}

};

aspect ResourceSupport {

advice "Task" : slice ResourceSupport_Task;

advice "Scheduler" : slice ResourceSupport_Sched;

};

FullPreemption is an example for a policy aspect. It
implements the full-preemption policy as specified in [19],
according to which every point where a higher-priority
task may become ready is a potential point of preemption:

pointcut pcPreemptionPoints() =

"% Scheduler::activate(...)" ||

"% Scheduler::setEvent(...)" ||

"% Scheduler::releaseResource(...)";

aspect FullPreemption {

advice execution(pcPreemptionPoints()) : after() {

tjp->that()->reschedule();

} };

The named pointcut pcPreemptionPoints() (defined
in a global header file) specifies the potential preemp-
tion points. To these points, if present, the aspect
FullPreemption binds the invocation of reschedule().
This demonstrates the benefits of loose coupling by the
AOP mechanisms, which makes it easy to cope with
conceptually different, but technically interacting fea-
tures: In a fully-preemptive system without resource sup-
port, Scheduler::releaseResource() is just not present,
thus does not constitute a join point for FullPreemption.
However, if the ResourceSupport extension aspect is
part of the current configuration, Scheduler::release-

9

224	 2009 USENIX Annual Technical Conference	 USENIX Association

concern ex
te

ns
io

n

po
lic

y

up
ca

ll

ad
vi

ce

jo
in

po
in

ts

extension of | advice-based binding to

ISR cat. 1 support 1 m 2+m 2+m API, OS control | m ISR bindings
ISR cat. 2 support 1 n 5+n 5+n API, OS control, scheduler | n ISR bindings
Resource support 1 1 3 5 scheduler, API, task | PCP policy implementation
Resource tracking 1 3 4 task, ISR | monitoring of Get/ReleaseResource
Event support 1 5 5 scheduler, API, task, alarm | trigger action JP
Full preemption 1 2 6 | 3 points of rescheduling
Mixed preemption 1 3 7 task | 3 points of rescheduling for task / ISR
Wrong context check 1 1 s | s service calls
Interrupts disabled check 1 1 30 | all services except interrupt services
Invalid parameters check 1 1 25 | services with an OS object parameter
Error hook 1 2 30 scheduler | 29 services
Protection hook 1 1 2 2 API | default policy implementation
Startup / shutdown hook 1 2 2 | explicit hooks
Pre-task / post-task hook 1 2 2 | explicit hooks

Table 2: Selected CiAO-AS kernel concerns implemented as aspects with number of affected join points. Listed are
selected kernel concerns that are implemented as extension, policy, or upcall aspects, together with the related pieces of
advice (not including order advice), the affected number of join points, and a short explanation for the purpose of each
join point (separated by “|” into introductions of extension slices | advice-based binding).

Resource() implicitly triggers the advice. The separation
of policy invocation from mechanism implementation
makes it easy to integrate additional features, such as
the ResourceSupport_PCP aspect, which implements a
stack-based priority ceiling protocol for resources. As
AspectC++ inlines advice code at the matching join point,
this flexibility does not cause overhead at run time.

6 Discussion of Results

By following the principles of aspect-aware operating
system development, policies and mechanisms are cleanly
separated in the CiAO implementation. This separation
is a golden rule of system-software development, but in
practice difficult to achieve. While on the design level it
is usually possible to describe a policy in a well-separated
manner from underlying mechanisms, the implementation
often tends to be crosscutting. The reason is that many
system policies, such as the preemption policy, not only
depend on decisions but also on the specific points in the
control flow where these decisions are made. Here, the
modularization into aspects shows some clear advantages.

6.1 Modularization of the System

Table 2 displays an excerpt of the list of AUTOSAR-OS
concerns that are implemented as aspects in CiAO-AS.
The first three columns list for each concern the number of
extension, policy, and upcall aspects that implement the
concern. (The resource-support aspect and the protection-
hook aspect have both an extension and a policy facet.)

An interesting point is the realization of synergies by
means of AOP quantification. If for some concern the
number of pieces of advice is lower than the number of
affected join points, we have actually profited from the
AOP concept of quantification by being able to reuse
advice code over several join points. For 8 out of the 14
concerns listed in Table 2, this is the case.

The net amount of this profit depends on the type of
concern and aspect. Extension aspects typically cross-
cut heterogeneously with the implementation of other
concerns, which means that they have specific pieces of
advice for specific join points. These kinds of advice do
not leave much potential for synergies by quantification.
Policy aspects on the other hand – especially those for ar-
chitectural policies – tend to crosscut homogeneously with
the implementation of other concerns, which means that a
specific piece of advice targets many different join points
at once. In these cases, quantification creates significant
synergies.

For all concerns, however, the implementation is real-
ized as a distinct set of aspect modules, thereby reaching
complete encapsulation and separation of concerns. Thus,
any given feature configuration demanded by the appli-
cation developer can be fulfilled by only including the
implementation entities belonging to that configuration in
the configured source tree to be compiled.

6.2 Scalability of the System
Execution Time. The effects of the achieved configura-
bility also become visible in the CPU overhead. Table 3
displays the execution times of the micro-benchmark sce-

10

USENIX Association	 2009 USENIX Annual Technical Conference	 225

narios5 (a) to (j) and the comprehensive application (k)
on CiAO and a commercial OSEK implementation6. For
each scenario, we first configured both systems to sup-
port the smallest possible set of features (min colums
in Table 3). The differences between CiAO and OSEK
are considerable: CiAO is noticeably faster in all test
scenarios.

One reason for this is that CiAO provides a much better
configurability (and thereby granularity) than OSEK. As
the micro-benchmark scenarios utilize only subsets of the
OSEK/AUTOSAR features, this has a significant effect
on the resulting execution times. The smallest possible
configurations of the commercial OSEK still contained
a lot of unwanted functionality. The scheduler is syn-
chronized with ISRs, for instance; however, most of the
application scenarios do not include any ISRs that could
possibly interrupt the kernel.

To judge these effects, we performed additional mea-
surements with an “artifically enriched” version of CiAO
that provides the same amount of unwanted functionality
as OSEK (column full in Table 3). This reduces the per-
formance differences; however, CiAO is still faster in six
out of eleven test cases. This is most notable in test case
(k), which is a comprehensive application that actually
uses the full feature set.

Another reason for the relative advantage of CiAO is
that OSEK’s internal thread-abstraction implementation
is less efficient. This is mainly due to particularities of the
TriCore platform, which renders standard context-switch
implementations ported to that platform very inefficient.
CiAO, however, has a highly configurable and adaptable
thread abstraction, therefore not only providing for an
upward tailorability (i.e., to the needs of the application),
but also downward toward the deployment platform.

Memory Requirements. In embedded systems, tai-
lorability is crucial – especially with respect to memory
consumption, because RAM and ROM are typically lim-
ited to sizes of a few kilobytes. Since system software
does not directly contribute to the business value of an
embedded system, scalability is of particular importance
here. Thus, we also investigated how the memory require-
ments of the CiAO-AS kernel scale up with the number
of selected configurable features; the condensed results

5All variants were woven and compiled for the Infineon TriCore plat-
form with AC++-1.0PRE3 and TRICORE-G++-3.4.3 using -O3 -fno-rtti
-funit-at-a-time -ffunction-sections -Xlinker --gc-sections optimization
flags. Memory numbers are retrieved byte-exact from the linker-map
files. Run-time numbers are measured with a high-resolution hardware
trace unit (Lauterbach PowerTrace TC1796).

6ProOSEK is the leading commercial implementation of the OSEK
standard and part of the BMW and Audi/VW standard cores. We com-
pare CiAO against ProOSEK since (1) AUTOSAR is a true superset
of OSEK and (2) we do not yet have access to a complete AUTOSAR
implementation.

test scenario CiAO OSEK
min full min

(a) voluntary task switch 160 178 218
(b) forced task switch 108 127 280
(c) preemptive task switch 192 219 274
(d) system startup 194 194 399
(e) resource acquisition 19 56 54
(f) resource release 14 52 41
(g) resource release with preemption 240 326 294
(h) category 2 ISR latency 47 47 47
(i) event blocking with task switch 141 172 224
(j) event setting with preemption 194 232 201
(k) comprehensive application 748 748 1216

Table 3: Performance measurement results [clock ticks]

are depicted in Table 4. Listed are the deltas in code, data,
and BSS section size per feature that is added to the CiAO
base system.

Each Task object, for instance, takes 20 bytes of data
for the kernel task context (priority, state, function, stack,
interrupted flag) and 16 bytes (bss) for the underlying
CiAO thread abstraction structure. Aspects from the im-
plementation of other features, however, may extend the
size of the kernel task context. Resource support, for
instance, crosscuts with task management in the imple-
mentation of the Task structure, which it extends by 8
bytes to accommodate the occupied resources mask and
the original priority.

The cost of several features does not simply induce
a constant cost, but depends on the number of affected
join points, which in turn can depend on the presence
of other features, as explained in Section 5.3 with the
example of full preemption and resource support. This
effect underlines again the flexibility of loose coupling by
advice-based binding.

7 Experiences with the Approach

The CiAO results show that the approach of aspect-aware
operating-system development is both feasible and ben-
eficial for the class of configurable embedded operating
systems. The challenge was to implement a system in
which almost everything is configurable. In the following,
we describe our experience with the approach.

7.1 Extensibility

We are convinced that the three design principles of
aspect-aware operating-system development (loose cou-
pling, visible transitions, minimal extensions) also lead to
an easy extensibility of the system for new, unanticipated
features. While it is generally difficult to prove the sound-
ness of an approach for unanticipated change, we have at
least some evidence that our approach has clear benefits

11

226	 2009 USENIX Annual Technical Conference	 USENIX Association

feature with feature or instance text data bss

Base system (OS control and tasks)
per task + func + 20 + 16 + stack
per application mode 0 + 4 0

ISR cat. 1 support 0 0 0
per ISR +func 0 0
per disable–enable + 4 0 0

Resource support + 128 0 0
per resource 0 + 4 0
per task 0 + 8 0

Event support + 280 0 0
per task 0 + 8 0
per alarm 0 + 12 0

Full preemption 0 0 0
per join point + 12 0 0

Mixed preemption 0 0 0
per join point + 44 0 0
per task 0 + 4 0

Wrong context check 0 0 0
per void join point 0 0 0
per StatusType join point + 8 0 0

Interrupts disabled check 0 0 0
per join point + 64 0 0

Invalid parameters check 0 0 0
per join point + 36 0 0

Error hook 0 0 + 4
per join point + 54 0 0

Startup hook or shutdown hook 0 0 0
Pre-task hook or post-task hook 0 0 0

Table 4: Scalability of CiAO’s memory footprint. Listed
are the increases in static memory demands [bytes] of
selected configurable CiAO features.

here:
In a specific real-time application project that we im-

plemented using CiAO, minimal and deterministic event-
processing latencies were crucial. The underlying hard-
ware platform was the Infineon TriCore, which actually
is a heterogeneous multi-processor-system-on-chip that
comes with an integrated peripheral control processor
(PCP). This freely-programmable co-processor is able to
handle interrupts independently of the main processor.
We decided to extend CiAO in a way that the PCP pre-
handles all hardware events (interrupts) in order to map
them to activations of respective software tasks, thereby
preventing the real-time problem of rate-monotonic prior-
ity inversion [8]. This way, the CPU is only interrupted
when there actually is a control flow of a higher priority
than the currently executing one ready to be dispatched.

This relatively complex and unanticipated extension
could nevertheless be integrated into CiAO by a sin-
gle extension aspect, which is shown in Figure 6. The
PCP_Extension aspect is itself a minimal extension; its
implementation profited especially from the fact that all
other CiAO components are designed according to the
principle of visible transitions. This ensures here that all
relevant transitions of the CPU, such as when the kernel
is entered or left (lines 9 and 14, respectively) or when

the running CPU task is about to be preempted (line 17),
are available as statically evaluable and unambigious join
points to which the aspect can bind.

Note, that the aspect in Figure 6 is basically the com-
plete code for that extension, except for some initializa-
tion code (10 lines of code) and the PCP code, which is
written in assembly language due to the lack of a C/C++
compiler for the PCP instruction set.

7.2 The Role of Language
We think that the expressiveness of the base language (in
our case C++) plays an important role for the effective-
ness of the approach. Thanks to modularization through
namespaces and classes, C++ has some clear advantages
over C with respect to visible transitions: the more of the
base program’s purpose and semantics is expressed in its
syntactic structure, the more unambigious and “semanti-
cally rich” join points are available to which the aspects
can bind.

Note, however, that even though CiAO is using C++, it
is not developed in an object-oriented manner. We used
C++ as a purely static language and stayed away from any
language feature that induces a run-time overhead, such as
virtual functions, exceptions, run-time type information,
and automatic construction of global variables.

7.3 Technical Issues
Aspects for Low-Level Code. A recurring challenge in
the development of CiAO was that the implementation of
fundamental low-level OS abstractions, such as interrupt
handlers or the thread dispatcher, requires more control
over the resulting machine code than is guaranteed by
the semantics of ISO C++. Such functions are typically
(1) written entirely in external assembly files or (2) use a
mixture of inline assembly and nonstandard language ex-
tensions (such as __attribute__((interrupt)) in gcc).
For the sake of visible transitions, we generally opted
for (2). However, the resulting join points often have
to be considered as fragile – if advice is given to, for
instance, the context switch function, the transforma-
tions performed by the aspect weaver might break the
programmer’s implicit assumptions about register us-
age or the stack layout. The workaround we came up
with for these cases is to provide explicit join points
to which the aspects can bind instead. Technically, an
explicit join point is represented by an empty inline
function that is invoked from the fragile code when
the execution context is safe. CiAO’s context switch
functionality, for instance, exposes four explicit join
points to which aspects can bind: before_CPURelease(),
before_LastCPURelease(), after_CPUReceive(), and
after_FirstCPUReceive(). Because of function inlin-

12

USENIX Association	 2009 USENIX Annual Technical Conference	 227

1 aspect PCP_Extension {
2 advice execution("void hw::init()") : after() {
3 PCP::init();
4 }
5 advice execution("% Scheduler::setRunning(...)") :
6 before() {
7 PCP::setPrio(os::krn::Task::getPri(tjp->args<0>()));
8 }
9 advice execution("% enterKernel(...)") : after() {

10 // wait until PCP has left kernel (Peterson)
11 PCP_FLAG0 = 1; PCP_TURN = 1;
12 while ((PCP_FLAG1 == 1) && (PCP_TURN == 1)) {}
13 }
14 advice execution("% leaveKernel(...)") : before() {
15 PCP_FLAG0 = 0;
16 }
17 advice execution("% AST0::ast(...)") : around() {
18 // AST0::ast() is the AST handler that activates
19 // the scheduler (bound by an upcall aspect)
20

21 // wait until PCP has left kernel (Peterson)
22 PCP_FLAG0 = 1; PCP_TURN = 1;
23 while ((PCP_FLAG1 == 1) && (PCP_TURN == 1)) {}
24

25 // proceed to aspect that activates scheduler
26 tjp->proceed();
27 PCP_FLAG0 = 0;
28 }
29 advice execution("% Scheduler::schedule(...)") : after() {
30 // write priority of running task to PCP memory
31 PCP::setPrio(Task::getPri(
32 Scheduler::Inst().getRunning()));
33 }
34 };

Figure 6: PCP co-processor extension aspect

ing, this does not induce an overhead and the aspect code
is still embedded directly into the context switch function-
ality.

Aspect–Aspect Interdependencies. In several cases
we had to deal with subtle interdependencies between
aspects that affect the same join points. For instance,
the following aspect implements the ErrorHook feature,
which exempts the application developer from manually
testing the result code of OS services:

aspect ErrorHook {

advice execution(pcOSServices() ...) : after() {

if(*tjp->result() != E_OK)

invokeErrorHook(*tjp->result());

} };

Later we figured that, depending on the configuration,
there are also other aspects that modify the result code.
To fulfill its specification, ErrorHook has to be invoked
after these other aspects. Whereas detecting such interde-
pendencies was sometimes tricky (especially those that
emerge only in certain configurations), they were gener-
ally easy to resolve by order advice:

advice execution(pcOSServices() ...) : order(

"ErrorHook", !"ErrorHook");

This type of advice allows the developer to define a (par-
tial) order of aspect invocation for a pointcut. The prece-
dence of aspects is specified as a sequence of match ex-
pressions, which are evaluated against all aspect identi-
fiers. In the above example, the aspect yielded by the
expression "ErrorHook" has precedence (is invoked last
of all aspects that give after advice to the pointcut) over
all other aspects (the result of !"ErrorHook"). Very help-
ful was that order advice does not necessarily have to be
given by one of the affected aspects, instead it can be
given by any aspect. This made it relatively easy to en-
capsulate and deal with configuration-dependent ordering
constraints.

Join-Point Traceability. An important factor for the
development were effective tools for join-point traceabil-
ity. From the viewpoint of an aspect developer, the set of
join points offered by some class implementation consti-
tutes an interface. However, these interfaces are “implicit
at best” [23]; a simple refactoring, such as renaming a
method, might silently change the set of join points and
thereby break some aspect. To prevent such situations, we
used the Eclipse-based AspectC++ Development Toolkit
(ACDT7), which provides a join-point–set delta analysis
(very helpful after updating from the repository) and visu-
alizes code that is affected by aspects. Thereby, unwanted
side effects of code changes could be detected relatively
easy.

8 Summary and Conclusions

Operating systems for the domain of resource-constrained
embedded systems have to be highly configurable. Typ-
ically, such configurability is implemented “in line” by
means of the C preprocessor. However, due to feature
interdependencies and the fact that system policies and
system mechanisms tend to crosscut with each other in
the implementation, this approach leads to “#ifdef hell”
and a bad separation of concerns. Our analysis of the
AUTOSAR-OS specification revealed that these effects
can already be found in the requirements; they are an in-
herent phenomenon of complex systems. If fundamental
architectural policies have to be provided as configurable
features, “#ifdef hell” appears to be unavoidable.

We showed that a pragmatic application of aspect-
oriented programming (AOP) provides means for solving
these issues: The advice mechanism of AOP effectively
reverses the direction of feature integration; an (optional)
feature that is implemented as an aspect integrates itself
into the base code. Thanks to AOP’s pointcut expressions,
the integration of features through join points is declara-
tive – it scales implicitly with the presense or absence of

7http://acdt.aspectc.org/

13

228	 2009 USENIX Annual Technical Conference	 USENIX Association

other features. A key prerequisite is, however, that the sys-
tem’s implementation exhibits enough unambigious and
statically evaluable join points. This is achieved by the
three design principles of aspect-aware operating-system
development.

By following this design approach in the development
of CiAO, we did not only achieve the complete separation
of concerns in the code, but also excellent configurability
and scalability in the resulting system. We hope that our
results encourage developers who start from scratch with
a piece of configurable system software to follow the
guidelines described in this paper.

Acknowledgments

We wish to thank the anonymous reviewers for EuroSys
and USENIX for their helpful comments. Special thanks
go to Robert Grimm, whose demanding and encouraging
shepherding helped us tremendously to improve content
and clarity of this paper.

References
[1] ÅBERG, R. A., LAWALL, J. L., SÜDHOLT, M., MULLER, G.,

AND MEUR, A.-F. L. On the automatic evolution of an OS
kernel using temporal logic and AOP. In 18th IEEE Int. Conf. on
Automated Software Engineering (ASE ’03) (Montreal, Canada,
Mar. 2003), IEEE, pp. 196–204.

[2] AUTOSAR. Specification of operating system (version 2.0.1).
Tech. rep., Automotive Open System Architecture GbR, June
2006.

[3] AUTOSAR homepage. http://www.autosar.org/, visited 2009-
03-26.

[4] BEUCHE, D. Variant management with pure::variants. Tech.
rep., pure-systems GmbH, 2006. http://www.pure-systems.

com/fileadmin/downloads/pv-whitepaper-en-04.pdf, visited
2009-03-26.

[5] BROY, M. Challenges in automotive software engineering. In
28th Int. Conf. on Software Engineering (ICSE ’06) (New York,
NY, USA, 2006), ACM, pp. 33–42.

[6] CAMPBELL, R., ISLAM, N., MADANY, P., AND RAILA, D.
Designing and implementing Choices: An object-oriented system
in C++. CACM 36, 9 (1993).

[7] COADY, Y., AND KICZALES, G. Back to the future: A retroac-
tive study of aspect evolution in operating system code. In 2nd
Int. Conf. on Aspect-Oriented Software Development (AOSD ’03)
(Boston, MA, USA, Mar. 2003), M. Akşit, Ed., ACM, pp. 50–59.

[8] DEL FOYO, L. E. L., MEJIA-ALVAREZ, P., AND DE NIZ, D.
Predictable interrupt management for real time kernels over con-
ventional PC hardware. In 12th IEEE Int. Symp. on Real-Time
and Embedded Technology and Applications (RTAS ’06) (Los
Alamitos, CA, USA, 2006), IEEE, pp. 14–23.

[9] ENGEL, M., AND FREISLEBEN, B. TOSKANA: a toolkit for
operating system kernel aspects. In Transactions on AOSD II
(2006), A. Rashid and M. Aksit, Eds., no. 4242 in LNCS, Springer,
pp. 182–226.

[10] FILMAN, R. E., ELRAD, T., CLARKE, S., AND AKSIT, M.
Aspect-Oriented Software Development. AW, 2005.

[11] FILMAN, R. E., AND FRIEDMAN, D. P. Aspect-oriented program-
ming is quantification and obliviousness. In W’shop on Advanced
SoC (OOPSLA ’00) (Oct. 2000).

[12] FIUCZYNSKI, M., GRIMM, R., COADY, Y., AND WALKER, D.
patch(1) considered harmful. In 10th W’shop on Hot Topics in
Operating Systems (HotOS ’05) (2005), USENIX.

[13] HOFER, W., LOHMANN, D., AND SCHRÖDER-PREIKSCHAT, W.
Concern impact analysis in configurable system software—the
AUTOSAR OS case. In 7th AOSD W’shop on Aspects, Compo-
nents, and Patterns for Infrastructure Software (AOSD-ACP4IS

’08) (New York, NY, USA, Mar. 2008), ACM, pp. 1–6.

[14] HUNT, G. C., AND LARUS, J. R. Singularity: Rethinking the
software stack. SIGOPS Oper. Syst. Rev. 41, 2 (2007), 37–49.

[15] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C., LOINGTIER, J.-M., AND IRWIN, J. Aspect-oriented
programming. In 11th Eur. Conf. on OOP (ECOOP ’97) (June
1997), M. Aksit and S. Matsuoka, Eds., vol. 1241 of LNCS,
Springer, pp. 220–242.

[16] LOHMANN, D. Aspect Awareness in the Development of Config-
urable System Software. PhD thesis, Friedrich-Alexander Univer-
sity Erlangen-Nuremberg, 2009.

[17] LOHMANN, D., SCHELER, F., TARTLER, R., SPINCZYK, O.,
AND SCHRÖDER-PREIKSCHAT, W. A quantitative analysis of
aspects in the eCos kernel. In ACM SIGOPS/EuroSys Eur. Conf.
on Computer Systems 2006 (EuroSys ’06) (New York, NY, USA,
Apr. 2006), ACM, pp. 191–204.

[18] MASSA, A. Embedded Software Development with eCos. New
Riders, 2002.

[19] OSEK/VDX GROUP. Operating system specification 2.2.3. Tech.
rep., OSEK/VDX Group, Feb. 2005. http://portal.osek-vdx.
org/files/pdf/specs/os223.pdf, visited 2009-03-26.

[20] PADIOLEAU, Y., LAWALL, J. L., MULLER, G., AND HANSEN,
R. R. Documenting and automating collateral evolutions in Linux
device drivers. In ACM SIGOPS/EuroSys Eur. Conf. on Computer
Systems 2008 (EuroSys ’08) (Glasgow, Scotland, Mar. 2008).

[21] REYNOLDS, A., FIUCZYNSKI, M. E., AND GRIMM, R. On the
feasibility of an AOSD approach to Linux kernel extensions. In
7th AOSD W’shop on Aspects, Components, and Patterns for In-
frastructure Software (AOSD-ACP4IS ’08) (New York, NY, USA,
Mar. 2008), ACM, pp. 1–7.

[22] SPINCZYK, O., AND LOHMANN, D. The design and implementa-
tion of AspectC++. Knowledge-Based Systems, Special Issue on
Techniques to Produce Intelligent Secure Software 20, 7 (2007),
636–651.

[23] STEIMANN, F. The paradoxical success of aspect-oriented pro-
gramming. In 21st ACM Conf. on OOP, Systems, Languages, and
Applications (OOPSLA ’06) (New York, NY, USA, 2006), ACM,
pp. 481–497.

[24] TURLEY, J. The two percent solution. embedded.com (Dec.
2002). http://www.embedded.com/story/OEG20021217S0039,
visited 2009-03-26.

[25] YANAGISAWA, Y., KOURAI, K., CHIBA, S., AND ISHIKAWA,
R. A dynamic aspect-oriented system for OS kernels. In 6th Int.
Conf. on Generative Programming and Component Engineering
(GPCE ’06) (New York, NY, USA, Oct. 2006), ACM, pp. 69–78.

[26] YOKOTE, Y. The Apertos reflective operating system: the concept
and its implementation. In 7th ACM Conf. on OOP, Systems,
Languages, and Applications (OOPSLA ’92) (New York, NY,
USA, 1992), ACM, pp. 414–434.

14

USENIX Association	 2009 USENIX Annual Technical Conference	 229

Automatically Generating Predicates and Solutions for Configuration Troubleshooting

Ya-Yunn Su
NEC Laboratories America

yysu@nec-labs.com

Jason Flinn
University of Michigan
jflinn@umich.edu

Abstract
Technical support contributes 17% of the total cost of
ownership of today’s desktop computers [12], and trou-
bleshooting misconfigurations is a large part of techni-
cal support. For information systems, administrative ex-
penses, made up almost entirely of people costs, repre-
sent 60–80% of the total cost of ownership [5]. Prior
work [21, 24] has created promising tools that automate
troubleshooting, thereby saving users time and money.
However, these tools assume the existence of predicates,
which are test cases painstakingly written by an expert.
Since both experts and time are in short supply, obtain-
ing predicates is difficult. In this paper, we propose a
new method of creating predicates that infers predicates
by observing the actions of ordinary users troubleshoot-
ing misconfigurations. We report on the results of a user
study that evaluates our proposed method. The main re-
sults were: (1) our method inferred predicates for all con-
figuration bugs studied with very few false positives, (2)
using multiple traces improved results, and, surprisingly,
(3) our method identified the correct solutions applied by
users who fixed the misconfigurations in the study.

1 Introduction

Troubleshooting software misconfigurations is a diffi-
cult, frustrating job that consists of such tasks as editing
configuration files, modifying file and directory access
rights, checking software dependencies, and upgrading
dynamic libraries. Troubleshooting is also costly: tech-
nical support represents 17% of the total cost of owner-
ship of desktop computers [12], and administrative costs
are 60–80% of the total cost of ownership of information
systems [5].

Consequently, the research community has developed
several systems that automate troubleshooting [21, 24].
However, these tools require predicates, which are test
cases that evaluate the correctness of software configura-
tion on a computer system. Unfortunately, creating pred-
icates is currently a manual task that requires the partici-
pation of expert users with domain knowledge about the
application being tested. Manual creation of predicates
is time-consuming, and expert time is precious.

This paper shows how to substantially reduce the
time and effort needed to deploy automated troubleshoot-
ing by automatically generating predicates from traces
of ordinary users troubleshooting their computers. Our
method is based on the insight that users who manu-
ally troubleshoot a misconfiguration generally use one or
more commands to test the correctness of their system. If
we can extract these commands and learn a function that
maps command output to correct and incorrect configu-
ration states, we can generate a predicate that can be used
by an automated troubleshooting tool. Predicate extrac-
tion requires no extra effort on the part of the user who
is troubleshooting a problem; it simply lets other users
benefit from her efforts.

Our current prototype uses a modified Unix shell
to observe user input and system output during trou-
bleshooting. We chose a command line interface to sim-
plify development and evaluation by limiting the types
of input and output we need to observe. GUI applica-
tions pose additional challenges, and we discuss ways in
which we might address those challenges in Section 7.1.
We also use a modified Linux kernel to track the causal
relationship between processes, files, and other kernel
objects.

We use two heuristics to find commands that can be
used as predicates. First, users generally test the system
state multiple times while fixing a configuration prob-
lem: once to reproduce a configuration problem and pos-
sibly several other times to test potential solutions. Sec-
ond, testing commands should generate some output that
lets the user know whether or not the current configura-
tion is correct. We therefore examine output consisting
of data printed to the terminal, exit codes, and the set of
kernel objects modified by a command execution. This
output should be qualitatively different before and after
a configuration problem is fixed. Thus, repeated com-
mands with significant differences in output between two
executions are flagged as predicates.

For example, a user could test whether a local Apache
server is working correctly by using wget to retrieve
the server’s home page. When the user first runs the
command, an HTTP error message is displayed. When

230	 2009 USENIX Annual Technical Conference	 USENIX Association

the user runs the command after fixing the problem, the
home page is correctly displayed. Our method thus iden-
tifies the wget command as a predicate.

Our method also identifies potential solutions found
during troubleshooting. We observe that, in general, a
command that is part of a solution will causally affect
the last execution of a predicate but not prior executions
of the same predicate. Further, the output of the two ex-
ecutions of the predicate should differ because the prob-
lem is fixed during the latter execution but not during the
former one. Thus, we use the causal information tracked
by our modified kernel to select candidate solutions. We
then sort our candidate solutions by the number of times
they appear in the set of all traces. As with prior trou-
bleshooting systems such as PeerPressure [22], we ob-
serve that the majority of users is usually right, so com-
mon solutions are more correct than uncommon ones.

We envision that our system can be deployed across
a community of users of an application or an operat-
ing system. As users encounter and solve new config-
uration problems, our tool will collect traces of their
activity, analyze the traces, and upload canonicalized
and anonymized predicates and solutions to a central-
ized repository. Other people executing automated con-
figuration management tools can then benefit from the
experience of these prior users by downloading and try-
ing commonly used predicates and solutions. Note that
since tools such as AutoBash have the ability to try mul-
tiple solutions and deterministically roll back unsuccess-
ful ones, our solution database does not have to identify
the exact solution to a problem, just the most likely ones.
This kind of community sharing of experience has been
previously proposed for use with tools that prevent dead-
locks [11] and enable better understanding of software
error messages [9].

We evaluated the effectiveness of our method by con-
ducting a user study in which we recorded the actions of
twelve people fixing four configuration problems for the
CVS version control system and the Apache Web server.
We then used our method to extract predicates from these
recordings. Aggregating across all traces, our method
found 22 predicates that correctly tested the state of these
systems, while generating only 2 false positives. Further,
our method was able to correctly identify the solution
that fixed each misconfiguration.

2 Related work

The research community has proposed several differ-
ent approaches to automate troubleshooting. Some sys-
tems, such as Chronus [24] and AutoBash [21], search
through the space of possible configurations to find a cor-
rect one. Chronus searches backwards in time to find
the instance in which a misconfiguration was introduced.

AutoBash applies actions previously taken to fix a prob-
lem on one computer to fix similar problems on other
computers. Both systems use predicates that test soft-
ware correctness to guide the search. Initially, one or
more predicates evaluate to false, indicating a miscon-
figuration. Both systems use checkpoint and rollback to
search for a state in which all predicates evaluate to true;
a system in this state is assumed to be configured cor-
rectly. Using checkpoints that are created prior to exe-
cuting predicates, both systems ensure predicates do not
permanently affect the state of the system because exe-
cution is rolled back after the predicate completes.

Clearly, successful troubleshooting relies on having
good predicates. Without predicates that distinguish cor-
rect and incorrect configurations, the automated search
process will fail. Both Chronus and AutoBash previ-
ously assumed that experts would create such predicates
by hand, which limits their applicability. In this paper,
we show how predicates can be automatically generated
by observing ordinary users troubleshooting configura-
tion problems. We also show howwe can simultaneously
generate candidate solutions, which can be tried by sys-
tems such as AutoBash during the search.

Other automated troubleshooting tools, such as
Strider [23] and PeerPressure [22], take a state-based
approach in which the static configuration state on one
computer is compared with that on other computers to
identify significant deviations. Since a state-based ap-
proach does not need predicates, our work is not directly
applicable to such systems. One of the principles guiding
the design of these systems is that the majority of users
(and, hence, the most frequent configuration states) are
usually correct. We apply this same principle in our work
to identify candidate solutions, and the results of our user
study support this hypothesis.

Nagaraja et al. [16] observed that operator mistakes
are an important factor in the unavailability of on-line
services and conducted experiments with human opera-
tors. Like our user study, their experiments asked op-
erators to perform maintenance tasks and troubleshoot
misconfigurations for their three-tiered Internet service.
However, their study did not share our goal of identifying
predicates for automated troubleshooting.

The software testing research community faces a
problem similar to ours, namely that manually writ-
ing test cases for software testing is tedious and time-
consuming. Two solutions proposed by that community
are automatic test case generation and test oracles. How-
ever, automatic test case generation [3, 4, 6, 8, 10, 13, 18]
requires a specification for the program being tested. A
test oracle determines whether a system behaves cor-
rectly for test execution. Researchers also have devel-
oped ways to automate test oracles for reactive systems
from specifications [19, 20] and for GUI applications

USENIX Association	 2009 USENIX Annual Technical Conference	 231

using formal models [14]. Unfortunately, generating a
specification or formal model requires substantial expert
participation. Since the need for such expertise is ex-
actly what we are trying to eliminate, both methods are
inappropriate for our purpose, except when such specifi-
cations and models already have been created for another
purpose.

Snitch [15] is a misconfiguration troubleshooting tool
that analyzes application state to find possible root
causes. It uses an always-on tracing environment that
records application state changes and uses exit codes as
outcome markers to identify faulty application traces.
Our work differ from Snitch in two ways. First, our
work generates test cases that verify system configu-
rations, while Snitch finds root causes of misconfig-
urations. Since Snitch only records application state
changes, its traces do not contain sufficient information
to generate predicates. In contrast, our traces record all
user commands; from these commands, we select which
ones can be used as predicates. Second, Snitch only uses
exit codes to analyze outcomes. Our work traces the
causal relationship between commands executed by the
user to better understand relationships among those com-
mands. We also use semantic information from screen
output to analyze the outcome of commands.

3 Design principles

We followed three goals in designing our automated
predicate extraction system.

3.1 Minimize false positives
Automatically inferring user intentions is a hard prob-

lem. It is unreasonable to expect that we can perfectly
identify potential predicates and solutions in every case.
Thus, we must balance false positives (in which we ex-
tract predicates that incorrectly test configuration state)
and false negatives (in which we fail to extract a correct
predicate from a user trace).

In our domain, false positives are much worse than
false negatives. A false positive creates an incorrect pred-
icate that could potentially prevent the automated trou-
bleshooting tool from finding a solution or, even worse,
cause the tool to apply an incorrect solution. While a
false negative may miss a potentially useful test case, we
can afford to be conservative because we can aggregate
the results of many troubleshooting traces. With multiple
traces, a predicate missed in one trace may still be iden-
tified using another trace. Thus, in our design, we bias
our system toward generating few false positives, even
though this bias leads to a higher rate of false negatives.

3.2 Be as unobtrusive as possible
Troubleshooting is already a tedious, frustrating task.

We do not want to make it even worse. If we require

users to do more work than they would normally need to
do to troubleshoot their system, they will likely choose
not to use our method. For instance, as described in
the next section, we initially considered asking users to
specify which commands they used as predicates or to
specify rules that could be used to determine which com-
mands are predicates. However, we eventually decided
that these requirements were too burdensome.

Instead, our design requires only the most minimal in-
volvement of the user. In particular, the user must start
a shell that they will use to perform the troubleshoot-
ing. The shell does all the work necessary to record
input, output, and causal dependencies. It then canon-
icalizes the trace to replace identifiers such as userids,
host names, and home directories with generic identi-
fiers. For example, the userid, yysu, would be replaced
with USERID, and her home directory would be replaced
with HOMEDIR. The traces can then be shipped to a cen-
tralized server for processing. The server might be run
by a company’s IT department, or it might be an open-
source repository.

As an added incentive, our shell provides functional-
ity that is useful during troubleshooting, such as check-
point and rollback [21]. However, this added functional-
ity is not essential to the ideas in this paper.

3.3 Generate complete predicates
Users often test software configurations with com-

plex, multi-step test cases. For example, to test the CVS
repository, a user might import a test project, check it
back out again to a new directory, and use the Unix diff

tool to compare the new and old versions.
A predicate extraction method should identify all

steps in multi-step predicates. For instance, if it only
detected the latter two steps, the predicate it generates
would be incorrect. Applying the predicate on another
computer will always lead to predicate failure since that
computer will not have the test project in the repository.
Asking user to identify missing steps is intrusive, violat-
ing our previous design goal. Therefore, we use a dif-
ferent method, causal dependency tracking, to identify
missing steps. Once we identify a repeated command
that has different qualitative output, we identify all prior
steps on which that command depends. We refer to such
commands as preconditions, and we include them as part
of the extracted predicate.

4 A failed approach and the lessons learned

In this section, we describe our first, unsuccessful ap-
proach to inferring predicates and the lessons we learned.
Our initial idea was to record the actions of users trou-
bleshooting misconfigurations and ask them to classify
which of the commands they had entered were predi-
cates. We hoped to use this data as a training set for

232	 2009 USENIX Annual Technical Conference	 USENIX Association

machine learning. Our goal was to develop a classifier
that would correctly identify predicates from subsequent
user traces. We hoped that a machine learning approach
would meet our design goals by generating few false pos-
itives and not requiring any user feedback during normal
operation (i.e., once the training set had been collected).

Unfortunately, this initial approach ran into two pit-
falls: First, it was difficult for users to classify their own
commands. Although we explained the concept of pred-
icates to our users, it was still difficult for them to select
predicates from a list of the commands that they entered.
We found that users would often classify a command as a
predicate only if it generated some output that was a rec-
ognizable error condition. Different users would classify
the same command differently, and the same users would
classify identical commands as being predicates in some
cases but not in others. Thus, the training set was very
noisy, making it difficult to use for machine learning.

Second, for many predicates identified by users, we
found it difficult to determine which output represented
success and which represented failure. For example,
many users identified ls -l as a predicate because they
would inspect a directory’s contents to examine whether
specific files were present with the appropriate permis-
sions. To evaluate this predicate automatically, we would
need to determine what the user expected to see in the di-
rectory. For instance, the user might be searching for
a test project that he had just imported into CVS and
verifying that it was not globally readable. For such
commands, the evaluation of the predicate is extremely
context-dependent.

These two pitfalls caused us to re-examine our ap-
proach. We observed that users often take an action-
based approach, a state-based approach, or a combi-
nation of both to troubleshoot a configuration problem.
An action-based approach means that the user interacts
with the misconfigured application to learn the behav-
ior of the application. For example, when troubleshoot-
ing a CVS problem, the user might cvs import a new
module or cvs checkout a module. The user learns
about the misconfiguration by examining the error and
progress-reporting messages displayed on the screen. A
state-based approach means that the user passively ex-
amines relevant state on which the application depends.
For example, when troubleshooting the same CVS prob-
lem, the user would see if the CVS repository directory
exists, what the CVS repository file permissions are, list
the user and group information, etc.

Commands used in both action-based and state-based
approaches can be used for testing. We observe that if
we use commands used in an action-based approach as
predicates, it is often easier to classify their return value.
When the system state is incorrect, processes that exe-
cute these commands often have different exit values or

Action-based State-based
commands commands

Test system wget ls

state cvs groups

Do not test chmod read config file
system state usermod clear terminal screen

This table shows examples of various commands that fall into
one of four possible combinations. Our methodology finds com-
mands in the shaded quadrant.

Table 1. Command taxonomy

display error messages. On the other hand, commands
used in a state-based approach are often more difficult
to evaluate because determining correctness requires se-
mantic information or knowledge about the problem it-
self to reason about observable output.

This led us to develop the taxonomy in Table 1. The
horizontal axis classifies commands according to how
easy it is to determine their success or failure. On the
left, we list commands that are action-based; these are
easy to classify because they generate error messages,
return different exit values, or modify a different set of
objects when they fail. On the right, we list state-based
commands such as ls that are hard to classify based on
their output. The vertical axis classifies commands ac-
cording to whether they are used to test system state.

We observed that only commands that fall in the top
left quadrant are truly useful for automated troubleshoot-
ing. For a state-based command such as ls, the auto-
mated troubleshooting system will find it very hard to
tell whether a difference in screen output is due to a mis-
configuration or simply an inconsequential difference in
system state (such as two users choosing different names
for a test project).

This realization led us to a new approach. Rather than
first try to identify predicates and then determine how to
classify their output, we decided to instead identify only
repeated commands that have output that can be clas-
sified easily. While this approach will miss some po-
tential predicates, the omitted predicates are likely not
useful for automated troubleshooting anyway because of
the difficulty in classifying their output. Our prototype,
described in the next section, uses this new approach.

5 Implementation

We first give an overview of our automated trou-
bleshooting tool followed by our base algorithm, which
we use to find single-step predicates.. All commands
found by our base algorithm are action-based commands,
as these commands exhibit output that our base algorithm
could classify as success or failure. We then describe a
refinement to the base algorithm that allows us to also
identify multi-step predicates.

USENIX Association	 2009 USENIX Annual Technical Conference	 233

5.1 Overview
We envision that when a user or system administra-

tor encounters a configuration problem, she will launch
our troubleshooting shell to fix the problem. Our shell
records all the commands she types and uses the algo-
rithms described in Sections 5.2 and 5.3 to determine
which commands are predicates and solutions. The user
can then save the predicates and solutions for later and
share them with an online repository. To help classify
predicates and solutions, the user may identify the spe-
cific application she is troubleshooting.

Later, if another user runs into a configuration prob-
lem for the same application, he can download the solu-
tions and predicates generated by other users. Our pre-
vious work, AutoBash [21], uses speculative execution
to try potential solutions. After executing each solution,
AutoBash tests if the system is working by executing
predicates. If all predicates evaluate to true, AutoBash
declares that the configuration problem is fixed and com-
mits the solution execution. Operating system support
for speculative execution [17] enables the safe roll back
of state changes made by predicates and failed solutions.

5.2 Base algorithm
Our algorithm searches for repeated commands that

differ in at least two out of the following output features:

• A zero or non-zero exit value. When a shell cre-
ates a process to execute a command, the return
value of the process, typically specified using the
exit system call, is returned to the shell. Conven-
tionally, a Unix command returns a non-zero exit
code to indicate failure and zero to indicate suc-
cess. Our troubleshooting shell simply records the
exit value for each command.

• The presence of errormessages in screen output.
Human beings are good at understanding screen
output that gives feedback on the progress or result
of executing a command. However, the screen out-
put may contain unstructured text that is difficult
for computers to analyze. Our hypothesis is that
we only need to search for the presence of certain
positive or negative keywords in the screen output
to determine if a repeated command has different
output. Searching for specific words is much sim-
pler than trying to understand arbitrary screen out-
put from the application and is often sufficient to
know that two executions of a repeated command
are different. Further, such semantic clues have
been successfully applied in other domains to help
search for programming bugs [7].
One alternative would be to say that two commands
differ if there is any difference in their screen out-
put. However, many commands such as date often

generate minor differences in output that do not re-
flect whether the command succeeded or failed.
Our shell intercepts all screen output displayed to
the user and writes it to a log file. Our implementa-
tion is very similar to the Unix script tool in that
it uses Unix’s pseudo-terminal interface to log out-
put transparently to the user. Our base algorithm
asynchronously searches for semantic clues in the
log file. Currently, it only searches for the pres-
ence of the word “error” or any system error mes-
sages as defined in the file errno.h; e.g., “Permis-
sion denied” or ”No such file or directory.” When
any error message is found in the screen output,
the command is considered to contain an error mes-
sage. Otherwise, the command is classified as not
containing an error message. Thus, two executions
of the same command are considered to differ in
this output feature if one generates an error mes-
sage and the other does not.

• The command’s output set. We define a com-
mand’s output set to be the set of all files, file meta-
data, directories, directory entries, and processes
modified by the execution of the command. Our
shell uses our modified Linux kernel to trace the
causal effects (output set) of command execution.
Initially, only the process executing a command is
in the output set. Our kernel intercepts system calls
to observe the interaction of processes with kernel
objects such as files, directories, other processes,
pipes, UNIX sockets, signals, and other forms of
IPC. When such objects are modified by the com-
mand’s execution, they are added to the output set.
When another process interacts with an object al-
ready in the output set, that process is added to
the output set. For instance, if a command forks a
child process that modifies a file, both the child and
file are added to the output set. If another process
reads the file, that process is also added to the out-
put set. Transient objects, such as temporary files
created and deleted during command execution, are
not considered part of the command’s output set.
Our current implementation tracks the output set
for each command line. Therefore, when a user
executes a task with a sequence of commands con-
nected by a pipe, the troubleshooting shell creates
only one output set. We chose this implementa-
tion because commands connected by a pipe are
causally related by the pipe, so their output sets are
usually the same.
Recently, our research group developed an alterna-
tive method for tracking output sets that does not
require using a modified kernel [1]. This method
uses system call tracing tools such as strace to

234	 2009 USENIX Annual Technical Conference	 USENIX Association

System was not working System was working

Time

Command C

Command C0 = False Command C1 = True

This figure shows a command C that is executed twice. The first
time is shown as C0, and the second is shown as C1 . If C0 and
C1 have different output features, C0 would return false and C1
would return true.

Figure 1. The insight behind the base algorithm

generate the output set in a manner similar to that
described above. In the future, we plan to use this
alternative method to eliminate the dependency on
kernel modifications.
Two executions of the same command are consid-
ered to have different output sets if any object is a
member of one output set but not the other. This
comparison does not include the specific modifica-
tions made to the object. For instance, the output
sets of two executions of the command touch foo

are equivalent because they both contain the meta-
data of file foo, even though the two executions
change the modification time to different values.

Figure 1 shows the insight behind the base algorithm.
If a repeated command has two or more different output
features when executed at two different points in time, it
is likely that the command is a predicate being used to
test system state. We hypothesize that users are likely
to create a test case to demonstrate a problem, attempt
to fix the problem, and then re-execute the test case to
see if the fix worked. If this hypothesis is true, then the
last execution of the repeated command should represent
a successful test and have recognizably different output
than prior, unsuccessful tests. This troubleshooting be-
havior was previously reported in computer-controlled
manufacturing systems [2] and happened in 28 out of 46
traces in our user study described in Section 6.

Based on this observation, we say that a predicate
evaluates to true (showing a correct configuration) if two
or more output features match those in the final execu-
tion of the command. If two or more differ, we say the
predicate evaluates to false and shows a misconfigura-
tion. Note that some predicates that return a non-zero
exit code and generate an error message should still eval-
uate to true. For instance, a user may be testing whether
an unauthorized user is able to access files in a CVS

repository. In this case, an error message actually in-
dicates that the system is configured correctly.

Identifying repeated commands as the same command
based on strict string comparison is somewhat problem-
atical because it may leave out critical information. First,
a command may be executed as different users; e.g., once
as an ordinary user and once as root. This can lead to sub-
stantially different output even if a misconfiguration was
not corrected between the two executions. Second, the
same command may be executed in two different work-
ing directories, leading to markedly different output.

We solved this problem by having our shell record the
userid and working directory for each command. If ei-
ther of these variables differ, we consider two commands
to be different. This is a conservative approach; e.g., the
working directory has no effect on the value returned by
date. While our conservative approach may miss good
predicates, it is consistent with our design goal of prefer-
ring false negatives to false positives.

Some known environment variables, such as the par-
ent process id, are ignored by our shell because we have
judged them extremely unlikely to influence command
execution. However, unknown environment variables in-
troduced during troubleshooting are always recorded and
used to differentiate commands. It may be that further
experience will allow us to refine our heuristic for which
environment variables to exclude. However, our evalua-
tion in Section 6 shows that comparing only the userid,
working directory, and any new environment variables
introduced during troubleshooting generated many cor-
rect predicates. Further, no false positives were gen-
erated due to environment variables excluded from the
comparison.

5.3 Finding preconditions
The base algorithm is very effective in identifying

single-step predicates that test system state. However,
we noticed that in some cases a predicate relies on some
prior commands to change the system state before it can
work correctly. We call these prior commands on which a
predicate depends preconditions. A predicate that relies
on preconditions cannot be used without those precondi-
tions by automated troubleshooting tools as it would al-
ways return the same result. For example, if a user fixed a
CVS problem starting from an empty repository and the
base algorithm identified cvs checkout to be a predi-
cate, this predicate would work only if the command cvs
import had first been executed. The cvs import com-
mand is a precondition for that predicate because, with-
out it, the predicate will always return false.

To find preconditions, we first search for commands
that have causal effects on a predicate. We identify causal
relationships by tracking the output set of each com-
mand, even after that command terminates. If a sub-

USENIX Association	 2009 USENIX Annual Technical Conference	 235

sequent command becomes a member of a prior com-
mand’s output set, then we say that the prior command
has a causal effect on the latter one. For instance, the
command echo hi > foo would have a causal effect
on the subsequent command cat foo.

Besides including prior commands that have causal
effects on predicates, we also include prior commands
that add or remove environment variables. Since the
base algorithm compares environment variables when
comparing commands, adding or removing environment
variables is considered to have an effect on all subse-
quent commands. This is more conservative than strictly
needed, as environment variables could be added but
not read by some or all later commands executed in the
same shell. However, identifying such situations requires
application-specific semantic knowledge.

Not all prior commands with causal effects on predi-
cates are preconditions. If the user has successfully fixed
the configuration problem, the commands comprising a
solution will have a causal effect on the last execution
of the predicate. Including a solution as a precondition
would cause a predicate to always return true, rendering
the predicate ineffective. Note that even if a solution em-
bedded in a predicate inadvertently fixes a problem, the
effects are undone when the automated troubleshooting
system rolls back system state after predicate execution.

We differentiate between preconditions and solutions
by first finding all commands that causally affect all ex-
ecutions of a predicate. Within these commands, the
heuristic uses two rules to determine if a command is
a precondition or a solution. First, a command that has
causal effects on both successful and failed predicates is
a precondition. Second, a command that only has causal
effects on successful predicates and is executed chrono-
logically after all failed predicates is a solution.

Figure 2 shows the insight that allows the second rule
to distinguish between a solution and a precondition. The
insight is that users will usually first make sure precon-
ditions are executed before trying to run a test case that
reproduces a misconfiguration (since the test can not suc-
ceed without the precondition). Therefore, commands
that occur after failed predicates and before successful
ones are likely to be solutions.

Consider an example in which both user1 and user2
are authorized to access a CVS repository, but only user
1 is in the CVS group. Figure 3 shows the four com-
mands the user executes and the causal relationship be-
tween commands. First, the base algorithm would de-
termine that “cvs co as user2“ is a predicate. The
first predicate execution is considered to return false and
the second one is considered to return true. Both the
“cvs import as user1” command and the “usermod
-G CVSgroup user2” command, which adds user2 to
CVSgroup, have causal effects on the second predicate

Command P Command F

Time

Command C

Command C0 = False Command C1 = True

This figure demonstrates how the precondition heuristic works.
Assume the base algorithm determines that C0 returns false and
C1 returns true. If both a command P and a command F have
causal effects on C1 only, the precondition heuristic determines
that the command P is a precondition for command C and the
command F is a solution. The reason is that command F is likely
the solution that causes the state transition that causes C0 and
C1 to return different results.

Figure 2. The insight behind the precondition heuristic

execution. The precondition uses the chronological order
to determine that “cvs import as user1” is a precondi-
tion and “usermod -G CVSgroup user2” is a solution.

However, our heuristic is not foolproof. If a precondi-
tion is executed after failed predicates, it has the same
causal effect as a solution. Thus, it is difficult to de-
termine whether it is a precondition or a solution with-
out the command semantics. Consider the same exam-
ple, but with the order of “cvs import as user1”and
“cvs co as user2” reversed, as shown in Figure 4. Both
“cvs import as user1” and “usermod -G CVSgroup

user2” have causal effects on the successful predicate
and were executed after the failed predicate. Lacking se-
mantic information about CVS, the precondition heuris-
tic would mark both commands as part of the solution.

We believe that the second scenario is less likely to
occur than the first because a user will typically set up
the preconditions before executing a test case. In our
user study, this heuristic worked in every case. However,
we can also filter out incorrect solutions if they occur
less frequently than correct ones, as described in the next
section.

Our heuristic can work correctly even if a solution
requires multiple commands. Consider a solution that
requires two commands A and B, both of which occur
chronologically after all failed predicates. Since both A
and B have causal effects on the predicate, our heuristic
would identify both as part of the solution.

5.4 Inferring solutions from user traces
Not all solutions identified by the precondition heuris-

tic are the correct solution for the specific configuration
problem the user is solving. Sometimes, a user does not

236	 2009 USENIX Annual Technical Conference	 USENIX Association

  




  









 







The usermod -G CVSgroup user2 command adds user2 to
the CVS group

Figure 3. Precondition heuristic example

fix the problem. Other times, a user fixes the problem in-
correctly. To filter out such erroneous solutions, we rely
on the observation made by PeerPressure [22] and other
troubleshooting systems that the mass of users is typi-
cally right. Thus, solutions that occur more frequently
are more likely to be correct.

We therefore rank solutions by the frequency that they
occur in multiple traces. Effectively, solutions are ranked
by their popularity; a solution is considered more popular
if more users apply it to successfully fix their configura-
tion problems. In our evaluation, this heuristic worked
well because the most popular solutions found by users
were the ones that solved the actual configuration prob-
lems that we introduced.

Counting the frequency of a solution’s popularity
is complicated by the fact that different commands
have the same effect. For example, when users in
our study solved an Apache configuration problem
caused by the execution bit on a user’s home directory
(e.g., /home/USERID), being set incorrectly, their solu-
tions included chmod 755 /home/USERID, chmod 755

USERID/, and chmod og+rx USERID. Although these
commands were syntactically different, they all had the
same effect.

To better measure the popularity of a solution, we
group solutions by their state deltas. The state delta
captures the difference in the state of the system caused
by the execution of a command by calculating the dif-
ference for each entity in the command’s output set.
For example, the state delta for command chmod a+r

test.pl includes only the change in file permissions for
test.pl. The solution-ranking heuristic first groups solu-
tions based on state deltas so that all solutions having the
same state delta are in the same group. It then ranks the
groups by their cardinality.

Here is an example of how the solution-
ranking heuristic ranks three solutions: chmod 755

/home/USERID, chmod 755 USERID/, and chmod

-R 777 USERID/. The the first two commands are
placed into one group because they both have the same
state delta (changing the permission of the directory

  




 














  


The usermod -G CVSgroup user2 command adds user2 to
the CVS group

Figure 4. Example of the precondition heuristic failing

CVS configuration problems
1 Repository not properly initialized
2 User not added to CVS group

Apache Web server configuration problems
1 Apache cannot search a user’s home directory due to

incorrect permissions
2 Apache cannot read CGI scripts due to

incorrect permissions
Table 2. Description of injected configuration problems

/home/USERID to 755). The third solution is put in a
separate, less popular group.

6 Evaluation

To evaluate our methods for extracting predicates and
solutions, we conducted a user study in which partici-
pants were asked to fix four configuration bugs: two for
the CVS version control system and two for the Apache
web server. These bugs are shown in Table 2. While
these bugs may seem relatively simple, several users
were unable to solve one or more of these bugs in the
allotted time (15 minutes). We initially designed a user
study with a few more complex bugs, but our initial feed-
back from trial users showed that the complex bugs were
too hard to solve in a reasonable amount of time. We also
decided to impose the 15-minute limit based on our trial
study. Since we ask each user to solve a total of six prob-
lems (including two sample problems) and the study re-
quired some up-front explanation and paperwork, users
needed to commit over two hours to participate. Even
with the 15-minute limit, one user declined to complete
all problems in the study.

6.1 Methodology
A total of twelve users with varying skills participated

in our study: two experienced system administrators and
ten graduate students, all from the University of Michi-
gan. We asked participants to assess their experience
level. Table 3 is a summary of our participants. For
CVS, three participants (A,D, and K) rated themselves
as experts, meaning that the participant had diagnosed

USENIX Association	 2009 USENIX Annual Technical Conference	 237

CVS version control Apache Web server
User Experience level Prob 1 Prob 2 Experience level Prob 1 Prob 2

Fixed? Fixed? Fixed? Fixed?
A Expert N/A Y Expert Y Y
B Novice Y Y Intermediate N Y
C Intermediate Y Y Novice Y Y
D Expert Y Y Expert Y Y
E Beginner N N Expert Y N
F Intermediate Y Y Expert Y Y
G Novice Y N/A Beginner N N
H Intermediate Y Y Expert Y Y
I Intermediate Y Y Expert Y Y
J Novice Y Y Expert Y Y
K Expert Y N Intermediate N Y
L Intermediate Y Y Novice N Y

Total fixed 10 9 8 10

This table shows the experience of our participants and the number of problems solved.

Table 3. Participant summary

CVS problem 1 CVS problem 2
User # of Correct? Total # # of Correct? Total #

Pred of cmds Pred of cmds
A — — — 1 Yes 44
B 1 Yes 105 1 Yes 44
C 0 SBA 57 0 NRC 46
D 0 SBA 49 0 SBA 26
F 1 Yes 22 1 Yes 30
G 0 NRC 61 — — —
H 0 NRC 58 0 NRC 74
I 0 NRC 18 1 Yes 18
J 0 NRC 65 0 SBA 72
K 1 Yes 55 0 DNF 24
L 1 Yes 40 0 SBA 24

There are three reasons why no predicate was identified in some
of the above traces: (1) NRC means that the user did not use a
repeated command to test the configuration problem. (2) DNF
means that the user did not fix the configuration problem. (3)
SBA means that the user used a state-based approach.

Table 4. Summary of predicates generated for CVS

and fixed misconfigurations several times for that appli-
cation. Five participants (C, F, H, I, and L) rated them-
selves as intermediates, meaning that the participant had
fixed configurations for that application at least once,
and three participants (B, G, and J) rated themselves as
novices, meaning that the participant had used the appli-
cation. Two participants (user E for CVS and user G for
Apache) were listed as beginners because they were un-
familiar with the application. Both beginner participants
were not asked to complete that portion of the study. For
Apache, seven participants were experts (A, D, E, F, H, I,
and J), two were intermediates (B and K), and two were
novices (C and L). Additionally, user A did not complete
CVS bug 1 because of an error we made in setting up the
environment, and user G declined to do CVS problem 2.

Apache problem 1 Apache problem 2
User # of Correct? Total # of Correct? Total

Pred cmds. Pred cmds.
A 1 Yes 45 1 Yes 45
B 0 DNF 39 0 NRC 39
C 2 Yes 41 1 Yes 41

Yes
D 1 Yes 68 1 Yes 68
E 0 NRC 35 1 No 35
F 0 NRC 33 1 Yes 33
H 1 Yes 32 1 Yes 32
I 1 Yes 22 1 Yes 22
J 0 NRC 40 1 Yes 40
K 1 No 67 1 Yes 67
L 0 DNF 55 0 NRC 55

There are two reasons why no predicate was identified in some
of the above traces: (1) NRC means that the user did not use a
repeated command to test the configuration problem. (2) DNF
means that the user did not fix the configuration problem.

Table 5. Summary of predicates generated for Apache

For each application, each participant was first given a
sample misconfiguration to fix. While fixing the sample,
they could ask us questions. The participant then was
asked to fix two additionalmisconfigurationswithout any
guidance from us. We did not tell the participants any
information about the bugs, so they needed to find the
bug, identify the root cause, and fix it. Participants were
given a maximum of 15 minutes to fix each problem. For
each problem, 8–10 participants were able to fix the bug,
but 1–3 were not.

For each task, our modified shell recorded traces of
user input, system output, and the causality data (output
sets) tracked by the kernel. The overhead of tracking
the output set was shown to be negligible in our prior
work [21]. We implemented the algorithms to analyze

238	 2009 USENIX Annual Technical Conference	 USENIX Association

User Predicate
B Precond export CVSROOT="/home/cvsroot"

Pred cvs import -m "Msg" yoyo/test project yoyo start
Sol cvs -d /home/cvsroot init

F Precond export CVSROOT=/home/cvsroot
Pred cvs import test project
Sol cvs -d /home/cvsroot init

K Pred cvs -d /home/cvsroot import cvsroot
Sol cvs -d /home/cvsroot init

L Pred cvs -d "/home/cvsroot" import test project
Sol cvs -d /home/cvsroot init

Each predicate contains one or more steps. The last step of a predicate is listed as Pred, and the remaining steps are listed as
Precond. We also list the solution (Sol) identified for each predicate.

Table 6. Correct predicates for CVS problem 1

these traces in Python. The computational cost is small;
the time to analyze all traces averaged only 123 ms on
a desktop computer with a 2.7 GHz processor and 1 GB
memory. The shortest trace required 3 ms to analyze and
the longest took 861 ms.

6.2 Quality of predicates generated
Table 4 and Table 5 summarize the predicates gener-

ated for each application. Each table lists the number
of predicates extracted, whether the extracted predicates
were correct, and the total number of commands entered
by the user for that trace.

For both CVS bugs, we generated four correct pred-
icates from ten traces, with no false positives. For
Apache, we generated six correct predicates for the first
bug and eight for the second, with one false positive for
each bug. We are pleased that the results matched our
design goal of minimizing false positives, while still ex-
tracting several useful predicates for each bug.
6.2.1 Predicates generated for CVS problem 1

The first CVS problem was caused by the CVS repos-
itory not being properly initialized, and the solution is
to initialize it using cvs init. Table 6 lists the pred-
icates we extracted. We break each predicate into two
parts: the predicate (Pred), the repeated command that
determines if this predicate returns true or false, and the
precondition (Precond), the set of commands that need
to be executed before the predicate. We also list the solu-
tion (Sol) identified by our methodology. All predicates
that we identified involve the user importing a module
into the CVS repository.

We did not identify predicates for participants C and
D because they used a state-based approach in which
they discovered that the CVS repository was not initial-
ized by examining the repository directory. Participants
G, H, I, and J used slightly different commands to test
the system state before and after fixing the configura-
tion problem, so our algorithm did not identify a pred-
icate. For example, participant H’s two cvs import

commands had different CVS import comments.

6.2.2 Predicates generated for CVS problem 2
The second CVS bug was caused by a user not be-

ing in the CVS group, and the solution is to add that
user to the group. Table 7 shows the predicates and solu-
tions identified for this bug. All extracted predicates in-
volve the user trying to check out a module from the CVS
repository. These are multi-step predicates in which the
checkout is proceeded by a CVS import command.

No predicate was generated for six traces. Partici-
pants C and H did not use repeated commands. For
instance, participant C specified the root directory as
/home/cvsroot in one instance and /home/cvsroot/ in an-
other. Participant H used the same command line but
with different environment variables. Our algorithm was
unable to identify a predicate for participant K because
that user did not fix the problem. Finally, no predicate
was found for participants D, J, and L because they used
a state-based approach (participant D executed groups

and participant L examined /etc/group).
6.2.3 Predicates generated for Apache problem 1

The first Apache bug was caused by Apache not hav-
ing search permission for the user’s home directory, and
the solution is to change the directory permissions. Ta-
ble 8 shows the correct predicates identified for each
trace and the corresponding solutions. Almost all pred-
icates download the user’s home page. Some precondi-
tions found by the precondition heuristic are not required
for the predicate to work but also do not affect the cor-
rectness of the predicates. Predicate C-2, apachectl
stop did not seem to be a correct predicate, so we ex-
amined why it was generated. We found that predicate
C-2 successfully detected an error in the Apache config-
uration file introduced by participant C. apachectl is a
script that controls the Apache process. It does not stop
the Apache process if an error is detected in the configu-
ration file. Thus, it is indeed a valid predicate.

No predicates were generated for some participants
due to reasons similar to those seen in CVS traces. Par-
ticipants B and L did not fix the problem. Participants E

USENIX Association	 2009 USENIX Annual Technical Conference	 239

User Predicate
A Precond cvs import test project head start

cvs co test project
export CVSROOT=/home/cvsroot

Pred cvs co test project
Sol vi /etc/group

B Precond cvs -d /home/cvsroot import yoyo/test project
Pred cvs -d /home/cvsroot checkout

yoyo/test project
Sol usermod -G cvsgroup USERID

F Precond cvs import test project
cvs co test project
export CVSROOT=/home/cvsroot

Pred cvs co test project
Sol vim group

I Precond cvs -d /home/cvsroot import test project
Pred cvs -d /home/cvsroot co test project
Sol vi /etc/group

Each predicate contains one or more steps. The last step of a predicate is listed as Pred, and the remaining steps are listed as
Precond. We also list the solution (Sol) identified for each predicate.

Table 7. Correct problems for CVS problem 2

User Predicate
A Precond wget http://localhost

chmod 777 index.html
chmod 777 public html/

Pred wget http://localhost/~USERID
/index.html

Sol chmod 777 USERID

C-1 Pred wget http://localhost/~USERID/
Sol chmod o+rx /home/USERID

C-2 Pred apachectl stop
Sol vim /etc/httpd/conf/httpd.conf

chmod o+rx /home/USERID

D Precond wget localhost
chmod -R 777 public html/

Pred wget localhost/~USERID
Sol chmod -R 777 USERID/

H Precond mkdir scratch
wget http://localhost
rm index.html

Pred wget http://localhost/~USERID
Sol chmod 755 /home/USERID/

I Precond wget http://localhost
Pred wget http://localhost/~USERID
Sol chmod 755 /home/USERID/

Each predicate contains one or more steps. The last step of a
predicate is listed as Pred, and the remaining steps are listed
as Precond. We also list the solution (Sol) identified for each
predicate.

Table 8. Correct predicates for Apache problem 1

and F executed a command in different directories, so the
base algorithm considered that command as not repeated.

One false positive was generated for participant K.
Since participant K did not fix the problem, we first ex-
pected no predicate be generated. However, this partici-
pant edited the Apache configuration file multiple times
using emacs. The file contains an error message that was
displayed only in some executions of emacs in which
the participant scrolled down. Additionally, the partici-
pant sometimes modified the file and other times did not,
leading to different output sets. Since two output features

User Predicate
A Pred wget http://localhost/cgi-bin/test.pl

Sol chmod 755 test.pl

C Pred wget http://localhost/cgi-bin/test.pl
Sol chmod go+r test.pl

D Precond wget localhost/cgi-bin/test.pl
vi /var/www/cgi-bin/test.pl

Pred wget localhost/cgi-bin/test.pl
Sol vi /var/www/cgi-bin/test.pl

chmod 777 /var/www/cgi-bin/test.pl

F Pred wget http://localhost/cgi-bin/test.pl
Sol chmod 755 test.pl

H Precond mkdir scratch
Pred wget http://localhost/cgi-bin/test.pl
Sol chmod 755 /var/www/cgi-bin/test.pl

I Pred wget http://localhost/cgi-bin/test.pl
Sol chmod 755 /var/www/cgi-bin/test.pl

J Pred wget 127.0.0.1/cgi-bin/test.pl
Sol chmod +r test.pl

K Pred wget http://localhost/cgi-bin/test.pl
Sol chmod a+r test.pl

Each predicate contains one or more steps. The last step of a
predicate is listed as Pred, and the remaining steps are listed
as Precond. We also list the solution (Sol) identified for each
predicate.

Table 9. Correct predicates for Apache problem 2

changed, our heuristic labeled this command a predicate.
6.2.4 Predicates generated for Apache problem 2

The second Apache problem was caused by Apache
not having read permission for a CGI Perl script and the
solution is to change the file permission. The initial state
included a default CGI Perl script in Apache’s default
CGI directory, /var/www/cgi-bin. Table 9 shows the cor-
rectly identified predicates, which all involve retrieving
the the CGI script. Some traces include preconditions
that are not really required, but these preconditions do
not affect the correctness of the predicates.

No predicate was generated for participants B and L
because they executed wget in different directories. The

240	 2009 USENIX Annual Technical Conference	 USENIX Association

Solution Freq.
1 cvs -d /home/cvsroot init as cvsroot 3
2 vi /etc/group as root 3
3 cvs -d /home/cvsroot init as root 1
4 usermod -G cvsgroup USERID as root 1

Table 10. Solutions ranked for CVS

Solution Freq.
1 chmod 755 /var/www/cgi-bin/test.pl 6
2 chmod 755 /home/USERID as root 2
3 chmod 777 USERID as root 1
4 chmod o+rx /home/USERID as root 1
5 chmod -R 777 USERID/ as USERID 1
6 vim /etc/httpd/conf/httpd.conf as root 1
7 chmod 777 /var/www/cgi-bin/test.pl 1
8 chmod +r test.pl as root 1
9 vi /var/www/cgi-bin/test.pl 1

Table 11. Solutions ranked for Apache

predicate identified for participant E was incorrect. Par-
ticipant E did not fix the problem. However, participant
E used links to connect to the ApacheWeb server. This
utility generates files with random names so each invo-
cation has a different output set. Combined with an error
message being generated in some instances but not oth-
ers, this led our heuristic to falsely identify a predicate.
Based on our two false positives, we believe it would be
beneficial to ask users if the problem was fixed at the end
of troubleshooting and not try to generate predicates if
it was not. This question may not be too intrusive and
would eliminate both false positives.

6.3 Solution ranking results
We took the solutions found by the precondition

heuristic from all traces and used our solution-ranking
heuristic to rank them by frequency. Table 10 shows re-
sults for CVS. The two highest ranked solutions are the
correct fixes for the two problems we introduced. Note
that the solutions are captured as a state delta, so a com-
mand that starts an editor (vi) is really a patch to the
edited file. The third solution listed is less correct than
the first because it creates the repository as root, giving
incorrect permissions. The final solution is as correct as
the second for fixing CVS problem 2.

Table 11 shows results for Apache. The two high-
est ranked solutions fix Apache problems 2 and 1, re-
spectively. Solution 3-5 are less correct than solution 1
because they grant more than the minimum permission
required. The 6th solution correctly solves the bug in-
troduced by participant C for Apache problem 1. The
remaining 3 solutions are less correct than solution 1 be-
cause they either give too much permission or do not fix
the problem.

7 Discussion

We first discuss the challenges we encountered and
how we would like to address them, followed by dis-
cussing the limitations of our approach.

7.1 Challenges
One challenge we encountered relates to canonical-

ization. Our troubleshooting shell canonicalizes com-
mon environment variables, such as home directories and
user names. However, applications may also use tempo-
rary files, specific file location settings, or other environ-
ment variables. More thought may be required on how
to handle application-specific variables if application se-
mantic knowledge is not presented.

Our current study simplifies the configuration prob-
lem by restricting user input to text form (i.e., by requir-
ing the activity to occur within the scope of a Unix shell).
We chose this approach to speed the implementation of
our prototype. Writing tools to capture text input and
output is easier than writing tools to capture graphical
interactions.

We sketch here how we would extend our current ap-
proach to handle GUI applications. First, a command
roughly maps to an action in the command line inter-
face. However, users launch a GUI application to ex-
plore many different configuration actions more flexibly,
which makes it hard to find repeated tasks for our base
algorithm. Without user input, it may be hard to break
a long GUI session into individual actions that are more
likely to repeat. Second, if the user happens to execute
one action at a time using a GUI application, we need a
more sophisticated way to identify if two GUI sessions
are the same. One possible solution is to use state deltas
to capture the effect of performing GUI applications and
compare such deltas. We would capture output features
as follows:
• Exit value. Since GUI applications are designed to

execute several actions, they usually do not return the
proper value to the calling shell.

• Screen output. GUI configuration tools may offer
additional semantic information. For instance, error
dialogs are a common widget that indicate the failure
of an operation. Such dialogs can be queried using the
GUI’s accessibility APIs (intended to benefit vision-
impaired users).

• Output set. We could capture the output set for a GUI
application in the same way as a command.

7.2 Limitations
Our troubleshooting shell assumes that all configu-

ration actions happen under its purview. Configuration
problems involving external components, such as printer

USENIX Association	 2009 USENIX Annual Technical Conference	 241

or network communication, are not handled by our shell
because it does not have the ability to track external com-
ponents’ output. Also, one can imagine a precondition
command executed before our troubleshooting shell is
launched; our shell will not find that precondition as it
limits dependency tracking to the period in which it is
running.

8 Conclusion

Predicates play an important role for automated con-
figuration management tools such as AutoBash and
Chronus. However, writing predicates by hand is tedious,
time-consuming, and requires expert knowledge. This
work solves the problem of manually writing predicates
by automatically inferring predicates and solutions from
traces of users fixing configuration problems.

Acknowledgments
We thank our shepherd, Yinglian Xie, and the anonymous reviewers

for valuable feedback on this paper, as well as our user study partici-
pants. The work has been supported by the National Science Founda-
tion under award CNS-0509093. Jason Flinn is supported by NSF CA-
REER award CNS-0346686. The views and conclusions contained in
this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of NSF,
the University of Michigan, or the U.S. government.

References
[1] ATTARIYAN, M., AND FLINN, J. Using causality to diagnose

configuration bugs. In Proceedings of the USENIX Annual Tech-
nical Conference (Boston, MA, June 2008), pp. 171–177.

[2] BEREITER, S., AND MILLER, S. Troubleshooting and Human
Factors in Automated Manufacturing Systems. Noyes Publica-
tions, March 1989.

[3] BOYAPATI, C., KHURSHID, S., AND MARINOV, D. Korat: Au-
tomated testing based on Java predicates. In Proceedings of ACM
International Symposium on Software Testing and Analysis ISSTA
2002 (2002).

[4] CHOW, T. S. Testing software design modeled by finite-state ma-
chines. IEEE Transactions on Software Engineering 4, 3 (1978),
178–187.

[5] COMPUTING RESEARCH ASSOCIATION. Final report of the
CRA conference on grand research challenges in information sys-
tems. Tech. rep., September 2003.

[6] DALAL, S. R., JAIN, A., KARUNANITHI, N., LEATON, J. M.,
LOTT, C. M., PATTON, G. C., AND HOROWITZ, B. M. Model-
based testing in practice. In Proceedings of the 21st International
Conference on Software Engineering (ICSE’99) (Los Angeles,
California, May 1999).

[7] ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A., AND
CHELF, B. Bugs as deviant behavior: A general approach to
inferring errors in systems code. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (Banff, Canada, Oc-
tober 2001), pp. 57–72.

[8] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected automated random testing. In ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implementation
(PLDI’05) (2005), pp. 213–223.

[9] HA, J., ROSSBACH, C. J., DAVIS, J. V., ROY, I., RAMADAN,
H. E., PORTER, D. E., CHEN, D. L., AND WITCHEL, E. Im-
proved error reporting for software that uses black-box compo-
nents. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation 2007 (San Diego, CA, 2007).

[10] HAREL, D. Statecharts: A visual formalism for complex systems.
Science of Computer Programming 8, 3 (1987), 231–274.

[11] JULA, H., TRALAMAZZA, D., ZAMFIR, C., AND CANDEA, G.
Deadlock immunity: Enabling systems to defend against dead-
locks. In Proceedings of the 8th Symposium on Operating Systems
Design and Implementation (San Diego, CA, December 2008).

[12] KAPOOR, A. Web-to-host: Reducing total cost of ownership.
Tech. Rep. 200503, The Tolly Group, May 2000.

[13] MARINOV, D., AND KHURSHID, S. Testera: A novel frame-
work for automated testing of Java programs. In Proceedings of
the 16th IEEE International Conference on Automated Software
Engineering (ASE) (San Diego, CA, November 2001).

[14] MEMON, A. M., POLLACK, M. E., AND SOFFA, M. L. Au-
tomated test oracles for GUIs. In Proceedings of the 8th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (New York, NY, 2000), pp. 30–39.

[15] MICKENS, J., SZUMMER, M., AND NARAYANAN, D. Snitch:
Interactive decision trees for troubleshooting misconfigurations.
In In Proceedings of the 2007 Workshop on Tackling Computer
Systems Problems with Machine Learning Techniques (Cam-
bridge, MA, April 2007).

[16] NAGARAJA, K., OLIVERIA, F., BIANCHINI, R., MARTIN, R.,
AND NGUYEN, T. Understanding and dealing with operator mis-
takes in Internet services. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (San Francisco,
CA, December 2004), pp. 61–76.

[17] NIGHTINGALE, E. B., CHEN, P. M., AND FLINN, J. Spec-
ulative execution in a distributed file system. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles
(Brighton, United Kingdom, October 2005), pp. 191–205.

[18] OFFUTT, J., AND ABDURAZIK, A. Generating tests from uml
specifications. In Second International Conference on the Unified
Modeling Language (UML99) (Ocrober 1999).

[19] RICHARDSON, D. J. TAOS: Testing with analysis and ora-
cle support. In Proceedings of the 1994 International Sympo-
sium on Software Testing and Analysis (ISSTA) (Seattle, WA, 94),
pp. 138–153.

[20] RICHARDSON, D. J., AHA, S. L., AND O’MALLEY, T. O.
Specification-based test oracles for reactive systems. In Proceed-
ings of the 14th international conference on Software engineering
(Melbourne, Australia, 1992), pp. 105–118.

[21] SU, Y.-Y., ATTARIYAN, M., AND FLINN, J. AutoBash: Improv-
ing configuration management with operating system causality
analysis. In Proceedings of the 21st ACM Symposium on Operat-
ing Systems Principles (Stevenson, WA, October 2007), pp. 237–
250.

[22] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND
WANG, Y.-M. Automatic misconfiguration troubleshooting with
PeerPressure. In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (San Francisco, CA, Decem-
ber 2004), pp. 245–257.

[23] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. STRIDER: A black-
box, state-based approach to change and configuration manage-
ment and support. In Proceedings of the USENIX Large In-
stallation Systems Administration Conference (October 2003),
pp. 159–172.

[24] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Configu-
ration debugging as search: Finding the needle in the haystack.
In Proceedings of the 6th Symposium on Operating Systems De-
sign and Implementation (San Francisco, CA, December 2004),
pp. 77–90.

USENIX Association	 2009 USENIX Annual Technical Conference	 243

JustRunIt: Experiment-Based Management of Virtualized Data Centers

Wei Zheng,† Ricardo Bianchini,† G. John Janakiraman,‡ Jose Renato Santos,‡ and Yoshio Turner‡

†Department of Computer Science ‡HP Labs
Rutgers University Hewlett-Packard Corporation

{wzheng,ricardob}@cs.rutgers.edu {joserenato.santos,yoshio.turner}@hp.com

Abstract
Managing data centers is a challenging endeavor. State-
of-the-art management systems often rely on analytical
modeling to assess the performance, availability, and/or
energy implications of potential management decisions
or system configurations. In this paper, we argue that
actual experiments are cheaper, simpler, and more ac-
curate than models for many management tasks. To sup-
port this claim, we built an infrastructure for experiment-
based management of virtualized data centers, called
JustRunIt. The infrastructure creates a sandboxed en-
vironment in which experiments can be run—on a very
small number of machines—using real workloads and
real system state, but without affecting the on-line sys-
tem. Automated management systems or the system ad-
ministrator herself can leverage our infrastructure to per-
form management tasks on the on-line system. To evalu-
ate the infrastructure, we apply it to two common tasks:
server consolidation/expansion and evaluating hardware
upgrades. Our evaluation demonstrates that JustRunIt
can produce results realistically and transparently, and be
nicely combined with automated management systems.

1 Introduction

Managing data centers is a challenging endeavor, es-
pecially when done manually by system administrators.
One of the main challenges is that performing many man-
agement tasks involves selecting a proper resource allo-
cation or system configuration out of a potentially large
number of possible alternatives. Even worse, evaluating
each possible management decision often requires under-
standing its performance, availability, and energy con-
sumption implications. For example, a common man-
agement task is to partition the system’s resources across
applications to optimize performance and/or energy con-
sumption, as is done in server consolidation and virtual
machine (VM) placement. Another example is the eval-
uation of software or hardware upgrades, which involves

determining whether application or system behavior will
benefit from the candidate upgrades and by how much.
Along the same lines, capacity planning is a common
management task that involves selecting a proper system
configuration for a set of applications.

Previous efforts have automated resource-partitioning
tasks using simple heuristics and/or feedback control,
e.g. [1, 6, 18, 21, 28, 29]. These policies repeatedly
adjust the resource allocation to a change in system be-
havior, until their performance and/or energy goals are
again met. Unfortunately, when this react-and-observe
approach is not possible, e.g. when evaluating software
or hardware upgrades, these policies cannot be applied.
In contrast, analytical modeling can be used to auto-

mate all of these management tasks. Specifically, mod-
eling can be used to predict the impact of the possible
management decisions or system configurations on per-
formance, availability, and/or energy consumption. With
these predictions, the management system can make
the best decision. For example, researchers have built
resource-partitioning systems for hosting centers that use
models to predict throughput and response time, e.g.
[9, 27]. In addition, researchers have built systems that
use models to maximize energy conservation in data cen-
ters, e.g. [7, 13]. Finally, researchers have been build-
ing models that can predict the performance of Internet
applications on CPUs with different characteristics [23];
such models can be used in deciding whether to upgrade
the server hardware.

Performance models are often based on queuing the-
ory, whereas availability models are often based on
Markovian formalisms. Energy models are typically
based on simple (but potentially inaccurate) models of
power consumption, as a function of CPU utilization or
CPU voltage/frequency. On the bright side, these models
are useful in data center management as they provide in-
sight into the systems’ behaviors, can be solved quickly,
and allow for large parameter space explorations. Essen-
tially, the models provide an efficient way of answering

244	 2009 USENIX Annual Technical Conference	 USENIX Association

“what-if” questions during management tasks.
Unfortunately, modeling has a few serious shortcom-

ings. First, modeling consumes a very expensive re-
source: highly skilled human labor to produce, calibrate,
and validate the models. Second, the models typically
rely on simplifying assumptions. For example, memory-
less arrivals is a common assumption of queuing models
for Internet services [24]. However, this assumption is
invalid when requests come mostly from existing ses-
sions with the service. Another common simplifying
assumption is the cubic relationship between CPU fre-
quency and power consumption [7]. With advances in
CPU power management, such as clock gating, the exact
power behavior of the CPU is becoming more complex
and, thus, more difficult to model accurately. Third, the
models need to be re-calibrated and re-validated as the
systems evolve. For example, the addition of new ma-
chines to a service requires queuing models to be cali-
brated and validated for them.

Given these limitations, in this paper we argue that
actual experiments are a better approach than modeling
for supporting many management tasks. Actual experi-
ments exchange an expensive resource (human labor) for
much cheaper ones (the time and energy consumed by
a few machines in running the experiments). Moreover,
they do not rely on simplifying assumptions or require
calibration and validation. Thus, actual experiments are
cheaper, simpler, and more accurate than models in their
ability to answer “what-if” questions. We further argue
that the experiments can be performed in a flexible, real-
istic, and transparent manner by leveraging current virtu-
alization technology.

To support our claims in a challenging environment,
we built JustRunIt, an infrastructure for experiment-
based management of virtualized data centers hosting
multiple Internet services. JustRunIt creates a sand-
boxed environment in which experiments can be run on
a small number of machines (e.g., one machine per tier
of a service) without affecting the on-line system. Jus-
tRunIt clones a small subset of the on-line VMs (e.g.,
one VM per tier of the service) and migrates them to the
sandbox. In the sandbox, JustRunIt precisely controls
the resources allocated to the VMs, while offering the
same workload to them that is offered to similar VMs
on-line. Workload duplication is implemented by Jus-
tRunIt’s server proxies. For flexibility, the administra-
tor can specify the resources (and the range of alloca-
tions) with which to experiment and how long experi-
ments should be run. If there is not enough time to run
all possible experiments (i.e., all combinations of accept-
able resource allocations), JustRunIt uses interpolation
between actual experimental results to produce the miss-
ing results but flags them as potentially inaccurate.

Automated management systems or the system admin-

istrator can use the JustRunIt results to perform manage-
ment tasks on the on-line system. If any interpolated
results are actually used by the system or administra-
tor, JustRunIt runs the corresponding experiments in the
background and warns the administrator if any experi-
mental result differs from the corresponding interpolated
result by more than a threshold amount.

To evaluate our infrastructure, we apply it to systems
that automate two common management tasks: server
consolidation/expansion and evaluation of hardware up-
grades. Modeling has been used in support of both tasks
[7, 24], whereas feedback control is only applicable for
some cases of the former [7]. JustRunIt combines nicely
with both systems. Our evaluation demonstrates that
JustRunIt can produce results realistically and transpar-
ently, enabling automated management systems to per-
form their tasks effectively. In fact, JustRunIt can pro-
duce system configurations that are as good as those re-
sulting from idealized, perfectly accurate models, at the
cost of the time and energy dedicated to experiments.

The remainder of the paper is organized as follows.
The next section describes JustRunIt in detail. Section
3 describes the automated management systems that we
designed for our two case studies. Section 4 presents our
evaluation of JustRunIt and the results of our case stud-
ies. Section 5 overviews the related work. Finally, Sec-
tion 6 draws our conclusions, discusses the limitations of
JustRunIt, and mentions our future work.

2 JustRunIt Design and Implementation

2.1 Target Environment

Our target environment is virtualized data centers that
host multiple independent Internet services. Each service
comprises multiple tiers. For instance, a typical three-tier
Internet service has a Web tier, an application tier, and a
database tier. Each tier may be implemented by multiple
instances of a software server, e.g. multiple instances of
Apache may implement the first tier of a service. Each
service has strict response-time requirements specified
in SLAs (Service Level Agreements) negotiated between
the service provider and the data center.
In these data centers, all services are hosted in VMs

for performance and fault isolation, easy migration, and
resource management flexibility. Moreover, each soft-
ware server of a service is run on a different VM. VMs
hosting software servers from different services may co-
locate on a physical machine (PM). However, VMs host-
ing software servers from the same service tier are hosted
on different PMs for high availability. All VMs have
network-attached storage provided by a storage server.

USENIX Association	 2009 USENIX Annual Technical Conference	 245


























































Figure 1: Overview of JustRunIt. “X” represents a re-
sult obtained through experimentation, whereas “I” rep-
resents an interpolated result. “T” represents an interpo-
lated result that has been used by the management entity.

2.2 System Infrastructure

Figure 1 shows an overview of the system infrastruc-
ture of JustRunIt. There are four components: exper-
imenter, driver, interpolator, and checker. The experi-
menter implements the VM cloning and workload dupli-
cation mechanism to run experiments. Each experiment
tests a possible configuration change to a cloned soft-
ware server under the current live workload. A configu-
ration change may be a different resource allocation (e.g.,
a larger share of the CPU) or a different hardware setting
(e.g., a higher CPU voltage/frequency). The results of
each experiment are reported as the server throughput,
response time, and energy consumption observed under
the tested configuration.

The experiment driver chooses which experiments to
run in order to efficiently explore the configuration pa-
rameter space. The driver tries to minimize the number
of experiments that must be run while ensuring that all
the experiments complete within a user-specified time
bound. The driver and experimenter work together to
produce a matrix of experimental results in the config-
uration parameter space. The coordinates of the matrix
are the configuration parameter values for each type of
resource, and the values recorded at each point are the
performance and energy metrics observed for the corre-
sponding resource assignments.
Blank entries in the matrix are filled in by the interpo-

lator, based on linear interpolation from the experimen-
tal results in the matrix. The filled matrix is provided
to the management entity–i.e., the system administrator
or an automated management system–for use in deciding
resource allocations for the production system.
If the management entity uses any of the interpolated

performance or energy values, the checker invokes the




















































 





Figure 2: Virtualized data center and JustRunIt sandbox.
Each box represents a VM, whereas each group of boxes
represents a PM. “W2”, “A2”, and “D2” mean Web, ap-
plication, and database server of service 2, respectively.
“S A2” means sandboxed application server of service 2.

experimenter to run experiments to validate those val-
ues. If it turns out that the difference between the ex-
perimental results and the interpolated results exceeds a
user-specified threshold value, then the checker notifies
the management entity.
We describe the design of each component of Jus-

tRunIt in detail in the following subsections.

2.2.1 Experimenter

To run experiments, the experimenter component of Jus-
tRunIt transparently clones a subset of the live produc-
tion system into a sandbox and replays the live workload
to the sandbox system. VM cloning instantly brings the
sandbox to the same operational state as the production
system, complete with fully warmed-up application-level
and OS-level caches (e.g., file buffer cache). Thus, tests
can proceed with low startup time on a faithful replica
of the production system. By cloning only a subset of
the system, JustRunIt minimizes the physical resources
that must be dedicated to testing. Workload replay to the
sandbox is used to emulate the timing and functional be-
havior of the non-duplicated portions of the system.
The use of JustRunIt in a typical virtualized data cen-

ter is illustrated in Figure 2. The figure shows VMs of
multiple three-tier services sharing each PM. Each ser-
vice tier has multiple identically configured VMs placed
on different PMs. (Note that VMs of one tier do not share
PMs with VMs of other tiers in the figure. Although Jus-
tRunIt is agnostic to VM placement, this restriction on
VM placement is often used in practice to reduce soft-
ware licensing costs [18].) For simpler management, the

246	 2009 USENIX Annual Technical Conference	 USENIX Association

set of PMs in each tier is often homogeneous.
The figure also shows one VM instance from each

tier of service 2 being cloned into the sandbox for test-
ing. This is just an example use of JustRunIt; we can
use different numbers of PMs in the sandbox, as we dis-
cuss later. Configuration changes are applied to the clone
server, and the effects of the changes are tested by replay-
ing live traffic duplicated from the production system.
The sandbox system is monitored to determine the re-
sulting throughput, response time, and energy consump-
tion. The experimenter reports these results to the driver
to include in the matrix described in Section 2.2. If ex-
periments are run with multiple service tiers, a different
matrix will be created for each tier.

Although it may not be immediately obvious, the ex-
perimenter assumes that the virtual machine monitor
(VMM) can provide performance isolation across VMs
and includes non-work-conserving resource schedulers.
These features are required because the experiments per-
formed in the sandbox must be realistic representations
of what would happen to the tested VM in the produc-
tion system, regardless of any other VMs that may be
co-located with it. We can see this by going back to Fig-
ure 2. For example, the clone VM from the application
tier of service 2 must behave the same in the sandbox
(where it is run alone on a PM) as it would in the produc-
tion system (where it is run with A1, A3, or both), given
the same configuration. Our current implementation re-
lies on the latest version of the Xen VMM (3.3), which
provides isolation for the setups that we consider.
Importantly, both performance isolation and non-

work-conserving schedulers are desirable characteris-
tics in virtualized data centers. Isolation simplifies the
VM placement decisions involved in managing SLAs,
whereas non-work-conserving schedulers allow more
precise resource accounting and provide better isolation
[18]. Most critically, both characteristics promote per-
formance predictability, which is usually more important
than achieving the best possible performance (and ex-
ceeding the SLA requirements) in hosting centers.
Cloning. Cloning is accomplished by minimally ex-
tending standard VM live migration technology [8, 16].
The Xen live migration mechanism copies dirty memory
pages of a running VM in the background until the num-
ber of dirty pages is reduced below a predefined thresh-
old. Then VM execution is paused for a short time (tens
of milliseconds) to copy the remaining dirty pages to the
destination. Finally, execution transfers to the new VM,
and the original VM is destroyed. Our cloning mecha-
nism changes live migration to resume execution on both
the new VM and the original VM.

Since cloning is transparent to the VM, the clone VM
inherits the same network identity (e.g., IP/MAC ad-
dresses) as the production VM. To avoid network address

conflicts, the cloningmechanism sets up network address
translation to transparently give the clone VM a unique
external identity exposed to the network while conceal-
ing the clone VM’s internal addresses. We implemented
this by extending Xen’s backend network device driver
(“netback”) to perform appropriate address translations
and protocol checksum corrections for all network traffic
to and from the clone VM.

The disk storage used by the clone VMs must also
be replicated. During the short pause of the produc-
tion system VM at the end of state transfer, the cloning
mechanism creates a copy-on-write snapshot of the block
storage volumes used by the production VM, and as-
signs them to the clone VM. We implemented this us-
ing the Linux LVM snapshot capability and by exporting
volumes to VMs over the network using iSCSI or ATA
Over Ethernet. Snapshotting and exporting the storage
volumes incurs only a sub-second delay during cloning.
Storage cloning is transparent to the VMs, which see log-
ical block devices and do not know that they are access-
ing network storage.
JustRunIt may also be configured not to perform VM

cloning in the sandbox. This configuration allows it to
evaluate upgrades of the server software (e.g., Apache),
operating system, and/or service application (as long as
the application upgrade does not change the application’s
messaging behavior). In these cases, the management
entity has to request experiments that are long enough
to amortize any cold-start caching effects in the sandbox
execution. However, long experiments are not a problem,
since software upgrades typically do not have stringent
time requirements.
Proxies. To carry out testing, the experimenter replays
live workload to the VMs in the sandbox. Two low-
overhead proxies, called in-proxy and out-proxy, are in-
serted into communication paths in the production sys-
tem to replicate traffic to the sandbox. The proxies are
application protocol-aware and can be (almost entirely)
re-used across services that utilize the same protocols, as
we detail below. The in-proxy mimics the behavior of all
the previous tiers before the sandbox, and the out-proxy
mimics the behavior of all the following tiers. The local
view of a VM, its cloned sandbox VM, and the proxies
is shown in Figure 3.

After cloning, the proxies create as many connections
with the cloned VM as they have with the original VM.
The connections that were open between the proxies and
the original VM at the time it was cloned will timeout at
the cloned VM. In fact, no requests that were active in
the original VM at the time of cloning get successfully
processed at the cloned VM.

The in-proxy intercepts requests from previous tiers
to the tested VM. When a request arrives, the in-proxy
records the request (Reqn in Figure 3) and its arrival

USENIX Association	 2009 USENIX Annual Technical Conference	 247

   

 



   








 









 

 








 









 

 
 
 

 









Figure 3: Cloned VM and proxy data structures.

time (tn). The in-proxy forwards the request to the on-
line production system and also sends a duplicate request
to the sandbox for processing. To prevent the sandbox
system from running ahead of the production system,
the transmission of the duplicate request is delayed by
a fixed time interval (it is sufficient for the fixed time
shift to be set to any value larger than the maximum re-
sponse time of the service plus the cloning overhead).
Both systems process the duplicated requests and eventu-
ally generate replies that are intercepted by the in-proxy.
For the reply from the production system, the in-proxy
records its arrival time (Tn′) and forwards the reply back
to the previous tier. Later, when the corresponding reply
from the sandbox arrives, the in-proxy records its arrival
time (tsn′). The arrival times are used to measure the
response times of the production and sandbox systems.

The production and sandbox VMs may need to send
requests to the next tier to satisfy a request from the pre-
vious tier. These (duplicated) requests are intercepted by
the out-proxy. The out-proxy records the arrival times
(t0n) and content of the requests from the production
system, and forwards them to the next tier. The out-proxy
also records the arrival times (t0n′) and content of the
corresponding replies, and forwards them to the produc-
tion system. When the out-proxy receives a request from
the sandbox system, it uses hash table lookup to find the
matching request that was previously received from the
production system. (Recall that the matching request will
certainly have been received because the replay to the
sandbox is time-shifted by more than the maximum re-
sponse time of the service.) The out-proxy transmits the
recorded reply to the sandbox after a delay. The delay is
introduced to accurately mimic the delays of the subse-
quent tiers and is equal to the delay that was previously
experienced by the production system (t0n′

− t0n) for
the same request-reply pair.

At the end of an experiment, the in-proxy reports the
throughput and response time results for the production
and sandbox systems. The throughput for each system
is determined by the number of requests successfully

served from the tiers following the in-proxy. The re-
sponse time for each system is defined as the delay after
a request arrives to the in-proxy until its reply is received.
Since out-proxies enforce that the delays of subsequent
tiers are equal for the production and sandbox system,
the difference of throughput and response time between
the production and sandbox systems is the performance
difference between the original VM and cloned VM.

The proxies can be installed dynamically anywhere in
the system, depending on which VMs the management
entity may want to study at the time. However, we have
only implemented in-proxies and out-proxies for Web
and application servers so far. Cross-tier interactions be-
tween proxies, i.e. the communication between the out-
proxy of the Web tier and the in-proxy of the application
tier, occur in exactly the same way as the communication
between regular servers.
In future work, we plan to implement an in-proxy for

database servers by borrowing code from the Clustered-
JDBC (C-JDBC) database middleware [5]. Briefly, C-
JDBC implements a software controller between a JDBC
application and a set of DBMSs. In its full-replication
mode, C-JDBC keeps the content of the database repli-
cated and consistent across the DBMSs. During experi-
mentation, our in-proxy will do the same for the on-line
and sandboxed DBMSs. Fortunately, C-JDBC already
implements the key functionality needed for cloning,
namely the ability to integrate the sandboxed DBMS
and update its content for experimentation. To complete
our in-proxy, we plan to modify C-JDBC to record the
on-line requests and later replay them to the sandboxed
DBMS. We have modified C-JDBC in similar ways [17].
Non-determinism. A key challenge for workload replay
is to tolerate non-deterministic behavior in the produc-
tion and sandbox systems. We address non-determinism
in three ways. First, to tolerate network layer non-
determinism (e.g., packet drops) the proxies replicate
application-layer requests and replies instead of replicat-
ing network packets directly.

Second, the replay is implemented so that the sand-
boxed servers can process requests and replies in a dif-
ferent order than their corresponding on-line servers;
only the timing of the message arrivals at the sandboxed
servers is guaranteed to reflect that of the on-line servers.
This ordering flexibility tolerates non-determinism in the
behavior of the software servers, e.g. due to multithread-
ing. However, note that this flexibility is only acceptable
for Web and application-tier proxies, since requests from
different sessions are independent of each other in those
tiers. We will need to enforce ordering more strictly in
the in-proxy for database servers, to prevent the origi-
nal and cloned databases from diverging. Our in-proxy
will do so by forcing each write (and commit) to execute
by itself during experimentation only forcing a complete

248	 2009 USENIX Annual Technical Conference	 USENIX Association

ordering between all pairs of read-write and write-write
operations; concurrent reads will be allowed to execute
in any order. We have successfully created this strict or-
dering in C-JDBC before [17] and saw no noticeable per-
formance degradation for one of the services we study in
this paper.

Third, we tolerate application-layer non-determinism
by designing the proxies to be application protocol-
aware (e.g., the Web server in-proxies understand HTTP
message formats). The proxies embody knowledge of
the fields in requests and replies that can have non-
deterministic values (e.g., timestamps, session IDs).
When the out-proxy sees a non-deterministic value in
a message from the sandbox, the message is matched
against recorded messages from the production system
using wildcards for the non-deterministic fields.

Our study of two services (an auction and a bookstore)
shows that our proxies effectively tolerate their non-
determinism. Even though some messages in these ser-
vices have identical values except for a non-deterministic
field, our wildcard mechanism allows JustRunIt to prop-
erly match replies in the production and sandbox systems
for two reasons. First, all replies from the sandbox are
dropped by the proxies, preventing them from disrupting
the on-line system. Second, using different replies due to
wildcard mismatch does not affect the JustRunIt results
because the replies are equivalent and all delays are still
accounted for.
We plan to study non-determinism in an even broader

range of services. In fact, despite our promising ex-
perience with the auction and bookstore services, some
types of non-determinism may be hard for our proxies to
handle. In particular, services that non-deterministically
change their messaging behavior (not just particular
fields or the destination of the messages) or their load
processing behavior (e.g., via non-deterministic load-
shedding) would be impossible to handle. For example, a
service in which servers may send an unpredictable num-
ber of messages in response to each request cannot be
handled by our proxies. We have not come across any
such services, though.

2.2.2 Experiment Driver

Running experiments is not free. They cost time and en-
ergy. For this reason, JustRunIt allows the management
entity to configure the experimentation using a simple
configuration file. The entity can specify the tier(s) with
which JustRunIt should experiment, which experiment
heuristics to apply (discussed below), which resources to
vary, the range of resource allocations to consider, how
many equally separated allocation points to consider in
the range, how long each experiment should take, and
how many experiments to run. These parameters can di-

rectly limit the time and indirectly limit the energy con-
sumed by the experiments, when there are constraints on
these resources (as in Section 3.1). When experiment
time and energy are not relevant constraints (as in Sec-
tion 3.2), the settings for the parameters can be looser.
Based on the configuration information, the experi-

ment driver directs the experimenter to explore the pa-
rameter space within the time limit. The driver starts
by running experiments to fill in the entries at the cor-
ners of the result matrix. For example, if the experiments
should vary the CPU allocation and the CPU frequency,
the matrix will have two dimensions and four corners:
(min CPU alloc, min CPU freq), (min CPU alloc, max CPU
freq), (max CPU alloc, min CPU freq), and (max CPU alloc,
max CPU freq). The management entity must configure
JustRunIt so at least these corner experiments can be per-
formed. After filling in the corner coordinates, the driver
then proceeds to request experiments exactly in the mid-
dle of the unexplored ranges defined by each resource
dimension. After those are performed, it recursively sub-
divides the unexplored ranges in turn. This process is
repeated until the number of experiments requested by
the management entity have been performed or there are
no more experiments to perform.
We designed two heuristics for the driver to use to

avoid running unnecessary experiments along each ma-
trix dimension. The two observations behind the heuris-
tics are that: 1) beyond some point, resource additions
do not improve performance; 2) the performance gain
for the same resource addition to different tiers will not
be the same, and the gains drop consistently and contin-
ually (diminishing returns).
Based on observation 1), the first heuristic cancels the

remaining experiments with larger resource allocations
along the current resource dimension, if the performance
gain from a resource addition is less than a threshold
amount. Based on observation 2), the second heuristic
cancels the experiments with tiers that do not produce
the largest gains from a resource addition. As we add
more resources to the current tier, the performance gains
decrease until some other tier becomes the tier with the
largest gain from the same resource addition. For ex-
ample, increasing the CPU allocation on the bottleneck
tier, say the application tier, will significantly improve
overall response time. At some point, however, the bot-
tleneck will shift to other tiers, say the Web tier, at which
point the driver will experiment with the Web tier and
gain more overall response time improvement with the
same CPU addition.

2.2.3 Interpolator and Checker

The interpolator predicts performance results for points
in the matrix that have not yet been determined through

USENIX Association	 2009 USENIX Annual Technical Conference	 249

experiments. For simplicity, we use linear interpolation
to fill in these blanks, and we mark the values to indicate
that they are just interpolated.
If the management entity uses any interpolated results,

the checker tries to verify the interpolated results by in-
voking the experimenter to run the corresponding exper-
iments in the background. If one of these background
experimental results differs from the corresponding in-
terpolated result by more than a user-specified threshold
value, the checker raises a flag to the management entity
to decide how to handle this mismatch.

The management entity can use this information in
multiple ways. For example, it may reconfigure the
driver to run more experiments with the corresponding
resources from now on. Another option would be to re-
configure the range of allocations to consider in the ex-
periments from now on.

2.3 Discussion
Uses of JustRunIt. We expect that JustRunIt will be use-
ful for many system management scenarios. For exam-
ple, in this paper we consider resource management and
hardware upgrade case studies. In these and other sce-
narios, JustRunIt can be used by the management entity
to safely, efficiently, and realistically answer the same
“what-if” questions that modeling can answer given the
current workload and load intensity.
Moreover, like modeling, JustRunIt can benefit from

load intensity prediction techniques to answer questions
about future scenarios. JustRunIt can do so because its
request replay is shifted in time and can be done at any
desired speed. (Request stream acceleration needs to
consider whether requests belong to an existing session
or start a new session. JustRunIt can properly acceler-
ate requests because it stores enough information about
them to differentiate between the two cases.) Section 6
discusses how the current version of JustRunIt can be
modified to answer “what-if” questions about different
workload mixes as well.

Although our current implementation does not imple-
ment this functionality, JustRunIt could also be used to
select the best values for software tunables, e.g. the num-
ber of threads or the size of the memory cache in Web
servers. Modeling does not lend itself directly to this
type of management task. Another possible extension
could be enabling JustRunIt to evaluate the correctness
of administrator actions, as in action-validation systems
[15, 17]. All the key infrastructure required by these sys-
tems (i.e., proxies, cloning, sandboxing) is already part
of the current version of JustRunIt, so adding the ability
to validate administrator actions should be a simple ex-
ercise. Interestingly, this type of functionality cannot be
provided by analytic models or feedback control.

Obviously, JustRunIt can answer questions and vali-
date administrator actions at the cost of experiment time
and energy. However, note that the physical resources
required by JustRunIt (i.e., enough computational re-
sources for the proxies and for the sandbox) can be a very
small fraction of the data center’s resources. For exam-
ple, in Figure 2, we show that just three PMs are enough
to experiment with all tiers of a service at the same time,
regardless of how large the production system is. Even
fewer resources, e.g. one PM, can be used, as long as we
have the time to experiment with VMs sequentially. Fur-
thermore, the JustRunIt physical resources can be bor-
rowed from the production system itself, e.g. during pe-
riods of low load.
In essence, JustRunIt poses an interesting tradeoff be-

tween the amount of physical resources it uses, the ex-
periment time that needs to elapse before decisions can
be made, and the energy consumed by its resources.
More physical resources translate into shorter experi-
ment times but higher energy consumption. For this rea-
son, we allow the management entity to configure Jus-
tRunIt in whatever way is appropriate for the data center.
Engineering cost of JustRunIt. Building the JustRunIt
proxies is the most time-consuming part of its implemen-
tation. The proxies must be designed to properly handle
the communication protocols used by services. Our cur-
rent proxies understand the HTTP, mod jk, and MySQL
protocols. We have built our proxies starting from the
publicly available Tinyproxy HTTP proxy daemon [2].
Each proxy required only between 800 and 1500 new
lines of C code. (VM cloning required 42 new lines
of Python code in the xend control daemon and the xm
management tool, whereas address translation required
244 new lines of C code in the netback driver.) The vast
majority of the difference between Web and application
server proxies comes from their different communication
protocols.

The engineering effort required by the proxies can be
amortized, as they can be reused for any service based
on the same protocols. However, the proxies may need
modifications to handle any non-determinism in the ser-
vices themselves. Fortunately, our experience with the
auction and bookstore services suggests that the effort
involved in handling service-level non-determinism may
be small. Specifically, it took one of us (Zheng) less than
one day to adapt the proxies designed for the auction to
the bookstore. This is particularly promising in that he
had no prior knowledge of the bookstore whatsoever.
One may argue that implementing JustRunIt may re-

quire a comparable amount of effort to developing ac-
curate models for a service. We have experience with
modeling the performance, energy, and temperature of
server clusters and storage systems [4, 13, 12, 19] and
largely agree with this claim. However,we note that Jus-

250	 2009 USENIX Annual Technical Conference	 USENIX Association

tRunIt is much more reusable than models, across differ-
ent services, hardware and software characteristics, and
even as service behavior evolves. Each of these factors
requires model re-calibration and re-validation, which
are typically labor-intensive. Furthermore, for models to
become tractable, many simplifying assumptions about
system behavior (e.g., memoryless request arrivals) may
have to be made. These assumptions may compromise
the accuracy of the models. JustRunIt does not require
these assumptions and produces accurate results.

3 Experiment-based Management

As mentioned in the previous section, our infrastructure
can be used by automated management systems or di-
rectly by the system administrator. To demonstrate its
use in the former scenario, we have implemented sim-
ple automated management systems for two common
tasks in virtualized hosting centers: server consolida-
tion/expansion (i.e., partitioning resources across the ser-
vices to use as few active servers as possible) and evalu-
ation of hardware upgrades. These tasks are currently
performed by most administrators in a manual, labor-
intensive, and ad-hoc manner.

Both management systems seek to satisfy the services’
SLAs. An SLA often specifies a percentage of requests
to be serviced within some amount of time. Another pos-
sibility is for the SLA to specify an average response time
(over a period of several minutes) for the corresponding
service. For simplicity, our automated systems assume
the latter type of SLA.

The next two subsections describe the management
systems. However, before describing them, we note that
they are not contributions of this work. Rather, they are
presented simply to demonstrate the automated use of
JustRunIt. More sophisticated systems (or the admin-
istrator) would leverage JustRunIt in similar ways.

3.1 Case Study 1: Resource Management
Overview. The ultimate goal of our resource-
management system is to consolidate the hosted services
onto the smallest possible set of nodes, while satisfying
all SLAs. To achieve this goal, the system constantly
monitors the average response time of each service, com-
paring this average to the corresponding SLA. Because
workload conditions change over time, the resources as-
signed to a service may become insufficient and the ser-
vice may start violating its SLA. Whenever such a vio-
lation occurs, our system initiates experiments with Jus-
tRunIt to determine what is the minimum allocation of
resources that would be required for the service’s SLA
to be satisfied again. Changes in workload behavior of-
ten occur at the granularity of tens of minutes or even

1. While 1 do
2. Monitor QoS of all services
3. If any service needs more resources or
4. can use fewer resources
5. Run experiments with bottleneck tier
6. Find minimum resource needs
7. If used any interpolated results
8. Inform JustRunIt about them
9. Assign resources using bin-packing heuristic

10. If new nodes need to be added
11. Add new nodes and migrate VMs to them
12. Else if nodes can be removed
13. Migrate VMs and remove nodes
14. Complete resource adjustments and migrations

Figure 4: Overview of resource-management system.

hours, suggesting that the time spent performing exper-
iments is likely to be relatively small. Nevertheless, to
avoid having to perform adjustments too frequently, the
system assigns 20% more resources to a service than its
minimum needs. This slack allows for transient increases
in offered load without excessive resource waste. Since
the resources required by the service have to be allocated
to it, the new resource allocation may require VM migra-
tions or even the use of extra nodes.
Conversely, when the SLA of any service is being sat-

isfied by more than a threshold amount (i.e., the average
response time is lower than that specified by the SLA by
more than a threshold percentage), our system consid-
ers the possibility of reducing the amount of resources
dedicated to the service. It does so by initiating exper-
iments with JustRunIt to determine the minimum allo-
cation of resources that would still satisfy the service’s
SLA. Again, we give the service additional slack in its
resource allocation to avoid frequent reallocations. Be-
cause resources can be taken away from this service, the
new combined resource needs of the services may not re-
quire as many PMs. In this case, the system determines
the minimum number of PMs that can be used and im-
plements the required VM migrations.
Details. Figure 4 presents pseudo-code overviewing the
operation of our management system. The experiments
with JustRunIt are performed in line 5. The management
system only runs experiments with one software server
of the bottleneck tier of the service in question. The
management system can determine the bottleneck tier by
inspecting the resource utilization of the servers in each
tier. Experimenting with one software server is typically
enough for two reasons: (1) services typically balance
the load evenly across the servers of each tier; and (2)
the VMs of all software servers of the same tier and ser-
vice are assigned the same amount of resources at their
PMs. (When at least one of these two properties does not
hold, the management system needs to request more ex-
periments of JustRunIt.) However, if enough nodes can
be used for experiments in the sandbox, the system could
run experiments with one software server from each tier
of the service at the same time.

USENIX Association	 2009 USENIX Annual Technical Conference	 251

The matrix of resource allocations vs. response times
produced by JustRunIt is then used to find the minimum
resource needs of the service in line 6. Specifically, the
management system checks the results in the JustRunIt
matrix (from smallest to largest resource allocation) to
find the minimum allocation that would still allow the
SLA to be satisfied. In lines 7 and 8, the system informs
JustRunIt about any interpolated results that it may have
used in determining the minimum resource needs. Jus-
tRunIt will inform the management system if the inter-
polated results are different than the actual experimental
results by more than a configurable threshold amount.
In line 9, the system executes a resource assignment

algorithm that will determine the VM to PM assignment
for all VMs of all services. We model resource assign-
ment as a bin-packing problem. In bin-packing, the goal
is to place a number of objects into bins, so that we min-
imize the number of bins. We model the VMs (and their
resource requirements) as the objects and the PMs (and
their available resources) as the bins. If more than one
VM to PM assignment leads to the minimum number of
PMs, we break the tie by selecting the optimal assign-
ment that requires the smallest number of migrations. If
more than one assignment requires the smallest number
of migrations, we pick the one of these assignments ran-
domly. Unfortunately, the bin-packing problem is NP-
complete, so it can take an inordinate amount of time to
solve it optimally, even for hosting centers of moderate
size. Thus, we resort to a heuristic approach, namely
simulated annealing [14], to solve it.

Finally, in lines 10–14, the resource-allocation system
adjusts the number of PMs and the VM to PM assign-
ment as determined by the best solution ever seen by
simulated annealing.
Comparison. A model-based implementation for this
management system would be similar; it would simply
replace lines 5–8 with a call to a performance model
solver. Obviously, the model would have to have been
created, calibrated, and validated a priori.

A feedback-based implementation would replace lines
5–8 by a call to the controller to execute the experiments
that will adjust the offending service. However, note
that feedback control is only applicable when repeatedly
varying the allocation of a resource or changing a hard-
ware setting does not affect the on-line behavior of the
co-located services. For example, we can use feedback
control to vary the CPU allocation of a service with-
out affecting other services. In contrast, increasing the
amount of memory allocated to a service may require
decreasing the allocation of another service. Similarly,
varying the voltage setting for a service affects all ser-
vices running on the same CPU chip, because the cores in
current chips share the same voltage rail. Cross-service
interactions are clearly undesirable, especially when they

1. For each service do
2. For one software server of each tier
3. Run experiments with JustRunIt
4. Find minimum resource needs
5. If used any interpolated results
6. Inform JustRunIt about them
7. Assign resources using bin-packing heuristic
8. Estimate power consumption

Figure 5: Overview of update-evaluation system.

may occur repeatedly as in feedback control. The key
problem is that feedback control experiments with the
on-line system. With JustRunIt, bin-packing and node
addition/removal occur before any resource changes are
made on-line, so interference can be completely avoided
in most cases. When interference is unavoidable, e.g.
the offending service cannot be migrated to a node with
enough available memory and no extra nodes can be
added, changes to the service are made only once.

3.2 Case Study 2: Hardware Upgrades
Overview. For our second case study, we built a manage-
ment system to evaluate hardware upgrades. The system
assumes that at least one instance of the hardware being
considered is available for experimentation in the sand-
box. For example, consider a scenario in which the host-
ing center is considering purchasing machines of a model
that is faster or has more available resources than that
of its current machines. After performing experiments
with a single machine of the candidate model, our system
determines whether the upgrade would allow servers to
be consolidated onto a smaller number of machines and
whether the overall power consumption of the hosting
center would be smaller than it currently is. This infor-
mation is provided to the administrator, who can make
a final decision on whether or not to purchase the new
machines and ultimately perform the upgrade.
Details. Figure 5 presents pseudo-code overviewing our
update-evaluation system. The experiments with Jus-
tRunIt are started in line 3. For this system, the ma-
trix that JustRunIt produces must include information
about the average response time and the average power
consumption of each resource allocation on the upgrade-
candidate machine. In line 4, the system determines the
resource allocation that achieves the same average re-
sponse time as on the current machine (thus guaranteeing
that the SLAwould be satisfied by the candidate machine
as well). Again, the administrator configures the system
to properly drive JustRunIt and gets informed about any
interpolated results that are used in line 4.

By adding the extra 20% slack to these minimum re-
quirements and running the bin-packing algorithm de-
scribed above, the system determines how many new
machines would be required to achieve the current per-
formance and how much power the entire center would

252	 2009 USENIX Annual Technical Conference	 USENIX Association

consume. Specifically, the center power can be estimated
by adding up the power consumption of each PM in the
resource assignment produced by the simulated anneal-
ing. The consumption of each PM can be estimated by
first determining the “base” power of the candidate ma-
chine, i.e. the power consumption when the machine is
on but no VM is running on it. This base power should
be subtracted from the results in the JustRunIt matrix of
each software server VM. This subtraction produces the
average dynamic power required by the VM. Estimating
the power of each PM then involves adding up the dy-
namic power consumption of the VMs that would run on
the PM plus the base power.
Comparison. Modeling has been used for this manage-
ment task [7]. A modeling-based implementation for our
management system would replace lines 2–6 in Figure 5
with a call to a performance model solver to estimate the
minimum resource requirements for each service. Based
on these results and on the resource assignment com-
puted in line 7, an energy model would estimate the en-
ergy consumption in line 8. Again, both models would
have to have been created, calibrated, and validated a pri-
ori. In contrast, feedback control is not applicable to this
management task.

4 Evaluation

4.1 Methodology
Our hardware comprises 15 HP Proliant C-class blades
interconnected by a Gigabit Ethernet switch. Each server
has 8 GBytes of DRAM, 2 hard disks, and 2 Intel dual-
core Xeon CPUs. Each CPU has two frequency points, 2
GHz and 3 GHz. Two blades with direct-attached disks
are used as network-attached storage servers. They ex-
port Linux LVM logical volumes to the other blades us-
ing ATA over Ethernet. One Gbit Ethernet port of every
blade is used exclusively for network storage traffic. We
measure the energy consumed by a blade by querying its
management processor, which monitors the peak and av-
erage power usage of the entire blade.
Virtualization is provided by XenLinux kernel 2.6.18

with the Xen VMM [3], version 3.3. For improving
Xen’s ability to provide performance isolation, we pin
Dom0 to one of the cores and isolate the service(s) from
it. Note, however, that JustRunIt does not itself im-
pose this organization. As JustRunIt only depends on
the VMM for VM cloning, it can easily be ported to use
VMMs that do not perform I/O in a separate VM.
We populate the blade cluster with one or more in-

dependent instances of an on-line auction service. To
demonstrate the generality of our system, we also exper-
iment with an on-line bookstore. Both services are or-
ganized into three tiers of servers: Web, application, and

database tiers. The first tier is implemented by Apache
Web servers (version 2.0.54), the second tier uses Tomcat
servlet servers (version 4.1.18), and the third tier uses the
MySQL relational database (version 5.0.27). (For perfor-
mance reasons, the database servers are not virtualized
and run directly on Linux and the underlying hardware.)
We use LVS load balancers [30] in front of the Web and
application tiers. The service requests are received by
the Web servers and may flow towards the second and
third tiers. The replies flow through the same path in the
reverse direction.
We exercise each instance of the services using a client

emulator. The auction workload consists of a “bidding
mix” of requests (94% of the database requests are reads)
issued by a number of concurrent clients that repeatedly
open sessions with the service. The bookstore workload
comprises a “shopping mix”, where 20% of the requests
are read-write. Each client issues a request, receives and
parses the reply, “thinks” for a while, and follows a link
contained in the reply. A user-defined Markov model de-
termines which link to follow. The code for the services,
their workloads, and the client emulator are from the Dy-
naServer project [20] and have been used extensively by
other research groups.

4.2 JustRunIt Overhead
Our overhead evaluation seeks to answer two ques-
tions: (1) Does the overhead of JustRunIt (proxies, VM
cloning, workload duplication, and reply matching) de-
grade the performance of the on-line services? and (2)
How faithfully do servers in the sandbox represent on-
line servers given the same resources?

To answer these questions, we use our auction service
as implemented by one Apache VM, one Tomcat VM,
andMySQL. Using a larger instance of the service would
hide some of the overhead of JustRunIt, since the proxies
only instrument one path through the service. Each of
the VMs runs on a different blade. We use one blade in
the sandbox. The two proxies for the Web tier run on
one of the blades, whereas those for the application tier
run on another. The proxies run on their own blades to
promote performance isolation for the auction service. In
all our experiments, the time shift used by JustRunIt is 10
seconds behind the on-line service.
Overhead on the on-line system? To isolate the over-
head of JustRunIt on the on-line service, we experiment
with three scenarios: (1) Plain – no proxies are installed;
(2) ProxiesInstalled – proxies are installed around the
Web and application servers, but they only relay the net-
work traffic; and (3) JustRunIt – proxies are installed
around the Web and application servers and perform all
the JustRunIt functionality.

Figures 6 and 7 depict the average throughput and re-

USENIX Association	 2009 USENIX Annual Technical Conference	 253

0

200

400

600

800

1000

1200

1400

1600

1800

2000

300 600 900 1200 1500 1800
Offered Load (reqs/s)

Th
ro

ug
hp

ut
 (r

eq
s/

s)

Plain
ProxiesInstalled
JustRunIt

Figure 6: Throughput as a function of offered load.

0

10

20

30

40

50

60

70

80

300 600 900 1200 1500 1800
Offered Load (reqs/s)

R
es

po
ns

e
Ti

m
e

(m
s)

Plain
ProxiesInstalled
JustRunIt

Figure 7: Response time as a function of offered load.

0

5

10

15

20

25

30

35

25 50 75 100
CPU Allocation

R
es

po
ns

e
Ti

m
e

(m
s)

0

50

100

150

200

250

300

350

400

450
Th

ro
ug

hp
ut

 (r
eq

s/
s)

Live RT
SB RT
Live T
SB T

Figure 8: On-line and sandboxed performance as a function
of CPU allocation at offered load 500 requests/second.

0

20

40

60

80

100

120

140

160

25 50 75 100
CPU Allocation

R
es

po
ns

e
Ti

m
e

(m
s)

0

100

200

300

400

500

600

700

800

900

Th
ro

ug
hp

ut
 (r

eq
s/

s)

Live RT
SB RT
Live T
SB T

Figure 9: On-line and sandboxed performance as a function
of CPU allocation at offered load 1000 requests/second.

sponse time of the on-line service, respectively, as a func-
tion of the offered load. We set the CPU allocation of all
servers to 100% of one core. In this configuration, the
service saturates at 1940 requests/second. Each bar cor-
responds to a 200-second execution.
Figure 6 shows that JustRunIt has no effect on the

throughput of the on-line service, even as it approaches
saturation, despite having the proxies for each tier co-
located on the same blade.
Figure 7 shows that the overhead of JustRunIt is con-

sistently small (< 5ms) across load intensities. We are
currently in the process of optimizing the implementa-
tion to reduce the JustRunIt overheads further. However,
remember that the overheads in Figure 7 are exagger-
ated by the fact that, in these experiments, all application
server requests are exposed to the JustRunIt instrumenta-
tion. If we had used a service with 4 application servers,
for example, only roughly 25% of those requests would
be exposed to the instrumentation (since we only need
proxies for 1 of the application servers), thus lowering
the average overhead by 75%.

Performance in the sandbox? The results above isolate

the overhead of JustRunIt on the on-line system. How-
ever, another important consideration is how faithful the
sandbox execution is to the on-line execution given the
same resources. Obviously, it would be inaccurate to
make management decisions based on sandboxed exper-
iments that are not very similar to the behavior of the
on-line system.

Figures 8 and 9 compare the performance of the on-
line application server (labeled “Live”) to that of the
sandboxed (labeled “SB”) application server at 500 re-
quests/second and 1000 requests/second, respectively.
In both figures, response times (labeled “RT”) and
throughputs (labeled “T”) are measured at the applica-
tion server’s in-proxy. Again, each result represents the
average performance over 200 seconds.
As one would expect, the figures show that increasing

the CPU allocation tends to increase throughputs and re-
duce response times. The difference between the offered
load and the achieved throughput is the 20% of requests
that are served directly by the Web server and, thus, do
not reach the application server’s in-proxy. More inter-
estingly, the figures clearly show that the sandboxed ex-
ecution is a faithful representation of the on-line system,

254	 2009 USENIX Annual Technical Conference	 USENIX Association

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9
Time (minutes)

R
es

po
ns

e
Ti

m
e

(m
s)

Service 0 RT
Service 1 RT
Service 2 RT
Service 3 RT

Figure 10: Server expansion using JustRunIt.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9
Time (minutes)

R
es

po
ns

e
Ti

m
e

(m
s)

Service 0 RT
Service 1 RT
Service 2 RT
Service 3 RT

Figure 11: Server expansion using accurate modeling.

regardless of the offered load.
The results for the Web tier also show the sandboxed

execution to be accurate. Like the application-tier re-
sults, we ran experiments with four different CPU allo-
cations, under two offered loads. When the offered load
is 500 reqs/s, the average difference between the on-line
and sandboxed results is 4 requests/second for through-
put and 1 ms for response time, across all CPU alloca-
tions. Even under a load of 1000 requests/second, the av-
erage throughput and response time differences are only
6 requests/second and 2 ms, respectively.

Our experiments with the bookstore service exhibit the
same behaviors as in Figures 6 to 9. The throughput is
not affected by JustRunIt and the overhead on the re-
sponse time is small. For example, under an offered load
of 300 requests/second, JustRunIt increases the mean re-
sponse time for the bookstore from 18 ms to 22 ms. For
900 requests/second, the increase is from 54 ms to 58 ms.
Finally, our worst result shows that JustRunIt increases
the mean response time from 90 ms to 100 ms at 1500
requests/second.

4.3 Case Study 1: Resource Management
As mentioned before, we built an automated resource
manager for a virtualized hosting center that leverages
JustRunIt. To demonstrate the behavior of our manager,
we created four instances of our auction service on 9
blades: 2 blades for first-tier servers, 2 blades for second-
tier servers, 2 blades for database servers, and 3 blades
for storage servers and LVS. Each first-tier (second-tier)
blade runs one Web (application) server from each ser-
vice. Each server VM is allocated 50% of one core as
its CPU allocation. We assume that the services’ SLAs
require an average response time lower than 50 ms in
every period of one minute. The manager requested Jus-
tRunIt to run 3 CPU-allocation experiments with any ser-
vice that violated its SLA, for no longer than 3 minutes
overall. A 10th blade is used for the JustRunIt sand-

box, whereas 2 extra blades are used for its Web and
application-server proxies. Finally, 2 more blades are
used to generate load.

Figure 10 shows the response time of each service dur-
ing our experiment; each point represents the average re-
sponse time during the corresponding minute. We ini-
tially offered 1000 requests/second to each service. This
offered load results in an average response time hover-
ing around 40 ms. Two minutes after the start of the
experiment, we increase the load offered to service 0 to
1500 requests/second. This caused its response time to
increase beyond 50 ms during the third minute of the ex-
periment. At that point, the manager started JustRunIt
experiments to determine the CPU allocation that would
be required for the service’s application servers (the sec-
ond tier is the bottleneck tier) to bring response time back
below 50 ms under the new offered load. The set of Jus-
tRunIt experiments lasted 3 minutes, allowing CPU allo-
cations of 60%, 80%, and 100% of a core to be tested.
The values for 70% and 90% shares were interpolated
based on the experimental results.

Based on the response-time results of the experiments,
the manager determined that the application server VMs
of the offending service should be given 72% of a core
(i.e., 60% of a core plus the 20% of 60% = 12% slack).
Because of the extra CPU allocation requirements, the
manager decided that the system should be expanded to
include an additional PM (a 15th blade in our setup). To
populate this machine, the manager migrated 2 VMs to it
(one from each PM hosting application server VMs). Be-
sides the 3 minutes spent with experiments, VM cloning,
simulated annealing, and VM migration took about 1
minute altogether. As a result, the manager was able to
complete the resource reallocation 7 minutes into the ex-
periment. The experiment ended with all services satis-
fying their SLAs.

Comparison against highly accurate modeling. Fig-
ure 11 shows what the system behavior would be if the

USENIX Association	 2009 USENIX Annual Technical Conference	 255

resource manager made its decisions based on a highly
accurate response-time model of our 3-tier auction ser-
vice. To mimic such a model, we performed the Jus-
tRunIt experiments with service 0 under the same offered
load of Figure 10 for all CPU allocations off-line. These
off-line results were fed to the manager during the exper-
iment free of any overheads. We assumed that the model-
based manager would require 1 minute of resource-usage
monitoring after the SLA violation is detected, before the
model could be solved. Based on the JustRunIt results,
the manager made the same decisions as in Figure 10.
The figure shows that modeling would allow the sys-

tem to adjust 2 minutes faster. However, developing, cal-
ibrating, and validating such an accurate model is a chal-
lenging and labor-intensive proposition. Furthermore,
adaptations would happen relatively infrequently in prac-
tice, given that (1) it typically takes at least tens of min-
utes for load intensities to increase significantly in real
systems, and (2) the manager builds slack into the re-
source allocation during each adaptation. In summary,
the small delay in decision making and the limited re-
sources that JustRunIt requires are a small price to pay
for the benefits that it affords.

4.4 Case Study 2: Hardware Upgrade
We also experimented with our automated system for
evaluating hardware upgrades in a virtualized hosting
center. To demonstrate the behavior of our system, we
ran two instances of our auction service on the same
number of blades as in our resource manager study
above. However, we now configure the blades that run
the services to run at 2 GHz. The blade in the JustRunIt
sandbox is set to run at 3 GHz to mimic a more pow-
erful machine that we are considering for an upgrade of
the data center. We offer 1000 requests/second to each
service. We also cap each application server VM of both
services at 90% of one core; for simplicity, we do not ex-
periment with the Web tier, but the same approach could
be trivially taken for it as well.

During the experiment, the management system re-
quested JustRunIt to run 4 CPU-allocation experiments
for no longer than 800 seconds overall. (Note, though,
that this type of management task does not have real-
time requirements, so we can afford to run JustRunIt ex-
periments for a much longer time.) Since each server
is initially allocated 90% of one core, JustRunIt is told
to experiment with CPU allocations of 50%, 60%, 70%,
and 80% of one core; there is no need for interpolation.
The management system’s main goal is to determine (us-
ing simulated annealing) how many of the new machines
would be needed to achieve the same response time that
the services currently exhibit. With this information, the
energy implications of the upgrade can be assessed.

Based on the results generated by JustRunIt, the man-
agement system decided that the VMs of both services
could each run at 72% CPU allocations (60% of one core
plus 12% slack) at 3 GHz. For a large data center with
diverse services, a similar reduction in resource require-
ments may allow for servers to be consolidated, which
would most likely conserve energy. Unfortunately, our
experimental system is too small to demonstrate these
effects here.

4.5 Summary
In summary, the results above demonstrate that the Jus-
tRunIt overhead is small, even when all requests are
exposed to our instrumentation. In real deployments,
the observed overhead will be even smaller, since there
will certainly be more than one path through each ser-
vice (at the very least to guarantee availability and fault-
tolerance). Furthermore, the results show that the sand-
boxed execution is faithful to the on-line execution. Fi-
nally, the results demonstrate that JustRunIt can be effec-
tively leveraged to implement sophisticated automated
management systems. Modeling could have been applied
to the two systems, whereas feedback control is applica-
ble to resource management (in the case of the CPU al-
location), but not upgrade evaluation. The hardware re-
sources consumed by JustRunIt amount to one machine
for the two proxies of each tier, plus as few as one sand-
box machine. Most importantly, this overhead is fixed
and independent of the size of the production system.

5 Related Work

Modeling, feedback control, and machine learning
for managing data centers. State-of-the-art manage-
ment systems rely on analytical modeling, feedback con-
trol, and/or machine learning to at least partially auto-
mate certain management tasks. As we have mentioned
before, modeling has complexity and accuracy limita-
tions, whereas feedback control is not applicable to many
types of tasks. Although machine learning is useful for
certain management tasks, such as fault diagnosis, it also
has applicability limitations. The problem is that ma-
chine learning can only learn about system scenarios and
configurations that have been seen in the past and about
which enough data has been collected. For example, it
applies to neither of the tasks we study in this paper.
Nevertheless, machine learning can be used to improve
the interpolation done by JustRunIt, when enough data
exists for it to derive accurate models.
JustRunIt takes a fundamentally different approach to

management; one in which accurate sandboxed experi-
ments replace modeling, feedback control, and machine
learning.

256	 2009 USENIX Annual Technical Conference	 USENIX Association

Scaling down data centers. Gupta et al. [10] pro-
posed the DieCast approach for scaling down a service.
DieCast enables some management tasks, such as pre-
dicting service performance as a function of workload,
to be performed on the scaled version. Scaling is accom-
plished by creating one VM for each PM of the service
and running the VMs on an off-line cluster that is an or-
der of magnitude smaller than the on-line cluster. Be-
cause of the significant scaling in size, DieCast also uses
time dilation [11] to make guest OSes think that they are
running on much faster machines. For a 10-fold scale
down, time dilation extends execution time by 10-fold.
DieCast and JustRunIt have fundamentally different

goals and resource requirements. First, JustRunIt targets
a subset of the management tasks that DieCast does; the
subset that can be accomplished with limited additional
hardware resources, software infrastructure, and costs.
In particular, JustRunIt seeks to improve upon model-
ing by leveraging native execution. Because of time di-
lation, DieCast takes excessively long to perform each
experiment. Second, JustRunIt includes infrastructure
for automatically experimenting with services, as well
as interpolating and checking the experimental results.
Third, JustRunIt minimizes the set of hardware resources
that are required by each experiment without affecting its
running time. In contrast, to affect execution time by a
small factor, DieCast requires an additional hardware in-
frastructure that is only this same small factor smaller
than the entire on-line service.

Sandboxing and duplication for managing data cen-
ters. A few efforts have proposed related infrastructures
for managing data centers. Specifically, [15, 17] consid-
ered validating operator actions in an Internet service by
using request duplication to a sandboxed extension of the
service. For each request, if the replies generated by the
on-line environment and by the sandbox ever differ dur-
ing a validation period, a potential operator mistake is
flagged. Tan et al. [25] considered a similar infrastruc-
ture for verifying file servers.
Instead of operator-action validation in a single, non-

virtualized Internet service, our goal is to experimen-
tally evaluate the effect of different resource allocations,
parameter settings, and other potential system changes
(such as hardware upgrades) in virtualized data centers.
Thus, JustRunIt is much more broadly applicable than
previous works. As a result, our infrastructure is quite
different than previous systems. Most significantly, Jus-
tRunIt is the first system that may explore a large number
of scenarios that differ from the on-line system, while ex-
trapolating results from the experiments that are actually
run, and verifying its extrapolations if necessary.

Selecting experiments to run. Previous works have pro-
posed sophisticated approaches for selecting the experi-

ments to run when benchmarking servers [22] or opti-
mizing their configuration parameters [26, 31]. Such ap-
proaches are largely complementary to our work. Specif-
ically, they can be used to improve experiment-based
management in two ways: (1) automated management
systems can use them to define/constrain the parameter
space that JustRunIt should explore; or (2) they can be
used as new heuristics in JustRunIt’s driver to eliminate
unnecessary experiments.

6 Conclusions

This paper introduced a novel infrastructure for
experiment-based management of virtualized data cen-
ters, called JustRunIt. The infrastructure enables an au-
tomated management system or the system administra-
tor to answer “what-if” questions experimentally during
management tasks and, based on the answers, select the
best course of action. The current version of JustRunIt
can be applied to many management tasks, including re-
source management, hardware upgrades, and software
upgrades.
Limitations. There are three types of “what-if” ques-
tions that sophisticated models can answer (by making
simplifying assumptions and costing extensive human la-
bor), whereas JustRunIt currently cannot. First, service-
wide models can answer questions about the effect of
a service tier on other tiers. In the current version of
JustRunIt, these cross-tier interactions are not visible,
since the sandboxed virtual machines do not communi-
cate with each other.

Second, models that represent request mixes at a low
enough level can answer questions about hypothetical
mixes that have not been experienced in practice. Cur-
rently, JustRunIt relies solely on real workload dupli-
cation for its experiments, so it can only answer ques-
tions about request mixes that are offered to the system.
Nevertheless, JustRunIt can currently answer questions
about more or less intense versions of real workloads,
which seems to be a more useful property.

Finally, models can sometimes be used to spot perfor-
mance anomalies, although differences between model
results and on-line behavior are often due to inaccura-
cies of the model. Because JustRunIt uses complete-state
replicas of on-line virtual machines for greater realism in
its experiments, anomalies due to software server or op-
erating system bugs cannot be detected.
Future work. We plan to extend JustRunIt to al-
low cross-tier communication between the sandboxed
servers. This will allow the administrator to configure
sandboxing with or without cross-tier interactions. We
also plan to create infrastructure to allow experimenta-
tion with request mixes other than those observed on-

USENIX Association	 2009 USENIX Annual Technical Conference	 257

line. The idea here is to collect a trace of the on-line
workload offered to one server of each tier, as well as the
state of these servers. Later, JustRunIt could install the
states and replay the trace to the sandboxed servers. Dur-
ing replay, the request mix could be changed by eliminat-
ing or replicating some of the traced sessions. Finally, we
plan to build an in-proxy for a database server, starting
with code from the C-JBDC middleware.

Acknowledgements
We would like to thank our shepherd, John Dunagan, and
the anonymous reviewers for comments that helped im-
prove this paper significantly. This research was partially
supported by Hewlett-Packard and by NSF grant #CSR-
0509007.

References

[1] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster
Reserves: A Mechanism for Resource Management in
Cluster-Based Network Servers. In Proceedings of the
International Conference on Measurement and Modeling
of Computer Systems, June 2000.

[2] Banu. Tinyproxy. http://www.banu.com/tinyproxy/,
2008.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the Art of Virtualization. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles, Octo-
ber 2003.

[4] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini. User-
Level Communication in Cluster-Based Servers. In Pro-
ceedings of the 8th International Symposium on High-
Performance Computer Architecture, February 2002.

[5] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-
JDBC: Flexible Database Clustering Middleware. In Pro-
ceedings of the USENIX Annual Technical Conference,
Freenix Track, June 2004.

[6] J. Chase, D. Anderson, P. Thackar, A. Vahdat, and
R. Boyle. Managing Energy and Server Resources in
Hosting Centers. In Proceedings of the 18th Symposium
on Operating Systems Principles, October 2001.

[7] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang,
and N. Gautam. Managing Server Energy and Opera-
tional Costs in Hosting Centers. In Proceedings of the
International Conference on Measurement and Modeling
of Computer Systems, June 2005.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration
of Virtual Machines. In Proceedings of the International
Symposium on Networked Systems Design and Implemen-
tation, 2005.

[9] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.
Model-Based Resource Provisioning in a Web Service
Utility. In Proceedings of the 4th USENIX Symposium
on Internet Technologies and Systems, March 2003.

[10] D. Gupta, K. Vishwanath, and A. Vahdat. DieCast: Test-
ing Distributed Systems with an Accurate Scale Model.
In Proceedings of the International Symposium on Net-
worked Systems Design and Implementation, May 2008.

[11] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, G. M.
Voelker, and A. Vahdat. To Infinity and Beyond: Time-
Warped Network Emulation. In Proceedings of the Inter-
national Symposium on Networked Systems Design and
Implementation, May 2006.

[12] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria,
and R. Bianchini. Mercury and Freon: Temperature Em-
ulation and Management for Server Systems. In Proceed-
ings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, October 2006.

[13] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and
R. Bianchini. Energy Conservation in Heterogeneous
Server Clusters. In Proceedings of the 10th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, June 2005.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by Simulated Annealing. Science, 220(4598), 1983.

[15] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and
T. D. Nguyen. Understanding and Dealing with Operator
Mistakes in Internet Services. In Proceedings of the 6th
USENIX Symposium on Operating Systems Design and
Implementation, December 2004.

[16] M. Nelson, B.-H. Lim, and G. Hutchins. Fast Transparent
Migration for Virtual Machines. In Proceedings of the
USENIX Annual Technical Conference, April 2005.

[17] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini, R. P.
Martin, and T. D. Nguyen. Understanding and Validat-
ing Database System Administration. In Proceedings of
USENIX Annual Technical Conference 2006, June 2006.

[18] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive Control
of Virtualized Resources in Utility Computing Environ-
ments. In Proceedings of EuroSys, March 2007.

[19] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploit-
ing Redundancy to Conserve Energy in Storage Systems.
In Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems (SIGMET-
RICS), June 2006.

[20] Rice University. DynaServer Project.
http://www.cs.rice.edu/CS/Systems/DynaServer, 2003.

[21] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated re-
source management for cluster-based internet services. In
Proceedings of the 5th USENIX Symposium on Operating
Systems Design and Implementation, December 2002.

258	 2009 USENIX Annual Technical Conference	 USENIX Association

[22] P. Shivam, V. Marupadi, J. Chase, and S. Babu. Cutting
Corners: Workbench Automation for Server Benchmark-
ing. In Proceedings of the 2008 USENIX Annual Techni-
cal Conference, June 2008.

[23] C. Stewart, T. Kelly, A. Zhang, and K. Shen. A Dollar
from 15 Cents: Cross-Platform Management for Internet
Services. In Proceedings of the USENIX Annual Techni-
cal Conference, June 2008.

[24] C. Stewart and K. Shen. Performance Modeling and Sys-
tem Management for Multi-component Online Services.
In Proceedings of the International Symposium on Net-
worked Systems Design and Implementation, May 2005.

[25] Y.-L. Tan, T. Wong, J. D. Strunk, and G. R. Ganger.
Comparison-based File Server Verification. In Proceed-
ings of the USENIX Annual Technical Conference, June
2005.

[26] R. Thonangi, V. Thummala, and S. Babu. Finding
Good Configurations in High-Dimensional Spaces: Do-
ing More with Less. In Proceedings of the IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, September
2008.

[27] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile Dynamic Provisioning of Multi-tier In-
ternet Applications. ACM Transactions on Adaptive and
Autonomous Systems, 3(1), March 2008.

[28] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
Overbooking and Application Profiling in Shared Host-
ing Platforms. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, Decem-
ber 2002.

[29] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S.
Yousif. Black-box and Gray-box Strategies for Virtual
Machine Migration. In Proceedings of the 4th Sympo-
sium on Networked Systems Design and Implementation,
April 2007.

[30] W. Zhang. Linux Virtual Server for Scalable Network
Services. In Proceedings of the Linux Symposium, July
2000.

[31] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic
Configuration of Internet Services. In Proceedings of Eu-
rosys, March 2007.

USENIX Association	 2009 USENIX Annual Technical Conference	 259

vPath: Precise Discovery of Request Processing Paths from Black-Box
Observations of Thread and Network Activities

Byung Chul Tak∗, Chunqiang Tang†, Chun Zhang†,
Sriram Govindan∗, Bhuvan Urgaonkar∗, and Rong N. Chang†

∗ Dept. of Computer Science and Engineering, Pennsylvania State University
† IBM T.J. Watson Research Center

Abstract
Discovering end-to-end request-processing paths is

crucial in many modern IT environments for reasons
varying from debugging and bottleneck analysis to
billing and auditing. Existing solutions for this problem
fall into two broad categories: statistical inference and
intrusive instrumentation. The statistical approaches in-
fer request-processing paths in a “most likely” way and
their accuracy degrades as the workload increases. The
instrumentation approaches can be accurate, but they are
system dependent as they require knowledge (and often
source code) of the application as well as time and effort
from skilled programmers.
We have developed a discovery technique called vPath

that overcomes these shortcomings. Unlike techniques
using statistical inference, vPath provides precise path
discovery, by monitoring thread and network activities
and reasoning about their causality. Unlike techniques
using intrusive instrumentation, vPath is implemented
in a virtual machine monitor, making it agnostic of the
overlying middleware or application. Our evaluation us-
ing a diverse set of applications (TPC-W, RUBiS, Me-
diaWiki, and the home-grown vApp) written in differ-
ent programming languages (C, Java, and PHP) demon-
strates the generality and accuracy of vPath as well as its
low overhead. For example, turning on vPath affects the
throughput and response time of TPC-W by only 6%.

1 Introduction
The increasing complexity of IT systems is well docu-

mented [3, 8, 28]. As a legacy system evolves over time,
existing software may be upgraded, new applications and
hardware may be added, and server allocations may be
changed. A complex IT system typically includes hard-
ware and software from multiple vendors. Administra-
tors often struggle with the complexity of and pace of
changes to their systems.

This problem is further exacerbated by the much-
touted IT system “agility,” including dynamic appli-
cation placement [29], live migration of virtual ma-

chines [10], and flexible software composition through
Service-Oriented Architecture (SOA) [11]. Agility pro-
motes the value of IT, but makes it even harder to know
exactly how a user request travels through distributed IT
components. For instance, was server X in a cluster ac-
tually involved in processing a given request? Was a fail-
ure caused by component Y or Z? How many database
queries were used to form a response? How much time
was spent on each involved component? Lack of visibil-
ity into the system can be a major obstacle for accurate
problem determination, capacity planning, billing, and
auditing.
We use the term, request-processing path, to represent

all activities starting from when a user request is received
at the front tier, until the final response is sent back to the
user. A request-processing path may comprise multiple
messages exchanged between distributed software com-
ponents, e.g., Web server, LDAP server, J2EE server, and
database. Understanding the request-processing path and
the performance characteristics of each step along the
path has been identified as a crucial problem. Existing
solutions for this problem fall into two broad categories:
intrusive instrumentation [4, 20, 9, 8, 30] and statistical
inference [1, 21, 3, 32, 25].

The instrumentation-based approaches are precise but
not general. They modify middleware or applications to
record events (e.g., request messages and their end-to-
end identifiers) that can be used to reconstruct request-
processing paths. Their applicability is limited, because
it requires knowledge (and often source code) of the spe-
cific middleware or applications in order to do instru-
mentation. This is especially challenging for complex IT
systems that comprise middleware and applications from
multiple vendors.

Statistical approaches are general but not precise.
They take readily available information (e.g., times-
tamps of network packets) as inputs, and infer request-
processing paths in a “most likely” way. Their accuracy
degrades as the workload increases, because of the diffi-
culty in differentiating activities of concurrent requests.
For example, suppose a small fraction of requests have

260	 2009 USENIX Annual Technical Conference	 USENIX Association

strikingly long response time. It would be helpful to
know exactly how a slow request and a normal request
differ in their processing paths—which servers they vis-
ited and where the time was spent. However, the statisti-
cal approaches cannot provide precise answers for indi-
vidual requests.
The IBM authors on this paper build tools for and di-

rectly participate in consulting services [13] that help
customers (e.g., commercial banks) diagnose problems
with their IT systems. In the past, we have implemented
tools based on both statistical inference [32] and applica-
tion/middleware instrumentation. Motivated by the chal-
lenges we encountered in the field, we set out to explore
whether it is possible to design a request-processing path
discovery method that is both precise and general. It
turns out that this is actually doable for most of the com-
monly used middleware and applications.

Our key observation is that most distributed sys-
tems follow two fundamental programming patterns:
(1) communication pattern—synchronous request-reply
communication (i.e., synchronous RPC) over TCP con-
nections, and (2) thread pattern—assigning a thread
to do most of the processing for an incoming request.
These patterns allow us to precisely reason about event
causality and reconstruct request-processing paths with-
out system-dependent instrumentation. Specifically, the
thread pattern allows us to infer causality within a soft-
ware component, i.e., processing an incoming message
X triggers sending an outgoing message Y . The com-
munication pattern allows us to infer causality between
two components, i.e., application-level message Y sent
by one component corresponds to message Y ′ received
by another component. Together, knowledge of these
two types of causality helps us to precisely reconstruct
end-to-end request-processing paths.

Following these observations, our technique recon-
structs request-processing paths from minimal infor-
mation recorded at runtime—which thread performs a
send or recv system call over which TCP connection.
It neither records message contents nor tracks end-to-end
message identifiers. Our method can be implemented
efficiently in either the OS kernel or a virtual machine
monitor (VMM). Finally, it is completely agnostic to
user-space code, thereby enabling accurate discovery of
request-processing paths for most of the commonly used
middleware and applications.
In general, a VMM-based implementation of our

method is more challenging than an OS-based imple-
mentation, because it is more difficult to obtain thread
and TCP information in a VMM. This paper presents
a VMM-based implementation, because we consider it
easier to deploy such a solution in cloud-computing en-
vironments such as Amazon’s EC2 [2]. Our implemen-
tation is based on Xen [5]. In addition to modifying
the VMM code, our current prototype still makes minor

changes to the guest OS. We will convert it to a pure
VMM-based implementation after the ongoing fast pro-
totyping phase.

1.1 Research Contributions
We propose a novel set of techniques called vPath, for

discovering end-to-end request-processing paths, which
addresses most of the shortcomings of existing ap-
proaches. Specifically, we make the following contribu-
tions:
• New angle for solving a well-known problem: Most

recent work focused on developing better statistical
inference models or different application instrumen-
tation techniques. We instead take a very different
angle—exploiting common programming patterns—
to radically simplify the problem.

• Implementation and generality: We implement vPath
by modifying Xen, without modifying any user-space
code. Although vPath makes certain assumptions
about the application’s programming patterns (syn-
chronous remote invocation and causality of thread ac-
tivities), we argue and corroborate from experiments
and existing literature, that this does not diminish the
general applicability of vPath.

• Completeness and accuracy: We conduct an exten-
sive evaluation of vPath, using a diverse set of appli-
cations (TPC-W, RUBiS, MediaWiki, and the home-
grown vApp) written in different languages (C, Java,
and PHP). Our experiments demonstrate vPath’s com-
pleteness (ability to discover all request paths), accu-
racy (all discovered request paths are correct), and ef-
ficiency (negligible impact on overlying applications).
The rest of this paper is organized as follows. Sec-

tion 2 presents an overview of vPath. Section 3 describes
vPath’s implementation in detail. In Section 4, we empir-
ically evaluate various aspects of vPath. We discuss re-
lated work in Section 5, and present concluding remarks
in Section 6.

2 Overview of vPath
In this section, we present an overview of vPath and

discuss its applicability to existing software architec-
tures.

2.1 Goodness Criteria
Several criteria are meaningful in assessing the desir-

ability and efficacy of any request path discovery tech-
nique. Our design of vPath takes the following five into
consideration. The first three are quantifiable metrics,
while the last two are subjective.
• Completeness is the ratio of correctly discovered re-

quest paths to all paths that actually exist.
• Accuracy is the ratio of correctly discovered request

paths to all paths reported by a technique.

USENIX Association	 2009 USENIX Annual Technical Conference	 261

• Efficiency measures the runtime overhead that a dis-
covery technique imposes on the application.

• Generality refers to the hardware/software configura-
tions to which a discovery technique is applicable, in-
cluding factors such as programming language, soft-
ware stack (e.g., one uniform middleware or heteroge-
neous platforms), clock synchronization, presence or
absence of application-level logs, communication pat-
tern, threading model, to name a few.

• Transparency captures the ability to avoid under-
standing or changing user-space code. We opt for
changing OS kernel or VMM, because it only needs
to be done once. By contrast, a user-space solution
needs intrusive modifications to every middleware or
application written in every programming language.

2.2 Assumptions Made by vPath
vPath makes certain assumptions about a distributed

system’s programming pattern. We will show that these
assumptions hold for many commonly used middleware
and applications. vPath assumes that (1) distributed
components communicate through synchronous request-
reply messages (i.e., synchronous RPC), and (2) inside
one component, causality of events is observable through
thread activities.
Communication-pattern assumption. With the syn-
chronous communication pattern, a thread in one compo-
nent sends a request message over a TCP connection to a
remote component, and then blocks until the correspond-
ing reply message comes back over the same TCP con-
nection. This implies that the second request may only
be sent over the same TCP connection (by any thread)
after receiving the reply message for the first request.
Thread-pattern assumption. Suppose an incoming
request X (e.g., an HTTP request) to a software compo-
nent triggers one or more subordinate requests Y (e.g.,
LDAP authentication and database queries) being sent
to other components. Requests X and Y belong to the
same request-processing path. vPath assumes that the
thread that sends X’s reply message back to the upstream
component is also the thread that sends all the subordi-
nate request messages Y to the downstream components.
Moreover, this thread does not send messages on behalf
of other user requests during that period of time.

Consider the example in Figure 1, where request-X
received by component-I triggers request-Y
being sent to component-II. vPath assumes that
send-request-Y and send-reply-X are per-
formed by the same thread. On the other hand, vPath
allows that another thread (e.g., a front-end dispatcher
thread) performs the recv-request-X operation and
then one or more threads perform some pre-processing
on the request before the request is handed to the last
thread in this processing chain for final handling. vPath

recv-request-X

send-reply-X

send-request-Y

recv-reply-Y

recv-request-Y

send-reply-Y

TCP1 TCP2

Component-I Component-II

Figure 1: An example of a request-processing
path. The rectangles (components I and II) repre-
sent distributed software components. The ellipses
represent events observed at individual components,
e.g., recv-request-X is the event that message
X-request is received by a thread in component-
I. Message reply-X is the response to message
request-X. Request-X and reply-X are sent over
TCP1. Request-Y and reply-Y are sent over
TCP2. The arrows show the request-processing path.
The dotted line shows the conceptual linkage between
send-request-Y and send-reply-X, which is the
assumption of vPath, i.e., the same thread performs the
two send operations.

only requires that this last thread performs both send op-
erations (send-request-Y and send-reply-X).

Our discussion above focused on only one request.
vPath supports multiple threads in one component con-
currently processing different requests. These threads
can execute in any order dictated by the CPU scheduler
and synchronization libraries, producing interleaved se-
quences of request messages and reply messages.

2.3 Discovering Request-Processing Paths
with vPath

To reconstruct request-processing paths, vPath needs
to infer two types of causality. Intra-node causality cap-
tures the behavior that, within one component, process-
ing an incoming message X triggers sending an outgo-
ing message Y . Inter-node causality captures the be-
havior that, an application-level message Y sent by one
component corresponds to message Y ′ received by an-
other component. Our thread-pattern assumption en-
ables the inference of intra-node causality, while the
communication-pattern assumption enables the infer-
ence of inter-node causality.
Specifically, vPath reconstructs the request-processing

path in Figure 1 as follows. Inside component-I,
the synchronous-communication assumption allows us
to match the first incoming message over TCP1 with
the first outgoing message over TCP1, match the
second incoming message with the second outgoing
message, and so forth. (Note that one application-
level message may be transmitted as multiple network-
level packets.) Therefore, recv-request-X can
be correctly matched with send-reply-X. Simi-
larly, we can match component-I’s send-request-Y

262	 2009 USENIX Annual Technical Conference	 USENIX Association

dispatcher thread
Request

worker threads

component

Figure 2: Dispatcher-worker threading model.

with recv-reply-Y, and also match component-II’s
recv-request-Y with send-reply-Y.

Between two components, we can match
component-I’s first outgoing message over TCP2
with component-II’s first incoming message over
TCP2, and so forth, hence, correctly matching
component-I’s send-request-Ywith component-II’s
recv-request-Y.

The only missing link is that, in component-I,
recv-request-X triggers send-request-Y.
From the thread-pattern assumption, we can indirectly
infer this causality with the help of the dotted line
in Figure 1. Recall that we have already matched
recv-request-X with send-reply-X. Be-
tween the time of these two operations, we observe
that the same thread performs send-request-Y
and send-reply-X. It follows from our thread-
pattern assumption that recv-request-X triggers
send-request-Y. This completes the construction
of the end-to-end execution path in Figure 1.

As described above, the amount of information needed
by vPath to discover request-processing paths is very
small. vPath only needs to monitor which thread per-
forms a send or receive system call over which TCP con-
nection. This information can be obtained efficiently in
the OS kernel or VMM, without modifying any user-
space code. Unlike existing methods [19, 30, 9], vPath
needs neither message contents nor end-to-end message
identifiers.

2.4 Applicability of vPath to Existing
Threading Models

In this section, we summarize three well-known
threading models, and discuss vPath’s applicability and
limitations with respect to these models. For a more de-
tailed study and comparison of these models, we encour-
age readers to refer to [7, 18, 34].

2.4.1 Dispatcher-worker Threading Model
Figure 2 shows a component of an application built

using the dispatcher-worker model, which is arguably
the most widely used threading model for server appli-
cations. In the front-end, one or more dispatcher threads
use the select() system call or the accept() sys-
tem call to detect new incoming TCP connections or new
requests over existing TCP connections. Once a request
is identified, it is handed over to a worker thread for fur-
ther processing. This single worker thread is responsible
for executing all activities triggered by the request (e.g.,

Event queue

I/O events

Finite State Machine

for Request i

Threads

component

Finite State Machine

for Request j

Finite State Machine

for Request k

Fetch

Figure 3: Event-driven model.

Event queue

Stage 1
component

Event queue

Stage n

Figure 4: Staged Event-Driven Architecture.

reading HTML files from a disk or making JDBC calls to
a database), and finally sending a reply message back to
the user. After the worker thread finishes processing the
request, it goes back into the worker thread pool, waiting
to be picked to process another incoming request.

This threading model conforms to vPath’s thread-
pattern assumption described in Section 2.2. Since
a single worker thread executes all activities trig-
gered by a request, the worker thread performs both
send-request-Y and send-reply-X in Figure 1.

2.4.2 Event-Driven Model
Figure 3 shows the architecture of an application’s

component built using the event-driven programming
model. Compared with other threading models, the
event-driven model uses a relatively small number of
threads, typically equal to or slightly larger than the num-
ber of CPUs. When processing a request R, a thread
T1 always uses non-blocking system calls. If it cannot
make progress on processing the request R because a
non-blocking I/O operation on behalf of R has not yet
completed, the thread T1 records the current status of R

in a finite state machine maintained for R, and moves
on to process another request. When the I/O operation
on behalf of R finishes, an event is created in the event
queue, and eventually a thread T2 retrieves the event and
continues to process R. Note that T1 and T2 may be dif-
ferent threads, both participating in processing the same
request at different times. The event-driven model does
not conform to vPath’s thread-pattern assumption, and
cannot be handled by vPath.

2.4.3 Staged Event-Driven Architecture
(SEDA) Model

Figure 4 shows the architecture of a SEDA-based ap-
plication component [34]. SEDA partitions the request
processing pipeline into stages and each stage has its

USENIX Association	 2009 USENIX Annual Technical Conference	 263

own thread pool. Any two neighboring stages are con-
nected by an event queue. SEDA partially conforms to
vPath’s assumptions. If only the last stage sends outgo-
ing messages, and if communication between distributed
components is synchronous (as described in Section 2.2),
then vPath will be able to correctly discover request-
processing paths. Otherwise, vPath would fail.

2.5 Why vPath is Still Useful
Among the three well-known threading models, vPath

can handle the dispatcher-worker thread model, only par-
tially handles the SEDA model, and cannot handle the
event-driven model. However, we still consider vPath
as a widely applicable and general solution, because the
dispatcher-worker thread model is the dominant archi-
tecture among mainstream software. The wide adoption
of the dispatcher-worker thread model is not accidental.
Consider, for example, common middleware platforms
such as J2EE, where threads are managed by the mid-
dleware and used to execute user code written by differ-
ent programmers. Because the middleware cannot make
strong assumptions about the user code’s behavior (e.g.,
blocking or not), it is simplest and safest to adopt the
dispatcher-worker thread model.

The SEDA model has been widely discussed within
the research community, but no consensus about its suit-
ability has been reached (see Welsh’s discussion in [33]).
Moreover, wide adoption of the SEDA model in main-
stream software is yet to be reported.

The pure event-driven model in Figure 3 is rarely used
in real applications. The Flash Web server [18] is often
considered as a notable example that adopts the event-
driven model, but Flash actually uses a hybrid between
event-driven and multi-threaded programming models.
In Flash, a single main thread does all non-blocking net-
work I/O operations and a set of worker threads do block-
ing disk I/O operations. The event-driven model is not
yet popular in real applications and there is consider-
able consensus in the research community that it is diffi-
cult to program and debug applications based on a pure
event-driven model. Similar sentiments were expressed
by Behren et al. [6], who have had extensive experience
programming a variety of applications using the event-
driven approach.

Furthermore, even the frequently-cited performance
advantages of the event-driven model are questionable in
practice, as it is extremely hard to ensure that a thread ac-
tually never blocks. For example, the designers of Flash
themselves observed that the supposedly never-blocking
main thread actually blocks unexpectedly in the “find
file” stage of HTTP request processing, and subsequently
published multiple research papers [22, 23] describing
how they solved the problem by hacking the operating
system. Considering the excellent expertise of the Flash
researchers on this subject and the relatively small code

size of Flash, it is hard to imagine that ordinary program-
mers working on complex commercial software would
have a better chance of getting the implementation right.

Because vPath’s assumptions hold for most of the
existing mainstream software, we consider vPath as a
widely applicable and general solution. In Section 4, we
will validate this using a wide range of applications, writ-
ten in different programming languages, developed by a
variety of communities.

3 Implementation of vPath
The vPath toolset consists of an online monitor and

an offline log analyzer. The online monitor continuously
logs which thread performs a send or recv system call
over which TCP connection. The offline log analyzer
parses logs generated by the online monitor to discover
request-processing paths and the performance character-
istics at each step along these paths.

The online monitor tracks network-related thread ac-
tivities. This information helps infer the intra-node
causality of the form “processing an incoming message
X triggers sending an outgoing message Y .” It also
tracks the identity of each TCP connection, i.e., the four-
element tuple (source IP, source port, dest IP, dest port)
that uniquely identifies a live TCP connection at any mo-
ment in time. This information helps infer inter-node
causality, i.e., message Y sent by a component corre-
sponds to message Y ′ received by another component.
The online monitor is implemented in Xen 3.1.0 [5]

running on x86 32-bit architecture. The guest OS is
Linux 2.6.18. Xen’s para-virtualization technique modi-
fies the guest OS so that privileged instructions are han-
dled properly by the VMM. Xen uses hypercalls to hand
control from guest OS to the VMM when needed. Hy-
percalls are inserted at various places within the modified
guest OS. In Xen’s terminology, a VM is called a do-
main. Xen runs a special domain called Domain0, which
executes management tasks and performs I/O operations
on behalf of other domains.
Below we first describe how vPath’s online monitor

tracks thread activities and TCP connections, and then
describe the offline log analyzer.

3.1 Monitoring Thread Activities
vPath needs to track which thread performs a send or

recv system call over which TCP connection. If thread
scheduling activities are visible to the VMM, it would
be easy to identify the running threads. However, unlike
process switching, thread context switching is transpar-
ent to the VMM. For a process switch, the guest OS has
to update the CR3 register to reload the page table base
address. This is a privileged operation and generates a
trap that is captured by the VMM. By contrast, a thread
context switch is not a privileged operation and does not
result in a trap. As a result, it is invisible to the VMM.

264	 2009 USENIX Annual Technical Conference	 USENIX Association

Luckily, this is not a problem for vPath, because
vPath’s task is actually simpler. We only need informa-
tion about currently active thread when a network send
or receive operation occurs (as opposed to fully discover-
ing thread-schedule orders). Each thread has a dedicated
stack within its process’s address space. It is unique to
the thread throughout its lifetime. This suggests that the
VMM could use the stack address in a system call to
identify the calling thread. The x86 architecture uses the
EBP register for the stack frame base address. Depend-
ing on the function call depth, the content of the EBP
may vary on each system call, pointing to an address in
the thread’s stack. Because the stack has a limited size,
only the lower bits of the EBP register vary. Therefore,
we can get a stable thread identifier by masking out the
lower bits of the EBP register.

Specifically, vPath tracks network-related thread ac-
tivities as follows:

• The VMM intercepts all system calls that send or re-
ceive TCP messages. Relevant system calls in Linux
are read(), write(), readv(), writev(),
recv(), send(), recvfrom(), sendto(),
recvmsg(), sendmsg(), and sendfile(). In-
tercepting system calls of a para-virtualized Xen VM
is possible because they use “int 80h” and this soft-
ware trap can be intercepted by VMM.

• On system call interception, vPath records the cur-
rent DomainID, the content of the CR3 register, and
the content of the EBP register. DomainID identi-
fies a VM. The content of CR3 identifies a process in
the given VM. The content of EBP identifies a thread
within the given process. vPath uses a combination of
DomainID/CR3/EBP to uniquely identify a thread.

By default, system calls in Xen 3.1.0 are not inter-
cepted by the VMM. Xen maintains an IDT (Interrupt
Descriptor Table) for each guest OS and the 0x80th en-
try corresponds to the system call handler. When a
guest OS boots, the 0x80th entry is filled with the ad-
dress of the guest OS’s system call handler through the
set trap table hypercall. In order to intercept sys-
tem calls, we prepare our custom system call handler,
register it into IDT, and disable direct registration of the
guest OS system call handler. On a system call, vPath
checks the type of the system call, and logs the event
only if it is a network send or receive operation.

Contrary to the common perception that system call
interception is expensive, it actually has negligible im-
pact on performance. This is because system calls al-
ready cause a user-to-kernel mode switch. vPath code is
only executed after this mode switch and does not incur
this cost.

3.2 Monitoring TCP Connections
On a TCP send or receive system call, in addition

to identifying the thread that performs the operation,
vPath also needs to log the four-element tuple (source IP,
source port, dest IP, dest port) that uniquely identifies
the TCP connection. This information helps match a
send operation in the message source component with
the corresponding receive operation in the message des-
tination component. The current vPath prototype adds
a hypercall in the guest OS to deliver this information
down to the VMM. Upon entering a system call of in-
terest, the modified guest OS maps the socket descriptor
number into (source IP, source port, dest IP, dest port),
and then invokes the hypercall to inform the VMM.

This approach works well in the current prototype, and
it modifies fewer than 100 lines of source code in the
guest OS (Linux). However, our end goal is to imple-
ment a pure VMM-based solution that does not mod-
ify the guest OS at all. Such a pure solution would be
easier to deploy in a Cloud Computing platform such as
EC2 [2], because it only modifies the VMM, over which
the platform service provider has full control.

As part of our future work, we are exploring several
techniques to avoid modifying the guest OS. Our early
results show that, by observing TCP/IP packet head-
ers in Domain0, four-element TCP identifiers can be
mapped to socket descriptor numbers observed in sys-
tem calls with high accuracy. Another alternative tech-
nique we are exploring is to have the VMM keep track
of the mapping from socket descriptor numbers to four-
element TCP identifiers, by monitoring system calls that
affect this mapping, including bind(), accept(),
connect(), and close().

3.3 Offline Log Analyzer
The offline log analyzer parses logs generated by the

online monitor to extract request-processing paths and
their performance characteristics. The analyzer’s algo-
rithm is shown in Algorithm 1. The format of input data
is shown in Figure 5.
On Line 2 of Algorithm 1, it verifies whether the trace

file is in a correct format. On Line 3, it merges the system
call log and the hypercall log into a single one for ease
of processing. All events are then read into linked lists L
on Line 4.
Events are normalized prior to actual processing. If an

application-level message is large, it may take multiple
system calls to send the message. Similarly, on the des-
tination, it may take multiple system calls to read in the
entire message. These consecutive send or recv events
logically belong to a single operation. On Line 5, mul-
tiple consecutive send events are merged into a single
one. Consecutive recv events are merged similarly.
On Line 6, UPDATERECVTIME performs another type

of event normalization. It updates the timestamp of a

USENIX Association	 2009 USENIX Annual Technical Conference	 265

Event # Domain # CR3 EBP EAX EBX

OP Type

(R/S)
Event # Domain #

Socket

Descriptor #

Local

IP Addr & Port

Remote

IP Addr & Port

OP Type

(R/S)
Event # Domain #

Socket

Descriptor #

Local

IP Addr & Port

Remote

IP Addr & Port

Format of Data Obtained Through System Call Interception

Format of Data Obtained Through Hypercall in Syscall Handler

0733 Dom1 002780 cr3:04254000 ebp:bfe37034 eax:3 ebx:12

0734 R Dom1 sd:12 L:130.203.8.24:41845 R:130.203.8.25:8009

0735 Dom1 002781 cr3:04254000 ebp:bfe34b34 eax:146 ebx:11

0736 S Dom1 sd:11 L:130.203.8.24:80 R:130.203.65.112:2395

Example

Time

Stamp

Figure 5: Format of vPath log data. The example shows
two system calls (events 0733 and 0735). For each sys-
tem call, a hypercall immediately follows (events 0734
and 0736). The IP and port information provided by the
hypercall helps identify TCP connections. In the sys-
tem call log, EAX holds system call number. EBX holds
socket descriptor number for read, and write. If EAX
is 102 (i.e., socketcall), then EBX is the subclass of
the system call (e.g. send or recv).

recv event to reflect the end of the receive operation
rather than the beginning of the operation. The vPath
online monitor records a timestamp for each system call
of interest when it is invoked. When a thread sends out
a request message and waits for the reply, this event is
recorded by vPath and the thread may wait in the blocked
state for a long time. To accurately calculate the response
time of this remote invocation from the caller side, we
need to know when the recv operation returns rather
than when it starts. For a recv system call r performed
by a thread T , we simply use the timestamp of the next
system call invoked by thread T as the return time of r.
The operation from Line 10 to 17 pairs up a send

event at the message source with the corresponding
recv event at the message destination. Once a pair of
matching events ec and ed are identified, the same TCP
connection’s events after ec and ed are paired up sequen-
tially by PAIRUPFOLLOWINGS.
Inside FINDREMOTEMATCHINGEVENT on Line 13,

it uses a four-element tuple (source IP, source port,
dest IP, dest port) to match a TCP connection tcp1 ob-
served on a component c1 with a TCP connection tcp2

observed on another component c2. Suppose c1 is the
client side of the TCP connection. The first send op-
eration over tcp1 observed on c1 matches with the first
recv operation over tcp2 observed on c2, and so forth.
There is one caveat though. Because port numbers are
reused across TCP connections, it is possible that two
TCP connections that exist at different times have iden-
tical (source IP, source port, dest IP, dest port). For ex-
ample, two TCP connections tcp2 and tcp′2 that exist on
c2 at different times both can potentially match with tcp1

on c1. We use timestamps to solve this problem. Note
that the lifetimes of tcp2 and tcp′2 do not overlap and
must be far apart, because in modern OS implementa-

Algorithm 1 THE OFFLINE LOG ANALYZER:
Input: Log fileFi for application process Pi, 1 ≤ i ≤ n.
Output: Linked lists Li of events, where every event is
tagged with the identifier of the user request that triggers
the event.

1: for each process i do
2: CHECKDATAINTEGRITY(Fi)
3: PREPROCESSDATA(Fi)
4: Li ←BUILDEVENTLIST(Fi)
5: MERGECONSECUTIVEEVENTS(Li)
6: UPDATERECVTIME(Li)
7: Q←Q ∪ FINDFRONTENDPROCESS(Li)
8: end for
9: /* Pair up every send and recv events. */

10: for each process c do
11: for each event ec with ec.peer = NULL do
12: d ←FINDPROCESS(ec.remote IP)
13: ed ←FINDREMOTEMATCHINGEVENT(d,

14: ec.local IP&port, ec.remote IP&port)
15: PAIRUPFOLLOWINGS(ec, ed)
16: end for
17: end for
18: /* Assign a unique ID to each user request. */
19: R ←IDENTIFYREQUESTS(Q)
20: for each request id r ∈ R do
21: while (any event is newly assigned r) do
22: /* Intra-node discovery. */
23: for each process c do
24: (ei, ej) ←FINDREQUESTBOUNDARY(c, r)
25: for all events ek within (ei, ej) do
26: if ek.thread id = ej .thread id then
27: ek.request id ← r

28: end if
29: end for
30: end for
31: /* Inter-node discovery. */
32: for each process c do
33: (ei, ej) ←FINDREQUESTBOUNDARY(c, r)
34: for all events ek within (ei, ej) do
35: if ek.request id = r then
36: el ←GETREMOTEMATCHINGEVENT(ek)
37: el.request id ← r

38: end if
39: end for
40: end for
41: end while
42: end for

tions, the ephemeral port used by the client side of a
TCP connection is reused only after the entire pool of
ephemeral ports have been used, which takes hours or
days even for a busy server. This allows a simple solu-
tion in vPath. Between tcp2 and tcp′2, we match tcp1

with the one whose lifetime is closest to tcp1. This solu-

266	 2009 USENIX Annual Technical Conference	 USENIX Association

VMMVMMVMMVMM

Apache

JBoss
2

MySQL

VM
1

JBoss
1

Client

Linux D
o
m
-0

VM
2D

o
m
-0

VM
3D

o
m
-0

VM
4D

o
m
-0

Figure 6: The topology of TPC-W.

tion does not require very accurate clock synchronization
between hosts, because the lifetimes of tcp2 and tcp′2 are
far apart.
On Line 19, all user requests are identified and as-

signed unique IDs. It goes through events and looks for
foreign IP addresses that do not belong to VMs moni-
tored by vPath. Events with foreign IP addresses are gen-
erated at front-end components and represent entry/exit
points of user requests.
Starting from Line 20, paths are constructed by pro-

cessing user requests one by one. The algorithm consists
of two for loops, which implements intra-node discov-
ery and inter-node discovery, respectively. In the first
loop, the starting event and ending event of a given re-
quest are identified through FINDREQUESTBOUNDARY.
All events between them and with the same thread ID
are assigned the same user request ID. In the second
loop (for inter-node discovery), FINDREQUESTBOUND-
ARY is called again to find the starting event and the
ending event of every user request. For each event
ek that belongs to the user request, GETREMOTEM-
ATCHINGEVENT uses information computed on Line 13
to find the matching event el at the other end of the TCP
connection. Event el is assigned event ek’s user request
ID. This process repeats until every event is assigned a
user request ID.

4 Experimental Evaluation
Our experimental testbed consists of Xen VMMs

(v3.1.0) hosted on Dell servers connected via Gigabit
Ethernet. Each server has dual Xeon 3.4 GHz CPUs with
2 MB of L1 cache and 3 GB RAM. Each of our servers
hosts several virtual machines (VMs) with each VM as-
signed 300 MB of RAM. We use the xentop utility in
Domain0 to obtain the CPU utilization of all the VMs
running on that server.

4.1 Applications
To demonstrate the generality of vPath, we evaluate

vPath using a diverse set of applications written in differ-
ent programming languages (C, Java, and PHP), devel-
oped by communities with very different backgrounds.
TPC-W: To evaluate the applicability of vPath for re-
alistic workloads, we use a three-tier implementation of

VM1

VM3

VM2 VM4

VM5

Tier 1 Tier 2 Tier 3

vApp

Client

Figure 7: The topology of vApp used in evaluation.

the TPC-W benchmark [27], which represents an online
bookstore developed at New York University [31]. Our
chosen implementation of TPC-W is a fully J2EE com-
pliant application, following the “Session Facade” design
pattern. The front-end is a tier of Apache HTTP servers
configured to load balance the client requests among
JBoss servers in the middle tier. JBoss 3.2.8SP1 [14]
is used in the middle tier. MySQL 4.1 [17] is used for
the back-end database tier. The topology of our TPC-W
setup is shown in Figure 6. We use the workload gener-
ator provided with TPC-W to simulate multiple concur-
rent clients accessing the application.

This setup is a heterogeneous test environment for
vPath. The Apache HTTP server is written in C and is
configured to use a multi-process architecture. JBoss is
written in Java and MySQL is written in C.
RUBiS: RUBiS [24] is an e-Commerce benchmark de-
veloped for academic research. It implements an online
auction site loosely modeled after eBay, and adopts a
two-tier architecture. A user can register, browse items,
sell items, or make a bid. It is available in three different
versions: Java Servlets, EJB, and PHP. We use the PHP
version of RUBiS in order to differentiate from TPC-W,
which is written in Java and also does e-Commerce. Our
setup uses one VM to run a PHP-enabled Apache HTTP
server and another VM to run MySQL.
MediaWiki: MediaWiki [16] is a mainstream open
source application. It is the software behind the pop-
ular Wikipedia site (wikipedia.org), which ranks in the
top 10 among all Web sites in terms of traffic. As ma-
ture software, it has a large set of features, e.g., support
for rich media and a flexible namespace. Because it is
used to run Wikipedia, one of the highest traffic sites on
the Internet, its performance and scalability have been
highly optimized. It is interesting to see whether the op-
timizations violate the assumptions of vPath (i.e., syn-
chronous remote invocation and event causality observ-
able through thread activities) and hence would fail our
technique. MediaWiki adopts a two-tier architecture and
is written in PHP. Our setup uses one VM to run PHP-
enabled Apache and another VM to run MySQL.
vApp: vApp is our own prototype application. It is an
extreme test case we designed for vPath. It can exercise
vPath with arbitrarily complex request-processing paths.
It is a custom multi-tier multi-threaded application writ-
ten in C. Figure 7 shows an example of a three-tier vApp

USENIX Association	 2009 USENIX Annual Technical Conference	 267

0.00

0.20

0.40

0.60

0.80

1.00

5 10 15 20 25 50 65

C
D

F

Response Time (sec)

Vanilla Xen
vPath

App Logging

Figure 8: CDF (cumulative distribution function) com-
parison of TPC-W response time.

Response time in seconds Throughput(req/sec)
Configuration (Degradation in %) (Degradation in %)

Average 90th percentile Average

Vanilla Xen 4.45 11.58 4.88

vPath 4.72 (6%) 12.28 (6%) 4.59 (6%)

App Logging 10.31 (132%) 23.95 (107%) 4.10 (16%)

Table 1: Response time and throughput of TPC-W. “App
Logging” represents a log-based tracking technique that
turns on logging on all tiers of TPC-W.

topology. vApp can form various topologies, with the de-
sired number of tiers and the specified number of servers
at each tier. When a server in one tier receives a request,
it either returns a reply, or sends another request to one
of the servers in the downstream tier. When a server re-
ceives a reply from a server in the downstream tier, it ei-
ther sends another request to a server in the downstream
tier, or returns a reply to the upstream tier. All deci-
sions are made based on specified stochastic processes
so that it can generate complex request-processing paths
with different structures and path lengths.
We also developed a vApp client to send requests to

the front tier of the vApp servers. The client can be
configured to emulate multiple concurrent sessions. As
request messages travel through the components of the
vApp server, the identifiers of visited components are ap-
pended to the message. When a reply is finally returned
to the client, it reads those identifiers to precisely recon-
struct the request-processing path, which serves as the
ground truth to evaluate vPath. The client also tracks the
response time of each request, which is compared with
the response time estimated by vPath.

4.2 Overhead of vPath
We first quantify the overhead of vPath, compared

with both vanilla (unmodified) Xen and log-based track-
ing techniques [32, 25]. For the log-based techniques,
we turn on logging on all tiers of TPC-W. The experi-
ment below uses the TPC-W topology in Figure 6.

0.00

0.20

0.40

0.60

0.80

1.00

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

CPU Utilization (%)

Vanilla Xen
vPath

App Logging

Figure 9: CDF Comparison of TPC-W JBoss tier’s CPU
utilization.

Overhead of vPath on TPC-W. Table 1 presents the
average and 90th percentile response time of TPC-W
benchmark as seen by the client, catering to 100 con-
current user sessions. For all configurations, 100 con-
current sessions cause near 100% CPU utilization at the
database tier. Table 1 shows that vPath has low over-
head. It affects throughput and average response time by
only 6%. By contrast, “App Logging” decreases through-
put by 16% and increases the average response time by
as high as 132%. The difference in response time is
more clearly shown in Figure 8, where vPath closely
follows “vanilla Xen”, whereas “App Logging” signifi-
cantly trails behind.

Figure 9 shows the CPU utilization of the JBoss tier
when the database tier is saturated. vPath has negligi-
ble CPU overhead whereas “App Logging” has signif-
icant CPU overhead. For instance, vPath and “vanilla
Xen” have almost identical 90th percentile CPU uti-
lization (13.6% vs. 14.4%), whereas the 90th percentile
CPU utilization of “App Logging” is 29.2%, more than
twice that of vPath. Thus, our technique, by eliminating
the need for using application logging to trace request-
processing paths, improves application performance and
reduces CPU utilization (and hence power consumption)
for data centers. Moreover, vPath eliminates the need to
repeatedly write custom log parsers for new applications.
Finally, vPath can even work with applications that can-
not be handled by log-based discovery methods because
those applications were not developed with this require-
ment in mind and do not generate sufficient logs.

Overhead of vPath on RUBiS. Due to space limita-
tion, we report only summary results on RUBiS. Table 2
shows the performance impact of vPath on RUBiS. We
use the client emulator of RUBiS to generate workload.
We set the number of concurrent user sessions to 900 and
set user think time to 20% of the original value in order
to drive the CPU of the Apache tier (which runs PHP) to
100% utilization. vPath imposes low overhead on RU-
BiS, decreasing throughput by only 5.6%.

268	 2009 USENIX Annual Technical Conference	 USENIX Association

Response Time in millisec Throughput in req/sec
(Degradation in %) (Degradation in %)

Vanilla Xen 597.2 628.6

vPath 681.8 (14.13%) 593.4 (5.60%)

Table 2: Performance impact of vPath on RUBiS.

Response time (in sec) Throughput (req/sec)
Configuration Avg(Std.) Overhead Avg(Std.) Overhead

Vanilla Xen 1.69(.053) 2915.1(88.9)

(1) Intercept Syscall 1.70(.063) .7% 2866.6(116.5) 1.7%

(2) Hypercall 1.75(.050) 3.3% 2785.2(104.6) 4.5%

(3) Transfer Log 2.02(.056) 19.3% 2432.0(58.9) 16.6%

(4) Disk Write 2.10(.060) 23.9% 2345.4(62.3) 19.1%

Table 3: Worst-case overhead of vPath and breakdown
of the overhead. Each row represents the overhead of the
previous row plus the overhead of the additional opera-
tion on that row.

Worst-case Overhead of vPath. The relative over-
head of vPath depends on the application. We are in-
terested in knowing the worst-case overhead (even if the
worst case is unrealistic for practical systems).

The relative overhead of vPath can be calculated as
v

v+p
, where v is vPath’s processing time for monitoring

a network send or receive operation, and p is the appli-
cation’s processing time related to this network opera-
tion, e.g., converting data retrieved from the database
into HTML and passing the data down the OS kernel’s
network stack. vPath’s relative overhead is highest for an
application that has the lowest processing time p. We use
a tiny echo program to represent such a worst-case appli-
cation, in which the client sends a one-byte message to
the server and the server echoes the message back with-
out any processing. In our experiment, the client creates
50 threads to repeatedly send and receive one-byte mes-
sages in a busy loop, which fully saturates the server’s
CPU.
When the application invokes a network send or re-

ceive system call, vPath performs a series of operations,
each of which introduces some overhead: (1) intercept-
ing system call in VMM, (2) using hypercall to deliver
TCP information (src IP, src port, dest IP, dest port)
from guest OS to VMM, (3) transferring log data from
VMM to Domain0, and (4) Domain0 writing log data to
disk. These operations correspond to different rows in
Table 3, where each row represents the overhead of the
previous row plus the overhead of the additional opera-
tion on that row.

Table 3 shows that intercepting system calls actually
has negligible overhead (1.7% for throughput). The
biggest overhead is due to transferring log data from
VMM to Domain0. This step alone degrades through-
put by 12.1%. Our current implementation uses VMM’s
printk() to transfer log data to Domain0, and we are
exploring a more efficient implementation. Combined

1

3

5

3

5

3

1

3

1

3

1

2

1

2

11

2

4

2

1

(a) Simple path (b) Complex path

Figure 10: Examples of vApp’s request-processing paths
discovered by vPath. The circled numbers correspond to
VM IDs in Figure 7.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10 20 30 40 50 60 70 80 90 100
C

D
F

Response Time (ms)

Estimated by vPath
Measured by vApp Client

Figure 11: CDF of vApp’s response time, as estimated
by vPath and actually measured by the vApp client.

together, the operations of vPath degrade throughput by
19.1%. This is the worst-case for a contrived tiny “appli-
cation.” For real applications, throughput degradation is
much lower, only 6% for TPC-W and 5.6% for RUBiS.

4.3 Request-Processing Paths of vApp
Our custom application vApp is a test case designed

to exercise vPath with arbitrarily complex request-
processing paths. We configure vApp to use the topol-
ogy in Figure 7. The client emulates 10-30 concurrent
user sessions. In our implementation, as a request mes-
sage travels through the vApp servers, it records the ac-
tual request-processing path, which serves as the ground
truth to evaluate vPath.

The request-processing path of vApp, as described
in 4.1, is designed to be random. To illustrate the abil-
ity of our technique to discover sophisticated request-
processing paths, we present two discovered paths in Fig-
ure 10. The simple path consists of 2 remote invocations
in a linear structure, while the complex path consists of 7
invocations and visits some components more than once.
In addition to discovering request-processing paths,

vPath can also accurately calculate the end-to-end re-
sponse times as well as the time spent on each tier along
a path. This information is helpful in debugging dis-
tributed systems, e.g., identifying performance bottle-
necks and abnormal requests. Figure 11 compares the

USENIX Association	 2009 USENIX Annual Technical Conference	 269

Apache

JBoss
2

MySQL

JBoss
1

Client

Client Request

Large Number

of Requests and

Replies

between

JBoss & MySQL
Partial Reply

Partial Reply

Partial Reply
Partial Reply

Figure 12: Typical request-processing paths of TPC-W.

end-to-end response time estimated by vPath with that
actually measured by the vApp client. The response time
estimated by vPath is almost identical to that observed by
the client, but slightly lower. This small difference is due
to message delay between the client and the first tier of
vApp, which is not tracked by vPath because the client
runs on a server that is not monitored by vPath.
We executed a large number of requests at different

session concurrency levels. We also experimented with
topologies much larger than that in Figure 7, with more
tiers and more servers in each tier. All the results show
that vPath precisely discovers the path of each and every
executed request.

4.4 Request-Processing Paths of TPC-W
The three-tier topology (see the top of Figure 12) of

the TPC-W testbed is static, but its request-processing
paths are dynamic and can vary, depending on which
JBoss server is accessed and how many queries are ex-
changed between JBoss and MySQL. The TPC-W client
generates logs that include the total number of requests,
current session counts, and individual response time of
each request, which serve as the ground truth for evaluat-
ing vPath. In addition to automated tests, for the purpose
of careful validation, we also conduct eye-examination
on some samples of complex request-processing paths
discovered by vPath and compare them with information
in the application logs.

vPath is able to correctly discover all request-
processing paths with 100% completeness and 100% ac-
curacy (see Section 2.1 for the definition). We started out
without knowing how the paths of TPC-W would look.
From the results, we were able to quickly learn the path
structure without any knowledge of the internals of TPC-
W. Typical request-processing paths of TPC-W have the
structure in Figure 12.
We observe two interesting things that we did not

anticipate. First, when processing one request, JBoss
makes a large number of invocations to MySQL. Most
requests fall into one of two types. One type makes about
20 invocations to MySQL, while the other type makes

RUBiS(PHP) MySQL

Client Request

Reply

Client

Exactly 3

Round Trips

About 50

Consecutive

recv()

Possibly

Sending Large

Data Here

Figure 13: Typical request-processing paths of RUBiS.

about 200 invocations. These two types represent radi-
cally different TPC-W requests.
The second interesting observation with TPC-W is

that, both JBoss and Apache send out replies in a pipeline
fashion (see Figure 12). For example, after making the
last invocation to MySQL, JBoss reads in partial reply
fromMySQL and immediately sends it to Apache. JBoss
then reads and sends the next batch of replies, and so
forth. This pipeline model is an effort to reduce memory
buffer, avoid memory copy, and reduce user-perceived
response time. In this experiment, once JBoss sends the
first partial reply to Apache, it no longer makes invoca-
tions to MySQL (it only reads more partial replies from
MySQL for the previous invocation). vPath is general
enough to handle an even more complicated case, where
JBoss sends the first partial reply to Apache, and then
makes more invocations to MySQL in order to retrieve
data for constructing more replies. Even for this com-
plicated, hypothetical case, all the activities will still be
correctly assigned to a single request-processing path.

4.5 Request-Processing Paths of RUBiS and
MediaWiki

Unlike TPC-W, which is a benchmark intentionally
designed to exercise a breadth of system components
associated with e-Commerce environments, RUBiS and
MediaWiki are designed with practicality in mind, and
their request-processing paths are actually shorter and
simpler than those of TPC-W.

Figure 13 shows the typical path structure of RUBiS.
With vPath, we are able to make some interesting ob-
servations without knowing the implementation details
of RUBiS. We observe that a client request first triggers
three rounds of messages exchanged between Apache
and MySQL, followed by the fourth round in which
Apache retrieves a large amount of data from MySQL.
The path ends with a final round of messages exchanged
between Apache and MySQL. The pipeline-style par-
tial message delivery in TPC-W is not observed in RU-
BiS. RUBiS and TPC-W also differ significantly in their
database access patterns. In TPC-W, JBoss makes many

270	 2009 USENIX Annual Technical Conference	 USENIX Association

small database queries, whereas in RUBiS, Apache re-
trieves a large amount of data from MySQL in a single
step (the fourth round). Another important difference is
that, in RUBiS, many client requests finish at Apache
without triggering database accesses. These short re-
quests are about eight times more frequent than the long
ones. Finally, in RUBiS, Apache and MySQL make
many DNS queries, which are not observed in TPC-W.
For MediaWiki, the results of vPath show that very

few requests actually reach all the way to MySQL, while
most requests are directly returned by Apache. This is
because there are many static contents, and even for dy-
namic contents, MediaWiki is heavily optimized for ef-
fective caching. For a typical request that changes a wiki
page, the PHP module in Apache makes eight accesses
to MySQL before replying to the client.

4.6 Discussion on Benchmark Applications
We started the experiments with little knowledge of

the internals of TPC-W, RUBiS and MediaWiki. Dur-
ing the experimentation, we did not read their manuals
or source code. We did not modify their source code,
bytecode, or executable binary. We did not try to un-
derstand their application logs or write parsers for them.
We did not install any additional application monitoring
tools such as IBM Tivoli or HP OpenView. In short, we
did not change anything in the user space.

Yet, with vPath, we were able to make many inter-
esting observations about the applications. Especially,
different behaviors of the applications made us wonder,
in general how to select “representative” applications to
evaluate systems performance research. TPC-W is a
widely recognized de facto e-Commerce benchmark, but
its behavior differs radically from the more practical RU-
BiS and MediaWiki. This discrepancy could result from
the difference in application domain, but it is not clear
whether the magnitude of the difference is justified. We
leave it as an open question rather than a conclusion.
This question is not specific to TPC-W. For example,

the Trade6 benchmark [35] developed by IBM models
an online stock brokerage Web site. We have intimate
knowledge of this application. As both a benchmark and
a testing tool, it is intentionally developed with certain
complexity in mind in order to fully exercise the rich
functions of WebSphere Application Server. It would be
interesting to know, to what degree the conclusions in
systems performance research are misguided by the in-
tentional complexity in benchmarks such as TPC-W and
Trade6.

5 Related Work
There is a large body of work related to request-

processing path discovery. They can be broadly classi-
fied into two categories: statistical inference and system-
dependent instrumentation. The statistical approach

takes readily available information (e.g., the arrival
time of network packets) as inputs, and infers request-
processing paths in a “most likely” way. Its accuracy
degrades as the workload increases, because activities of
concurrent requests are mingled together and hard to dif-
ferentiate. The instrumentation approach may accurately
discover request-processing paths, but its applicability is
limited due to its intrusive nature. It requires knowledge
(and often source code) of the specific middleware or ap-
plications in order to do instrumentation.

5.1 Statistical Inference

Aguilera et al. [1] proposed two algorithms for debug-
ging distributed systems. The first algorithm finds nested
RPC calls and uses a set of heuristics to infer the causal-
ity between nested RPC calls, e.g., by considering time
difference between RPC calls and the number of poten-
tial parent RPC calls for a given child RPC call. The sec-
ond algorithm only infers the average response time of
components; it does not build request-processing paths.
WAP5 [21] intercepts network related system calls by

dynamically re-linking the application with a customized
system library. It statistically infers the causality be-
tween messages based on their timestamps. By contrast,
our method is intended to be precise. It monitors thread
activities in order to accurately infer event causality.

Anandkumar et al. [3] assumes that a request visits dis-
tributed components according to a known semi-Markov
process model. It infers the execution paths of individ-
ual requests by probabilistically matching them to the
footprints (e.g., timestamped request messages) using the
maximum likelihood criterion. It requires synchronized
clocks across distributed components. Spaghetti is eval-
uated through simulation on simple hypothetical process
models, and its applicability to complex real systems re-
mains an open question.

Sengupta et al. [25] proposed a method that takes ap-
plication logs and a prior model of requests as inputs.
However, manually building a request-processing model
is non-trivial and in some cases prohibitive. In some
sense, the request-processing model is in fact the in-
formation that we want to acquire through monitoring.
Moreover, there are difficulties with using application
logs as such logs may not follow any specific format and,
in many cases, there may not even be any logs available.

Our previous work [32] takes an unsupervised learn-
ing approach to infer attributes (e.g., thread ID, time, and
Web service endpoint) in application logs that can link
activities observed on individual servers into end-to-end
paths. It requires synchronized clocks across distributed
components, and the discovered paths are only statisti-
cally accurate.

USENIX Association	 2009 USENIX Annual Technical Conference	 271

5.2 System-dependent Instrumentation
Magpie [4] is a tool-chain that analyzes event logs

to infer a request’s processing path and resource con-
sumption. It can be applied to different applications but
its inputs are application dependent. The user needs to
modify middleware, application, and monitoring tools
in order to generate the needed event logs. Moreover,
the user needs to understand the syntax and semantics
of the event logs in order to manually write an event
schema that guides Magpie to piece together events of
the same request. Magpie does kernel-level monitoring
for measuring resource consumption, but not for discov-
ering request-processing paths.

Pip [20] detects problems in a distributed system by
finding discrepancies between actual behavior and ex-
pected behavior. A user of Pip adds annotations to ap-
plication source code to log messaging events, which are
used to reconstruct request-processing paths. The user
also writes rules to specify the expected behaviors of the
requests. Pip then automatically checks whether the ap-
plication violates the expected behavior.
Pinpoint [9] modifies middleware to inject end-to-end

request IDs to track requests. It uses clustering and sta-
tistical techniques to correlate the failures of requests to
the components that caused the failures.

Chen et al. [8] used request-processing paths as the
key abstraction to detect and diagnose failures, and to
understand the evolution of a large system. They studied
three examples: Pinpoint, ObsLogs, and SuperCall. All
of them do intrusive instrumentation in order to discover
request-processing paths.

Stardust [30] uses source code instrumentation to log
application activities. An end-to-end request ID helps
recover request-processing paths. Stardust stores event
logs into a database, and uses SQL statements to analyze
the behavior of the application.

5.3 Inferring Dependency from System Call
BackTracker [15] is a tool that helps find the source

event of an intrusion, backtracking from the point when
the intrusion is detected. It logs system calls to help in-
fer dependency between system resources, but does not
monitor thread activities and network operations.
Taser [12] is a system that helps recover files damaged

by an intrusion. Like BackTracker, it also uses informa-
tion logged from system calls to infer the dependency
of system resources. It monitors network operations, but
does not monitor thread activities and does not attempt to
precisely infer message causality. Moreover, both Back-
Tracker and Taser are designed for a single server. They
do not track dependency across servers.

Kai et al. [26] proposed a method that uses an optional
field of TCP packets to track inter-node causality, and
assumes that intra-node causality is only introduced by
process/thread forking. As a result, this method cannot

handle the case where intra-node causality is caused by
thread synchronization, e.g., a dispatcher thread wakes
up a worker thread to process an incoming request. This
is a wide used programming pattern in thread pooling.

6 Concluding Remarks
We studied the important problem of finding end-to-

end request-processing paths in distributed systems. We
proposed a method, called vPath, that can precisely dis-
cover request-processing paths for most of the exist-
ing mainstream software. Our key observation is that
the problem of request-processing path discovery can be
radically simplified by exploiting programming patterns
widely adopted in mainstream software: (1) synchronous
remote invocation, and (2) assigning a thread to do most
of the processing for an incoming request.

Following these observations to infer event causality,
our method can discover request-processing paths from
minimal information recorded at runtime—which thread
performs a send or receive system call over which TCP
connection. This information can be obtained efficiently
in either OS kernel or VMM without modifying any user-
space code.
We demonstrated the generality of vPath by evaluat-

ing with a diverse set of applications (TPC-W, RUBiS,
MediaWiki, and the home-grown vApp) written in differ-
ent programming languages (C, Java, and PHP). vPath’s
online monitor is lightweight. We found that activating
vPath affects the throughput and average response time
of TPC-W by only 6%

Acknowledgments
Part of this work was done during Byung Chul Tak’s

summer internship at IBM. We thank IBM’s Yaoping
Ruan for helpful discussions and Fausto Bernardini for
the management support. We thank the anonymous re-
viewers and our shepherd Landon Cox for their valu-
able feedback. The PSU authors were funded in part
by NSF grants CCF-0811670, CNS-0720456, and a gift
from Cisco, Inc.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,

and A. Muthitacharoen. Performance debugging for dis-
tributed systems of black boxes. In SOSP’03: Proceed-
ings of the 19th Symposium on Operating Systems Prin-
ciples, pages 74–89, New York, NY, USA, 2003. ACM.

[2] Amazon Elastic Compute Cloud. http://aws.
amazon.com/ec2/.

[3] A. Anandkumar, C. Bisdikian, and D. Agrawal. Tracking
in a spaghetti bowl: monitoring transactions using foot-
prints. In SIGMETRICS ’08: Proceedings of the 2008
ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pages 133–
144, New York, NY, USA, 2008. ACM.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling.

272	 2009 USENIX Annual Technical Conference	 USENIX Association

In OSDI’04: Proceedings of the 6th conference on Sym-
posium on Opearting Systems Design & Implementation,
Berkeley, CA, USA, 2004. USENIX Association.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebuer, I. Pratt, and A. Warfield. Xen and
the Art of Virtulization. In Proceedings of the 19th Sym-
posium on Operating Systems Principles (SOSP), 2003.

[6] R. V. Behren, J. Condit, and E. Brewer. Why Events Are
A Bad Idea (for high-concurrency servers). In Proceed-
ings of HotOS IX, 2003.

[7] R. V. Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: scalable threads for internet ser-
vices. In In Proceedings of the 19th ACM Symposium on
Operating Systems Principles. ACM Press, 2003.

[8] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patter-
son, A. Fox, and E. Brewer. Path-based faliure and evo-
lution management. In NSDI’04: Proceedings of the 1st
conference on Networked Systems Design and Implemen-
tation, Berkeley, CA, USA, 2004. USENIX Association.

[9] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large, dy-
namic internet services. In DSN ’02: Proceedings of the
2002 International Conference on Dependable Systems
and Networks, pages 595–604, Washington, DC, USA,
2002. IEEE Computer Society.

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration
of Virtual Machines. In NSDI’05: Proceedings of the 2nd
conference on Networked Systems Design & Implementa-
tion, 2005.

[11] T. Erl. Service-oriented architecture. Prentice Hall, 2004.
[12] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The

taser intrusion recovery system. In SOSP ’05: Proceed-
ings of the 20th ACM Symposium on Operating Systems
Principles, pages 163–176, New York, NY, USA, 2005.
ACM.

[13] IBM SOA Infrastructure Consulting Services.
http://www-935.ibm.com/services/us/its/pdf/br

infrastructure-architecture-healthcheck-for-soa.

pdf.
[14] The JBoss Application Server. http://www.jboss.

org.
[15] S. T. King and P. M. Chen. Backtracking Intrusions. In

SOSP’03: Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pages 74–89, New York,
NY, USA, 2003. ACM.

[16] MediaWiki. http://www.mediawiki.org.
[17] MySQL. http://www.mysql.com.
[18] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: an effi-

cient and portable web server. In ATEC ’99: Proceedings
of USENIX Annual Technical Conference, Berkeley, CA,
USA, 1999. USENIX Association.

[19] W. D. Pauw, R. Hoch, and Y. Huang. Discovering conver-
sations in web services using semantic correlation analy-
sis. volume 0, pages 639–646, Los Alamitos, CA, USA,
2007. IEEE Computer Society.

[20] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: detecting the unexpected in

distributed systems. In NSDI’06: Proceedings of the 3rd
conference on Networked Systems Design & Implementa-
tion, Berkeley, CA, USA, 2006. USENIX Association.

[21] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera,
and A. Vahdat. Wap5: black-box performance debugging
for wide-area systems. In WWW ’06: Proceedings of the
15th international conference on World Wide Web, pages
347–356, New York, NY, USA, 2006. ACM.

[22] Y. Ruan and V. Pai. Making the” box” transparent: sys-
tem call performance as a first-class result. In Proceed-
ings of the USENIX Annual Technical Conference 2004.
USENIX Association Berkeley, CA, USA, 2004.

[23] Y. Ruan and V. Pai. Understanding and Addressing
Blocking-Induced Network Server Latency. In Proceed-
ings of the USENIX Annual Technical Conference 2006.
USENIX Association Berkeley, CA, USA, 2006.

[24] RUBiS. http://rubis.objectweb.org/.
[25] B. Sengupta and N. Banerjee. Tracking transaction foot-

prints for non-intrusive end-to-end monitoring. Auto-
nomic Computing, International Conference on, 0:109–
118, 2008.

[26] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stew-
art, and X. Zhang. Hardware counter driven on-the-
fly request signatures. In ASPLOS XIII: Proceedings of
the 13th international conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 189–200, New York, NY, USA, 2008. ACM.

[27] W. Smith. TPC-W: Benchmarking An Ecommerce
Solution. http://www.tpc.org/information/
other/techarticles.asp.

[28] C. Stewart and K. Shen. Performance Modeling and
System Management for Multi-component Online Ser-
vices. In Proceedings of the 2nd Symposium on NSDI’05,
Boston MA, May 2005.

[29] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
Scalable Application Placement Algorithm for Enterprise
Data Centers. In WWW, 2007.

[30] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-
El-Malek, J. Lopez, and G. R. Ganger. Stardust: tracking
activity in a distributed storage system. In SIGMETRICS
’06/Performance ’06: Proceedings of the joint interna-
tional conference on Measurement and modeling of com-
puter systems, New York, NY, USA, 2006. ACM.

[31] NYU TPC-W. http://www.cs.nyu.edu/pdsg/.
[32] T. Wang, C. shing Perng, T. Tao, C. Tang, E. So,

C. Zhang, R. Chang, and L. Liu. A temporal data-mining
approach for discovering end-to-end transaction flows.
In 2008 IEEE International Conference on Web Services
(ICWS08)., Beijing, China, 2008.

[33] M. Welsh. A Note on the status of SEDA. http://
www.eecs.harvard.edu/∼mdw/proj/seda/.

[34] M.Welsh, D. Culler, and E. Brewer. Seda: an architecture
for well-conditioned, scalable internet services. SIGOPS
Oper. Syst. Rev., 35(5):230–243, 2001.

[35] H. Yu, J. Moreira, P. Dube, I. Chung, and L. Zhang. Per-
formance Studies of a WebSphere Application, Trade, in
Scale-out and Scale-up Environments. In Third Inter-
national Workshop on System Management Techniques,
Processes, and Services (SMTPS), IPDPS, 2007.

USENIX Association	 2009 USENIX Annual Technical Conference	 273

The Restoration of Early UNIX Artifacts

Warren Toomey
wtoomey@staff.bond.edu.au

School of IT, Bond University

Abstract
UNIX turns 40 this year: many happy returns! Four
decades is a vast period for the computing industry: sys-
tems from the 1970s now seem rudimentary and primi-
tive. And yet, the early versions of UNIX were epitomes
of sophisticated concepts packaged into elegant systems.
UNIX’ influence has been so powerful that it reverber-
ates down to affect us in the 21st century.
The history of the development of UNIX has been well

documented, and over the past decade or so, efforts have
been made to find and conserve the software and docu-
mentation artifacts from the earliest period of UNIX his-
tory. This paper details the work that has been done to
restore the artifacts from this time to working order and
the lessons learned from this work.

1 Introduction

In 2009, the UNIX1 operating system celebrates the 40th
anniversary of its creation. In the middle of 1969, af-
ter AT&T’s withdrawal from the Multics project, a num-
ber of researchers at AT&T’s Bell Labs began the de-
sign and development of a simpler operating system
which would be named “UNIX” [10]. Led primarily
by Ken Thompson and Dennis Ritchie, but with many
other colleagues involved, Bell Labs’ UNIX would com-
bine several leading-edge concepts (multitasking, a pro-
cess model, a hierarchical filesystem) and some new con-
cepts (I/O redirection, pipes, portable implementation in
a high-level language) to become an elegant and sophis-
ticated system. The 7th Edition of UNIX released in
1979 (and its 32-bit port called “32V”) would become
the ancestors to all of the hundreds of UNIX-derived
systems that now exist2 including AIX, Solaris, Apple’s
Darwin kernel and the various open-source BSD sys-
tems. UNIX and the C language would exert a signif-
icant influence on the computing industry in the 1980s
and 1990s, and see the creation of such vendor-neutral
standards as IEEE 1003 POSIX, ISO/IEC 9945, ANSI C
and ISO/IEC 9899.
While the history of UNIX has been well-

documented [5, 7, 8, 10], there was a time when

the actual artifacts of early UNIX development were in
great danger of being lost forever. This has been rectified
in the last decade with the collection of a significantly
large number of old UNIX systems. Software, however,
is simply a collection of zeroes and ones if it is not able
to run, and a lot of work has been done to bring these
old UNIX systems back to life.

The restoration of a software artifact to working or-
der brings with it a wealth of difficulties: documentation
is missing or incomplete, source code is missing leaving
only the binary executables, or conversely the source ex-
ists but the compilation tools to reconstruct the executa-
bles are missing. The restoration of an operating system
to working order presents its own issues, as the system
needs a suitable hardware environment in which to run,
a suitable filesystem and a set of system executables to
initialise the system and make it useful.

This paper presents four case studies in software
restoration: two early UNIX kernels, the earliest extant C
compiler, and a set of executables and source code frag-
ments from 1972. The case studies highlight the above
issues in restoration, and outline the approaches taken to
resolve the issues.

2 TUHS and the UNIX Archive

In 1995 the UNIX Heritage Society (TUHS)3 was
founded with a charter to preserve, maintain and restore
historical and non-mainstream UNIX systems. TUHS
has been successful in unearthing artifacts from many
important historical UNIX systems; this includes system
& application source code, system & application exe-
cutables, user manuals & documentation, and images of
populated filesystems.

The proliferation of UNIX variants and the longevity
of minicomputer systems such as the VAX and the
PDP-11 made TUHS’ task of collecting old UNIX sys-
tems and their documentation relatively straightforward.
Quite quickly the society had gathered such early system
as 6th and 7th Edition UNIX, 32V, System III, the BSDs,
and some early commercial variants such as Ultrix-11.
The building of an archive of early UNIX systems was

initially quite dubious, legally. Most of TUHS’ mem-

274	 2009 USENIX Annual Technical Conference	 USENIX Association

bers were covered by various UNIX source code licenses
from AT&T or USL, but not every license covered the
sum of material stored in the archive. TUHS began a pro-
cess of lobbying SCO,4 then owners of the UNIX source
code, for some license which would allow access to the
material in the archive. With the immense assistance of
Dion Johnson at SCO, in 1998 a cheap hobbyist license
was made available which gave source-code access to the
various PDP-11 UNIX systems, 32V and System III [11].
And in 2002, after much lobbying from TUHS, the PDP-
11 UNIX systems and 32V were placed under an open-
source BSD-style license.

System Released Features

1st Edition Nov 1971
multitasking, multiuser,
hierarchical filesystem

2nd Edition June 1972
support for memory man-
agement on the PDP-11/45

3rd Edition Feb 1973 pipes and C
4th Edition Nov 1973 rewritten in the C language

5th Edition June 1974 first version made available
outside Bell Labs

6th Edition May 1975
ported to multiple
platforms

7th Edition Jan 1979
large filesystem support,
the stdio library, many new
commands

32V May 1979
port of 7th Edition to the
32-bit VAX platform

Table of Early UNIX Releases

For a while, it seemed that the archaeology of UNIX
stopped somewhere around 1974. The source code and
binaries for 5th Edition UNIX existed, but not the files
for the manuals; conversely, only the 4th Edition UNIX
manuals existed, but not the source code nor any binaries
for the system. At the time, Dennis Ritchie told us that
there was very little material from before 4th Edition, just
some snippets of code listings. Then, around the mid-
90s, Paul Vixie and Keith Bostic “unearthed a DECtape
drive and made it work”, and were able to read a number
of DECtapes which had been found “under the floor of
the computer room” at Bell Labs. These tapes would turn
out to contain a bounty of early UNIX artifacts.

Two issues immediately arose with the extraction of
the tapes’ contents: what format were the tapes in, and
the interpretation of the timestamps on the files therein.
7th Edition introduced the tar(1) tape archive format; be-
fore tar(1) there was rkd(1) used in 1st Edition to dump
an RK05 disk’s raw filesystem to nine DECtapes, tap(1)
used from 1st to 4th Edition to dump selected parts of
a filesystem to DECtape, and tp(1) used from 4th to 6th
Edition to dump selected parts of a filesystem to tape.

Fortunately, the formats for tap(1) and tp(1) are docu-
mented, and it was simple to write programs to extract
the files from both archive formats.
Timestamp interpretation is a much more difficult is-

sue to solve, as Dennis Ritchie noted in a private e-mail:

The difficulty of [timestamp] interpretation
[is due] to epoch uncertainty. Earliest Unix
used a 32-bit representation of time measured
in 60ths of one second, which implies a pe-
riod of just over 2 years if the number is taken
as unsigned. In consequence, during 1969-73,
the epoch was changed several times, usually
by back-dating existing files on disk and tape
and changing the origin.

For each DECtape unearthed and read, the epoch used
can only be determined by looking through the contents
of the tape and determining where the files should be
placed in the known history of UNIX development. We
will consider four of the artifacts unearthed in reverse
chronological order.

3 The Nsys Kernel: 1973

One of the DECtapes was labelled ‘nsys’, and Dennis
Ritchie’s initial e-mail on the tape’s contents noted:

So far as I can determine, this is the ear-
liest version of Unix that currently exists in
machine-readable form. ... What is here is
just the source of the OS itself, written in the
pre-K&R dialect of C. ... It is intended only
for PDP-11/45, and has setup and memory-
handling code that will not work on other mod-
els).

I’m not sure how much work it would take
to get this system to boot. Even compiling it
might be a bit of a challenge. ... Best wishes
with this. I’d be interested to hear whether any-
one gets the [system] to run.

Initial interpretation of the timestamps in the archive
led us to believe that the files were dated January 1973,
but after analysing the contents and their placement in the
history of UNIX, we now believe that the files are dated
August 1973, just before the release of the 4th Edition of
UNIX in November 1973.
Ritchie’s innocuous comments on “how much work

it would take to get this system to boot” seemed to be
an implicit challenge, and I began the restoration task
soon after receiving the tape’s contents. My tools were
a working 5th Edition UNIX compiler and environment
running on top of the SIMH PDP-11 simulator [2], along
with my own Apout emulator (see below).

USENIX Association	 2009 USENIX Annual Technical Conference	 275

Restoration work of this kind generally involves con-
sulting existing documentation (in this case, the 4th Edi-
tion Programmers Manual and John Lions’ Commentary
on 6th Edition UNIX [6]), interpreting the few avail-
able source code comments,5 single-stepping the ma-
chine code in the simulator, and intuiting what correc-
tions need to be made based on the system’s behaviour.
As predicted by Ritchie, the compilation was a bit of a

challenge due to the changes in the C language between
1973 and 1974: sub-structures defined within a structure
were delimited by parentheses in ‘nsys’, but by curly
braces in 5th Edition. However, the main issue was an
incompatibility of the filesystem layout between ‘nsys’
and 5th Edition: the filsys structure in 5th Edition has
an extra field, s_ronly, and the inode structure in 5th
Edition also has an extra field, i_lastr.
One last stumbling block was found which prevented

the ‘nsys’ kernel from booting via the 5th Edition’s boot-
strap code. While the 5th Edition kernel starts execution
at location 0, the ‘nsys’ kernel starts execution at loca-
tion 2. With a small amount of code transposition, the
‘nsys’ kernel was able to boot on top of a 5th Edition
filesystem and behave normally.
There is one last comment to make about the ‘nsys’

kernel. Although the 4th Edition of UNIX (dated
November 1973) has the pipe(2) system call, and an in-
ternal Bell Labs meeting in January 19736 notes the ex-
istence of pipes, the ‘nsys’ kernel has pipe(2) listed but
not implemented in the system call table. 3rd Edition
UNIX was the last version written in PDP-11 assembly
language. During 1973, while the assembly version was
still being developed, the system was also rewritten in the
new C language. After discussions with Ritchie, it seems
most likely that pipes were implemented in the assembly
version of UNIX first, and added to the C version after
most of the core functionality had been reimplemented.

4 1st and 2nd Edition Binaries: 1972

Two of the DECtapes read by Bostic, Vixie and Ritchie
were labelled ‘s1’ and ‘s2’. Ritchie’s initial notes were:

s1: I haven’t cracked this yet.

s2 (tap format): This is not source, but a dump
of (parts of) /bin, /etc, /usr/lib, and
bits of a few other directories.

The contents of the ‘s2’ tape, being in tap(1) format
with timestamps in 60ths of a second, were easy enough
to extract but not to date. Most of the files were exe-
cutables in early UNIX ‘a.out’ format with a mixture of
0405 and 0407 signatures.7 This, along with the names
and contents of the executables, indicate that the tape was

written at a time around the 2nd Edition of UNIX: files
are dated from January 1972 through to February 1973.
Having a set of early UNIX executables is nice, but

having them execute is much nicer. There were already
a number of PDP-11 emulators available to run executa-
bles, but there was a significant catch: with no 1st or 2nd
Edition UNIX kernel, the executables would run up to
their first system call, and then “fall off the edge of the
world” and crash.

Fortunately, there was a solution. As part of my over-
all early UNIX restoration work, I had written a user-
level emulator for UNIX a.out binaries called ‘Apout’. 8
Like the Wine emulator for Windows, Apout simulates
user-mode PDP-11 instructions, but system calls invoked
by the TRAP instruction are caught by Apout and emu-
lated by calling equivalent native-mode system calls.
Apout had already been written to run a.out executa-

bles from 5th, 6th and 7th Edition UNIX, 2.9BSD and
2.11BSD. Dennis Ritchie had luckily scanned in his pa-
per copy of the 1st Edition Programmers Manual, and I
obtained a paper copy of the 2nd Edition Programmers
Manual from Norman Wilson. With these in hand, the
work to add 1st and 2nd Edition executable support was
possible, but not trivial. The PDP-11/20 used by 1st
Edition UNIX required an add-on module known as the
KE11A Extended Arithmetic Element to perform opera-
tions such as multiply or divide. The KE11A needed to
be emulated, and I was able to borrow some code writ-
ten for SIMH to use in Apout. There were other issues
to solve, not the least being discrepancies between the
UNIX Programmers Manual and the expected behaviour
of the system calls being used by the executables (for ex-
ample, seeks on ordinary files were in bytes, but seeks on
device files were in 512-byte blocks). Eventually, a faith-
ful emulation of the 1st and 2nd Edition UNIX executing
environment was made, allowing executables such as the
early shell, ls, cp, mv, rm and friends to run again:

chdir /
ls -l
total 32
236 sdrwr- 1024 May 23 14:24:12 bin
568 sdrwr- 512 May 18 06:40:28 dev
297 sdrwr- 512 May 16 03:07:56 etc
299 sdrwr- 512 May 19 07:33:00 tmp
301 sdrwr- 512 May 5 23:10:38 usr
chdir /bin
ls -l
total 215
374 sxr-r- 2310 Jan 25 17:20:48 ar
375 lxr-r- 7582 Jun 29 17:45:20 as
377 sxr-r- 2860 Mar 6 12:23:38 cal
378 sxr-r- 134 Jan 16 17:53:34 cat
385 sxr-r- 160 Jan 16 17:53:36 cp

. . .

For those unfamiliar with the output from 1st Edition
UNIX ls(1), the first column shows the file’s i-node num-

276	 2009 USENIX Annual Technical Conference	 USENIX Association

ber. The s/l character in the next column indicates if the
file is ‘small’ or ‘large’ (4096 bytes or more), the d/x
indicates if the entry is a directory or executable (there
being only one executable bit per file), and the two rw en-
tries show the file’s read/write status for owner and other
(there being no groups yet).
The ‘s1’ DECtape (noted by Ritchie as “not cracked

yet”) proved to be much more intriguing and at the
same time extremely frustrating. A block-level analy-
sis showed source code in both C and PDP-11 assembly,
none of which appeared to be for the UNIX kernel. There
was no apparent archive structure, nor any i-nodes. All
of the DECtape appeared to be used, and this led me to
conclude that ‘s1’ was one of the middle DECtapes in
the set of nine used when rkd(1) dumped an RK05 disk’s
contents block-by-block out to tape. With the first tape
containing the disk’s i-nodes missing, the ‘s1’ tape was
merely a collection of 512-byte blocks.
In places, some source files were stored in contiguous

blocks, and the few comments inside allowed me to re-
cover the source for such early programs as ls(1), cat(1)
and cp(1). But for the most part, the arbitrary placement
of blocks and lack of comments stymied further file re-
covery. Setting things aside for a while, I worked on
other projects including a tool to compare multiple code
trees in C and other languages.9 It took nearly two years
to realise that I could use this tool to match the fragments
from the ‘s1’ tape to source files in other early UNIX
systems such as the 5th Edition. Independently and con-
currently, Doug Merritt also worked on identifying the
source fragments from the ‘s1’ tape, and we used each
other’s work to cross-compare and validate the results.
In the end, the ‘s1’ tape contained source code for the
assembler as, the Basic interpreter bas, the debugger
db, the form letter generator form, the linker ld, and
system utilities such as ar, cat, chmod, chown, cmp, cp,
date, df, getty, glob, goto, if, init, login and ls.

5 Early C Compilers: 1972

Two other DECtapes recovered by Ritchie contain source
code for two of the earliest versions of the original C
compiler:10

The first [tape] is labeled ‘last1120c’, the
second ‘prestruct-c’. The first is a saved
copy of the compiler preserved just as we
were abandoning the PDP-11/20; the second
is a copy of the compiler just before I started
changing it to use structures itself. ...

The earlier compiler does not know about
structures at all: the string “struct” does not
appear anywhere. The [later] compiler does
implement structures in a way that begins to

approach their current meaning. ... Aside
from their small size, perhaps the most strik-
ing thing about these programs is their prim-
itive construction, particularly the many con-
stants strewn throughout.

With a lot of handwork, there is probably
enough material to construct a working ver-
sion of the last1120c compiler, where “works”
means “turns source into PDP-11 assembler”.

Interpreting the timestamps on the tapes gives a date
of July 1972 for the ‘last1120c’ compiler and a date of
December 1972 for the ‘prestruct-c’ compiler. Again,
Ritchie’s note that “there is probably enough material
to construct a working version of the last1120c com-
piler” was taken as an implicit challenge to bring these
compilers back to life. But there was a “chicken and
egg” problem here: both compilers are in such a prim-
itive dialect of C that no extant working compilers would
be able to parse their source code. Good fortune was,
however, on my side. Not only did the ‘s2’ tape con-
tain early UNIX system executables, but hidden away
in /usr/lib were executables named c0 and c1: the
two passes of an early C compiler. It seemed likely that
these executables running on the Apout emulator would
be able to recompile the ‘last1120c’ compiler, and so it
turned out to be. And, using the newly-compiled exe-
cutables c0 and c1 built from ‘last1120c’, the compiler
was able to recompile itself.
The ‘prestruct-c’ compiler presented a much harder

problem: some of the source code was missing, particu-
larly the hand-coded tables used to convert the compiler’s
internal intermediate form into final assembly code. This
seemed at first an insurmountable problem, but after ex-
ploring several dead ends a solution was found. The
hand-coded tables from the ‘last1120c’ compiler were
borrowed and, with a small number of changes, the
hybrid source code was able to be compiled by the
‘last1120c’ compiler, and then to compile itself.

6 1st Edition UNIX Kernel: 1971

Alas, with the above DECtapes fully explored, there
seemed to be no earlier UNIX artifacts except Ritchie’s
fragmentary code listings on paper. Then in 2006, Al
Kossow from the Computer History Museum unearthed
and scanned in a document by T. R. Bashkow entitled
“Study of UNIX”, dated September 1972 [1]; this covers
“the structure, functional components and internal oper-
ation of the system”. Included along with the study was
what appeared to be a complete listing of an assembly
version of the UNIX kernel. A second document un-
earthed contained the handwritten notes made in prepa-
ration of Bashkow’s study; dates within this document

USENIX Association	 2009 USENIX Annual Technical Conference	 277

indicate that the analysis of the UNIX kernel began in
January 1972, implying that the kernel being studied was
the 1st Edition UNIX kernel.

The idea of restoring the listing of the 1st Edition ker-
nel to working order seemed impossible: there was no
filesystem on which to store the files, no suitable assem-
bler, no bootstrap code, and no certainty that the user
mode binaries on the ‘s2’ tape were compatible with the
kernel in the listing; for a while the listing was set aside.
Then early in 2008 new enthusiasm for the project was
found, and a team of people11 began the restorationwork.
The team began by scanning and OCR’ing the kernel

listing, creating a separate text document for each page.
Each document was manually cross-checked for errors,
then combined and rearranged to recreate the original
assembly files. The next task was to find a suitable as-
sembler for these files. We found after some trial and
error that the 7th Edition assembler could be made to ac-
cept the 1st Edition kernel files, but we had to make a few
changes to the input files and postprocess the output from
the assembler. This raised the issue: how much change
can be made to an original artifact when restoring it to
working order? We chose to keep the original files intact
and create (and annotate) a set of “patch” files which are
used to modify the originals for the working restoration.
Thus, the original artifact is preserved, and the changes
required to bring it back to life are also documented.
The kernel listing and the 1st Edition Programmers

Manual indicated that the system required a PDP-11/20
with 24 Kbytes of core, RF-11 and RK03 disks, up to
8 teletypes on a DC-11 interface, and a TC-11 DECtape
device. The SIMH PDP-11 simulator was configured to
provide this environment. With the kernel assembled into
an executable binary, we next had to recreate the boot se-
quence. Luckily, we were able to side-step this issue by
commanding the SIMH simulator to load the executable
directly into the system’s memory, initialise some regis-
ters and start execution at the correct first instruction.
With fingers crossed, the 1st Edition UNIX kernel was

started for the first time for several decades, but after
only a few dozen instructions it died. We had forgotten
that this early system required the KE11A co-processor.
Restoration halted while KE11A support was added to
SIMH using the PDP-11/20 processor manual [3]. On
the next attempt the kernel ran into an infinite loop, and
after studying the code we guessed that the loop on the
paper listing was missing a decrement instruction. With
this fixed the kernel was able to run in “cold UNIX”
mode, which had the task of writing a minimal filesys-
tem onto the RF-11 device along with a number of device
files, the init program and a minimal command shell.
The filesystem’s format was hand-checked using the

format description from the Programmers Manual and
determined to be valid, so we pressed on to try booting

the kernel in “warm UNIX” mode. After another cou-
ple of kernel source errors were fixed, the 1st Edition
UNIX kernel was able to run the init program, output a
login prompt and invoke a shell on successful root lo-
gin. This was a rather limited success: the early UNIX
shell had no metacharacter support (no * expansion), and
echo was not a built-in. So, with only init and sh on the
filesystem, nothing could be done at the shell prompt.
We had several executables from the ‘s2’ tape, but the
1st Edition kernel only supported those with the 0405
header; we took the decision to modify the kernel source
to add support for the 0407 executables. Then, with the
existing RF-11 filesystem and the Programmers Manual,
a standalone program was written to create and populate
a filesystem image with the ‘s2’ executables. Now the
kernel could be booted to a usable system with nearly
all of the documented 1st Edition system tools, editors,
document processing tools and programming languages.

We now had the system running in single-user mode,
but the kernel listing showed that it normally ran in multi-
user mode: there was only one process in memory at
any time; all other processes were kept on swap. Our
attempts to configure the system for multi-user mode
simply resulted in the system ‘hanging’ at boot time.
Again, a hardware configuration deficiency was found:
the SIMH simulator had no support for the DC-11 se-
rial interface device. Using the 1972 PDP-11 peripherals
handbook [4] we added DC-11 support to SIMH, and fi-
nally brought 1st Edition UNIX up into multi-user mode.
The restoration of the kernel was complete.

While the C language did not exist for the 1st Edition
of UNIX, there was a C compiler in existence by the time
of the 2nd Edition [9]. We had the ‘last1120c’ C com-
piler source code and working executables, but to run
them the restored kernel & filesystem needed to be mod-
ified to provide a 16 Kbyte process address space and 16
Kbyte swap areas on the disk. With these modifications
the restored system was able to run the C compiler, and
the C compiler was able to recompile itself.

7 Lessons Learned

From successfully completing the restoration of the
above UNIX software artifacts, we have learned several
lessons about the craft of software restoration:

Restoration is only possible with adequate docu-
mentation. This not only includes user manuals, but
manuals for system calls, libraries, file and storage struc-
tures, documentation on how to configure and boot sys-
tems, and technically solid hardware manuals.

Comments and documentation are often mislead-
ing. Though documentation is required, it is not always
accurate or complete. A restorer must treat all docu-
mentation as dubious, and look for independent sources

278	 2009 USENIX Annual Technical Conference	 USENIX Association

which corroborate each other.
Restoration is only possible with a working envi-

ronment. All software requires an environment in which
to execute. User mode executables require a CPU to run
instructions, some memory, and access to a set of system
calls: this is what emulators like Wine and Apout pro-
vide. Operating systems require a suitable hardware en-
vironment, real or simulated. If the correct environment
cannot be recreated, restoration cannot proceed.

Restoration from source requires a working compi-
lation environment. Source code is tantalizingly close
to being executable, but without a compiler or assembler
that can recognise the source and produce the executable,
the source code is just a collection of bits.

Any restoration will affect the purity of the origi-
nal artifact. It is next to impossible to recreate the en-
vironment required to run a software artifact older than a
decade, as the hardware and supporting software often no
longer exist. It is therefore usually necessary to modify
both the software artifact and the recreated environment
so that they are compatible. When this occurs, it is im-
perative to preserve the purity of the original artifact, and
copy & “patch” it to perform a working restoration.
Simulated hardware is infinitely easier to obtain,

configure and diagnose than real hardware. Tools
like SIMH can be configured to simulate a vast combi-
nation of different CPUs, memory sizes and peripherals.
They can be easily single-stepped, and register & mem-
ory dumps can be taken at any point. This allows the di-
agnosis of errant software behaviour much more quickly
than with real hardware.

Never underestimate the ‘packrat’ nature of com-
puter enthusiasts. Artifacts that appear to be lost are
often safely tucked away in a box in someone’s base-
ment. The art is to find the individual who has that box.
The formation of a loose group of interested enthusiasts,
TUHS, has helped immensely to unearth many hidden
treasures. And professional organisations such as the
Computer History Museum are vital if the computing in-
dustry wants to preserve a detailed record of its past.

In conclusion, the restoration of some of the earliest
software artifacts from the development of UNIX has
been time-consuming, frustrating but most importantly
extremely rewarding. It is now more important than ever
to begin to preserve computing history, not as a collec-
tion of “stuffed exhibits”, but to keep old systems run-
ning as was intended by their designers.

8 Acknowledgments

None of the work described in this paper would have
been possible without the generosity of the members of
the UNIXHeritage Society, who donated software, docu-

mentation, anecdotes & memories, provided suggestions
& insights, and gave time to lobby the powers that be to
place the early UNIX systems under an open source li-
cense. Dennis Ritchie in particular has not only provided
artifacts, memories and advice, but has also encouraged
and mentored the restoration process: to him I owe a pro-
found thanks. Finally, we are all indebted to Ken Thomp-
son, Dennis Ritchie, the researchers at Bell Labs and the
cast of thousands who made UNIX into such a powerful,
sophisticated and pleasant system to use.

References
[1] BASHKOW, T. A Study of the UNIX Operating System, Sep

1972. http://www.bitsavers.org/pdf/bellLabs/unix/
PreliminaryUnixImplementationDocument_Jun72.pdf.

[2] BURNETT, M., AND SUPNIK, R. Preserving Computing’s Past:
Restoration and Simulation. Digital Technical Journal (1996),
23–38.

[3] DEC. PDP-11/20 Processor Handbook, 1971.
http://www.bitsavers.org/pdf/dec/pdp11/
handbooks/PDP1120_Handbook_1972.pdf.

[4] DEC. PDP-11 Peripherals Handbook, 1972.
http://www.bitsavers.org/pdf/dec/pdp11/
handbooks/PDP11_PeripheralsHbk_1972.pdf.

[5] LIBES, D., AND RESSLER, S. Life with UNIX. Prentice Hall,
1989.

[6] LIONS, J. A Commentary on UNIX 6th Edition with Source Code.
Peer-to-Peer Communications, 1996.

[7] MAHONEY, M. The UNIX Oral History Project, 1989.
http://www.princeton.edu/~mike/expotape.htm.

[8] RITCHIE, D. M. The Evolution of the UNIX Time-Sharing Sys-
tem. BSTJ 63, 8 (1984), 1577–1594.

[9] RITCHIE, D. M. The Development of the C Language. In Pro-
ceedings of the Second History of Programming Languages Con-
ference (Apr 1993).

[10] SALUS, P. H. A Quarter Century of UNIX. Addison Wesley,
1994.

[11] TOOMEY, W. Saving UNIX from /dev/null. In Proceedings of
the AUUG Open Source Conference (1999).

Notes
1UNIX is a registered trademark of The Open Group.
2See the excellent UNIX family tree by Éric Lévénez at

http://www.levenez.com/unix/
3See http://www.tuhs.org
4Old SCO, as against the SCO Group (TSG).
5Early UNIX source code has very spartan commenting.
6See page 4 of http://bitsavers.org/pdf/bellLabs/unix/

Unix_Users_Talk_Notes_Jan73.pdf
71st Edition UNIX used an 0405 a.out signature. 2nd Edition UNIX

changed to an 0407 signature, indicating a slightly different format.
8See http://www.tuhs.org/Archive/PDP-11/Emulators/Apout/
9See http://minnie.tuhs.org/Programs/Ctcompare/

10See http://cm.bell-labs.com/cm/cs/who/dmr/primevalC.html
11The team was led by Tim Newsham &Warren Toomey, along with

Johan Beiser, Tim Bradshaw, Brantley Coile, Christian David, Alex
Garbutt, Hellwig Geisse, Cyrille Lefevre, Ralph Logan, James Marke-
vitch, Doug Merritt and Brad Parker.

USENIX Association	 2009 USENIX Annual Technical Conference	 279

Block Management in Solid-State Devices

Abhishek Rajimwale+, Vijayan Prabhakaran, John D. Davis
+University of Wisconsin, Madison
Microsoft Research, Silicon Valley

Abstract
Solid-state devices (SSDs) have the potential to replace
traditional hard disk drives (HDDs) as the de facto stor-
age medium. Unfortunately, there are several decades of
spinning-media assumptions embedded in the software
stack as an “unwritten contract” [20]. In this paper, we
revisit these system-level assumptions in light of SSDs
and find that several of them are invalidated by SSDs,
breaking the unwritten contract and resulting in poor
performance and lifetime. The underlying cause is the
incorrect division of labor between file systems and stor-
age. Block management must be removed from the file
system and delegated to the SSD to prevent further ac-
cumulation of storage-specific assumptions. We find that
object-based storage is an appropriate way to achieve
this.

1 Introduction

Storage systems export a simple abstraction of a linear
block-level interface that has worked well for cases rang-
ing from a single disk to the aggregation of disks such as
RAID arrays and logical volumes. In fact, the simplicity
of the interface has helped to hide the complexity of the
underlying device from higher-level systems.

Unfortunately, the interface has also hidden device-
specific details, so that the file system is forced to make
assumptions about the underlying storage, referred to by
Schlosser and Ganger as an “unwritten contract” [20].
Not surprisingly, most of these assumptions are re-
garding block management such as allocation, layout,
scheduling, and cleaning, all of which could benefit from
device-specific knowledge. For example, file systems
assume that random accesses are much slower than se-
quential ones, and hence the block management layer
is optimized for this. While this assumption is valid
for disks, when the properties of the underlying device
change, such assumptions may either hold or fail. For

example, for MEMS-based storage, Schlosser et al. find
that the existing abstractions are mostly valid [20].

We reexamine the existing storage abstraction and
the resulting assumptions in light of solid-state devices
(SSDs). SSDs are different from disk drives in many
aspects such as unique semiconductor properties, inter-
nal architecture, and controller firmware, which affect
the performance, reliability, lifetime, power, and security
properties of the SSDs. Overall, SSDs are substantially
complex and self-managing and require more informa-
tion than is provided by the standard storage interface.

To find out if the disk-specific assumptions hold for
SSDs, we list six system-level assumptions (three of
which are from the unwritten contract as originally
stated) and explain how each of them fail for SSDs, re-
sulting in poor performance and lifetime. The underlying
problem is the incorrect division of labor: file systems
perform block management, which for a device such as
an SSD is best done internally because of its knowledge
of intricate device-specific properties, policies, and algo-
rithms.

A more expressive interface such as object-based stor-
age (OSD) [10, 11, 22] can improve the current state of
the art. First, OSD delegates finer details of block man-
agement to the SSD, thereby preventing any new storage-
specific assumptions. Second, OSD expresses the inten-
tions of the higher layers clearly, thereby improving the
internal SSD operations.

2 Background

Storage Interface. Storage access protocols such as
SCSI and ATA/IDE export a narrow, block-based inter-
face with simple read and write APIs to access the
logical block number (LBN) (a 512-byte sector). A stor-
age controller internally maps the LBN to a physical sec-
tor, which is hidden and fixed for most cases.

The main disadvantage of the block-based interface is

280	 2009 USENIX Annual Technical Conference	 USENIX Association












 












  
 

  


  
 
 





Figure 1: SSD Architecture.

the absence of higher-level semantics. Several previous
works note this deficiency and propose more expressive
interfaces [5–7, 9]; some even allow programming the
storage controller [1, 16, 21]. One approach is to use an
object-based interface [10, 11, 22], which exports the ab-
straction of an object as a collection of bytes. Structures
such as trees, tables, files, and directories can be repre-
sented as objects, reflecting the higher-level semantics
better than a block-based interface; the device controller
performs block allocation and layout for the objects.

Solid-State Devices. An SSD consists of a set of flash
memory packages that are connected to a controller (Fig-
ure 1). Each package has one or more dies; each die has
multiple planes, which in turn have many blocks; each
block consists of many 4 KB pages [18].

SSDs differ from HDDs on 3 main properties. The
first obvious difference is the absence of mechanical
moving parts. Second, flash pages are non-overwrite
in nature and must be erased before being overwritten.
To hide the high erase overhead and create the abstrac-
tion of an in-place write, modern SSDs implement a
log-structured design [17] in the flash translation layer
(FTL) [15]. To uniformly spread the block usage, wear-
leveling is also implemented. Finally, SSDs have several
layers of parallelism that is dictated by the flash packages
and the way they are connected to the controller.

There are two types of NAND flash memory: single-
level cell (SLC) and multi-level cell (MLC). SLC flash
stores a single bit of data per cell, while MLC flash stores
multiple bits per cell. MLC flash has some drawbacks
such as shorter lifetime (10K erase cycles vs 100K erase
cycles of SLC), slower write, and erase operations.

3 Failed Assumptions

In this section, we discuss the system-level assumptions
that fail when applied to SSDs, and the reasons behind
these failures. In Table 1, we list the original (1-3)
and extended terms of the unwritten contract and state
whether they are satisfied or violated by different de-
vices. This list is by no means complete because we

focus only on block-management issues; more assump-
tions may be added as our experience with SSDs grows.
For comparison, we list RAID arrays and MEMS-based
storage, but for the rest of the paper we focus only on
how the assumptions fail on SSDs.

3.1 Sequential vs. Random
In a disk, the latency and bandwidth of sequential ac-
cess are several tens of times better than random access.
However, on SSDs that use a log-structured FTL [15],
both sequential and random writes are likely to take sim-
ilar time. Table 2 lists the ratio of sequential-to-random
bandwidth for an HDD (a Seagate Barracuda 7200.11
drive) and several SSDs. One of the SSDs is simu-
lated (S4slc sim) using the simulator from our previous
work [2], while others are real (S1slc, S2slc, S3slc,
S5mlc). We anonymize the real SSDs because they
are engineering samples and pre-production models. To
help the reader understand the results better, we specify
whether the devices use SLC or MLC flash memory.

From the table, we can observe that SSDs (using SLC
or MLC memories) have random-read performance that
is only a few times smaller than their sequential-read per-
formance. This is even true for writes on certain SSDs
(S1slc, S4slc sim, S5mlc), but not on all of them; in fact,
some of the SSDs (S2slc, S3slc) have random-write per-
formance that is worse than HDDs. One of the reasons
for this poor performance is write amplification, which
we will discuss later (§3.4).

From the above results, we can see that the gap be-
tween sequential and random accesses is narrowing on
SSDs. File systems that run primarily on SSDs must re-
consider the need for complex policies to achieve block-
level sequentiality. Instead, a file system must focus
on higher-level operations such as object management,
consistency, and recovery, and move the low-level block
management to the SSD, using say, the OSD interface.

3.2 Logical-to-Physical Mapping
The second term of the unwritten contract considers the
relation between logical and physical sectors, and un-
derstanding it is important for I/O scheduling. On an
HDD, nearby LBNs translate well to physical proximity.
However, this contract fails on an SSD because of the
log-structured design, cleaning, and wear-leveling, all of
which make it harder to estimate the location of a log-
ical sector. In fact, the physical location is irrelevant if
the ratio of sequential to random accesses approaches 1.
This further motivates the conclusion that the file system
accesses must be in terms of objects (or parts of objects)
and the SSD must handle the low-level sector-specific
scheduling.

USENIX Association	 2009 USENIX Annual Technical Conference	 281

Contract Disk RAID MEMS SSD
1. Sequential accesses are much better than random accesses T T T F (flash memory, no mechanical parts)
2. Distant LBNs lead to longer seek times T † F T F (log-structured writes)
3. LBN spaces can be interchanged F F T F (integration of SLC and MLC memory)
4. Data written is equal to data issued (no write amplification) T F T F (ganging, striping, larger logical pages)
5. Media does not wear down T T T F (semiconductor properties)
6. Storage devices are passive with little background activity T † F T F (cleaning and wear-leveling)

Table 1: Unwritten Contract. Terms of the unwritten contract and whether they are satisfied (T) or not (F) by various
devices; a † means that the contract is only approximately satisfied because the device has grown more complex. For
SSDs, a brief reason is also given.

Read Write
Device Seq Rand Ratio Seq Rand Ratio

HDD 86.2 0.6 143.7 86.8 1.3 66.8
S1slc 205.6 18.7 11.0 169.4 53.8 3.1
S2slc 40.3 4.4 9.2 32.8 0.1 328.0
S3slc 72.5 29.9 2.4 75.8 0.5 151.6
S4slc sim 30.5 29.1 1.1 24.4 18.4 1.3
S5mlc 68.3 21.3 3.2 22.5 15.3 1.5

Table 2: Ratio of Sequential to Random Bandwidth.

We performed a preliminary analysis with a new al-
gorithm for SSD, called shortest wait time first (SWTF),
which uses the queue wait times of all the parallel ele-
ments in an SSD and schedules an I/O that has the short-
est wait time. On a synthetic workload that issues ran-
dom I/Os (with 2/3 reads and 1/3 writes), we found that
SWTF improves the response time by about 8% when
compared to FCFS. More thorough analysis is required
to find the effectiveness of such SSD-specific algorithms.

3.3 Interchangeable Address Space
The third term of the contract assumes that the logical ad-
dress space is uniformly spread over the device. This is
invalidated by disks because of zoned recording, where
the outermost tracks accommodate more logical pages
than innermost ones; that is, outer-track bandwidth is
greater than the inner-track bandwidth. Today, SSDs are
homogeneous, using only a single type of memory (ei-
ther SLC or MLC), keeping the contract valid. However,
we believe that in the future, SSDs might be constructed
with multiple types of memories (SLC/MLC). In such
systems, this contract will be violated because MLC-type
memories can hold more data and have different timing
characteristics than SLC. Such heterogeneity in the ad-
dress space can be better utilized if the device performs
block allocation for higher-level objects. For example,
an SSD can choose to co-locate all the data belonging to
a root object in SLC memory for faster access.

3.4 Write Amplification
Operating systems typically assume that the time taken
to complete an I/O is proportional to the I/O size. How-
ever, in an SSD, writes may be amplified into a larger

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 1 2 3 4 5 6 7 8 9

Ba
nd

w
id

th
 (M

B/
s)

Write size (MB)

Bandwidth

Figure 2: Write Amplification. In S2slc, maximum
bandwidth is achieved when the write size aligns with
the stripe size (1 MB).

I/O due to several reasons: first, when the logical page is
larger than the physical page size; second, when a write
is issued in-place using a read-modify-erase-write cycle.
Write amplification is not a new phenomenon; it happens
on RAID arrays that need to update parity blocks.

We measured the effect of write amplification on one
of the engineering samples (a low-end SSD, S2slc); Fig-
ure 2 shows the results. We plot the bandwidth against
the write size. One can observe that the bandwidth
is poor on small write sizes (e.g., 512 bytes). As we
increased the write size, the bandwidth improved and
reached its maximum at 1 MB (the SSD’s stripe size).
As we increased the write size further (e.g., 1 MB + 512
bytes), the bandwidth again dropped, and this behavior
repeated to give a saw-tooth pattern. We believe that
this behavior is due to striping the logical page across a
gang of flash packages that share the buses [2]. A similar
saw-tooth pattern was noticed by Schindler et al. for disk
drives on track-aligned accesses [19]. However, in their
case it was due to the effect of track switches and rota-
tional latencies. It is important to note that write caches
might not always mask the write amplification; for ex-
ample, S3slchas a write buffer cache of 16 MB, but it is
ineffective in masking the write amplifications, as can be
seen from the random-write performance in Table 2.

Write amplification can be reduced by merging writes
and aligning them to stripe sizes. Since it is harder to
estimate the stripe size and alignment boundaries from a
file system (especially in the presence of a write cache

282	 2009 USENIX Annual Technical Conference	 USENIX Association

Probability of
sequential access 0 0.2 0.4 0.6 0.8
Unaligned 10.6 10.6 10.5 10.2 10.5
Aligned 10.6 10.4 8.9 7.6 5.6

Table 3: Improved Response Time with Write Align-
ment. Average I/O response time (in ms) for unaligned
and stripe-aligned 4 KB writes with varying degrees of
sequentiality.

Postmark TPCC Exchange IOzone
Improvement (%) 1.15 3.08 4.89 36.54

Table 4: Macro Benchmarks with Stripe-aligned
Writes.

and background activity), an SSD must be responsible
for sector allocation and layout according to the stripe
sizes. Table 3 shows results from stripe-aligned and un-
aligned writes. We simulated a 32 GB SSD with one
gang of eight 4 GB flash packages. A single 32 KB log-
ical page spanned over all the packages. We ran a syn-
thetic workload that issued a stream of writes with vary-
ing degrees of sequentiality. We compared two schemes:
one, issuing the writes as they arrive; two, merging and
aligning writes on logical page boundaries. On a com-
pletely random workload, both schemes worked simi-
larly because of the small chance to merge the writes
into stripe sizes. As the sequentiality increased, align-
ing writes paid off well, resulting in an improvement of
over 50%. Table 4 presents the improvement in response
time for various workload traces. Of all the workloads,
IOzone benefits the most (over 36% improvement) due
to its large write sizes.

3.5 Block Wear
File systems assume that the media wear-down does not
depend on the number of writes to particular sectors.
However, flash memory blocks have limited erase cy-
cles before wearing out. Therefore, mid-range and high-
end SSDs implement cleaning and wear-leveling to uni-
formly spread the wear-down of blocks.

SSDs clean by retaining the most recent version of
all the logical pages, including those that have been re-
leased by the file system, leading to a lot of useless activ-
ity. The effectiveness of cleaning and wear-leveling can
be improved by using file-system-level semantic knowl-
edge, specifically the block allocation status, which is not
available to an SSD.

An SSD can use the block allocation status to imple-
ment informed cleaning and wear leveling that avoids
retaining the free pages. We used our SSD simulator
to analyze the benefits of informed cleaning by running
block-level traces that contain read, write, and block-free
operations. The traces were collected by running the

Transactions 5000 6000 7000 8000
Relative pages moved 0.31 0.25 0.35 0.50
Relative cleaning time 0.69 0.60 0.63 0.69

Table 5: Improved Cleaning with Free-Page Infor-
mation. The table shows decrease in pages moved and
cleaning time with free-page information relative to the
default SSD (i.e., without free-page information). The
actual numbers of pages moved (in 1000s) for the de-
fault SSD are, 88159, 155465, 217130, and 284409, for
5K to 8K transactions. The actual cleaning times (in sec-
onds) for the default SSD are, 49147, 71975, 93569, and
116185 for 5K to 8K transactions.

Postmark benchmark [14] on a pseudo-device driver that
uses Linux Ext3 knowledge to identify the free sectors.
The SSD simulator was modified such that the cleaning
and wear-leveling logic disregard the flash pages corre-
sponding to the free logical pages. To the best of our
knowledge, this is the first study to measure the effect of
free-page knowledge in SSD cleaning.

Table 5 shows the improvements in cleaning in terms
of the number of pages that need to be reclaimed and
the cleaning time for an 8 GB SSD; both measures are
shown relative to the default SSD that does not use the
free-page information. We observe that informed clean-
ing reduces the number of reclaimable pages by at most
about one-half. Informed cleaning reduces the cleaning
time by 30-40%, which can improve the overall running
time by about 3-4%. However, the improvements are
workload-dependent.

3.6 Background Activity

Storage systems are assumed to be passive and to act
only when a request is issued from a higher-level soft-
ware layer. While this is true on a single HDD, SSDs
perform a considerable amount of background activity
due to cleaning and wear-leveling. Therefore, it becomes
hard to predict the I/O latency; for example, it is hard
to guarantee QoS on a system with SSDs because the
host has no control over when the SSD engages in back-
ground activities. This is especially true if the SSD is
full and the degree of internal fragmentation is high [4].
The background activity can be controlled by informing
the SSD about I/O priorities or by marking certain ob-
jects as high-priority. For example, an SSD can provide
preferential treatment to high-priority objects or I/Os by
delaying its background activity.

We modified the cleaning logic of our SSD simula-
tor to be aware of request priorities. If there are no out-
standing priority requests, cleaning starts when the num-
ber of free pages falls below a low threshold. However, if
there are priority requests, cleaning is postponed until the
number of free pages falls below a critical threshold. We
call this priority-aware and compare it with a priority-

USENIX Association	 2009 USENIX Annual Technical Conference	 283

 0

 1

 2

 3

 4

 5

 6

 20 30 40 50 60 70 80

R
es

po
ns

e
tim

e
(m

s)

Percentage of writes

Foreground: Priority-Agnostic
Background: Priority-Agnostic

Foreground: Priority-Aware
Background: Priority-Aware

Figure 3: Priority-Aware Cleaning. Priority-aware
cleaning improves the foreground I/O response time
by postponing cleaning; in contrast, priority-agnostic
cleaning deteriorates the foreground I/Os.

Writes (%) 20 40 50 60 80
Improvement (%) 0 9.56 10.27 9.61 9.47

Table 6: Response Time Improvement From Priority-
Aware Cleaning. When the percentage of writes is
small (less than 40%), cleaning does not happen fre-
quently and hence foreground requests are not affected
(and therefore no improvement).

agnostic scheme, which starts cleaning at the low thresh-
old irrespective of the outstanding requests. Note that
when there is no priority information available, priority-
agnostic is the default technique to use.

We evaluated a 32 GB SSD using synthetic bench-
marks with request inter-arrival times uniformly dis-
tributed between 0 and 0.1 ms. The fraction of prior-
ity requests was set to 10%; critical and low thresholds
were fixed at 2% and 5% of free pages. In Figure 3,
we plot the response time of priority requests (marked as
foreground) and non-priority requests (marked as back-
ground). Table 6 shows the corresponding improvement
in response time for priority requests. We observe that
under the priority-aware scheme, the response time of
foreground requests improve by about 10%. However,
the cost of this improvement is reflected on the back-
ground I/Os, whose response time increased as well.

3.7 Object-based Storage and SSD
As storage devices grow more complex, assumptions
made by higher layers fail. We believe that certain func-
tionalities, specifically those related to block manage-
ment, are more appropriately handled by the device con-
troller with its intricate knowledge of the inner work-
ings of the device. However, to perform the block man-
agement correctly and efficiently, devices must also un-
derstand the high-level intentions (semantics) behind the
simple reads and writes.

Broadly, there are two ways by which the device
can obtain more information: explicitly, through new or

modified interfaces; or implicitly, by using reverse en-
gineering techniques. Since reverse engineering tech-
niques can add more complexity to the device firmware
and do not minimize the functionalities at higher layers,
we focus only on explicit approaches. Existing interfaces
can be patched with additional commands to convey the
operation semantics. For example, the TRIM command
has been proposed to add file delete notifications to the
ATA interface [8]. While this approach offers the least
resistance in the device-interface evolution, it still oper-
ates on the block level, thereby letting the file system per-
form the block management. Moreover, existing inter-
faces may not provide sufficient extensions for new com-
mands. In such cases, new interfaces such as NVMHCI
have been proposed [13]. However, while NVMHCI
conveys more information than traditional SCSI/ATA,
it still lets the higher layers manage and operate at the
block level. We believe that OSD interface provides a
nice alternative by conveying more information and let-
ting the device handle low-level operations.

For several of the aforementioned contract violations,
an OSD provides a better alternative. For example, a
file system should operate on objects and let the de-
vice handle the logical to physical mapping, sequential-
random accesses to (parts of) objects, and stripe-aligned
accesses. Additionally, an SSD can use the OSD inter-
face and manage the space for objects (including the al-
location and release of pages to objects) in order to im-
plement informed cleaning. An additional benefit of us-
ing an OSD is that object attributes can be set to convey
read-only data, which could be used for cold data place-
ment during wear-leveling. Finally, I/Os to objects can
be marked with a priority to schedule them appropriately
with background activities.

4 Related Work

Several previous researchers have noted the need for
more expressive storage interfaces for disks [1, 5, 6,
9, 16, 21], RAID arrays [7], and MEMS-based de-
vices [12, 20]. Among these, the most closely related
work is by Schlosser and Ganger, which examines the OS
assumptions in the context of MEMS-based devices [20].
They list the first three terms of the unwritten contract
and show how MEMS-based devices obey them, obvi-
ating the need for new interfaces or algorithms. In an-
other related paper, Ajwani et al. characterize a variety
of SSDs and argue for new algorithms for SSDs and hy-
brid devices [3]. However, they still use the block-level
interface. We argue for a new, richer interface.

New interface specifications are being proposed for
SSDs, like NVMHCI [13] and TRIM [8], but they still let
the higher layers manage the blocks, resulting in most of
the problems we discussed earlier. Using the OSD inter-

284	 2009 USENIX Annual Technical Conference	 USENIX Association

face provides a clean separation between the file system
and block management operations, enabling the SSD to
handle them optimally.

5 Conclusion

Over the past 5 decades, OS and storage systems have
evolved independently across a narrow and fixed storage
interface. One of the side effects of this evolution is the
accumulation of device-specific assumptions in the stor-
age stack, specifically in the block management layer.
Unless the block management is removed from the file
system and delegated to the storage, such assumptions
are likely to carry over and grow in the next generation
of storage devices as well. SSDs are evolving and have
the potential to become the ubiquitous storage media. As
our initial results have shown, it is time we switch from
the narrow, block-based interface to a richer object-based
storage to improve the performance and longevity.

6 Acknowledgments

We thank our shepherd, Geoff Kuenning, the anonymous
reviewers, Nathan Obr from Microsoft Device and Stor-
age Technologies, and the members of Microsoft Re-
search Silicon Valley for their detailed feedback and ex-
cellent suggestions on our paper.

References
[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks: programming

model, algorithms and evaluation. In Proceedings of the 8th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, October 1998.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy. Design Tradeoffs for SSD Performance. In
Proceedings of the USENIX Annual Technical Conference, June
2008.

[3] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo. Characterizing
the Performance of Flash Memory Storage Devices and Its Im-
pact on Algorithm Design. In Experimental Algorithms, pages
208–219. Springer Berlin / Heidelberg, 2008.

[4] L. Bouganim, B. Jonsson, and P. Bonnet. uFLIP: Understanding
Flash IO Patterns. In Proceedings of the 4th Biennial Conference
on Innovative Data Systems Research (CIDR’09), 2009.

[5] C. Chao, R. English, D. Jacobson, A. Stepanov, and J. Wilkes.
Mime: a high performance parallel storage device with strong
recovery guarantees. Technical Report HPL-CSP-92-9rev1, HP
Laboratories, November 1992.

[6] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical Disk:
A New Approach to Improving File Systems. In Proceedings
of the 14th ACM Symposium on Operating Systems Principles,
pages 15–28, December 1993.

[7] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Bridging the Information Gap in Storage Protocol Stacks. In
Proceedings of the USENIX Annual Technical Conference, pages
177–190, June 2002.

[8] Frank Shu. Notification of Deleted Data Pro-
posal for ATA8-ACS2. http://t13.org/
Documents/UploadedDocuments/docs2007/
e07154r0-Notification_for_Deleted_Data_
Proposal_for_ATA-ACS2.doc, 2007.

[9] G. R. Ganger. Blurring the Line Between OSes and Storage De-
vices. Technical Report CMU-CS-01-166, Carnegie Mellon Uni-
versity, December 2001.

[10] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A
cost-effective, high-bandwidth storage architecture. In Proceed-
ings of the 8th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
VIII), pages 92–103, October 1998.

[11] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, H. Gob-
ioff, E. Riedel, D. Rochberg, and J. Zelenka. Filesystems for
Network-Attached Secure Disks. Technical Report CMU-CS-97-
118, Carnegie Mellon University, 1997.

[12] J. Griffin, S. Schlosser, G. Ganger, and D. Nagle. Operating Sys-
tems Management of MEMS-based Storage Devices. In Proceed-
ings of the 4th Symposium on Operating Systems Design and Im-
plementation, October 2000.

[13] Intel Corporation. Non-Volatile Memory Host Controller
Interface Specification. http://www.intel.com/
standards/nvmhci/index.htm, 2008.

[14] J. Katcher. PostMark: A New File System Benchmark. Technical
Report TR-3022, Network Appliance Inc., October 1997.

[15] H. Kim and S. Ahn. BPLRU: a buffer management scheme for
improving random writes in flash storage. In Proceedings of the
6th USENIX Conference on File and Storage Technologies, pages
1–14, 2008.

[16] E. Riedel, G. Gibson, and C. Faloutsos. Active Storage For Large-
Scale Data Mining and Multimedia. In Proceedings of the 24th
International Conference on Very Large Databases, August 1998.

[17] M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System. ACM Transactions on
Computer Systems, 10(1):26–52, February 1992.

[18] Samsung Corporation. K9XXG08XXM Flash Memory Specifi-
cation. http://www.samsung.com/global/system/
business/semiconductor/product/2007/6/11/
NANDFlash/SLC_LargeBlock/8Gbit/K9F8G08U0M/
ds_k9f8g08x0m_rev10.pdf, 2007.

[19] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-
aligned extents: matching access patterns to disk drive charac-
teristics. In Proceedings of the USENIX Conference on File and
Storage Technologies, pages 259–274, 2002.

[20] S. W. Schlosser and G. R. Ganger. MEMS-based storage devices
and standard disk interfaces: A square peg in a round hole? In
Proceedings of the 3rd USENIX Symposium on File and Storage
Technologies, pages 87–100, April 2004.

[21] M. Sivathanu, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Evolving RPC for active storage. In Proceedings of the 10th In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS X), pages
264–276, October 2002.

[22] R. O. Weber. SCSI Object-Based Storage Device Commands
(OSD). Technical report, T10 Technical Committee, July 2004.

USENIX Association	 2009 USENIX Annual Technical Conference	 285

Linux Kernel Developer Responses to Static Analysis Bug Reports

Philip J. Guo and Dawson Engler
Stanford University

Abstract
We present a study of how Linux kernel developers re-

spond to bug reports issued by a static analysis tool. We
found that developers prefer to triage reports in younger,
smaller, and more actively-maintained files (§2), first ad-
dress easy-to-fix bugs and defer difficult (but possibly
critical) bugs (§3), and triage bugs in batches rather than
individually (§4). Also, although automated tools cannot
find many types of bugs, they can be effective at direct-
ing developers’ attentions towards parts of the codebase
that contain up to 3X more user-reported bugs (§5).
Our insights into developer attitudes towards static

analysis tools allow us to make suggestions for improv-
ing their usability and effectiveness. We feel that it
could be effective to run static analysis tools continu-
ously while programming and before committing code,
to rank reports so that those most likely to be triaged
are shown to developers first, to show the easiest reports
to new developers, to perform deeper analysis on more
actively-maintained code, and to use reports as indirect
indicators of code quality and importance.

1 Methodology

We used two datasets for quantitative analysis: static
analysis bug reports and source code revision history.
We obtained static analysis results from the Coverity

Scan project [5], which uses a commercial tool called
Coverity Prevent to find bugs in open source C, C++, and
Java projects. Coverity reports its results in an online
bug database and tracks if and when developers triage,
verify, and fix those bugs. When a developer triages a
bug report, he/she tries to determine the veracity of the
report and then changes its status in the database from
un-triaged to true bug, false positive, or, if he/she gives
up without reaching a definitive conclusion, to unsure.
We obtained 2,125 bug reports produced by scans run

between February 2006 and December 2007. Each re-
port pinpoints a potential bug within a .c source file in

the Linux kernel codebase. The initial scan on Feb 24,
2006 created 981 reports, and the 76 subsequent scans
run periodically between then and December 2007 cre-
ated 1,144 additional reports.
To get development histories for files affected by

Coverity Scan reports, we mined version control data
from the BitKeeper and GIT Linux kernel source code
management repositories, spanning February 2002 to
December 2007. We recorded when each file was added
to the codebase and detailed information about each
committed patch (patch size, date, author, files affected).
To corroborate our quantitative findings and to add

qualitative insights, we sent out an informal email ques-
tionnaire to the primary Linux kernel developers mailing
list. In that questionnaire [7], we stated each of our find-
ings (worded identically to how it appears in this paper)
and asked developers to present reasons why they agreed
or disagreed with it based upon their experiences and in-
tuitions. We received 4 responses and will quote their
authors as developers A, B, C, and D due to requests for
anonymity. We got the opinions of some veteran devel-
opers: Developer A has triaged the most Coverity Scan
reports out of all 26 developers who have triaged reports,
and developers A and B are both in the 99th percentile in
terms of numbers of patches written for the Linux kernel.

2 Which reports are likely to be triaged?

Result 1: Checker type is the most important factor
in determining whether a bug report will be triaged
Coverity Prevent checks for a dozen types of generic

C code bugs, such as buffer overflows and null pointer
dereferences (the Coverity Open Source Report [5] de-
scribes all types in detail).
Table 1 shows percents of triaged reports (triage rate),

which vary greatly across checker types. All developers
who responded to our questionnaire agreed that checker

286	 2009 USENIX Annual Technical Conference	 USENIX Association

Total % of triaged reports in
Checker type # reports % triaged relative FP initial scan all subsequent scans
dynamic buffer overrun 6 100% 3 ⋆ ⋆

read of uninitialized values 64 86% 5 84% 88%
dead code 266 82% 6 71% 88%
static buffer overrun 288 79% 8 74% 82%
unsafe use before negative test 13 69% 9 ⋆ ⋆

type/allocation size mismatch 5 60% 1 ⋆ ⋆

unsafe use before null test 256 57% 2 65% 48%
resource leak 302 54% 4 52% 56%
null pointer dereference 505 51% 7 54% 46%
unsafe use of null return value 153 50% 12 72%† 37%†

use resource after free 225 49% 11 72%† 41%†

unsafe use of negative return value 42 38% 10 36% 43%
Total 2,125 61% 63% 59%

Table 1: Coverity Scan reports by checker type, sorted by triage rate (“% triaged”). The “relative FP” for each checker
is its false positive (FP) rate relative to all other checkers (1 means lowest false positive rate, 12 means highest). The
⋆ symbol is for checkers with too few reports to make meaningful differences between initial and subsequent scans.

type most strongly determines whether they triage a re-
port; the one who triaged the most reports emphasized,

“I always sort the reports by report type and
don’t care which files they are in.” (Dev A)

We corroborated these intuitions by building a predic-
tive model using all factors in this section and noting
that checker type was by far the strongest predictor of
whether a report would be triaged; we describe our
model’s details in a separate technical report [8].
One reason why reports from certain checker types

are triaged more frequently is that they find more se-
vere bugs. Considering the top 4 checkers in Table 1,
buffer overruns lead to security vulnerabilities, reads of
uninitialized values lead to non-deterministic failures,
and dead code bugs often indicate serious logic errors
arising from the developer’s misunderstanding of what
ought to be able to execute under which exact (some-
times multiply-nested) conditions.

In contrast, reports from certain checkers are triaged
less frequently because they are harder to diagnose:

“I have looked at a few coverity defects and
skipped over them because a) they looked too
hard to diagnose b) They looked like false posi-
tives but I didn’t have enough knowledge about
the code to be positive” (Dev C)

Specifically, the more code a developer must read
when investigating a bug report, the more likely he/she
will skip that report. Checkers for unsafe uses of
null/negative function return values had low triage rates,

perhaps because they require developers to look inter-
procedurally to assess whether the called function can
return a null or negative value during actual execution.

Also, developers are reluctant to triage reports from
checkers whose reports they have marked as false posi-
tives. There is an inverse correlation between false pos-
itive rate and triage rate: a Spearman’s rank correlation1

of −0.49. In particular, the 3 checkers with the highest
false positive rates also had the lowest triage rates.

To show that triage rates don’t vary much across scans,
we calculated separate rates for the initial scan and for all
76 subsequent scans taken together. The relative rank-
ings of checkers remained fairly consistent across the
two populations, with a Spearman’s rank correlation of
0.79. For this calculation, we excluded the 2 checkers
with the highest false positive rates († symbol) due to
their aberrant drop-offs, which Result 8 will discuss, and
checkers with too few reports (⋆ symbol).

Result 2: Bug reports in younger files are more likely
to be triaged
From 2002 to 2007, the Linux codebase grew linearly

by 173 new files each month (on average, 326 files were
added and 153 deleted each month). The linear regres-
sion line (not pictured here) fits almost perfectly, with
adjusted R-squared of 0.992 (1.0 is a perfect positive lin-
ear correlation). Files are typically quite active during
their first year of life, receiving up to twice as many
patches during that year than during their subsequent

1Spearman’s rank correlation test determines the direction and con-
sistency of correlation between two variables, returning a value be-
tween −1 and 1. 1 means perfect positive (non-linear) correlation,
0 means no correlation, and −1 means perfect negative correlation.

USENIX Association	 2009 USENIX Annual Technical Conference	 287

% triaged vs. file age in years

Threshold for file age in years

Pe
rc

en
t t

ria
ge

d

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

0
20

40
60

80

+

−

+

−

+

−

+
−

+

−

+
−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

2 years

Figure 1: Percent of reports triaged in all files older (+)
and younger (−) than selected thresholds. At 2 years,
there is a 31% relative difference in triage rates between
old and young files (54% vs. 71%).

years. Developers are more interested in bug reports for
these younger, more active files than for older files:

“My gut feeling says that [result] is probably
right. More often the people involved in creat-
ing those [younger] files will still be active ker-
nel developers, and still interested in the area
those files cover.” (Dev B)

If we split files into two groups by their age at the time
of each bug report using some reasonable cutoff between
“young” and “old” files (say, 2 years) and then count the
numbers of triaged and un-triaged reports affecting files
within each group, we find that 71% of bug reports af-
fecting young files are triaged, versus only 54% of re-
ports affecting old files. We used a chi-square test2 to
establish statistical significance: The probability a dif-
ference of this magnitude appearing by chance is nearly
zero (p = 3.8 × 10−13).
However, the choice of 2 years as a threshold is some-

what arbitrary and could have been made to maximize
the apparent disparity in triage rates, so we performed the
same calculations for a wide range of age thresholds and
plotted the triage rates for old and young files with each
threshold along the x-axis in Figure 1. For all choices of
thresholds within the range of our dataset (points along
the x-axis), older files (marked by +) had a lower triage
rate than younger files (marked by -). The differences
are all significant with p < 0.01 in a chi-square test.

2The chi-square test for equality of proportions can determine
whether the proportion of occurrences of one binary variable (e.g., will
a particular report be triaged?) depends on the value of another bi-
nary variable (e.g., is file age less than 2 years?). This test produces
a p-value that expresses the probability a purported difference in pro-
portions could have arisen by chance; typically, p < 0.01 indicates
statistical significance.

% triaged vs. num. lines in file

(symbols in gray are NOT significant at p = 0.01)
Threshold for num. lines in file

Pe
rc

en
t t

ria
ge

d

100 400 700 1000 1300 1600 1900 2200 2500 2800 3100

0
10

20
30

40
50

60 +
−

+

−
+− +

−
+
−

+
−

+
−

+
−

+
−
+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

2000 lines

Figure 2: Percent of reports triaged in files larger (+) and
smaller (−) than a threshold number of lines. At 2000
lines, there is a 21% relative difference (53% vs. 64%).

Result 3: Bug reports in smaller files are more likely
to be triaged
Our dataset consists of 14,646 .c source files added

between 2002 and 2007; out of these, 68% had less than
500 lines, 86% less than 1000 lines, and 95% less than
2000 lines. Figure 2 shows that, for most thresholds, re-
ports in smaller files (marked with -) are more likely to
be triaged than those in larger files (marked with +). The
disparity is not as large as that for age, though; thresholds
below 1000 lines result in differences that fail to achieve
statistical significance at p = 0.01 in a chi-square test
(denoted by grayed-out symbols in Figure 2).
One developer offered these possible causes:

“Possibly, perhaps due to the buried in warn-
ings syndrome. Perhaps also because smaller
files are easier to modify.” (Dev C)

Developers can be overwhelmed when viewing too many
reports at once, becoming “buried in warnings”. Smaller
files usually contain fewer reports, so developers might
be more willing to triage reports in those files.
Also, smaller files are easier to understand and modify

since they usually have fewer functions and implement
simpler and more self-contained features. When Phang
et al. performed a user study where subjects triaged bug
reports from a static analysis tool, they found that com-
plexity of program paths and inter-procedural control
flow made the triaging task more difficult [12].

Result 4: Triage rates vary across kernel sub-systems

Table 2 shows triage rates for files in different sub-
systems (split by top-level directory). As expected, core
kernel files had the highest triage rate (in addition to
files in the kernel/ directory, we also included arch/
since it contains many architecture-specific core kernel

288	 2009 USENIX Annual Technical Conference	 USENIX Association

Sub-system: # reports % triaged med. days
core kernel 79 67% 1
drivers 1,329 64% 14
memory 16 63% 3
filesystems 309 59% 13.5
networking 341 47% 14

Table 2: Percent of reports triaged by sub-system, and
median number of days it took to triage each report.

files). Also, reports in core kernel and memory manage-
ment (mm/) code were triaged much faster than reports
in larger sub-systems that contain some more obscure
code (e.g., there are numerous rarely-deployed drivers,
filesystems, and network protocols). Surprisingly, driver
bugs had the second highest triage rate; many drivers
are rarely used and aren’t actively maintained, so we ex-
pected far fewer driver bugs to be triaged.

Independence of factors: A problem that arises when
presenting a series of single-variable correlations (like
we’ve done in this section for factors that correlate
with triage rates) is that these factors might be cross-
correlated, thereby diminishing the validity of the results.

To show that our factors have independent effects, we
built a logistic regression model3 to predict whether par-
ticular Coverity Scan reports will be triaged; we describe
our model’s details in a technical report [8]. We used the
four factors in this section — checker type, file age, file
size, and sub-system — in our model. We determined
that all factors had independent effects by incrementally
adding each one to an empty model and observing that
the model’s deviance (error) decreases by a statistically
significant amount for all added factors (a standard tech-
nique called Analysis of Deviance). Checker type was
the strongest factor because it decreased our model’s de-
viance by the greatest amount.

Redundant factors: Other factors also significantly cor-
related with triage rates, most notably the number of
patches and number of developers modifying the affected
file. However, both are highly dependent on file age: In-
tuitively, the longer a file has been alive, the more oppor-
tunities it has for receiving patches and for having more
developers. Since the kernel developers in our question-
naire responded most favorably to file age as a deter-
miner for whether reports are triaged and did not prefer
the other two related factors as much, we used file age in
our model and discarded the other two factors.

3A logistic regression model aims to predict the value of a binary
variable (e.g., will a particular report be triaged?) using a combination
of numerical (e.g., file age) and categorical factors (e.g., checker type).

Unsure 1 month 3 months 6 months 1 year
≥ 18% 23% 36% 54%
< 18% 17% 17% 17%

p-value 0.96 0.07 ∼ 0 ∼ 0

True Bug 1 month 3 months 6 months 1 year
≥ 27% 23% 18% 11%
< 35% 35% 34% 33%

p-value 0.05 0.008 0.02 0.06

Table 3: Percent of triaged reports that were marked as
unsure (top) and as true bug (bottom), split by time it
took to triage each report (with chi-square p-values).

Discussion: Static analysis tools can produce thousands
of bug reports, but those reports are useless unless devel-
opers triage them. Tool makers can use factors like those
described in this section to build models to predict the
likelihood that particular future reports will be triaged.
The tools can then first show developers reports that are
most likely to be triaged. This type of ranking system is
currently deployed at Google [3, 13].

3 Which reports are triaged more quickly?

Result 5: The longer it takes to triage a bug report,
the lower chance of it being marked as a true bug
Table 3 shows that the longer it takes for a report to be

triaged, the more likely it will be marked as unsure (ve-
racity could not be determined) and less likely marked as
a true bug. For example, 54% of reports triaged over one
year after their release dates (the “≥” row) were marked
as unsure, versus only 17% of reports triaged within one
year (“<” row). Correspondingly, 11% of reports triaged
over one year after their release dates were marked as
true bug, versus 33% of those triaged within one year.

Discussion: Without a policy forcing certain bugs to be
triaged, developers tend to triage the simplest bugs first:

“True, people first go after the low hanging
fruits and complicated reports might stay un-
triaged.” (Dev A)

Once confirmed, these quickly-triaged reports are usu-
ally easy to silence by adding a few lines of code like an
extra null pointer check (the median size of a Coverity
bugfix patch is 3 lines, versus 11 lines for all patches).
However, these seemingly superficial bugs often indicate
deeper misunderstandings of program invariants or inter-
faces, so the affected code should be audited more care-
fully. In a mailing list discussion about Coverity bugs,

USENIX Association	 2009 USENIX Annual Technical Conference	 289

given: Pr(all reports triaged)
unconditional 46%
≥ 1 reports triaged 65%
≥ 2 reports triaged 87%

given: Pr(all reports un-triaged)
unconditional 30%
≥ 1 reports un-triaged 55%
≥ 2 reports un-triaged 79%

Table 4: Probabilities of all reports in a file-scan session
being triaged or un-triaged, for sessions with≥ 2 reports.

one developer shows concern that others are submitting
quick “fixes” rather than figuring out their root causes:

“Considering the very important flow of
patches you are sending these days, I have to
admit I am quite suspicious that you don’t re-
ally investigate all issues individually as you
should, but merely want to fix as many bugs
as possible in a short amount of time. This
is not, IMVHO [in my very humble opinion],
what needs to be done.” [6]

Given these natural tendencies, it might be effective to
enforce policies to make developers triage more com-
plicated but potentially critical reports and to carefully
investigate each one before submitting a patch, perhaps
even requiring sign-offs from multiple triagers.

If a report isn’t triaged quickly, then it might either
never be triaged or be marked as unsure:

“Many maintainers have an inbox-is-todo-list
mentality when it comes to bugfixes. If they re-
ceive a scan report and don’t act on it quickly
then it’s likely it’s left the inbox and left the
maintainer’s thoughts forever.” (Dev D)

This problem of fading memories could be alleviated if
reports were immediately brought to the attentions of
relevant developers (e.g., those who created or recently
modified the file). To do so, developers could run bug-
finding tools continuously while coding (e.g., PREfast at
Microsoft [11]) rather than making monolithic nightly or
weekly scans over the entire codebase. Ayewah et al.
suggest triaging static analysis warnings as part of the
code review process [3]. Also, a bug database could pe-
riodically remind developers who are responsible for a
file to look at its un-triaged bug reports.

Num. triaged reports

N
um

. u
n−

tri
ag

ed
 re

po
rts

4

29 1

5

1

1

27

1

13

7

1

2

1

1

4

3

149

1

2

1

3

2

6

1

731

1

1

425

2

4

1

108

1

1

63

0 2 4 6 8

0
2

4
6

8
10

Figure 3: L-shaped clustering of triaged reports: Each
dot is labeled with the number of file-scan sessions that
have the given numbers of triaged and un-triaged reports.

4 Within-file clustering of triaged reports

Result 6: If one report in a file is triaged, then it’s
likely that all other reports in that file will be triaged

Triaged reports are clustered in space: During a partic-
ular scan, if a developer triages one report in a file, then
he/she will likely triage all other reports in that file. We
call one of these sessions of triaging bugs within one file
during a particular scan a file-scan session.
Figure 3 visualizes this clustering: Each dot represents

a collection of file-scan sessions that have a given num-
ber of triaged vs. un-triaged reports. Its salient feature
is the L-shaped distribution — there are many sessions
along the vertical axis representing 0 triaged reports and
along the horizontal axis representing 0 un-triaged re-
ports. This pattern shows that either all reports in a ses-
sion are triaged or left un-triaged. (Kremenek et al. used
a similar diagram to visualize clustering of true bugs vs.
false positives [10].)
Table 4 quantifies the amount of clustering: The prob-

ability that all reports in a session are triaged (or un-
triaged) rise markedly when at least 1 or 2 reports are
triaged (or un-triaged). The largest dots in Figure 3 are
located at (1, 0) and (0, 1), representing sessions with
only 1 report per file. We excluded these singleton ses-
sions from the calculations in Table 4, since clustering is
only meaningful for sessions with multiple reports.

290	 2009 USENIX Annual Technical Conference	 USENIX Association

What happened to reports in prev. scan: Pr(triage)
0 reports triaged 50%
≥ 1 reports triaged 59%
≥ 1 marked true bug 67%
≥ 1 marked true bug and fixed 80%
≥ 1 marked false positive 56%
unconditional probability 54%

Table 5: Probabilities of reports being triaged in a file
during any particular scan, given what happened to re-
ports in that file in the scan immediately preceding it.
We used the 280 files that have reports from ≥ 2 scans.

Result 7: Triaging, verifying, and fixing reports in-
crease the probability of triaging future reports

Clustering also extends across time: If a report is
triaged, then future reports in that same file are more
likely to be triaged. Table 5 shows the probabilities of
reports in a scan being triaged, given what happened to
reports in the scan immediately preceding it. Only 50%
of reports were triaged when no reports in the same file
were triaged in the previous scan. If at least 1 previ-
ous report was triaged, then the conditional probability
rises to 59%, and it increases further if those reports were
marked as true bugs (67%) and were fixed (80%).
Each act of triaging a bug report shows that some de-

veloper cares about bugs in that file, and verifying and
fixing bugs are even stronger indicators. In contrast, if
developers are given the opportunity to triage a report
but do not do so, then either it’s too hard to diagnose or
nobody cares about bugs in that file.

Result 8: False positives decrease the probability of
triaging future reports

If developers mark reports in a particular scan as false
positives, then they are less likely to triage future reports
in the same file, versus had they marked them as true
bugs (56% vs. 67% triaged):

“False positives tend to lower the maintainer’s
trust of the tool and are more likely then to let
future reports from the same tool slip.” (Dev D)

Looking back at Table 1, the 2 checkers with the highest
false positive rates also had the largest decreases in triage
rates between the initial and subsequent scans (marked
with the † symbol). Developers triaged most initial scan
reports from those checkers (72%), but after encounter-
ing too many false positives, they triaged substantially
fewer reports in subsequent scans.
However, the triage rate when previous reports were

marked as false positives is still greater than when previ-
ous reports went un-triaged (56% vs. 50%), since the act

of triaging shows that somebody cares about that file.

Discussion: To encourage adoption of static analysis
tools, it might be useful to assign the easiest reports
(those with the highest triage rates) to developers who
are new to the tool, to encourage them to keep triaging:

“The kernel is such a big project then [sic]
triaging bug reports can be quite intimidating
[...] Once a developer has got some confidence
up in a subsystem they are more likely to step
up to the plate and triage again.” (Dev D)

Also, clustering of report triaging shows that devel-
opers have sustained interest in certain files and don’t
simply triage reports without regard to the files they are
in. Frequently-triaged files likely contain more important
code. In fact, triage frequency might be a better indicator
of code importance than number of recent patches, since
we’ve observed that many unmaintained files still receive
trivial patches when module-wide interfaces are updated.
Once we flag which files are more important to de-

velopers, we can customize bug-finding tools to perform
deeper and more precise analysis on those files, which
can potentially reduce false positives.

5 Static analysis bug reports as indicators
of user-reported bugs

We define a user-reported bug as one that was not re-
ported by Coverity or Sparse [1], the two sources that
comprise the vast majority of static analysis bug reports
for Linux. As a proxy, we record patches that fix user-
reported bugs (rather than occurrences of such bugs)
since users only report symptoms and cannot pinpoint
specific files as causes; in contrast, bugfix patches and
static analysis reports always target specific files.

Result 9: Files and modules with more bugs found by
static analysis also contain more user-reported bugs
The Spearman’s rank correlation between the number

of Coverity Scan reports in each file and the number of
patches that fix user-reported bugs is 0.27, which is sta-
tistically significant but somewhat weak. It’s difficult to
get high Spearman correlations since most files had less
than 3 reports. To get a cleaner signal, Microsoft re-
searchers used static analysis reports to predict bug den-
sity in modules rather than in files [11]. We also calcu-
lated correlations for bugs aggregated over entire direc-
tories (1,203 total), which serve as ad-hoc kernel mod-
ules, and our correlation grew substantially to 0.56. The
Microsoft study found a similar module-level correlation
of 0.58 between static analysis bugs and pre-release bugs
found by QA in theWindows Server 2003 codebase [11].

USENIX Association	 2009 USENIX Annual Technical Conference	 291

Time elapsed since initial scan on Feb 24, 2006
Files in initial scan with: # files 1 month 3 months 6 months 1 year ∞ entire lifetime

Percent of files containing fixes for user-reported bugs
no Coverity reports 7,504 4% 9% 17% 35% 45% 69%
≥ 1 reports 633 13% 24% 39% 55% 66% 92%
≥ 1 triaged reports 444 14% 25% 41% 58% 68% 92%
≥ 2 reports 197 17% 28% 45% 65% 75% 96%

Mean number of fixes for user-reported bugs per file
no Coverity reports 7,504 0.06 0.12 0.27 0.61 0.98 2.8
≥ 1 reports 633 0.17 0.38 0.72 1.35 2.17 7.4
≥ 1 triaged reports 444 0.18 0.40 0.75 1.44 2.32 7.8
≥ 2 reports 197 0.28 0.63 1.06 1.86 2.79 9.4

Table 6: Numbers of initial scan Coverity reports versus numbers of future fixes for user-reported bugs, calculated for
all 8,137 .c files alive during the initial scan. Values don’t change considerably for ≥ 3 reports.

Surprisingly, reports that developers have marked
as false positives still somewhat correlate with user-
reported bugs, with a file-level correlation of 0.15 and
directory-level correlation of 0.42. One possible expla-
nation is that static analysis tools are more likely to pro-
duce false positives when analyzing more semantically-
complex and convoluted code, which is more likely to
contain latent functional correctness bugs that users will
later report. For example, a veteran developer triaged a
static buffer overrun report in an InfiniBand networking
driver, marked it as a true bug, and then a day later re-
marked it as a false positive, noting in the bug database:

“It’s horrible, but after looking deeper, in-
cluding looking at the callers, I’m now con-
vinced it’s correct (this code only gets called
in 64bit kernels where longs are double the size
of ints).” (Dev A)

Files like this one with code that even baffles a veteran
developer probably also contain subtle correctness bugs.

Result 10: Bugs found by static analysis can predict
future user-reported bugs in the same file
Not only are numbers of Coverity and user-reported

bugs correlated, but the presence of Coverity bugs can
foreshadow a file having user-reported bugs in the future.
We considered all 8,137 .c files alive during the ini-

tial scan on Feb 24, 2006, to simplify calculations and
to prevent biases due to files being added over time. We
partitioned files into subsets based on how many reports
from that initial scan affected each file. For example, the
“≥ 1 reports” rows of Table 6 are for all files with at
least 1 report. For each file, we counted the number of
bugfix patches for user-reported bugs in the subsequent
1 month, 3 months, 6 months, 1 year, and the rest of
the file’s life (the “∞” column). We also counted bugfix

patches over each file’s entire lifetime, which takes into
account patches that occurred before the initial scan.
As a sanity check, the numbers increase across each

row of Table 6 because the more time elapses, the more
likely it is for files to receive bugfix patches.

Scanning down each column, we can compare values
across files with varying numbers of Coverity reports.
More reports boosts the chances of future (fixes for) user-
reported bugs, as shown by the numbers increasing down
each column. Note that having at least one triaged re-
port is a slightly better predictor than simply having one
report, because triaging shows that someone is actively
monitoring that file. For instance, the “1 month” column
shows that 13% of files with initial scan reports had fixes
for user-reported bugs in the next month, versus only 4%
of files with no reports (over 3X greater). The mean num-
ber of user-reported bugs per file — 0.17 vs. 0.06 — was
also 3X greater. This 3X increase is consistent across all
time scales.

Discussion: Static analysis tools excel at finding generic
errors (e.g., like those in Table 1) but cannot usually find
higher-level functional correctness bugs like those that
users report (e.g., driver X doesn’t do the right thing
when fed this input). However, results like ours and re-
lated work on a commercial codebase at Microsoft [11]
show that static analysis tools can be useful for pointing
developers towards regions within the codebase that are
more error-prone, which is cost-effective because these
tools can be run automatically and continuously.

In fact, some kernel developers advocate using static
analysis tools in exactly this manner: directing develop-
ers’ attentions towards potentially buggy code:

“Coverity and similar tools are a true oppor-
tunity for us to find out and study suspect parts
of our code. Please do not misuse these tools!
The goal is NOT to make the tools happy next

292	 2009 USENIX Annual Technical Conference	 USENIX Association

time you run them, but to actually fix the prob-
lems, once and for all. If you focus too much on
fixing the problems quickly rather than fixing
them cleanly, then we forever lose the oppor-
tunity to clean our code, because the problems
will then be hidden.” [6]

This use case could partially explain the low incidence
of fixes (only 8% of triaged reports were confirmed as
bugs and fixed). Developers might want to purposely
leave in errors as markers for “suspect parts” of the code-
base until that code can be properly audited and fixed.

6 Related Work

To our knowledge, Google researchers did the closest re-
lated work in terms of studying developer responses to
static analysis bug reports. Ayewah et al. described ex-
periences with deploying FindBugs at Google [3], where
two dedicated test engineers triaged all bug reports. In
contrast, our study focuses on open source code where
26 kernel developers triaged reports. Ruthruff et al. built
a logistic regression model to predict which FindBugs
reports at Google were likely to be triaged or marked as
false positives [13], using factors similar to those we de-
scribe in Section 2 and in our technical report [8].
Nagappan and Ball found a correlation between bugs

reported by the PREfix/PREfast static analysis tools and
pre-release defects found by testers within modules in
Microsoft Windows Server 2003 [11]. We performed a
similar analysis in Section 5 and found similar correla-
tions, albeit using a different analysis tool and codebase.
In terms of static analysis bug reports for the Linux

kernel, Chou et al. quantified distributions and lifetimes
of kernel bugs found by a precursor of Coverity Pre-
vent [4]. Kremenek et al. proposed a technique for in-
corporating developer feedback to filter and rank reports
so as not to overwhelm triagers, and performed an eval-
uation on bug reports issued for kernel code [10].
Other work related to bug report triaging include pri-

oritization and ranking of reports [9], optimizing assign-
ments of triagers to specific reports [2], and graphical
user interfaces for facilitating the triaging process [12].

7 Limitations

We evaluated developer responses to static analysis bug
reports in an open source setting where there were no
organizational policies for triaging or fixing these bugs.
Findings might differ in a corporate setting where static
analysis is integrated into the workflow. With any empir-
ical study, we must be cautious about over-generalizing
based solely upon data analysis; trying to infer human in-
tentions from code-related artifacts is a difficult problem.

Thus, we tried to support our claims using anecdotes
gathered from kernel developers. Also, similar findings
from other researchers working with different tools and
codebases make our results more generalizable.

Acknowledgments

We thank David Maxwell for providing the Coverity
dataset, Greg Little and Derek Rayside for help with
questionnaire design, kernel developers who responded
to our questionnaire, Joel Brandt, Cristian Cadar, Imran
Haque, David Maxwell, Derek Rayside, and our shep-
herd George Candea for comments on this paper and
its earlier drafts. This research was supported by NSF
TRUST grant CCF-0424422 and the NDSEG fellowship.

References
[1] Sparse – A Semantic Parser for C, http://www.kernel.

org/pub/software/devel/sparse/.
[2] ANVIK, J., HIEW, L., AND MURPHY, G. C. Who should fix

this bug? In ICSE ’06: Proceedings of the 28th international
conference on Software engineering (May 2006), pp. 361–370.

[3] AYEWAH, N., HOVEMEYER, D., MORGENTHALER, J. D.,
PENIX, J., AND PUGH, W. Using static analysis to find bugs.
IEEE Softw. 25, 5 (2008), 22–29.

[4] CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND ENGLER,
D. An empirical study of operating systems errors. In SOSP ’01:
Proceedings of the symposium on Operating Systems Principles
(2001), pp. 73–88.

[5] COVERITY. Coverity Scan Open Source Report 2008, http:
//scan.coverity.com/report/.

[6] DELVARE, J. Email: Re: Do not misuse Coverity please —
http://lkml.org/lkml/2005/3/27/131. Linux Ker-
nel Mailing List (Mar. 2005).

[7] GUO, P. J. Email: research questionnaire about kernel develop-
ment — http://lkml.org/lkml/2008/8/7/98. Linux
Kernel Mailing List (Aug. 2008).

[8] GUO, P. J. Using logistic regression to predict developer re-
sponses to Coverity Scan bug reports. Tech. Rep. CSTR 2008-04,
Stanford Computer Systems Lab, Stanford, CA, July 2008.

[9] KIM, S., AND ERNST, M. D. Which warnings should I fix first?
In ESEC-FSE ’07: Proceedings of symposium on the foundations
of software engineering (2007), ACM, pp. 45–54.

[10] KREMENEK, T., ASHCRAFT, K., YANG, J., AND ENGLER, D.
Correlation exploitation in error ranking. SIGSOFT Softw. Eng.
Notes 29, 6 (2004), 83–93.

[11] NAGAPPAN, N., AND BALL, T. Static analysis tools as early
indicators of pre-release defect density. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engineering
(2005), ACM, pp. 580–586.

[12] PHANG, K. Y., FOSTER, J. S., HICKS, M., AND SAZAWAL, V.
Path projection for user-centered static analysis tools. In PASTE
’08: Proceedings of the 8th ACM workshop on Program analysis
for software tools and engineering (2008).

[13] RUTHRUFF, J. R., PENIX, J., MORGENTHALER, J. D., EL-
BAUM, S., AND ROTHERMEL, G. Predicting accurate and ac-
tionable static analysis warnings: an experimental approach. In
ICSE ’08: Proceedings of the 30th international conference on
Software engineering (2008), ACM, pp. 341–350.

USENIX Association	 2009 USENIX Annual Technical Conference	 293

Hardware Execution Throttling for Multi-core Resource Management ∗

Xiao Zhang Sandhya Dwarkadas Kai Shen

Department of Computer Science, University of Rochester

{xiao, sandhya, kshen}@cs.rochester.edu

Abstract

Modern processors provide mechanisms (such as duty-

cycle modulation and cache prefetcher adjustment) to

control the execution speed or resource usage efficiency

of an application. Although these mechanisms were orig-

inally designed for other purposes, we argue in this pa-

per that they can be an effective tool to support fair use

of shared on-chip resources on multi-cores. Compared

to existing approaches to achieve fairness (such as page

coloring and CPU scheduling quantum adjustment), the

execution throttling mechanisms have the advantage of

providing fine-grained control with little software system

change or undesirable side effect. Additionally, although

execution throttling slows down some of the running ap-

plications, it does not yield any loss of overall system

efficiency as long as the bottleneck resources are fully

utilized. We conducted experiments with several sequen-

tial and server benchmarks. Results indicate high fair-

ness with almost no efficiency degradation achieved by a

hybrid of two execution throttling mechanisms.

1 Introduction
Modern multi-core processors may suffer from poor

fairness with respect to utilizing shared on-chip re-

sources (including the last-level on-chip cache space and

the memory bandwidth). In particular, recent research ef-

forts have shown that uncontrolled on-chip resource shar-

ing can lead to large performance variations among co-

running applications [5,17]. Such poor performance iso-

lation makes an application’s performance hard to pre-

dict and consequently it hurts the system’s ability to pro-

vide quality-of-service support. Even worse, malicious

applications can take advantage of such obliviousness to

on-chip resource sharing to launch denial-of-service at-

tacks and starve other applications [10].

Much research has tried to tackle the issue of fair re-

source utilization on multi-core processors. Some re-

quire significant new hardware mechanisms that are not

available on commodity platforms [1, 3, 14, 17]. Without

extra hardware support, the operating system must resort

∗This work was supported in part by the NSF grants CNS-0411127,

CAREER Award CCF-0448413, CNS-0509270, CNS-0615045, CNS-

0615139, CCF-0621472, CCF-0702505, and CNS-0834451; by NIH

grants 5 R21 GM079259-02 and 1 R21 HG004648-01; and by several

IBM Faculty Partnership Awards.

to software techniques such as page coloring to achieve

cache partitioning [4, 9, 13, 15, 16] and CPU schedul-

ing quantum adjustment to achieve fair resource utiliza-

tion [5]. However, page coloring requires significant

changes in the operating system memory management,

places artificial constraints on system memory allocation

policies, and incurs expensive re-coloring (page copying)

costs in dynamic execution environments. CPU schedul-

ing quantum adjustment suffers from its inability to pro-

vide fine-grained quality of service guarantees.

In this paper, we argue that hardware execution throt-

tling can efficiently manage on-chip shared resources

with much less complexity and overhead than exist-

ing alternatives, while providing the necessary granu-

larity of quality of service. Specifically, we investigate

the use of existing hardware mechanisms to control the

cache/bandwidth consumption of a multi-core processor.

Commodity processors are deployed with mechanisms

(e.g., duty cycle modulation and dynamic voltage and

frequency scaling) to artificially slow down execution

speed for power/thermal management [7]. By throttling

down the execution speed of some of the cores, we can

control an application’s relative resource utilization to

achieve desired fairness or other quality-of-service ob-

jectives. In addition to direct throttling of CPU speed,

we also explore the existing mechanism of controlling

L1 and L2 cache hardware prefetchers. Different cache

prefetching configurations also allow us to manage an

application’s relative utilization of the shared memory

bandwidth and cache space.

2 Multi-core Resource Management

Mechanisms
2.1 Hardware Execution Throttling

One mechanism to throttle a CPU’s execution speed

available in today’s multi-core platforms is dynamic volt-

age and frequency scaling. However, on some multi-

core platforms, sibling cores often need to operate at the

same frequency [11]. Intel provides another mechanism

to throttle per-core execution speed, namely, duty-cycle

modulation [7]. Specifically, the operating system can

specify a portion (e.g., multiplier of 1/8) of regular CPU

cycles as duty cycles by writing to the logical processor’s

IA32 CLOCK MODULATION register. The processor

is effectively halted during non-duty cycles. Duty-cycle

294	 2009 USENIX Annual Technical Conference	 USENIX Association

Prefetchers Description

L1 IP Keeps track of instruction pointer and looks for

sequential load history.

L1 DCU When detecting multiple loads from the same line

within a time limit, prefetches the next line.

L2 Adjacent Line Prefetches the adjacent line of required data.

L2 Stream Looks at streams of data for regular patterns.

Table 1: Brief description of four L1/L2 cache prefetchers on

Intel Core 2 Duo processors [7].

modulation was originally designed for thermal manage-

ment and was also used to simulate an asymmetric CMP

in recent work [2].

Execution throttling is not work-conserving since it

leaves resources partially idle while there are still ac-

tive tasks. Consequently, there is potential cause for con-

cern about lost efficiency in the pursuit of fairness. We

argue that careful execution throttling only affects the

relative resource use among co-running applications. It

should not degrade the overall system efficiency as long

as the bottleneck resource (shared cache space or mem-

ory bandwidth) is fully utilized.

Today’s commodity processors often perform hard-

ware prefetching, which helps hide memory latency by

taking advantage of bandwidth not being used by on-

demand misses. However, in a multi-core environ-

ment, the result might be contention with the on-demand

misses of concurrently executing threads. The hardware

prefetchers are usually configurable. For example, on

Intel Core 2 Duo processors, there are two L1 cache

prefetchers (DCU and IP prefetchers) and two L2 cache

prefetchers (adjacent line and stream prefetchers) [7].

Table 1 briefly describes the prefetchers on our test plat-

form. Each can be selectively turned on/off, providing

partial control over a thread’s bandwidth utilization.

Both duty-cycle modulation and prefetcher adjustment

can be used to throttle an application’s execution speed.

The former directly controls the number of accesses to

the cache (the execution speed), thereby affecting cache

pressure and indirectly the bandwidth usage, while the

latter directly controls bandwidth usage, thereby affect-

ing cache pressure and indirectly affecting execution

speed. Adjusting the duty cycle alone might not result

in sufficient bandwidth reduction if the prefetching is ag-

gressive, while adjusting the prefetching alone might not

reduce cache pressure sufficiently. Both mechanisms can

be combined to arrive at fair resource allocation.

On our platform, configuring the duty cycle takes

265 + 350 (read plus write register) cycles; configuring

the prefetchers takes 298 + 2065 (read plus write regis-

ter) cycles. The control registers also specify other fea-

tures in addition to our control targets, so we need to read

their values before writing. The longer time for a new

prefetching configuration to take effect is possibly due to

clearing obsolete prefetch requests in queues. Roughly

speaking, the costs of configuring duty cycle modula-

tion and cache prefetcher are 0.2 and 0.8 microseconds

respectively on our 3.0 GHz machine.

Enabling these mechanisms requires very little oper-

ating system software modification. Our changes to the

Linux kernel source are ∼40 lines of code in a single file.

2.2 Alternative Mechanisms
Cache Partitioning Page coloring, a technique orig-

inally proposed for cache conflict mitigation [8, 12], is

a software technique that manipulates mapping between

memory and cache. Memory pages that are mapped to

the same cache blocks are labeled to be in the same

color. By manipulating the allocation of colors to ap-

plications, the operating system can partition a cache at

page granularity (strictly speaking, at a granularity of

PageSize times CacheAssociativity). The maximum

number of colors that a platform can support is deter-

mined by CacheSize
PageSize×CacheAssociativity

.

Page coloring has recently been used to manage cache

allocation [4, 9, 13, 15] by isolating cache space usage

among applications. However, page coloring has a num-

ber of important drawbacks [16]. First, during dynamic

executions in multi-programmed environments, the re-

source manager may decide to change an application’

cache share due to a priority change or a change in the

set of simultaneously executing processes. This would

require re-coloring of a potentially large number of mem-

ory pages with each re-coloring typically requiring an ex-

pensive page copy. As a quantitative reference, copying a

single page costs around 3 microseconds on our platform,

which is already much more expensive that the configu-

ration (or re-configuration) of hardware execution throt-

tling mentioned earlier.

The second drawback is that page coloring enforces

strict memory to cache mapping and introduces artificial

memory allocation constraints. For example, an applica-

tion allocated one eighth of all cache colors is also enti-

tled to only one eighth of the total memory space. This

artificial memory allocation constraint may force an ap-

plication to run out of its entitled memory space while

many free pages are still available in other colors.

Finally, compared to hardware execution throttling,

page coloring requires more significant changes in the

operating system memory management code. Our in-

complete implementation of page coloring (without full

support for page re-coloring) involves more than 700

lines of Linux source code changes in 10 files.

In addition to software-based cache management

mechanisms, several hardware-level mechanisms have

also been proposed [1, 14, 17]. They generally re-

quire adding new hardware counters/tags to monitor fine-

grained cache usage, and modify the cache replacement

policy based on applications’ resource entitlements. It is

also possible to implement associativity-based cache par-

USENIX Association	 2009 USENIX Annual Technical Conference	 295

titioning (called column caching in [3]), which is a trade-

off between control flexibility and deployment overhead.

While such hardware mechanisms could be beneficial,

we focus here on mechanisms available in today’s com-

modity platforms.

CPU Scheduling Quantum Adjustment Fedorova et

al. proposed a software method to maintain fair resource

usage on multi-cores [5]. They advocate adjusting the

CPU scheduling time quantum to increase or decrease

an application’s relative CPU share. By compensat-

ing/penalizing applications under/over fair cache usage,

the system tries to maintain equal cache miss rates across

all applications (which is considered fair). To derive the

fair cache miss rate, they profile an application’s behav-

ior with several different co-runners.

The key drawback of CPU scheduling quantum adjust-

ment is that it only achieves fairness at granularities com-

parable to the scheduling time quantum. This would lead

to unstable performance of fine-grained tasks (such as

individual requests in a server system).

3 Evaluation and Results Analysis
We enabled the duty-cycle modulation and cache

prefetcher adjustment mechanisms by modifying the

Linux 2.6.18 kernel. Our experiments were conducted

on an Intel Xeon 5160 3.0 GHz “Woodcrest” dual-core

platform. The two cores share a single 4 MB L2 cache

(16-way set-associative, 64-byte cache line, 14 cycle la-

tency, writeback).

Our evaluation benchmarks include three programs

from SPECCPU2000: swim, mcf, and equake. We also

employ two server-style benchmarks (SPECjbb2005 and

SPECweb99) in our evaluation. SPECjbb is configured

with four warehouses and a 500 MB heap size. SPECweb

is hosted on the Apache web server 1.3.33. When run-

ning alone, swim, mcf, and equake take 136.1, 46.1, and

67.5 seconds respectively to complete. We bind each

server application to a single core to get its baseline per-

formance. SPECjbb delivers a throughput of 17794.4 op-

erations/second and SPECweb delivers a throughput of

361.5 web requests/second.

Optimization Goal and Policy Settings We measure

several approaches’ ability to achieve fairness and, in ad-

dition, evaluate their efficiency. There are several possi-

ble definitions of fair use of shared resources [6]. The

particular choice of fairness measure should not affect

the main purpose of our evaluation. In our evaluation,

we use communist fairness, or equal performance degra-

dation compared to a standalone run for the application.

Based on this fairness goal, we define an unfairness fac-

tor metric as the coefficient of variation (standard devi-

ation divided by the mean) of all applications’ perfor-

mance normalized to that of their individual standalone

run. We also define an overall system efficiencymetric as

the geometric mean of all applications’ normalized per-

formance.

We consider two execution throttling approaches. One

is based on the per-core duty cycle modulation. An-

other is a hybrid approach that employs both duty cycle

modulation and cache prefetcher adjustment. We imple-

ment two additional approaches in the Linux kernel for

the purpose of comparison: an ideal page coloring ap-

proach (one that uses a statically defined cache partition

point and incurs no page recoloring cost) and schedul-

ing quantum adjustment using an idle process to control

the amount of CPU time allocated to the application pro-

cess. As a base for comparison, we also consider de-

fault sharing—running two applications on a dual-core

processor under the default hardware/software resource

management.

For each approach other than default sharing, we man-

ually try all possible policy decisions (i.e., page color-

ing partitioning point, duty cycle modulation ratio, cache

prefetcher configuration, and idle process running time)

and report the result for the policy decision yielding the

best fairness. Since the parameter search space when

combining duty cycle modulation and prefetcher con-

figuration is large, we explore it in a genetic fashion.

Specifically, we first select default and a few duty cycle

modulation settings that achieve reasonably good fair-

ness and then tune their prefetchers to find a best config-

uration. In most cases, duty-cycle modulation and duty-

cycle & prefetch reach the same duty-cycle ratio except

for {swim, SPECjbb}. In this case, setting swim’s duty-

cycle to 5/8 has a similar throttling effect to disabling its

L2 stream prefetcher.

Figure 1 illustrates the page coloring-based cache par-

tition settings yielding the best fairness. Table 2 lists

the best-fairness policy settings for the hybrid hardware

throttling (duty cycle modulation and cache prefetcher

configuration) and scheduling quantum adjustment re-

spectively. All cache prefetchers on our platform are per-

core configurable except the L2 adjacent line prefetcher.

Best Fairness Figure 2 shows the fairness results (in

terms of the unfairness factor) when running each pos-

sible application pair on the two cores (running two in-

stances of the same application shows an unfairness fac-

tor close to 0 in all cases, so we do not present these

results in the figure). On average, the unfairness fac-

tor is 0.191, 0.028, 0.025, 0.027, and 0.017 for default

sharing, page coloring, scheduling quantum adjustment,

duty-cycle modulation, and duty-cycle & prefetch, re-

spectively. Default sharing demonstrates a higher unfair-

ness factor in several cases. The level of unfairness is a

function of the properties of the co-running applications.

If their cache and bandwidth usage requirements are sim-

ilar, the unfairness factor is low. If the requirements are

296	 2009 USENIX Annual Technical Conference	 USENIX Association

0

8

16

24

32

40

48

56

64

N
u

m
b

e
r

o
f

c
o

lo
re

d
 c

a
c
h

e
 s

h
a

re
s

sw
im

m
cf

sw
im

eq
ua

ke

sw
im

SPEC
jb
b

sw
im

SPEC
w
eb

m
cf

eq
ua

ke

m
cf

SPEC
jb
b

m
cf

SPEC
w
eb

equake

SPEC
jb
b

equake

SPEC
w
eb

SPEC
jbb

SPEC
w
eb

Figure 1: Cache partition settings under page coloring to

achieve best fairness. Our experimental platform supports at

most 64 colors and therefore the shared 4 MB L2 cache is di-

vided into 64 shares. Results are shown for all possible appli-

cation pairs from our five benchmarks (pairing an application

with itself results in the cache being partitioned in half).

significantly different, and if the sum of the requirements

exceeds the available resource, the unfairness factor is

high due to uncontrolled usage.

Ideal page coloring-based cache partitioning also

shows some variation in the unfairness factor across

benchmark pairs. In particular, {swim, SPECweb}
shows a comparatively higher unfairness factor due to

two competing effects. Under page coloring, if swim

was entitled to a very small portion of the cache space,

its mapped memory pages might be less than its required

memory footprint, resulting in thrashing (page swap-

ping to disk). If swim’s cache usage is not curtailed,

SPECweb’s normalized performance is significantly af-

fected. These competing constraints result in page color-

ing not achieving good fairness (overall efficiency is also

lower than with default sharing) in this case.

While both page coloring and execution throttling

achieve better fairness than default sharing, the combi-

nation of duty cycle modulation and prefetching control

achieves a uniformly low unfairness factor below 0.03.

This uniform fairness is achieved without the additional

(not accounted for; we elaborate further later in this sec-

tion) overheads of page coloring. One can extend these

fairness goals to additional management objectives like

proportional resource allocation.

The scheduling quantum adjustment obtains similar

low unfairness factor to hardware throttling. However,

these results are calculated based on coarse-grained per-

formance measurement (i.e., at the scale of whole appli-

cation execution). When examined at finer granularity,

performance fluctuates (see Figure 4; we elaborate fur-

ther later in this section), suggesting unstable fairness.

Efficiency At Best Fairness Figure 3 shows evaluation

results on the overall system efficiency (when the best

Hardware throttling Scheduling

Co-running Duty-cycle Non-default cache quantum

applications modulation prefetcher setup adjustment

swim 5/8 Default 100/30

mcf Default Default NA

swim 7/8 Default 100/20

equake Default Enable L1 DCU NA

swim Default Disable L2 stream 100/40

SPECjbb Default Default NA

swim 6/8 Default 100/30

SPECweb Default Default NA

mcf Default Disable L2 adjacent line NA

equake 6/8 Disable L2 adjacent line 100/25

mcf Default Default NA

SPECjbb Default Default NA

mcf Default Disable L2 adj. & stream 100/5

SPECweb Default Disable L2 adjacent line NA

equake 6/8 Enable L1 DCU 100/30

SPECjbb Default Enable L1 DCU NA

equake 7/8 Default 100/30

SPECweb Default Default NA

SPECjbb Default Disable L2 stream NA

SPECweb Default Default NA

Table 2: Configurations of hardware throttling and scheduling

quantum adjustment to achieve best fairness. The duty-cycle

modulation must be a multiplier of 1/8 on our platform. The

default hardware throttling configuration is full execution speed

(or 8/8), plus enabled L1 IP, disabled L1 DCU, enabled L2 ad-

jacent line, and enabled L2 stream prefetchers. The schedul-

ing quantum adjustment adds an idle process to squeeze one’s

CPU share. For example, “100/30” means every round, the

application and idle process alternate, running for 100 and 30

milliseconds, respectively. “NA” implies no idle process was

used. Results are shown for all possible application pairs from

our five benchmarks (pairing an application with itself results

in the use of default configurations).

fairness is achieved under each approach). Here we also

include the efficiency results of running two identical ap-

plications. Note that fairness can be trivially achieved

for these cases by all mechanisms (i.e., equal cache par-

titioning under page coloring, equal setups on both cores

for execution throttling and prefetching, no scheduling

quantum adjustment). However, as the results demon-

strate, system efficiency for some of the approaches

varies. Note that for the prefetcher adjustment, we may

choose a (identical) non-default prefetcher setting for ef-

ficiency gain. Specifically, we do so in two instances:

for {mcf, mcf}, we enable the L1 DCU prefetcher and

disable the L2 adjacent line prefetcher; for {SPECjbb,

SPECjbb}, we enable the L1 DCU prefetcher and dis-

able the L2 stream prefetcher. On average, the efficiency

of all approaches is similar (roughly 0.65). Specific cases

where significant differences occur are discussed below.

For {mcf, equake} and {equake, SPECjbb}, equake

aggressively accesses the L2 cache and makes its co-

runner suffer intensive cache conflicts. Our miss ratio

profile shows that equake is not cache space sensitive,

demonstrating only a 2% increase in cache miss ratio

when varying the L2 cache space from 4 MB to 512 KB.

USENIX Association	 2009 USENIX Annual Technical Conference	 297

0

0.1

0.2

0.3

0.4

U
n

fa
ir
n

e
s
s
 f

a
c
to

r

swim, mcf
swim, equake

swim, SPECjbb

swim, SPECweb

mcf, equake

mcf, SPECjbb

mcf, SPECweb

equake, SPECjbb

equake, SPECweb

SPECjbb, SPECweb

Default sharing

Page coloring

Sched. quantum adjustment

Duty−cycle modulation

Duty−cycle & prefetch

Figure 2: Comparison of the unfairness factor (the lower the better).

0

0.2

0.4

0.6

0.8

1

O
v
e

ra
ll

e
ff

ic
ie

n
c
y

swim, mcf
swim, equake

swim, SPECjbb

swim, SPECweb

mcf, equake

mcf, SPECjbb

mcf, SPECweb

equake, SPECjbb

equake, SPECweb

SPECjbb, SPECweb

swim, swim
mcf, mcf

equake, equake

SPECjbb, SPECjbb

SPECweb, SPECweb

Default sharing

Page coloring

Sched. quantum adjustment

Duty−cycle modulation

Duty−cycle & prefetch

Figure 3: Comparison of the overall system efficiency when each approach is optimized for best fairness. We also include results

of running two identical applications.

By constraining equake to a small portion of the L2

cache, page coloring can effectively prevent pollution of

the co-runner’s cached data without hurting equake’s per-

formance. Hardware throttling approaches do not fun-

damentally solve inter-application cache conflicts and

need to slow down equake’s execution dramatically to

achieve “fair” cache sharing. In these cases, hardware

throttling has roughly 10% efficiency degradation while

page coloring improves efficiency by 23∼30% relative

to default sharing. The scheduling quantum adjustment

also achieves better efficiency than hardware throttling in

these two cases. This is because equake is less vulnerable

to inter-application cache conflicts than the other appli-

cation. By introducing an idle process to reduce equake’s

co-running time with the other application, it greatly mit-

igates the negative cache conflict impact on the other ap-

plication and therefore boosts overall efficiency. Similar

analysis also applies to {swim, mcf}.

For {mcf, mcf}, page coloring shows about 30% de-

graded efficiency relative to default sharing. mcf is a

cache-space-sensitive application. Under page coloring,

each instance of mcf gets half the cache space. When it

runs alone, mcf has a 17% cache miss ratio when given

4 MB L2 cache and that number increases to 35% with

a 2 MB L2 cache. Under sharing, two mcfs’ data ac-

cesses are well interleaved such that each gets better per-

formance than that using a 2 MB cache. Since the two

instances are equally aggressive in requesting cache re-

sources with default sharing, the unfairness factor re-

mains low. By tuning the prefetching, hardware throt-

tling can improve efficiency by 6% over the default.

Costs of Dynamic Page Re-Coloring The high effi-

ciency of page coloring is obtained assuming a somewhat

ideal page coloring mechanism, meaning that the cache

partition point is statically determined and no page recol-

oring is needed. In reality, a dynamic environment would

involve adjusting cache colors and partition points based

on changes in the execution environment. Without extra

hardware support, re-coloring a page means copying a

memory page and it usually takes several micro-seconds

on typical commodity platforms (3 microseconds on our

test platform). Assuming an application must re-color

half of its working set every scheduling quantum (default

100 milliseconds in Linux), our five benchmarks would

incur 18–180% slowdown due to page re-coloring (the

smallest working set is around 50 MB (equake) and the

largest around 500 MB+ (SPECjbb)). This would more

than negate any efficiency gain by page coloring.

Instability of Scheduling Quantum Adjustment

While scheduling quantum adjustment achieves fair-

ness at coarse granularities comparable to the schedul-

ing quantum size, it may cause fluctuating performance

for fine-grained tasks such as individual requests in a

server system. As a demonstration, we run SPECjbb

and swim on a dual-core chip. Consider a hypothet-

ical resource management scenario where we need to

298	 2009 USENIX Annual Technical Conference	 USENIX Association

0 1000 2000 3000 4000 5000
0.1

0.2

0.3

0.4

0.5

0.6

Time order in milliseconds

In
s
tr

u
c
ti
o

n
 t

h
ro

u
g

h
p

u
t

(I
P

C
)

o
f

S
P

E
C

jb
b

Sched. quantum adjustment Hardware throttling

Figure 4: SPECjbb’s performance when its co-runner swim

is regulated using two different approaches: scheduling quan-

tum adjustment (default 100-millisecond quantum) and hard-

ware throttling. Each point in the plot represents performance

measured over a 50-millisecond window.

slow down swim by a factor of two. We compare two

approaches—the first adds an equal-priority idle pro-

cess on swim’s core; the second throttles the duty cy-

cle at swim’s core to half the full speed. Figure 4 il-

lustrates SPECjbb’s performance over time under these

two approaches. For scheduling quantum adjustment,

SPECjbb’s performance fluctuates dramatically because

it highly depends on whether its co-runner is the idle pro-

cess or swim. In comparison, hardware throttling leads

to more stable performance behaviors due to its fine-

grained execution speed regulation.

4 Conclusion
This paper investigates the use of hardware-assisted

execution throttling (duty cycle modulation combined

with L1/L2 cache prefetcher configuration) for regu-

lating fairness in modern multi-core processors. We

compare against page coloring-based cache partitioning

and scheduling time quantum adjustment. Our results

demonstrate that simple hardware-assisted techniques to

throttle an application’s execution speed can achieve

high fairness at fine granularity without the drawbacks

of page re-coloring costs.

In this work, we have focused on demonstrating the

relative benefits of the various resource control mech-

anisms. Built on a good mechanism, it may still be

challenging to identify the best control policy during

online execution and exhaustive search of all possi-

ble control policies may be very expensive. In such

cases, our hardware execution throttling approaches are

far more appealing than page coloring due to our sub-

stantially cheaper re-configuration costs. Nevertheless,

more efficient techniques to identify the best control pol-

icy are desirable. In future work, we plan to explore

feedback-driven policy control via continuous tracking

of low-level performance counters such as cache miss

ratio and instructions per cycle executed, in addition to

application-level metrics of execution progress.

References

[1] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter. Dy-
namic hardware-assisted software-controlled page placement to
manage capacity allocation and sharing within large caches. In
15th Int’l Symp. on High-Performance Computer Architecture,
Raleigh, NC, Feb. 2009.

[2] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of
performance asymmetry in emerging multicore architectures. In
Int’l Symp. on Computer Architecture, pages 506–517, 2005.

[3] D. Chiou. Extending the Reach of Microprocessors: Column and
Curious Caching. PhD thesis, MIT, 1999.

[4] S. Cho and L. Jin. Managing distributed, shared L2 caches
through OS-level page allocation. In 39th Int’l Symp. on Mi-
croarchitecture, pages 455–468, Orlando, FL, Dec. 2006.

[5] A. Fedorova, M. Seltzer, and M. Smith. Improving performance
isolation on chip multiprocessors via an operating system sched-
uler. In 16th Int’l Conf. on Parallel Architecture and Compilation
Techniques, pages 25–36, Brasov, Romania, Sept. 2007.

[6] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist,
utilitarian, and capitalist cache policies on CMPs: Caches as a
shared resource. In 15th Int’l Conf. on Parallel Architectures and
Compilation Techniques, pages 13–22, Seattle, WA, 2006.

[7] IA-32 Intel architecture software developer’s manual, 2008.

[8] R. Kessler and M. Hill. Page placement algorithms for large real-
indexed caches. ACM Trans. on Computer Systems, 10(4):338–
359, Nov. 1992.

[9] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
Gaining insights into multicore cache partitioning: Bridging the
gap between simulation and real systems. In Int’l Symp. on High-
Performance Computer Architecture, Salt Lake, UT, Feb. 2008.

[10] T. Moscibroda and O. Mutlu. Memory performance attacks: De-
nial of memory service in multi-core systems. In USENIX Secu-
rity Symp., pages 257–274, Boston, MA, 2007.

[11] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabuk-
swar, K. Krishnan, and A. Kumar. Power and thermal manage-
ment in the Intel Core Duo processor. Intel Technology Journal,
10(2):109–122, 2006.

[12] T. Romer, D. Lee, B. Bershad, and J. Chen. Dynamic page map-
ping policies for cache conflict resolution on standard hardware.
In First USENIX Symp. on Operating Systems Design and Imple-
mentation, pages 255–266, Monterey, CA, Nov. 1994.

[13] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects
of last-level cache polluters with an OS-level, software-only pol-
lute buffer. In 41st Int’l Symp. on Microarchitecture, Lake Como,
ITALY, Nov. 2008.

[14] G. Suh, L. Rudolph, and S. Devadas. Dynamic cache partitioning
for simultaneous multithreading systems. In IASTED Int’l Conf.
on Parallel and Distributed Computing and Systems, Anaheim,
CA, Aug. 2001.

[15] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared
L2 caches on multicore systems in software. In Workshop on the
Interaction between Operating Systems and Computer Architec-
ture, San Diego, CA, June 2007.

[16] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page
coloring-based multicore cache management. In 4th European
Conf. on Computer systems, Nuremberg, Germany, Apr. 2009.

[17] L. Zhao, R. Iyer, R. Illikkal, J. Moses, D. Newell, and S. Maki-
neni. CacheScouts: Fine-grain monitoring of shared caches in
CMP platforms. In 16th Int’l Conf. on Parallel Architecture and
Compilation Techniques, pages 339–352, Brasov, Romania, Sept.
2007.

USENIX Association	 2009 USENIX Annual Technical Conference	 299

Reducing Seek Overhead with Application-Directed Prefetching
Steve VanDeBogart Christopher Frost Eddie Kohler

UCLA
http://libprefetch.cs.ucla.edu/

Abstract
An analysis of performance characteristics of modern
disks finds that prefetching can improve the performance
of nonsequential read access patterns by an order of mag-
nitude or more, far more than demonstrated by prior
work. Using this analysis, we design prefetching al-
gorithms that make effective use of primary memory,
and can sometimes gain additional speedups by read-
ing unneeded data. We show when additional prefetching
memory is most critical for performance. A contention
controller automatically adjusts prefetching memory us-
age, preserving the benefits of prefetching while shar-
ing available memory with other applications. When
implemented in a library with some kernel changes,
our prefetching system improves performance for some
workloads of the GIMP image manipulation program
and the SQLite database by factors of 4.9x to 20x.

1 Introduction
Modern magnetic disks are, as is well known, dramati-
cally slower at random reads than sequential reads. Tech-
nological progress has exacerbated the problem; disk
throughput has increased by a factor of 60 to 85 over the
past twenty-five years, but seek times have decreased by
a factor of only 15.1 Disks are less and less like random-
access devices in terms of performance. Although flash
memory reduces the cost differential of random accesses
(at least for reads—many current SSD disks have ter-
rible performance on small random writes), disks con-
tinue to offer vast amounts of inexpensive storage. For
the foreseeable future, it will remain important to opti-
mize the performance of applications that access disk-
like devices—that is, devices with much faster sequential
than random access.

Operating systems heavily optimize their use of disks,
minimizing the volume of transferred data while oppor-
tunistically striving to make requests sequential. Large
buffer caches ensure that disk reads are only done when
necessary, write buffering helps to batch and minimize
writes, disk scheduling reorders disk requests to group
them and minimize seek distances, and readahead ex-
pands small read requests into more efficient large re-
quests by predicting applications’ future behavior. These
techniques apply well to workloads whose accesses are
already sequential or near-sequential, for which they

achieve performance near hardware capabilities. For
nonsequential access patterns, however, the techniques
break down. Readahead implementations, for example,
often turn off after detecting such patterns: future nonse-
quential accesses are by nature hard to predict, making
it more likely that prediction mistakes would pollute the
buffer cache with irrelevant data. Unfortunately, though
careful design of application on-disk data structures can
make common-case accesses sequential, many applica-
tions must sometimes access data nonsequentially—for
instance, to traverse a giant database by a non-primary
index—and any nonsequential access pattern is radically
slow.

The best solution to this performance problem is to
avoid critical-path disk access altogether, such as by ob-
taining enough memory to hold all application data. Fail-
ing that, distributing data over several disks or machines
can reduce the overall cost of random access by perform-
ing seeks in parallel [18]. However, these solutions may
not always apply—even resource-constrained users can
have large data sets—and any technique that speeds up
single-disk nonsequential accesses is likely to improve
the performance of distributed solutions.

We present an application-directed prefetching system
that speeds up application performance on single-disk
nonsequential reads by, in some cases, more than an or-
der of magnitude.

In application-directed prefetching systems, the appli-
cation informs the storage system of its intended upcom-
ing reads. (Databases, scientific workloads, and others
are easily able to calculate future accesses [13, 17].) Pre-
vious work on application-directed caching and prefetch-
ing demonstrated relatively low speedups for single-
process, single-disk workloads (average speedup 26%,
maximum 49%) [2, 18]. However, this work aimed to
overlap CPU time and I/O fetch time without greatly
increasing memory use, and thus prefetched relatively
little data from disk (16 blocks) just before a pro-
cess needed it. Our system, libprefetch, aims solely to
minimize I/O fetch time, a better choice given today’s
widened gap between processor and disk performance.
The prefetching system is aggressive, fetching as much
data as fits in available memory. It is also relatively
simple, fitting in well with existing operating system
techniques; most code is in a user-space library. Small,

300	 2009 USENIX Annual Technical Conference	 USENIX Association

but critical, changes in kernel behavior help ensure that
prefetched data is kept until it is used. A contention con-
troller detects changes in available memory and compen-
sates by resizing the prefetching window, avoiding per-
formance collapse when prefetching applications com-
pete for memory and increasing performance when more
memory is available. Our measurements show substan-
tial speedups on test workloads, such as a 20x speedup
on a SQLite table scan of a data set that is twice the size
of memory. Running concurrent instances of applications
with libprefetch shows similar factors of improvement.

Our contributions include our motivating analysis of
seek time; our prefetching algorithm; the libprefetch in-
terface, which simplifies applications’ access to prefetch-
ing; the contention controller that prevents libprefetch
from monopolizing memory; and our evaluation. Sec-
tion 2 describes related work, after which Section 3 uses
disk benchmarks to systematically build up our prefetch-
ing algorithm. Section 4 describes the libprefetch inter-
face and its implementation. Finally, Sections 5 and 6
evaluate libprefetch’s performance and conclude.

2 Related Work
Fueled by the long-growing performance gulf between
disk and CPU speeds, considerable research effort has
been invested in improving disk read performance by
caching and prefetching. Prefetching work in particular
has been based on predicted, application-directed, and
inferred disk access patterns.

Disk Modeling Ruemmler and Wilkes [19] is the clas-
sic paper on disk performance modeling. Our seek time
observations complement those of Schlosser et al. [20];
like them, we use our observations to construct more ef-
fective ways to use a disk.

Predicting Accesses Operating systems have long em-
ployed predictive readahead algorithms to speed up se-
quential file access. This improves performance for many
workloads, but can retard performance if future accesses
are mispredicted. As a result, readahead algorithms usu-
ally don’t try to improve less predictable access patterns,
such as sequential reads of many small files or nonse-
quential reads of large files.

Dynamic history-based approaches [5, 8, 12, 14–16,
23, 27] infer access patterns from historical analysis, and
so are not limited to simple patterns. However, requiring
historical knowledge has limitations: performance is not
improved until a sufficient learning period has elapsed,
non-repetitive accesses are not improved at all, and the
historical analysis can impose significant memory and
processing overheads.

Application-Directed Accesses Cao et al. [2] and Pat-
terson et al. [18] present systems like libprefetch where

applications convey their access patterns to the file sys-
tem to increase disk read performance. While all three
systems prefetch data to reduce application runtime, the
past decade’s hardware progress has changed the ba-
sic disk performance bottlenecks. Whereas prior systems
prefetch to hide disk latency by overlapping CPU time
and I/O time, libprefetch prefetches data to minimize I/O
time and increase disk throughput by reducing seek dis-
tances. This approach permits much greater performance
increases on today’s computers. Specifically, the designs
of Cao et al.’s ACFS and Patterson et al.’s system are
based on the simplifying assumption that block fetch
time is fixed, independent of both the block’s location
relative to the disk head and the block’s absolute location
on disk. Based on this disk model, their derived optimal
prefetching rules state that 1) blocks must be prefetched
from disk in precisely application access order, and 2)
a block must be prefetched as soon as there is avail-
able RAM. Because RAM was so scarce in systems of
the time, this had the effect of retrieving data from disk
just before it was needed, although Cao et al. also note
that in practice request reordering can provide a signifi-
cant performance improvement for the disk. Their imple-
mentation consists of one piece that takes great care to
prefetch the very next block as soon as there is memory,
and a second piece that buffers 4 to 16 of these requests
to capitalize on disk ordering benefits. This approach is
no longer the best trade-off; increased RAM sizes and
larger performance gaps between disks and processors
make it more important to maximize disk throughput.
Libprefetch thus actively waits to request disk data un-
til it can prefetch enough blocks to fill a significant por-
tion of memory. For seek-limited applications on today’s
systems, minimizing seek distances by reordering large
numbers of blocks reduces I/O time and application run-
time significantly more than prior approaches.

Both Patterson’s system and Cao’s ACFS explic-
itly addressed process coordination, especially important
since their implementations replaced the operating sys-
tem’s cache eviction policy. Libprefetch, in contrast, im-
plements prefetching in terms of existing operating sys-
tem mechanisms, so a less coordinated approach suf-
fices. Existing operating system algorithms balance I/O
among multiple processes, while libprefetch’s internal
contention controller automatically detects and adapts
to changes in available memory. In this regard, our ap-
proaches are complementary; something like ACFS’s
two-level caching might further improve prefetching per-
formance relative to Linux’s default policy.

Using a modest amount of RAM to cache prefetches,
Patterson et al. and Cao et al. achieved maximum single-
disk improvements of 55% (2.2x) and 49% (2x), respec-
tively. Patterson et al. used multiple disks to achieve ad-
ditional speedups, whereas libprefetch uses additional

USENIX Association	 2009 USENIX Annual Technical Conference	 301

RAM to achieve speedups of as much as 20x. For concur-
rent process performance Patterson et al. report a maxi-
mum performance improvement of 65% (2.9x), Cao et
al. 76% (4.2x); we see improvements of 4x to 23x.

Inferred Accesses Rather than requiring the applica-
tion to explicitly supply a list of future reads, a prefetch-
ing system can automatically generate the list—either
from application source code, using static analysis [1, 4,
25, 26], or from the running application, using specu-
lative execution [3, 7]. Static analysis can generate file
read lists, but data dependence and analytic imprecision
may limit these methods to simple constructs that do
not involve abstractions over I/O. Speculative-execution
prefetchers use spare CPU time to tell the operating sys-
tem what file data will be needed. Speculation can pro-
vide benefits for unmodified applications, and is espe-
cially useful when it is difficult to programmatically pro-
duce the access pattern. Libprefetch could serve as the
back end for a system that determined access patterns
using analysis or speculation, but the less-precise infor-
mation these methods obtain might reduce prefetching’s
effectiveness relative to our results.

Libprefetch’s performance benefits are competitive
with these other systems. For example, Chang et al. [3]
focus on parallel disk I/O systems that provide more I/O
bandwidth than is used by an unmodified application.
Libprefetch obtains more prefetching benefit with one
disk than Chang et al. find going to four.

Prefetching in Databases Lacking good OS sup-
port [21], applications like databases have long resorted
to raw disk partitions to, for example, implement their
own prefetch systems [22]. Better OS mechanisms, such
as libprefetch, may reduce the need for this duplication
of effort.

POSIX Asynchronous I/O The POSIX Asynchronous
I/O [10], posix fadvise, and posix madvise [9] inter-
faces allow applications to request prefetching, but cur-
rent implementations of these interfaces tend to treat
prefetching advice as mandatory and immediate. To
achieve good performance, applications must decide
when to request a prefetch, how much to prefetch, and
how to order requests. Libprefetch uses posix fadvise as
part of its implementation and manages these details in-
ternally.

3 The Impact of Modern Disk Character-
istics on Prefetching

Disk prefetching algorithms aim to improve the perfor-
mance of future disk reads by reading data before it is
needed. Since our prefetching algorithm will use precise
application information about future accesses, we need
not worry about detecting access patterns or trying to

predict what the application will use next. Instead, the
chief goal is to determine the fastest method to retrieve
the requested data from disk.

This section uses disk benchmarks to systematically
build up a prefetching algorithm that takes advantage of
the strengths, and as much as possible avoids the weak-
nesses, of modern I/O subsystems. The prefetching algo-
rithm must read at least the blocks needed by the applica-
tion, so there are only a few degrees of freedom available.
The prefetcher can reorder disk requests within the win-
dow of memory available for buffering, it can combine
disk requests, and it can read non-required data if that
would help. Different disk layout or block allocation al-
gorithms could also lead to better performance, but these
file system design techniques are orthogonal to the issues
we consider.

3.1 Seek Performance

Conventional disk scheduling algorithms do not know
what additional requests will arrive in the future, lead-
ing to a relatively small buffer of requests that can be
reordered. In contrast, a prefetching algorithm that does
know future accesses can use a reorder buffer as large as
available memory. A larger buffer can substantially re-
duce average seek distance. In this section, we measure
the actual cost of various seek distances on modern disks,
aiming to determine where seek distance matters and by
how much.

We measured the average time to seek various dis-
tances, both forward and backward. Because the seek op-
eration is below the disk interface abstraction, it is only
possible to measure a seek in conjunction with a read or
write operation. Therefore, the benchmarks start by read-
ing the first block of the disk to establish the disk head
location (or the last block, if seeking backward), then
read several blocks from the disk, each separated by the
seek distance being tested. With this test methodology, a
seek distance of zero means that we read sequential disk
locations with multiple requests, and a seek distance of
−1 block re-reads the same block repeatedly. All the tests
in this section use Direct I/O to skip the buffer cache, en-
suring that buffer cache hits do not optimize away the
effects we are trying to measure. See the evaluation sec-
tion for a description of our experimental setup.

The results of running this benchmark on two disks is
shown in Figure 1. The “Read” lines in the graphs, in-
cluded for comparison, show the time to read the given
amount of data, assuming maximum throughput. In ei-
ther direction, the cost of large (≥1MB) seeks is sub-
stantial, ranging from 5ms to 10ms; avoiding just 200 of
these seeks could reduce runtime by one to two seconds.
The cost is similar in either direction, except that seeks
with distance less than 1MB are faster when seeking for-
ward than seeking backward. This motivates the choice

302	 2009 USENIX Annual Technical Conference	 USENIX Association

T
im

e
 (

m
s
)

Disk 2

1
1

2
K

B

5
.2

M
B

Seek
Read

 0

 2

 4

 6

 8

 10

-32
GB

-1
GB

-32
MB

-2
MB

-128
KB

0 128
KB

2
MB

32
MB

1
GB

32
GB

T
im

e
 (

m
s
)

Disk 4

1
1

2
K

B

5
.2

M
B

Seek
Read

 0

 2

 4

 6

 8

 10

-32
GB

-1
GB

-32
MB

-2
MB

-128
KB

0 128
KB

2
MB

32
MB

1
GB

32
GB

Figure 1: Average time to seek a given distance (forward or back-
ward) compared to maximum read throughput. The oscillations are due
to disk geometry combined with rotational latency. The grey region
highlights where seek time changes most dramatically.

of a Circular LOOK algorithm: scan forward servicing
requests until there are no requests past the head posi-
tion, then return to the request with the lowest offset and
repeat.

Seek time increases by roughly a factor of five from
around 112KB to roughly 1 to 5MB, shown as the high-
lighted regions in the graphs. In contrast, seek times for
distances above 5MB increase slowly (note the graph’s
log-scale x axis), by about a factor of two. Not consid-
ering the disk geometry effects visible as oscillations,
a disk scheduling algorithm should minimize seek dis-
tance; though not all seek reductions are equal, reduc-
ing medium seeks far below 1MB will have more impact
than reducing very large seeks to 1MB or more.

Figure 1 also shows the unexpected result that for dis-
tances up to 32KB, it may be cheaper to read that amount
of data than to seek. This suggests that adjacent requests
with small gaps might be serviced faster by requesting
the entire range of data and discarding the uninteresting
data. Our prefetching algorithm implements this feature,
which we call infill.

3.2 Effect of Reorder Buffer Size

To reorder disk requests, the prefetch system must buffer
data returned ahead of the application’s needs. Thus, the
window in which the prefetch system can reorder re-
quests is proportional to the amount of memory it can
use to store their results. So how much memory should
be used to reorder prefetch data? Is there a threshold
where more memory doesn’t improve runtime substan-

R
u

n
ti
m

e
 (

s
)

A
v
e

ra
g

e
 s

e
e

k
 d

is
ta

n
c
e

Reorder buffer size (Disk 2)

Runtime
Average
seek distance

 0

 50

 100

 150

 200

 250

 300

 350

 400

4
KB

16
KB

64
KB

256
KB

1
MB

4
MB

16
MB

64
MB

256
MB

4KB

16KB

64KB

256KB

1MB

4MB

16MB

64MB

256MB

5.2MB
seek

112KB
seek

Figure 2: Effect of reorder buffer size on runtime and average seek
distance for random reads. The test reads a total of 256MB of data.
Along the x axis, we vary the reorder buffer size (the amount of data
prefetched at once). Within each buffer, disk requests are sorted by log-
ical block number. Runtime changes most dramatically in the grey re-
gion, where average seek distance drops from 5.2MB to 112KB, the
boundaries of the highlighted region in Figure 1.

tially? The next benchmark tries to answer these ques-
tions by using various reorder buffer sizes. The bench-
mark is an artificial workload of 256MB of randomly
chosen accesses to a 256MB file; some blocks in the file
may be accessed multiple times and others may not be
accessed at all, but the test uses Direct I/O so all the re-
quests are satisfied from disk. Benchmarks for different
amounts of total data had similar results.

The benchmark proceeds through the 256MB work-
load one reorder buffer at a time, reading pages within
each buffer in C-LOOK order (that is, by increasing disk
position). Figure 2 shows how the size of the reorder
buffer affects runtime. The region of the graph between
reorder buffer sizes of 384KB and 18MB, highlighted in
grey, shows the most dramatic change in runtime. Exam-
ining the average seek distance of the resulting accesses
helps to explain the change within the grey region. As
the reorder buffer grows, the average seek distance in
the grey region decreases from 5.2MB to 112KB (dot-
ted line, right-hand y axis). This range of seek distances
is greyed in Figure 1 and corresponds to the region where
seek cost changes most dramatically.

However, increasing the reorder buffer beyond 18MB
still has a substantial effect, decreasing runtime from
37.6 seconds to 8.4 seconds, an additional speedup of
4.7x. This continued decrease in runtime is due in part
to the reduction in the number of disk passes needed to
retrieve the data, from about 14 with a reorder buffer
of 18MB down to one with a reorder buffer of 256MB.
This demonstrates that the prefetching algorithm should
prefetch as much as possible, but at least enough to re-
duce the average seek distance to 112KB, if possible.

USENIX Association	 2009 USENIX Annual Technical Conference	 303

 0

 10

 20

 30

 40

 50

 60

0
KB

4
KB

8
KB

16
KB

32
KB

64
KB

128
KB

256
KB

512
KB

1
MB

2
MB

4
MB

T
o

ta
l
ti
m

e
 (

s
)

Amount of infill data allowed (Disk 2)

16MB reorder buffer
32MB reorder buffer
256MB reorder buffer

 0

 10

 20

 30

 40

 50

 60

0
KB

4
KB

8
KB

16
KB

32
KB

64
KB

128
KB

256
KB

512
KB

1
MB

2
MB

4
MB

T
o

ta
l
ti
m

e
 (

s
)

Amount of infill data allowed (Disk 1)

16MB reorder buffer
32MB reorder buffer
256MB reorder buffer

Figure 3: Effect of infill on runtime. The test reads a total of 256MB
of data. Along the x axis, we vary the maximum amount of extra
data read between requests. Infill of 32KB maximizes performance im-
provement; infill beyond 2MB can hurt performance.

3.3 Effect of Infill

Figure 1 suggested that reading and discarding small
gaps between requests might be faster than seeking over
those gaps. We modified the previous benchmark to
add infill, varying the maximum infill allowed. Figure 3
shows that infill of up to 32KB reduces runtime on Disk
2. This corresponds to the region of Figure 1 where seeks
take longer than similarly-sized maximum-throughput
reads. Infill amounts between 32KB and 2MB have no
additional effect, corresponding to the region of the seek
graph where seek time is equal to read time for an equiv-
alent amount of data. When infill is allowed to exceed
2MB, runtime increases, confirming that reads of this
size are more expensive than seeking. For the 16MB
reorder buffer dataset, infill has very little effect: as
Figure 2 shows, the average seek distance for this test
is 128KB, above the threshold where we expect infill
to help. On Disk 1, however, infill was performance-
neutral. Apparently its firmware makes infill largely re-
dundant.

In summary, our tests show that infill amounts up to
32KB can help performance on some disks, but only for
datasets that have a significant number of seeks less than
32KB in size.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Disk offset (% through the disk)

Disk 2
Disk 3
Disk 4

Figure 4: Read throughput at various disk offsets. This test reads
256MB at each sampled offset.

3.4 Other Techniques

Conventional wisdom says that read throughput is better
at the outer edge of disk platters (low logical block num-
bers), which we confirm on several disks in Figure 4. The
data for Disk 4 clearly shows the transitions between dif-
ferent areal densities (where the line steps down). The
global effect is significant, slowing by about 50% from
the first to the last logical block number. However, with
large disks, even large files will usually span a small frac-
tion of the disk, leading to a small speed difference be-
tween the beginning and end of a file.

It is also conventional wisdom that larger disk re-
quests achieve better throughput. We tested this by read-
ing a large amount of data (128MB) with a number of
differently-sized read requests. Initially, this benchmark
indicated that the size of read requests did not have an
impact on performance, although performance differed
when Linux’s readahead was enabled. Upon examining
block traces, we discovered that the request size issued to
the disk remained constant, even as the application issued
larger reads. With readahead enabled, large disk requests
were always issued; with readahead disabled, disk re-
quests were always 4KB in size. (It is odd that disabling
readahead would cause Linux to always issue 4KB disk
requests, even when the application requests much more
data in a single read call; we call this a bug.) Using Di-
rect I/O caused Linux to adhere to the request size we
issued. Figure 5 shows that request sizes below 64KB
do not achieve maximum throughput, although Linux’s
readahead code normally compensates for this.

3.5 Prefetching Algorithm

In summary, large reorder buffers lead to significant
speed improvements, so prefetching should use as much
memory as is available. Forward seeks can be faster than
backward seeks, so prefetching should use a C-LOOK
style algorithm for disk scheduling. Small amounts of in-
fill can be faster than seeking between requests on some
disks and have no negative effect on others, so infill
should be used. The request size can have a significant
impact on performance, but the I/O subsystem usually

304	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 20

 40

 60

 80

 100

 120

 4 8 16 32 64 128 256 512 1024

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Request size (KB) (Disk 2)

Readahead
No readahead

Direct I/O

Figure 5: Effect of request size on throughput. Using or disabling
readahead shows the two extremes of the performance spectrum. Di-
rect I/O shows the true effect of request size on throughput.

optimizes this parameter sufficiently. Thus, libprefetch’s
basic prefetching algorithm simply traverses an access
list one reorder buffer at a time, prefetching each buffer’s
data in disk order. Although further optimizations might
be possible—for example, for some access patterns it
may be more advantageous to prefetch a partial reorder
buffer—we currently implement the basic version.

The tests also help us understand how prefetching
can scale. The reorder buffer improves performance by
reducing average seek distance, but not all reductions
are equally valuable. For example, Figure 1 indicates
that reducing average seek distance 500x from 1GB to
2MB wouldn’t improve performance much. The amount
a given reorder buffer reduces average seek distance
depends on access pattern and file system layout, but
for uniform random accesses and sequential layout, we
can approximate the resulting seek distance analytically.
Given an N-page sequential file and a reorder buffer of
K pages (2 ≤ K  N), the expected average seek dis-
tance will be 2N(K−1)/K(K +1) pages.2 This distance
is roughly proportional to the ratio of file size to re-
order buffer size. Thus, increasing memory by some fac-
tor will reduce average seek distance by the same factor,
or, equivalently, produce the same seek distance when
processing a proportionally bigger file. The formula can
also be used to predict when seek distance will rise into
the unproductive region of Figure 2. For instance, assum-
ing 3GB of RAM available for prefetching and uniform
random accesses, a 384GB file will achieve an average
seek distance of 1MB, the rough “large seek” boundary.

4 Libprefetch
The libprefetch library implements our prefetching al-
gorithm underneath a callback-based interface that eas-
ily integrates into applications. Libprefetch calls an ap-
plication’s callback when it needs more prefetching in-
formation. The callback can compute the application’s
list of future accesses and pass it to libprefetch’s re-
quest prefetching function. The computed list can re-
place or augment the current access list.

struct access entry { #define PF APPEND 1
loff t pageOffset; #define PF SET 2
int fd; #define PF SET FROM MARK 4
bool mark; #define PF DONE 8

};

typedef void (*callback t)(void * arg,
int lastMarkedFD, loff t lastMarkedOffset,
int requestedFD, loff t requestedOffset);

ssize t request prefetching(client t c, const struct access entry * a,
size t n, int type);

client t register client(callback t cb, void * arg);
int unregister client(client t c);

region t register region(client t c, int fd, loff t start, loff t end);
int unregister region(client t c, region t r);

int ignore accesses(client t c);
int unignore accesses(client t c);

Figure 6: Libprefetch interface. Applications create a client with
register client, then declare regions of files where accesses will be
prefetched using register region. When libprefetch needs an updated
access list it calls back into the application with the registered call-
back function. This callback updates the access list with calls to re-
quest prefetching. Finally, ignore accesses lets the application read
data from a prefetchable region without affecting the access list.

Libprefetch periodically asks the kernel to prefetch a
portion of the access list; how much to prefetch depends
on available memory. As the access list is consumed, or
if actual accesses diverge from it, libprefetch calls back
into the application to extend the list. Libprefetch tracks
the application’s progress through the list by overrid-
ing the C library’s implementations of read, readv, and
pread.

Figure 6 summarizes the libprefetch interface. The rest
of this section discusses libprefetch in more detail, in-
cluding a design rationale and important aspects of its
implementation.

4.1 Callbacks

Libprefetch’s callback-based design achieves the follow-
ing goals:
• The interface should minimize interference with ap-

plication logic.
• The application should not have to guess when to

make new prefetch requests. Therefore, libprefetch
should actively request new prefetch information
from the application. Lower-level components like
libprefetch or the system’s buffer cache manager
best know when prior prefetching results have com-
pleted, indicating the need for additional prefetch-
ing, or when a read request blocks, indicating that
the application’s access list was inaccurate.

This model lets applications isolate most access-list man-
agement logic in a self-contained callback function. Of
course, an application that prefers to actively manage the
access list can do so.

Libprefetch issues a callback from its implementation
of read, readv, or pread. The callback is passed sev-

USENIX Association	 2009 USENIX Annual Technical Conference	 305

eral arguments indicating the application’s position in
the access list. (This further isolates prefetching from
application logic, since the application need not explic-
itly track this position.) These arguments include a user-
specified void *, the file descriptor and offset of the ac-
cess that triggered the callback, and the file descriptor
and offset of the most recently accessed marked page.
Marked pages are application-specified access-list land-
marks that can be more useful to the callback than the
current position. For example, consider a database ac-
cessing data via an index. The index’s pages are accessed
once each in a predictable, often sequential, order, but the
data pages may be accessed seemingly randomly (and
multiple times each, if the data set doesn’t fit in mem-
ory). This makes libprefetch’s position in the index por-
tion of the access list more useful for planning purposes
than its position in the data page portion. The database
thus marks index pages within its access list, allowing its
callback to quickly determine the most recently read in-
dex page, and therefore how far reading has progressed.
Note that the most recent marked page need not have ac-
tually been read, as long as subsequent pages were read.
This can happen, for example, when an index page was
already in an application-level cache. Libprefetch cor-
rectly handles such small divergences from a predicted
access list.

In addition to providing a means to specify the call-
back function, the register client interface would let
multiple threads within an application specify their own
access lists. Our current implementation of libprefetch
does not support multiple clients per process, though we
expect this feature would be easy to implement for clients
with non-overlapping file regions.

4.2 The Access List

The application interface for specifying future accesses
was designed to achieve three goals:
• The basic interface for requesting prefetching

should be the simplest sensible interface that can
represent arbitrary access patterns, such as a list of
future accesses in access order.

• Prefetching should work both within and across
files.

• The application should be able to define its access
pattern incrementally. The data structures required
to specify a large pattern would take up memory
that could otherwise be used for data. More funda-
mentally, some applications only gradually discover
their access patterns.

The application specifies its access list by filling in an
array of access entry structures with the file descriptor
and offset for each intended access. An arbitrary sub-
set of these structures can be marked. If the applica-
tion will access block A, then block B, and then block

A again, it simply adds those three entries to the array.
It passes this array to libprefetch’s request prefetching
function. Each call to request prefetching can either re-
place the current list, append to the list, or replace the
portion of the current list following the most-recently-
accessed marked entry. Libprefetch adjusts its idea of the
application’s current position based on the new list. The
number of accepted entries is returned; once libprefetch’s
access-list buffer fills up, this will be less than the num-
ber passed in. When the application has transferred its
entire access list to libprefetch, or libprefetch has indi-
cated that its buffer is full, the application signals that it
is done updating the list.

Libprefetch assumes that the sequence of file reads
within registered file regions is complete—all read re-
quests to registered regions should correspond to access-
list entries. Accesses to non-registered regions are ig-
nored; applications can manage these regions with other
mechanisms. If the application accesses a file offset
within a registered region but not in the access list, lib-
prefetch assumes the application has changed the access
plan and issues a callback to update the access list. How-
ever, the application can tell libprefetch to ignore a series
of accesses. This is useful to avoid callback recursion:
sometimes a callback must itself read prefetchable data
while calculating the upcoming access list.

4.3 Callback Example

Figure 7 presents pseudocode for a sample callback,
demonstrating how libprefetch is used. This callback is
similar to the one used in our GIMP benchmark (Sec-
tion 5.3). GIMP divides images into square regions of
pixels called tiles; during image transformations, it iter-
ates through the tiles in both row- and column-major or-
der, both of which could cause nonsequential access. The
pseudocode prefetches an image’s tile data in the current
access order (img->accessOrder).

The callback first uses its arguments to determine the
application’s position in its access pattern (lines 4–5).
Next, it traverses tile information structures to determine
future accesses (line 6). For each future access, the call-
back records the file descriptor, offset, and whether the
access is considered marked (lines 7–9). Access entries
accumulate in an array and are passed to libprefetch in
batches (line 10). If libprefetch’s access-list buffer fills
up, the callback returns (lines 12, 15–16). The callback’s
first call to request prefetching clears the old access list
and sets it to the new value (line 3); subsequent calls ap-
pend to the access list under construction (line 13). Fi-
nally, the callback informs libprefetch about any remain-
ing access entries and signals completion (line 18).

306	 2009 USENIX Annual Technical Conference	 USENIX Association

void callback(state, markFd, markOffset, reqFd, reqOffset) {
1: struct access entry accesses[BATCH SIZE];
2: int accepted, full, n = 0;
3: int mode = PF SET;
4: tileInfo t *tile = getTileInfo(reqFd, reqOffset);
5: imageInfo t *img = tile->imageInfo;

6: for (; !lastTile(tile); tile = nextTile(tile, img->accessOrder)) {
7: accesses[n].page offset = tile->swap offset;
8: accesses[n].fd = img->swap file;
9: accesses[n++].marked = 0;
10: if (n == BATCH SIZE) {
11: accepted = request prefetching(state->client,

accesses, n, mode);
12: full = (accepted < n);
13: mode = PF APPEND;
14: n = 0;
15: if (full)
16: break;
17: } }
18: request prefetching(state->client, accesses, n,

mode | PF DONE);
}

Figure 7: Pseudocode for a libprefetch callback function.

4.4 Interface Discussion

We evaluated several alternatives before arriving at the
libprefetch interface. Previous designs’ deficiencies may
illuminate libprefetch’s virtues.

The initial version of libprefetch stored several flags
for each access-list entry, including a flag that indicated
the page would be used only once (it should be evicted
immediately after use). In several cases, after some un-
productive debugging, we found that we had incorrectly
set the flag. By tracking progress through the access list,
the next iteration of libprefetch made it possible to auto-
matically detect pages that aren’t useful in the short-term
future, so we removed this ability to accidentally induce
poor performance.

An earlier attempt to enhance prefetching tried to ex-
pand the methodology used by readahead, namely infer-
ring future accesses from current accesses. Readahead
infers future accesses by assuming that several sequential
accesses will be followed by further sequential accesses.
Our extension of this concept, fdepend, allowed the ap-
plication to make explicit the temporal relationships be-
tween different regions of files. With fdepend, an appli-
cation might inform the kernel that after accessing data
in range A, it would access data in range B, but no longer
access data in range C. This mechanism introduced prob-
lems that we later solved in libprefetch. For example, be-
cause it wasn’t clear which relationships would be use-
ful in advance of a particular instant of execution, ap-
plications would specify all relationships up front. This
caused large startup delays as an application enumerated
all the relationships; in addition, storing all the relation-
ships required substantial memory. Libprefetch’s access
list is both simpler for applications to generate and easier
to specify incrementally.

4.5 Implementation

Libprefetch is mostly implemented as a user-level li-
brary. This choice both demonstrates the benefits pos-
sible with minimal kernel changes and avoids end-
runs around our operating system’s existing caching and
prefetching policies. An application using libprefetch
might issue different file-system-related system calls
than the unmodified application, but as far as the operat-
ing system is concerned, it is doing nothing out of the or-
dinary. The kernel need not change its policy for manag-
ing different applications’ conflicting needs. (Neverthe-
less, a kernel implementation could integrate further with
existing code, would have better access to buffer cache
state and file system layout, and might offer speed ad-
vantages by reducing system call overhead.) Infill, how-
ever, is implemented as a kernel modification. Infill is
not strictly a prefetching optimization, but a faster way
to read specific patterns of blocks.

Each time libprefetch intercepts a read from the ap-
plication, it first checks whether the read corresponds to
a registered region. If so, it uses a new system call, fin-
core, to see whether the requested page(s) are already in
the buffer cache. If there is a miss in the buffer cache,
a page has been prematurely evicted or the application
has strayed from its access list. In either case, libprefetch
issues a new round of prefetch requests, possibly calling
into the application first to update the access list. The fin-
core system call was inspired by mincore; it takes a file
descriptor, an offset and length, and the address of a bit
vector as input, and fills in the bit vector with the state of
the requested pages of the file (in memory or not).

When libprefetch decides that it should prefetch more
data, it first consults the contention controller (described
below) to determine the size of its reorder buffer for this
round of prefetching. Then it walks the access list un-
til it has seen the appropriate number of unique pages.
Once the set of pages to be prefetched is determined,
libprefetch evicts any pages from the previous round of
prefetching that are not in the current prefetch set and
asks the kernel to prefetch, in file offset order, the new set
of pages. This process is where libprefetch differs most
from previous prefetching systems. Instead of overlap-
ping I/O and CPU time, libprefetch blocks the applica-
tion while it fetches many disk blocks. This makes sense,
particularly for nonsequential access patterns, because
sorted and batched requests are usually faster than in-
order requests. Prefetching from a separate thread would
allow the main thread to continue once its next request
was in memory, but as soon as the main thread made a
request located near the end of the sorted reorder buffer,
it would block for the rest of the prefetching phase any-
way.

Libprefetch makes prefetch requests using posix -
fadvise, a rarely-used system call that does for files

USENIX Association	 2009 USENIX Annual Technical Conference	 307

what madvise does for memory. It takes a file descrip-
tor, an offset and length, and “advice” about that re-
gion of the file. Libprefetch uses two pieces of advice:
POSIX FADV WILLNEED informs the kernel that the
given range of the file should be brought into the buffer
cache, and POSIX FADV DONTNEED informs it that
the given range of the file is no longer needed and can be
dropped from the buffer cache.

We found some weaknesses in the Linux implemen-
tation of posix fadvise. The WILLNEED advice has no
effect on file data that is already in memory; for example,
if a given page is next on the eviction list before WILL-
NEED advice, it will still be next on the eviction list after
that advice. We therefore changed posix fadvise to move
already-in-memory pages to the same place in the LRU
list they would have been inserted had they just come
from disk. The implementation of DONTNEED also has
pitfalls. Linux suggests applications flush changes be-
fore issuing DONTNEED advice because dirty pages are
not guaranteed to be evicted. However, it tries to assist
with this requirement by starting an asynchronous write-
back of dirty data in the file upon receiving DONTNEED
advice. Unfortunately, it starts this write-back even if
the to-be-evicted data is not dirty. Because of this unex-
pected behavior, we found it faster to DONTNEED pages
in large batches instead of incrementally.

Our modifications supply posix fadvise with addi-
tional functionality: libprefetch uses the system call to
intentionally reorder the buffer cache’s eviction list. Lib-
prefetch already uses DONTNEED advice to discard
pages it no longer needs, but ordering the eviction list
further improves performance in the face of memory
pressure. After prefetching a set of pages in disk order,
libprefetch again advises the kernel that it WILLNEED
that data, but in reverse access order. If memory pressure
causes some pages to be evicted, the evicted pages will
now be those needed furthest in the future. This enables
the application to make as much progress as possible be-
fore libprefetch must re-prefetch evicted pages.3

Together, fincore and our modified posix fadvise give
libprefetch enough access to buffer cache state to work
effectively. fincore lets libprefetch query the state of par-
ticular pages, and posix fadvise lets it bring in pages
from disk, evict them from the buffer cache, and reorder
the LRU list. Since these operations are all done from
user space, existing kernel mechanisms can account for
resource usage and provide fairness among processes.
An efficient system call that translated file offsets to
the corresponding on-disk block numbers would improve
libprefetch’s support for nonsequential file layouts.

Libprefetch is approximately 2,400 lines of com-
mented code, including several disabled features that
showed no benefit. The kernel changes for posix fadvise
and fincore are 130 lines long.

4.6 Concurrent Execution

As described so far, libprefetch monopolizes both disk
bandwidth and the buffer cache. Of course, this behav-
ior could seriously degrade other applications’ perfor-
mance. In this section we discuss modifications to libpre-
fetch that improve fairness and application performance
even with multiple uncoordinated applications running
concurrently.

Disk contention is the easier problem to solve: Linux’s
default fairness mechanisms work effectively as is. From
the point of view of the operating system, disk con-
tention caused by libprefetch is indistinguishable from
contention caused by any other application. Further disk
access coordination could yield better performance, but
might raise other issues, such as fairness, denial of ser-
vice, and security concerns.

The buffer cache, however, requires a different ap-
proach. As discussed, libprefetch should use the maxi-
mum buffer cache space available. An early implementa-
tion simply queried the operating system for the amount
of buffer cache space and used half of it (half showed
the best performance in experiments). However, this did
not account for other applications using the buffer cache,
and in benchmarks with more than one application lib-
prefetch’s attempt to dominate the buffer cache severely
degraded performance. The current libprefetch explic-
itly addresses buffer-cache contention, but manages to
do so without explicit coordination among processes.
The key insight is that buffer cache management can be
reformulated as a congestion-control problem. Libpre-
fetch uses an additive-increase, multiplicative-decrease
(AIMD) strategy, also used by TCP for network conges-
tion control, to adapt to changes in available memory.

Libprefetch infers a contention signal when it finds
that some of the pages it prefetched have been prema-
turely evicted. This should happen only under memory
pressure, so libprefetch lowers its reorder buffer size with
a multiplicative decrease. Conversely, when libprefetch
consumes all of the pages it prefetched without any of
them being prematurely evicted, it increases its reorder
buffer size by an additive constant.

Because libprefetch knows the maximum size of the
buffer cache (from the /proc file system), it starts out
using most of available cache space, instead of using a
slow-start phase. We always limit libprefetch’s reorder
buffer to 90% (experimentally determined) of the RAM
available for the buffer cache. Furthermore, since the
contention controller can only adjust the reorder buffer
size during a round of prefetching, it is somewhat ag-
gressive in its upward adjustment, adding 10% of the
maximum buffer cache space to the reorder buffer size;
it halves the reorder buffer size to decrease. A quick
evaluation of alternative values shows that libprefetch is
not particularly sensitive to AIMD constants. The result

308	 2009 USENIX Annual Technical Conference	 USENIX Association

performs well: concurrently-running libprefetch-enabled
applications transparently coordinate to achieve good
performance, and libprefetch applications do not signifi-
cantly degrade the performance of other applications.

4.7 Disk Request Infill

To implement infill, we modified the general Linux I/O
scheduler framework and its pluggable CFQ scheduler
(about 800 lines of changes). Linux’s I/O schedulers al-
ready have the ability to merge adjacent requests, but
they cannot merge non-adjacent ones. Upon receiving a
new request, Linux looks for a queued request to merge
with the incoming one. If no request is found, our mod-
ified scheduler then looks for the queued request nearest
the new one. If the nearest request is within the maximum
infill distance, we create a dummy request and merge it
with the queued request. The incoming request is now
adjacent to the expanded request and the two are merged.

While the I/O scheduler has infill requests in its queue,
a new request may arrive that overlaps an infill request.
The scheduling framework did not handle overlapped re-
quests, so we explicitly link new requests to any queued
infill requests that they overlap. When the infill request
completes, the new request is serviced from the infill re-
quest’s data.

5 Evaluation
In this section we evaluate libprefetch’s impact on three
different kinds of workloads: sequential, “strided,” and
nonsequential. Linux’s readahead mechanism already
does a good job of optimizing sequential workloads; for
these we expect at most a modest improvement with lib-
prefetch. A strided workload consists of groups of se-
quential accesses separated by large seeks. Linux does
not specifically try to detect strided access patterns and
does little to improve their performance (unless the run
of sequential accesses is substantial). Readahead is of no
help to nonsequential access patterns, and we expect the
biggest improvement with this workload. Our strided and
nonsequential access patterns come from benchmarks of
real applications, namely the GNU Image Manipulation
Program (GIMP) and the SQLite database. This shows
that libprefetch significantly improves real application
performance.

When evaluating these workloads, we vary the amount
of data accessed relative to the amount of RAM, showing
how relative reorder buffer size affects prefetching im-
provements. In addition, we examine the impact of infill
and the performance of multiple uncoordinated applica-
tions running concurrently.

5.1 Methodology

All the benchmarks in this section were run on a Dell
Precision 380 with a 3.2GHz Pentium 4 CPU with 2MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 128 256 512 1024 2048 4096 8192

S
p

e
e

d
u

p
 (

s
to

c
k
 /

 l
ib

p
re

fe
tc

h
)

Amount of data read (MB)

Slow-file speedup
Fast-file speedup

Figure 8: Speedup with libprefetch when reading a file sequentially.
Due to file layout issues, some files can be retrieved more quickly; this
benchmark shows both a fast and slow file. The slowdown on the fast
file, 6 seconds for the 4GB test, is mostly due to libprefetch’s CPU
overhead. The slow file runtimes range from 6 s to 365 s for stock and
6 s to 220 s for libprefetch.

of L2 cache (hyperthreading disabled), a Silicon Image
3132-2 SATA Controller, and 512MB of RAM. Log out-
put was written to another machine via sshfs. Tests use
a modified Linux 2.6.20 kernel on the Ubuntu v8.04 dis-
tribution. The small size of main memory was chosen
so that our tests of stock software would complete in a
reasonable amount of time (a single stock 4GB SQLite
test takes almost ten hours). As mentioned in Section 3.5,
we believe libprefetch’s speedup relative to unoptimized
accesses is constant for a given ratio of data set size
to prefetching memory, at least for uniform random ac-
cesses. Unless otherwise noted, these tests used Disk 1,
a 500GB 7200 RPM SATA2 disk with a 32MB buffer
and 8.5ms average seek time (Seagate ST3500320AS,
firmware SD1A). Disk 2 is Disk 1 with older firmware,
version SD15.

Some of the benchmarks in Section 3 used additional
disks. Disk 3 is a 500GB 7200 RPM SATA2 disk with
a 16MB buffer and 8.9ms average seek time (Western
Digital WD5000AAKS) in a HP Pavilion Elite D5000T
with a 2.66GHz Core 2 Quad Q9450 and 8GB of RAM,
and Disk 4 is a 320GB 7200 RPM SATA2 disk with
a 16MB buffer and 8.5ms average seek time (Seagate
ST3320620AS) in a Dell Optiplex GX280 with a 2.8GHz
Pentium 4 CPU, 1MB of L2 cache (hyperthreading dis-
abled), a Silicon Image 3132-2 SATA Controller, and
512MB of RAM.

5.2 Sequential Access

Our sequential benchmark program reads a file from
beginning to end. It is similar to cat file > /dev/null,
but is libprefetch-enabled and can change various Linux
readahead options. We observed, and confirmed with dd,
great variance in sequential read performance on differ-
ent files, from 20MB/s to 110MB/s. These differences
are due to file fragmentation. For example, the fastest file
has a significantly longer average consecutive block run

USENIX Association	 2009 USENIX Annual Technical Conference	 309

than the slowest file (3.8MB vs. 14KB).
For the slowest file, Figure 8 shows that libprefetch

achieves improvements similar to previous prefetching
work. We believe that Linux readahead is slower than
libprefetch in this case because libprefetch sends many
more requests to the disk scheduler at once, giving it
more opportunity to reorder and batch disk requests.
With the fast file, libprefetch is slightly slower than
readahead. Examining the system and user time for the
tests shows that the majority of the difference can be at-
tributed to the additional CPU overhead that libprefetch
incurs, which we have not yet tried to optimize.

5.3 Strided Access

Our strided benchmarks use the GNU Image Manipula-
tion Program (GIMP) to blur large images, a workload
similar to common tasks in high-resolution print or film
work. GIMP divides the image into square tiles and pro-
cesses them in passes, either by row or by column. When
GIMP’s memory requirement for tiles grows beyond its
internal cache size, it overflows them to a swap file. The
swap file access patterns manifest themselves as strided
disk accesses when a row pass reads the output of a col-
umn pass or vice versa. To blur an image, GIMP makes
three strided passes over the swap file. While it is feasible
to correctly detect and readahead these kinds of access
patterns, Linux does not attempt to do so.

We changed the GIMP tile cache to allow processing
functions to declare their access patterns: they specify the
order (row or column) in which they will process a set of
images. Multiple image passes are also expressible. We
exposed this interface to GIMP plugins and modified the
blur plugin to use this infrastructure (the modification
was simple). The core GIMP functions use a common
abstraction to make image passes, which we also modi-
fied to use the access pattern infrastructure. We changed
a total of 679 lines: 285 for the plugin architecture, 40
to specify patterns in the blur plugin, 11 to alter the core
image pass abstraction, and 343 to implement the libpre-
fetch callback.

We benchmarked the time to blur a square RGBA im-
age of the given size. Blur uses two copies of the image
for most of the operation and three to finish, so memory
requirements are higher than just the raw image size. We
set the GIMP’s internal cache to 100MB to prevent sig-
nificant amounts of double buffering in the GIMP and the
operating system’s buffer cache; we do not use less than
100MB so that GIMP’s internal cache can contain up
to three working image rows or columns for our largest
test image. GIMP mallocs space for its file cache, so lib-
prefetch does not attempt to use any of that 100MB of
memory per GIMP instance. The GIMP benchmark is
read/write, whereas our other benchmarks are read-only.

The results are shown in Figure 9. When the image

 0

 1

 2

 3

 4

 5

 6

 128 256 512 1024 2048 4096 8192 16384S
p

e
e

d
u

p
 (

s
to

c
k
 /

 l
ib

p
re

fe
tc

h
)

Image size (MB)

GIMP speedup

Figure 9: Speedup with libprefetch for GIMP to blur various sized
images. When GIMP uses the disk, libprefetch reduces runtime by a
factor of 2 to 5. Stock runtimes range from 28 seconds for the 128MB
workload to almost 7.5 hours for the 12GB workload; the intermediate
size of 1GB takes 38 minutes. The libprefetch runtime also starts at 28
seconds, but only climbs to 3 hours; the 1GB size takes 5 minutes.

size is small, all the data is held in the GIMP’s internal
cache and the operating system’s buffer cache, so there
is no disk access to optimize; stock and libprefetch run-
times are equal. As the image size increases from 192MB
to 1GB, disk access increases and libprefetch achieves
greater speedups. Libprefetch retrieves data from mul-
tiple rows (columns) before striding to the next part of
those rows (columns). This amortizes the cost of the
strided access pattern across the retrieval of multiple
rows (or columns), achieving a speedup of up to 5x. As
the image size increases, however, the number of rows
or columns that can be retrieved in one pass decreases.
The results for images greater than 1GB in size show this
gradual decrease in speedup.

5.4 Nonsequential Access

Our nonsequential benchmark issues a query to a SQLite
database. The dataset in the database is TPC-C like [6]
with the addition of a secondary index by zip code on the
customer table. We used datasets with 7 to 218 ware-
houses, yielding sizes between 132MB and 4110MB for
the combination of the customer table and zip code in-
dex. Additionally, we configured SQLite to use 4KB
pages (instead of the default 1KB pages) to match the
storage unit and reduce false sharing.

The benchmark performs the query SELECT *
FROM customer ORDER BY c zip. (Runtime on this
query was within a few percent on stock SQLite and
stock MySQL.) For this query, each resulting row will be
in a random file location relative to the previous row, in-
ducing a large number of seeks. Consequently, we expect
the query to have poor performance. When the dataset
fits entirely in memory, each disk page only needs to be
read once, after which the rest of the workload will be
serviced from the buffer cache. However, if the dataset is
larger than memory, pages will be read from disk multi-
ple times (each page holds multiple rows).

The SQLite callback for libprefetch examines the off-

310	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 5

 10

 15

 20

 128 256 512 1024 2048 4096S
p

e
e

d
u

p
 (

s
to

c
k
 /

 l
ib

p
re

fe
tc

h
)

Size of customer table plus zip code index (MB)

SQLite speedup

Figure 10: Speedup with libprefetch for SQLite when scanning a ta-
ble by a secondary index. The initial 14x approximate speedup peaks
at 20.3x, then falls to 7.7x. Stock runtime starts at about 3 minutes,
climbs to 100 minutes by the 1GB test, and runs for nearly 10 hours
for the 4GB test. Libprefetch’s runtime starts at 12 seconds and is only
77 minutes for the 4GB test; the 1GB test takes 7.5 minutes.

set for the current position and determines if it belongs
to an index. If so, the callback iterates the index and tells
libprefetch about the table data that the index points to.
From then on, the callback marks the index pages and
uses them to track its progress. This modification adds
less than 500 lines of code.

Figure 10 shows the speedups for the nonsequential
SQLite benchmark with 132MB to 4GB of data. The
initial improvement of roughly 14x is because libpre-
fetch is able to load the entire dataset in sequential order,
whereas SQLite loads the data on demand (in random
order) as it traverses the zip code index. As the dataset
approaches the size of memory, the speedup decreases
because libprefetch starts to require multiple passes over
the disk. Then, between roughly 512MB and 768MB, we
see a sharp increase in speedup: stock SQLite requires
progressively more time due to a sharp decline in the
buffer cache hit ratio as the dataset size exceeds the size
of memory. As the dataset grows even larger, the den-
sity of libprefetch’s passes over the disk decreases, caus-
ing higher average seek distance and decreasing benefits
from libprefetch.

Libprefetch processed the 4GB data set in just under
77 minutes. This is roughly 400 times slower than the
128MB data set, which took 11.6 s; processing time in-
creased by about 13x more than data set size. Some ex-
pensive seeks are simply unavoidable. However, the lib-
prefetch time is still 7.7x faster than stock SQLite.

5.5 Infill

Infill has no significant effect on the sequential or strided
benchmarks because they have few infill opportunities.
The large seeks in the strided access pattern are too large
for infill to be a win. Similarly, stock SQLite with infill
shows no significant speedup; the gaps between most re-
quests are too large for infill to apply.

The effect of infill on SQLite when using libprefetch
is shown in Figure 11. Disk 2 shows a substantial im-

 0

 0.5

 1

 1.5

 2

 2.5

 128 256 512 1024 2048 4096

S
p

e
e

d
u

p
 (

in
fi
ll

/
n

o
 i
n

fi
ll)

Size of customer table plus zip code index (MB)

Disk 1 (SD1A firmware)
Disk 2 (SD15 firmware)

Figure 11: Speedup due to infill for Disk 1 and Disk 2. All tests used
libprefetch. A firmware upgrade mostly alleviated the need for infill,
though a modest effect is still observed.

provement for many of the tests, up to 2.3x beyond
the speedups that libprefetch achieves. Libprefetch’s re-
ordering shrinks the average gap between requests to the
point where infill can improve performance. But as the
dataset size increases, the density of requests in a given
libprefetch pass across the disk decreases; as a result, in-
fill’s applicability also decreases.

As noted earlier, Disk 1 and Disk 2 are the same disk:
Disk 1 has newer firmware. While there is a notice-
able difference in the infill speedup on these two disks,
the difference in runtime when both libprefetch and in-
fill are used is less than 10%. It appears that the up-
dated firmware takes advantage of the hardware effect
that leads to infill being useful. The 3GB test is some-
how an exception, achieving a 1.7x speedup from infill
on Disk 1. Except for that point, the maximum speedup
from infill for Disk 1 is 1.049x. That is on par with the
maximum infill speedup we saw on Disk 3, 1.084x.

Infill will never be helpful for some access patterns
because there simply isn’t any opportunity to apply it.
For other access patterns, when infill is used with libpre-
fetch, it can either dramatically increase performance or
provide a modest improvement, depending on the disk.
None of our experiments showed a substantial negative
impact from infill.

5.6 Concurrent Applications

We evaluated libprefetch’s effect on concurrent work-
loads first by running multiple concurrent instances of
our benchmarks. Each instance used its own data file, so
prefetching in one instance didn’t help any other. Fig-
ure 12 shows the runtime for 1 to 3 concurrent execu-
tions of both the SQLite and GIMP benchmarks (512MB
datasets). Both with and without libprefetch, the runtime
of the GIMP benchmark scales with the number of in-
stances. The libprefetch versions run 3x to 4x faster than
the stock versions. Stock SQLite scales more slowly than
the number of instances; two SQLite instances take over
7x as long as a single instance, and three take more than
13x as long as one. Libprefetch improves SQLite’s scal-

USENIX Association	 2009 USENIX Annual Technical Conference	 311

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 1 2 3 1 2 3 1 2 3

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e
(s

in
g

le
 p

ro
c
e

s
s
 =

 1
.0

)

 Concurrent GIMPs Concurrent SQLites

Stock
Libprefetch

 9
4

8
 s

 2
1

2
 s

 8
3

7
 s

 6
7

 s

Figure 12: Stock vs. libprefetch application performance for one, two,
and three application instances running concurrently. To highlight scal-
ing behavior, times within each application group are normalized to the
performance of a single application instance.

 0

 200

 400

 600

 800

 1000

 1200

 1400

GIMP + md5sum GIMP + mem-walk

R
u

n
ti
m

e
 (

s
)

Stock GIMP
Libprefetch GIMP
Other (Stock)

Figure 13: Runtime of GIMP, with and without libprefetch, measured
concurrently with CPU- and memory-intensive microbenchmarks.

ing behavior; two SQLites take nearly 4x as long as one,
and three take almost 8x as long as one. The libprefetch
speedup over stock SQLite is 23.5x for two and 21.5x for
three concurrent instances.

While libprefetch SQLite scales better than stock,
libprefetch GIMP does not. We believe this is due to
the amount of memory available for reorder buffers.
Whereas each SQLite process occupies about 20MB of
memory, each GIMP process occupies about 150MB
(predominantly for its tile cache). On a machine with
500MB of memory available after bootup and three test
processes, the memory available for reorder buffers is
less than 50MB for GIMP versus 440MB for SQLite.

We also confirmed that libprefetch’s AIMD contention
controller has the intended effect. With the contention
controller disabled, each libprefetch process tried to use
the entire buffer cache, causing many pages to be evicted
before use. The tests ran for several times the stock run-
time before we we gave up and killed them. The AIMD
mechanism is effective and necessary with our approach
to contention management.

We tested resource contention more directly by run-
ning GIMP and SQLite concurrently with two resource-
heavy benchmarks, md5sum and mem-walk. Md5sum
calculates the MD5 checksum of a 2.13GB file; mem-
walk allocates 100MB of memory and then reads each
page in turn, cycling through the pages for a speci-
fied number of iterations. Figure 13 shows the runtime
for these two microbenchmarks run concurrently with

GIMP, both with and without libprefetch. When running
md5sum and GIMP concurrently, md5sum is faster with
the libprefetch-enabled version of the GIMP. This is be-
cause the libprefetch-enabled GIMP has lower disk uti-
lization, yielding more time for md5sum to use the disk.

An opposite effect comes into play when running
the GIMP concurrently with the mem-walk benchmark.
Since the same amount of CPU time is spent over a
shorter total time, GIMP with libprefetch has a higher
CPU utilization. Mem-walk takes about 25% longer with
the libprefetch-enabled GIMP because it is scheduled
less frequently. This slowdown is not specific to libpre-
fetch; any CPU-intensive application would have a sim-
ilar effect. The libprefetch speedup that GIMP gets with
mem-walk is not as high as with md5sum, partly due
to higher CPU contention and partly due to the smaller
amount of memory available to libprefetch. Results for
md5sum and mem-walk run concurrently with SQLite
are similar.

6 Conclusion
An analysis of the performance characteristics of mod-
ern disks led us to a new approach to prefetching. Our
prefetching algorithm minimizes the number of expen-
sive seeks and leads to a substantial performance boost
for nonsequential workloads. Libprefetch, a relatively
simple library that implements this technique, can speed
up real-world instances of nonsequential disk access, in-
cluding image processing and database table scans, by as
much as 4.9x and 20x, respectively, for workloads that
do not fit in main memory. Furthermore, a simple con-
tention controller enables this new prefetching algorithm
to peacefully coexist with multiple instances of itself as
well as other applications.

Acknowledgments
The authors thank the anonymous reviewers for their
valuable feedback, and our shepherd, Geoff Kuenning,
who was very generous with his time. This work was
supported by the National Science Foundation under
grants NSF-0430425, NSF-0427202, and NSF-0546892.
Eddie Kohler is also supported by a Microsoft Research
New Faculty Fellowship and a Sloan Research Fellow-
ship.

Notes
1For instance, the Apple Hard Disk 20SC, introduced in 1985, had

an average access time of 65 to 85 msec and a maximum transfer speed
of 1.25 MB/s [11]. The specifications for our disk (Seagate Barracuda
7200.11) quote an average access time of 4.16 msec and sustained
transfer speed up to 105 MB/s [24].

2This formula was derived using uniform random real numbers, ig-
noring quantization effects, and is most precise when 5 ≤ K  N.

3Because prefetching and readahead are speculative, prefetched
pages are inserted into the LRU list at a lower priority (at the head

312	 2009 USENIX Annual Technical Conference	 USENIX Association

of the inactive list) than pages that were explicitly read. This can lead
to discrepancies between the LRU list order and the access list order.

References
[1] Angela Demke Brown, Todd C. Mowry, and Orran Krieger.

Compiler-based I/O prefetching for out-of-core applications.
ACM Transactions on Computer Systems, 19(2):111–170, May
2001.

[2] Pei Cao, Edward Felten, Anna Karlin, and Kai Li. Imple-
mentation and performance of integrated application-controlled
caching, prefetching, and disk scheduling. ACM Transactions on
Computer Systems, 14(4):311–343, November 1996.

[3] Fay Chang and Garth A. Gibson. Automatic I/O hint generation
through speculative execution. In Proc. 3rd USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’99),
pages 1–14, New Orleans, Louisiana, February 1999.

[4] Thomas H. Cormen and Alex Colvin. ViC*: A preprocessor for
virtual-memory C*. Department of Computer Science Tech Re-
port PCS-TR94-243, Dartmouth College, November 1994.

[5] Microsoft Corp. SuperFetch, 2006. http://www.
microsoft.com/windows/windows-vista/
features/superfetch.aspx.

[6] Transaction Processing Performance Council. TPC-C Online
Transaction Processing Benchmark, April 2009. http://www.
tpc.org/tpcc/.

[7] Keir Fraser and Fay Chang. Operating system I/O specula-
tion: How two invocations are faster than one. In Proc. 2003
USENIX Annual Technical Conference, pages 325–338, San An-
tonio, Texas, June 2003.

[8] James Griffioen and Randy Appleton. Reducing file system la-
tency using a predictive approach. In Proc. USENIX Summer
1994 Technical Conference, pages 197–207, Boston, MA, June
1994.

[9] IEEE. POSIX 1003.1-2001, 2001.

[10] IEEE. POSIX 1003.1b, 1993.

[11] Apple Inc. Apple Hard Disk 10SC: Specifications (Discontin-
ued), November 2008. http://docs.info.apple.com/
article.html?artnum=1931.

[12] Apple Inc. HFS plus volume format. Section: Hot files. Technical
Note TN1150, March 2004.

[13] Tracy Kimbrel, Andrew Tomkins, R. Hugo Patterson, Brian N.
Bershad, Pei Cao, Edward W. Felten, Garth A. Gibson, Anna R.
Karlin, and Kai Li. A trace-driven comparison of algorithms for
parallel prefetching and caching. In Proc. 2nd USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
’96), pages 19–34, Seattle, Washington, October 1996.

[14] Thomas M. Kroeger and Darrell D. E. Long. The case for efficient
file access pattern modeling. In Proc. 7th Workshop on Hot Topics
in Operating Systems (HotOS-VII), pages 14–19, Rio Rico, AZ,
March 1999.

[15] Hui Lei and Dan Duchamp. An analytical approach to file
prefetching. In Proc. 1997 USENIX Annual Technical Confer-
ence, pages 275–288, Anaheim, California, January 1997.

[16] Mark Palmer and Stanley B. Zdonik. FIDO: A cache that learns
to fetch. In Proc. 17th International Conference on Very Large
Data Bases (VLDB ’91), pages 255–264, Barcelona, Catalonia,
Spain, September 1991.

[17] R. Hugo Patterson and Garth A. Gibson. Exposing I/O con-
currency with informed prefetching. In Proc. 3rd International
Conference on Parallel and Distributed Information Systems
(PDIS ’94), pages 7–16, Austin, TX, 1994.

[18] R. Hugo Patterson, Garth A. Gibson, Eka Gintin, Daniel Stodol-
sky, and Jim Zelenka. Informed prefetching and caching. In
Proc. 15th ACM Symposium on Operating Systems Principles
(SOSP ’95), pages 79–95, Copper Mountain Resort, CO, Decem-
ber 1995.

[19] Chris Ruemmler and John Wilkes. An introduction to disk drive
modeling. IEEE Computer, 27(3):17–28, March 1994.

[20] Steven W. Schlosser, Jiri Schindler, Stratos Papadomanolakis,
Minglong Shao, Anastassia Ailamaki, Christos Faloutsos, and
Gregory R. Ganger. On multidimensional data and modern disks.
In Proc. 4th USENIX Conference on File and Storage Technolo-
gies (FAST ’05), pages 225–238, San Francisco, CA, December
2005.

[21] Michael Stonebraker. Operating system support for database
management. Communications of the ACM, 24(7):412–418, July
1981.

[22] Michael Stonebraker, John Woodfill, Jeff Ranstrom, Marguerite
Murphy, Marc Meyer, and Eric Allman. Performance enhance-
ments to a relational database system. ACM Transactions on
Database Systems, 8(2):167–185, June 1983.

[23] Carl Tait and Dan Duchamp. Detection and exploitation of file
working sets. In Proc. 11th International Conference on Dis-
tributed Computing Systems, pages 2–9, Arlington, TX, May
1991.

[24] Seagate Technology. ST3500320AS - Barracuda 7200.11
SATA 3Gb/s 500-GB Hard Drive, April 2009. http:
//www.seagate.com/ww/v/index.jsp?vgnextoid=
c89ef141e7f43110VgnVCM100000f5ee0a0aRCRD.

[25] Rajeev Thakur, Rajesh Bordawekar, and Alok Choudhary. Com-
pilation of out-of-core data parallel programs for distributed
memory machines. ACM SIGARCH Computer Architecture
News, 22(4):23–28, September 1994.

[26] Kishor S. Trivedi. An analysis of prepaging. Computing, 22(3):
191–210, September 1979.

[27] Jeffrey Scott Vitter and P. Krishnan. Optimal prefetching via data
compression. Journal of the ACM, 43(5):771–793, September
1996.

USENIX Association	 2009 USENIX Annual Technical Conference	 313

Fido: Fast Inter-Virtual-Machine Communication for Enterprise Appliances

Anton Burtsev†, Kiran Srinivasan, Prashanth Radhakrishnan,
Lakshmi N. Bairavasundaram, Kaladhar Voruganti, Garth R. Goodson

†University of Utah NetApp, Inc.
aburtsev@flux.utah.edu, {skiran, shanth, lakshmib, kaladhar, goodson}@netapp.com

Abstract
Enterprise-class server appliances such as network-

attached storage systems or network routers can bene-
fit greatly from virtualization technologies. However,
current inter-VM communication techniques have sig-
nificant performance overheads when employed between
highly-collaborative appliance components, thereby lim-
iting the use of virtualization in such systems. We
present Fido, an inter-VM communication mechanism
that leverages the inherent relaxed trust model between
the software components in an appliance to achieve high
performance. We have also developed common device
abstractions - a network device (MMNet) and a block
device (MMBlk) on top of Fido.

We evaluate MMNet and MMBlk using microbench-
marks and find that they outperform existing alternative
mechanisms. As a case study, we have implemented
a virtualized architecture for a network-attached stor-
age system incorporating Fido, MMNet, and MMBlk.
We use both microbenchmarks and TPC-C to evaluate
our virtualized storage system architecture. In compari-
son to a monolithic architecture, the virtualized one ex-
hibits nearly no performance penalty in our benchmarks,
thus demonstrating the viability of virtualized enterprise
server architectures that use Fido.

1 Introduction
Enterprise-class appliances [4, 21] are specialized de-
vices providing services over the network to clients using
standardized protocols. Typically, these appliances are
built to deliver high-performance, scalable and highly-
available access to the exported services. Examples of
such appliances include storage systems (NetApp [21],
IBM [14], EMC [8]), network-router systems (Cisco [4],
Juniper [16]), etc. Placing the software components
of such appliances in separate virtual machines (VMs)
hosted on a hypervisor [1, 25] enables multiple ben-
efits —fault isolation, performance isolation, effective
resource utilization, load balancing via VM migration,

etc. However, when collaborating components are en-
capsulated in VMs, the performance overheads intro-
duced by current inter-VM communication mechanisms
[1, 17, 26, 28] is prohibitive.

We present a new inter-VM communication mecha-
nism called Fido specifically tailored towards the needs
of an enterprise-class appliance. Fido leverages the re-
laxed trust model among the software components in
an appliance architecture to achieve better performance.
Specifically, Fido facilitates communication using read-
only access between the address spaces of the compo-
nent VMs. Through this approach, Fido avoids page-
mapping and copy overheads while reducing expensive
hypervisor transitions in the critical path of communi-
cation. Fido also enables end-to-end zero-copy commu-
nication across multiple VMs utilizing our novel tech-
nique called Pseudo Global Virtual Address Space. Fido
presents a generic interface, amenable to the layering
of other higher-level abstractions. In order to facilitate
greater applicability of Fido, especially between compo-
nents developed by different collaborating organizations,
Fido is non-intrusive, transparent to applications and dy-
namically pluggable.

On top of Fido, we design two device abstractions,
MMNet and MMBlk, to enable higher layers to leverage
Fido. MMNet (Memory-Mapped Network) is a net-
work device abstraction that enables high performance
IP-based communication. Similarly, MMBlk is a block
device abstraction. MMNet performs consistently bet-
ter on microbenchmarks in comparison to other alterna-
tive mechanisms (XenLoop [26], Netfront [1] etc) and
is very close in performance to a loopback network de-
vice interface. Likewise, MMBlk outperforms the equiv-
alent open-source Xen hypervisor abstraction across sev-
eral microbenchmarks.

As a case study, we design and implement a full-
fledged virtualized network-attached storage system ar-
chitecture that incorporates MMNet and MMBlk. Mi-
crobenchmark experiments reveal that our virtualized

314	 2009 USENIX Annual Technical Conference	 USENIX Association

system does not suffer any degradation in throughput or
latency in most test cases as compared to a monolithic
storage server architecture. TPC-C macrobenchmark re-
sults reveal that the difference in performance between
our architecture and the monolithic one is almost imper-
ceptible.

To summarize, our contributions are:
• A high-performance inter-VM communication

mechanism - Fido, geared towards software archi-
tectures of enterprise-class appliances.

• A technique to achieve end-to-end zero-copy com-
munication across VMs - Pseudo Global Virtual Ad-
dress Space.

• An efficient, scalable inter-VM infrastructure for
connection management.

• Two high-performance device abstractions (MMNet
and MMBlk) to facilitate higher level software to
leverage the benefits of Fido.

• A demonstration of the viability of a modular virtu-
alized storage system architecture utilizing Fido.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the background and the motivation for
our work. Section 3 discusses the design and implemen-
tation of Fido and the abstractions - MMNet and MMBlk.
Next, we evaluate Fido and the abstractions using stan-
dard storage benchmarks in Section 4. A case study of
a network attached storage system utilizing Fido is pre-
sented in Section 5. In Section 6, we discuss related
work. Finally, in Section 7 we present our conclusions.

2 Background and Motivation
In this section, we first provide an overview of appliance
architectures and the benefits of incorporating virtualiza-
tion in them. Next, we present the performance issues
in such virtualized architectures, followed by a descrip-
tion of existing inter-VM communication mechanisms
and their inadequacy in solving performance issues.

2.1 Enterprise-class Appliance Architectures

We are primarily concerned about the requirements and
applicability of virtualization technologies to enterprise-
class server appliances. Typically, these appliances pro-
vide a specialized service over the network using stan-
dardized protocols. High-performance access and high-
availability of the exported network services are critical
concerns.

Enterprise appliances have some unique features that
differentiate them from other realms in which virtual-
ization technologies have been adopted aggresively. In
particular, the software components in such an architec-
ture are extremely collaborative in nature with a large
amount of data motion between them. This data flow is
often organized in the form of a pipeline. An example

of an enterprise appliance is a network-attached storage
system [21, 27] providing storage services over standard-
ized protocols, such as NFS and CIFS. Such a storage
system consists of components such as a protocol server,
a local file system, software RAID, etc. that operate as a
pipeline for data.

2.2 Virtualization Benefits for Appliances
Virtualization technologies have been highly successful
in the commodity servers realm. The benefits that have
made virtualization technologies popular in the com-
modity server markets are applicable to enterprise-class
server appliances as well:
• High availability: Components in an enterprise ap-

pliance may experience faults that lead to expensive
disruption of service. Virtualization provides fault
isolation across components placed in separate VM
containers, thereby enabling options such as micro-
reboots [2] for fast restoration of service, leading to
higher availability.

• Performance isolation/Resource allocation: Virtu-
alization allows stricter partitioning of hardware re-
sources for performance isolation between VMs. In
addition, the ability to virtualize resources as well
as to migrate entire VMs enables the opportunity to
dynamically provide (or take away) additional re-
sources to overloaded (or underloaded) sections of
the component pipeline, thus improving the perfor-
mance of the appliance as a whole.

• Non-disruptive upgrades: Often, one needs to up-
grade the hardware or software of enterprise systems
with little or no disruption in service. The differ-
ent software components of an appliance can be mi-
grated across physical machines through transparent
VM migration, thereby enabling non-disruptive hard-
ware upgrades. The mechanisms that enable higher
availability can be leveraged for non-disruptive soft-
ware upgrades.

Such benefits have prompted enterprise-appliance
makers to include virtualization technologies in their sys-
tems. The IBM DS8000 series storage system [7] is
an example of an appliance that incorporates a hypervi-
sor, albeit in a limited fashion, to host two virtual fault-
isolated and performance-isolated storage systems on the
same physical hardware. Separation of production and
test environments, and flexibility of resource allocation
are cited as reasons for incorporating virtualization [7].

2.3 Performance issues with virtualization
Encapsulating the software components of an appliance
in VMs introduces new performance issues. First, de-
vice access may be considerably slower in a virtual-
ized environment. Second, data transfer between compo-
nents that used to happen via inexpensive function calls

2

USENIX Association	 2009 USENIX Annual Technical Conference	 315

now crosses protected VM boundaries; since such data
transfer is critical to overall performance, it is important
that the inter-VM communication between the compo-
nent VMs be optimized. The first issue is often easily
solved in appliances, as devices can be dedicated to com-
ponents. We address the second performance issue in this
paper.

2.4 Inter-VM communication mechanisms

Current inter-VM communication mechanisms rely on
either copying (XenLoop [26], XenSocket [28]) or page
mapping/unmapping (Netfront [1]) techniques. Both of
these techniques incur performance overheads in the crit-
ical data path, making them unsuitable for data-traffic
intensive server appliances like storage systems. More-
over, the data throughput and latency results obtained
with these mechanisms do not satisfy the requirements
of an appliance. From another perspective, some of these
mechanisms [26, 28] are designed for a specific kind of
data traffic - network packets. In addition, they do not
offer the flexibility of layering other types of data traffic
on top of them. Thereby, restricting the applicability of
their solution between different kinds of components in
an appliance. All these reasons made us conclude that
we need a specialized high-performance inter-VM com-
munication mechanism. Moreover, since multiple com-
ponent VMs process data in a pipeline fashion, it is not
sufficient to have efficient pair wise inter-VM commu-
nication; we require efficient end-to-end transitive inter-
VM communication.

3 Design and Implementation
In this section, we first describe the design goals of Fido,
followed by the inherent trust model that forms the key
enabler of our communication mechanism. We then
present Fido, our fast inter-VM communication mech-
anism. Finally, we describe MMNet and MMBlk, the
networking and disk access interfaces that build on the
communication abstraction provided by Fido.

3.1 Design Goals

The following are the design goals of Fido to enable
greater applicability as well as ease of use:
• High Performance: Fido should enable high

throughput, low latency communication with accept-
able CPU consumption.

• Dynamically Pluggable: Introduction or removal of
Fido should not require a reboot of the system. This
enables component VMs to leverage Fido without en-
tailing an interruption in service.

• Non-intrusive: In order to limit the exposure of ker-
nel data structures Fido should be built in a non-
intrusive fashion. The fewer the dependencies with
other kernel data structures, the easier it is to port

across kernel versions.
• Application-level transparent: Leveraging Fido

should not require applications to change. This en-
sures that existing applications can start enjoying the
performance benefits of Fido without requiring code-
level changes.

• Flexible: Fido should enable different types of data
transfer mechanisms to be layered on top of it with
minimal dependencies and a clean interface.

Specifically, being non-intrusive, dynamically pluggable
and application transparent extends Fido’s applicability
in appliances where the components might be indepen-
dently developed by collaborating organizations.

3.2 Relaxed Trust Model

Enterprise-class server appliances consist of various soft-
ware components that are either mostly built by a single
organization or put together from pre-tested and quali-
fied components. As a result, the degree of trust between
components is significantly more than in typical applica-
tions of virtualization. In fact, the various components
collaborate extensively and readily exchange or release
resources for use by other components. At the same time,
in spite of best efforts, the various components may con-
tain bugs that create a need for isolating them from each
other.

In an enterprise server appliance, the following trust
assumptions apply. First, the different software compo-
nents in VMs are assumed to be non-malicious. There-
fore, read-only access to each other’s address spaces is
acceptable. Second, most bugs and corruptions are as-
sumed to lead to crashes sooner than later; enterprise ap-
pliances are typically designed to fail-fast; as well, it has
been shown that Linux systems often crash within 10 cy-
cles of fault manifestation [10]. Therefore, the likelihood
of corruptions propagating from a faulty VM to a com-
municating VM via read-only access of memory is low.
However, VMs are necessary to isolate components from
crashes in each other.

3.3 Fido

Fido is an inter-VM shared-memory-based communica-
tion mechanism that leverages the relaxed trust model
to improve data transfer speed. In particular, we de-
sign Fido with a goal of reducing the primary contrib-
utors to inter-VM communication overheads: hypervisor
transitions and data copies. In fact, Fido enables zero-
copy data transfer across multiple virtual machines on
the same physical system.

Like other inter-VM communication mechanisms that
leverage shared memory, Fido consists of the follow-
ing features: (i) a shared-memory mapping mechanism,
(ii) a signaling mechanism for cross-VM synchroniza-
tion, and (iii) a connection-handling mechanism that fa-

3

316	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 1: Fido Architecture. The figure shows the compo-
nents of Fido in a Linux VM over Xen. The two domUs contain
the collaborating software components. In this case, they use
MMNet and Fido to communicate. Fido consists of three pri-
mary components: a memory-mapping module (M), a connec-
tion module (C), and a signaling module (S). The connection
module uses XenStore (a centralized key-value store in dom0)
to discover other Fido-enabled VMs, maintain its own mem-
bership, and track VM failures. The memory-mapping module
uses Xen grant reference hypervisor calls to enable read-only
memory mapping across VMs. It also performs zero-copy data
transfer with a communicating VM using I/O rings. The sig-
naling module informs communicating VMs about availability
and use of data through the Xen signal infrastructure.

cilitates set-up, teardown, and maintenance of shared-
memory state. Implementation of these features requires
the use of specific para-virtualized hypervisor calls. As
outlined in the following subsections, the functionality
expected from these API calls is simple and is available
in most hypervisors (Xen, VMWare ESX, etc.).

Fido improves performance through simple changes
to the shared-memory mapping mechanism as compared
to traditional inter-VM communication systems. These
changes are complemented by corresponding changes to
connection handling, especially for dealing with virtual-
machine failures. Figure 1 shows the architecture of
Fido. We have implemented Fido for a Linux VM on
top of the Xen hypervisor. However, from a design per-
spective, we do not depend on any Xen-specific features;
Fido can be easily ported to other hypervisors. We now
describe the specific features of Fido.

3.3.1 Memory Mapping
In the context of enterprise-class appliance component
VMs, Fido can exploit the following key trends: (i) the
virtual machines are not malicious to each other and
hence each VM can be allowed read-only access to the
entire address space of the communicating VM and (ii)
most systems today use 64-bit addressing, but individ-
ual virtual machines have little need for as big an ad-
dress space due to limitations on physical memory size.
Therefore, with Fido, the entire address space of a source

virtual machine is mapped read-only into the destina-
tion virtual machine, where source and destination re-
fer to the direction of data transfer. This mapping is es-
tablished a priori, before any data transfer is initiated.
As a result, the data transfer is limited only by the total
physical memory allocated to the source virtual machine,
thus avoiding limits to throughput scaling due to small
shared-memory segments. Other systems [9, 26] suffer
from these limits, thereby causing either expensive hy-
pervisor calls and page table updates [20] or data copies
to and from the shared segment when the data is not pro-
duced in the shared-memory segment [17, 28].

In order to implement this memory mapping tech-
nique, we have used the grant reference functionality
provided by the Xen hypervisor. In VMWare ESX, the
functional equivalent would be the hypervisor calls lever-
aged by the VMCI (Virtual Machine Communication In-
terface [24]) module. To provide memory mapping, we
have not modified any guest VM (Linux) kernel data
structures. Thus, we achieve one of our design goals of
being non-intrusive to the guest kernel.

3.3.2 Signaling Mechanism

Like other shared-memory based implementations, Fido
needs a mechanism to send signals between commu-
nicating entities to notify data availability. Typically,
hypervisors (Xen, VMWare, etc.) support hypervi-
sor calls that enable asynchronous notification between
VMs. Fido adopts the Xen signaling mechanism [9] for
this purpose. This mechanism amortizes the cost of sig-
naling by collecting several data transfer operations and
then issuing one signaling call for all operations. Again,
this bunching together of several operations is easier with
Fido since the shared memory segment is not limited.
Moreover, after adding a bunch of data transfer opera-
tions, the source VM signals the destination VM only
when it has picked up the previous signal from the source
VM. In case the destination VM has not picked up the
previous signal, it is assumed that it would pick up the
newly queued operations while processing the previously
enqueued ones.

3.3.3 Connection Handling

Connection handling includes connection establishment,
connection monitoring and connection error handling be-
tween peer VMs.
Connection State: A Fido connection between a pair
of VMs consists of a shared memory segment (meta-
data segment) and a Xen event channel for signaling be-
tween the VMs. The metadata segment contains shared
data structures to implement producer-consumer rings
(I/O rings) to facilitate exchanging of data between VMs
(similar to Xen I/O rings [1]).
Connection Establishment: In order to establish an

4

USENIX Association	 2009 USENIX Annual Technical Conference	 317

inter-VM connection between two VMs, the Fido mod-
ule in each VM is initially given the identity (Virtual Ma-
chine ID - vmid) of the peer VM. One of the communicat-
ing VMs (for example, the one with the lower vmid) initi-
ates the connection establishment process. This involves
creating and sharing a metadata segment with the peer.
Fido requires a centralized key-value DB that facilitates
proper synchronization between the VMs during the con-
nection setup phase. Operations on the DB are not per-
formance critical, they are performed only during setup
time, over-the-network access to a generic transactional
DB would suffice. In Xen, we leverage XenStore—a
centralized hierarchical DB in Dom0—for transferring
information about metadata segment pages via an asyn-
chronous, non-blocking handshake mechanism. Since
Fido leverages a centralized DB to exchange metadata
segment information, it enables communicating VMs to
establish connections dynamically. Therefore, by design,
Fido is made dynamically pluggable.

From an implementation perspective, Fido is imple-
mented as a loadable kernel module, and the communi-
cation with XenStore happens at the time of loading the
kernel module. Once the metadata segment has been es-
tablished between the VMs using XenStore, we use the
I/O rings in the segment to bootstrap memory-mapping.
This technique avoids the more heavy-weight and cir-
cuitous XenStore path for mapping the rest of the mem-
ory read-only. The source VM’s memory is mapped into
the paged region of the destination VM in order to facil-
itate zero-copy data transfer to devices (since devices do
not interact with data in non-paged memory). To create
such a mapping in a paged region, the destination VM
needs corresponding page structures. We therefore pass
the appropriate kernel argument mem at boot time to al-
locate enough page structures for the mappings to be
introduced later. Note that Linux’s memory-hotplug fea-
ture allows dynamic creation of page structures, thus
avoiding the need for a boot-time argument; however,
this feature is not fully-functional in Xen para-virtualized
Linux kernels.

Connection Monitoring: The Fido module periodically
does a heartbeat check with all the VMs to which it is
connected. We again leverage XenStore for this heart-
beat functionality. If any of the connected VMs is miss-
ing, the connection failure handling process is triggered.

Connection Failure Handling: Fido reports errors de-
tected during the heartbeat check to higher-level layers.
Upon a VM’s failure, its memory pages that are mapped
by the communicating VMs cannot be deallocated until
all the communicating VMs have explicitly unmapped
those pages. This ensures that after a VM’s failure, the
immediate accesses done by a communicating VM will
not result in access violations. Fortunately, this is guar-

anteed by Xen’s inter-VM page sharing mechanism.
Data Transfer: This subsection describes how higher
layer subsystems can use Fido to achieve zero-copy data
transfer.
• Data Representation: Data transferred over the

Fido connection is represented as an array of point-
ers, referred to as the scatter-gather (SG) list. Each
I/O ring entry contains a pointer to an SG list in the
physical memory of the source VM and a count of en-
tries in the SG list. The SG list points to data buffers
allocated in the memory of the source VM.

• IO Path: In the send data path, every request orig-
inated from a higher layer subsystem (i.e., a client
of Fido) in the source guest OS is expected to be in
an SG list and sent to the Fido layer. The SG list is
sent to the destination guest OS over the I/O ring. In
the receive path, the SG list will be picked up by the
Fido layer and passed up to the appropriate higher
layer subsystem, which in turn will package it into
a request suitable for delivery to the destination OS.
Effectively, the SG list is the generic data structure
that enables different higher layer protocols to inter-
act with Fido without compromising the zero-copy
advantage.

• Pointer Swizzling: A source VM’s memory pages
are mapped at an arbitrary offset in the kernel ad-
dress space of the destination VM. As a result, the
pointer to the SG list and the data pointers in the SG
list provided by the source VM are incomprehensible
when used as-is by the destination VM. They need
to be translated relative to the offset where the VM
memory is mapped in. While the translation can be
done either by the sender or the receiver, we chose to
do it in the sender. Doing the translation in the sender
simplifies the design of transitive zero-copy (Section
3.3.4).

3.3.4 Transitive Zero-Copy

As explained in Section 2, data flows through
an enterprise-class software architecture successively
across the different components in a pipeline. To ensure
high performance we need true end-to-end zero-copy. In
Section 3.3.1, we discussed how to achieve zero-copy
between two VMs. In this section, we address the chal-
lenges involved in extending the zero-copy transitively
across multiple component VMs.
Translation problems with transitive zero-copy: In or-
der to achieve end-to-end zero-copy, data originating in
a source component VM must be accessible and com-
prehensible in downstream component VMs. We en-
sure accessibility of data by mapping the memory of the
source component VM in every downstream component
VM with read permissions. For data to be comprehensi-

5

318	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 2: PGVAS technique between VMs X, Y and Z.

ble in a downstream component VM, all data references
that are resolvable in the source VM’s virtual address
space will have to be translated correctly in the destina-
tion VM’s address space. Doing this translation in each
downstream VM can prove expensive.
Pseudo Global Virtual Address Space: The advent of
64-bit processor architecture makes it feasible to have
a global virtual address space [3, 11] across all compo-
nent VMs. As a result, all data references generated by
a source VM will be comprehensible in all downstream
VMs; thus eliminating all address translations.

The global address space systems (like Opal[3]) have
a single shared page table across all protected address
spaces. Modifying the traditional guest OS kernels to
use such a single shared page table is a gargantuan un-
dertaking. We observe that we can achieve the effect of a
global virtual address space if each VM’s virtual address
space ranges are distinct and disjoint from each other.
Incorporating such a scheme may also require intrusive
changes to the guest OS kernel. For example, Linux will
have to be modified to map its kernel at arbitrary virtual
address offsets, rather than from a known fixed offset.

We develop a hybrid approach called Pseudo Global
Virtual Address Space (PGVAS) that enables us to lever-
age the benefits of a global virtual address space without
the need for intrusive changes to the guest OS kernel. We
assume that the virtual address spaces in the participat-
ing VMs are 64-bit virtual address spaces; thus the kernel
virtual address space should have sufficient space to map
the physical memory of a large number of co-located
VMs. Figure 2 illustrates the PGVAS technique. With
PGVAS, there are two kinds of virtual address mappings
in a VM, say X. Local mapping refers to the traditional
way of mapping the physical pages of X by its guest OS,
starting from virtual address zero. In addition, there is
a global mapping of the physical pages of X at a virtual

offset derived from X’s id, say f(X). An identical global
mapping exists at the same offset in the virtual address
spaces of all communicating VMs. In our design, we as-
sume VM ids are monotonically increasing, leading to
f(X) = M*X + base, where M is the maximum size
of a VM’s memory, X is X’s id and base is the fixed
starting offset in the virtual address spaces.

To illustrate the benefits, consider a transitive data
transfer scenario starting from VM X , leading to VM
Y and eventually to VM Z. Let us assume that the trans-
ferred data contains a pointer to a data item located at
physical address p in X . This pointer will typically be a
virtual reference, say Vx(p), in the local mapping of X ,
and thus, incomprehensible in Y and Z. Before transfer-
ring the data to Y , X will encode p to a virtual reference,
f(X)+p, in the global mapping. Since global mappings
are identical in all VMs, Y and Z can dereference the
pointer directly, saving the cost of multiple translations
and avoiding the loss of transparency of data access in Y

and Z. As a result, all data references have to be trans-
lated once by the source VM based on the single unique
offset where its memory will be mapped in the virtual ad-
dress space of every other VM. This is also the rationale
for having the sender VM do the translations of refer-
ences in Fido as explained in Section 3.3.1.

3.4 MMNet

MMNet connects two VMs at the network link layer. It
exports a standard network device interface to the guest
OS. In this respect, MMNet is very similar to Xen Net-
Back/NetFront drivers. However, it is layered over Fido
and has been designed with the key goal of preserving
the zero-copy advantage that Fido provides.

MMNet exports all of the key Fido design goals to
higher-layer software. Since MMNet is designed as a
network device driver, it uses clean and well-defined in-
terfaces provided by the kernel, ensuring that MMNet is
totally non-intrusive to the rest of the kernel. MMNet is
implemented as a loadable kernel module. During load-
ing of the module, after the MMNet interface is created,
a route entry is added in the routing table to route pack-
ets destined to the communicating VM via the MMNet
interface. Packets originating from applications dynami-
cally start using MMNet/Fido to communicate with their
peers in other VMs, satisfying the dynamic pluggabil-
ity requirement. This seamless transition is completely
transparent to the applications requiring no application-
level restarts or modifications.

MMNet has to package the Linux network packet data
structure skb into the OS-agnostic data-structures of
Fido and vice-versa, in a zero-copy fashion. The skb
structure allows for data to be represented in a linear
data buffer and in the form of a non-linear scatter-gather
list of buffers. Starting with this data, we create a Fido-

6

USENIX Association	 2009 USENIX Annual Technical Conference	 319

compatible SG list (Section 3.3.3) containing pointers to
the skb data. Fido ensures that this data is transmitted to
the communicating VM via the producer-consumer I/O
rings in the metadata segment.

On the receive path, an asynchronous signal triggers
Fido to pull the SG list and pass it to the correspond-
ing MMNet module. The MMNet module in turn allo-
cates a new skb structure with a custom destructor func-
tion and adds the packet data from the SG onto the non-
linear part of the skb without requiring a copy. Once the
data is copied from kernel buffers onto the user-space,
the destructor function on the skb is triggered. The skb
destructor function removes the data pointers from the
non-linear list of the skb and requests Fido to notify the
source VM regarding completion of packet data usage.

Though MMNet appears as a network device, it is not
constrained by certain hardware limitations like the MTU
of traditional network devices and can perform optimiza-
tions in this regard. MMNet presents an MTU of 64KB
(maximum TCP segment size) to enable high perfor-
mance network communication. In addition, since MM-
Net is used exclusively within a physical machine, MM-
Net can optionally disable checksumming by higher pro-
tocol layers, thereby reducing network processing costs.

3.5 MMBlk

MMBlk implements block level connection between vir-
tual machines. Conceptually MMBlk is similar to Xen’s
BlkBack/BlkFront block device driver [1]. However, like
MMNet, it is layered on top of the Fido

We implement MMBlk as a split block device driver
for the Linux kernel. In accordance to a block device
interface, MMBlk receives read and write requests from
the kernel in the bio structure. bio provides a descrip-
tion of read/write operations to be done by the device
along with an array of pages containing data.

MMBlk write path can be trivially implemented with
no modifications to the Linux code. Communicating
VMs share their memory in a read-only manner. Thus,
a writer VM only needs to send pointers to the bio
pages containing write data. Then, the communicating
VM on the other end can either access written data or in
the case of a device driver VM, it can perform a DMA
straight from the writer’s pages. Note, that in order to
perform DMA, the bio page has to be accessible by
the DMA engine. This comes with no additional data
copy on a hardware providing an IOMMU. An IOMMU
enables secure access to devices by enabling use of vir-
tual addresses by VMs. Without an IOMMU, we rely on
the swiotlb Xen mechanism implementing IOMMU
translation in software. swiotlb keeps a pool of low
memory pages, which are used for DMA. When transla-
tion is needed, swiotlb copies data into this pool.

Unfortunately, implementation of a zero-copy read

path is not possible without intrusive changes to the
Linux storage subsystem. The problem arises from the
fact that on the read path, pages into which data has to be
read are allocated by the reader, i.e., by an upper layer,
which creates the bio structure before passing it to the
block device driver. These pages are available read-only
to the block device driver domain and hence cannot be
written into directly. There are at least three ways to
handle this problem without violating fault-isolation be-
tween the domains. First, the driver VM can allocate a
new set of pages to do the read from the disk and later
pass it to the reader domain as part of the response to
the read request. The reader then has to copy the data
from these pages to the original destination, incurring
copy costs in the critical path. The second option is to
make an intrusive change to the Linux storage subsys-
tem whereby the bio structure used for the read contains
an extra level of indirection, i.e., pointers to pointers of
the original buffers. Once the read data is received in
freshly allocated pages from the driver VM, the appro-
priate pointers can be fixed to ensure that data is trans-
ferred in a zero-copy fashion. The third option is sim-
ilar to the first one, instead of copying we can perform
page-flipping to achieve the same goal. We performed a
microbenchmark to compare the performance of copying
versus page-flipping and observed that page-flipping out-
performs copying for larger data transfers (greater than
4K bytes). We chose the first option for our implemen-
tation, experimenting with page-flipping is part of future
work.

4 Evaluation
In this section, we evaluate the performance of MM-
Net and MMBlk mechanisms with industry-standard mi-
crobenchmarks.
4.1 System Configuration
Our experiments are performed on a machine equipped
with two quad-core 2.1 GHz AMD Opteron processors,
16 GB of RAM, three NVidia SATA controllers and two
NVidia 1 Gbps NICs. The machine is configured with
three additional (besides the root disk) Hitachi Deskstar
E7K500 500GB SATA disks with a 16 MB buffer, 7200
RPM and a sustained data transfer rate of 64.8 MB/s. We
use a 64-bit Xen hypervisor (version 3.2) and a 64-bit
Linux kernel (version 2.6.18.8).
4.2 MMNet Evaluation
We use the netperf benchmark (version 2.4.4) to eval-
uate MMNet. netperf is a simple client-server based
user-space application, which includes tests for measur-
ing uni-direction bandwidth (STREAM tests) and end-
to-end latency (RR tests) over TCP and UDP.

We compare MMNet with three other implementa-
tions: i) Loop: the loopback network driver in a sin-

7

320	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 3: MMNet and MMBlk Evaluation Configurations

 0

 5000

 10000

 15000

 20000

0.5 1 2 4 8 16 32 64 128 256

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Message size (in KB)

Netfront
XenLoop

MMNet
Loop

Figure 4: TCP Throughput (TCP STREAM test)

 0
 2000
 4000
 6000
 8000

 10000
 12000

0.5 1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Message size (in KB)

Netfront
XenLoop

MMNet
Loop

Figure 5: UDP Throughput (UDP STREAM test)

gle VM for baseline; ii) Netfront: the default Xen net-
working mechanism that routes all traffic between two
co-located VMs (domUs) through a third management
VM (dom0), which includes a backend network driver;
iii) XenLoop [26]: an inter-VM communication mecha-
nism that, like MMNet, achieves direct communication
between two co-located domUs without going through
dom0. These configurations are shown in the Figure 3A.

Unlike MMNet, the other implementations have addi-
tional copy or page remapping overheads in the I/O path,
as described below:
• Netfront: In the path from the sender domU to

dom0, dom0 temporarily maps the sender domU’s
pages. In the path from dom0 to the receiver domU,
either a copy or page-flipping [1] is performed. In
our tests we use page-flipping, which is the default
mode.

 0
 50

 100
 150
 200
 250
 300

1 2 4 8 16R
ou

nd
-tr

ip
 L

at
en

cy
 (i

n
us

)

Message size (in KB)

Netfront
XenLoop

MMNet
Loop

Figure 6: TCP Latency (TCP RR test)

• XenLoop: A fixed region of memory is shared be-
tween the two communicating domUs. In the I/O
path, XenLoop copies data in and out of the shared
region.

All VMs are configured with one virtual CPU each.
The only exception is the VM in the loop experiment,
which is configured with two virtual CPUs. Virtual CPUs
were pinned to separate physical cores, all on the same
quad-core CPU socket. All reported numbers are aver-
ages from three trials.

Figure 4 presents TCP throughput results for varying
message sizes. The figure shows that MMNet performs
significantly better than XenLoop and the default Xen
drivers, reaching a peak throughput of 9558 Mb/s at a
message size of 64KB.

We see that performance with XenLoop is worse than
Netfront. Given that XenLoop was designed to be more
efficient than Netfront, this result seems contradictory.
We found that the results reported by the XenLoop au-
thors [26] were from tests performed on a single socket,
dual-core machine. The three VMs, namely the two
domUs and dom0, were sharing two processor cores
amongst themselves. In contrast, our tests had dedi-
cated cores for the VMs. This reduces the number of
VM switches and helps Netfront better pipeline activity
(such as copies and page-flips) over three VMs. In or-
der to verify this hypothesis, we repeated the netperf
TCP STREAM experiment (with a 16KB message size)

8

USENIX Association	 2009 USENIX Annual Technical Conference	 321

by restricting all the three VMs to two CPU cores and
found that XenLoop (4000 Mbps) outperforms Netfront
(2500 Mbps).

UDP throughput results for varying message sizes are
shown in Figure 5. We see that the MMNet performance
is very similar to Loop and significantly better than Net-
front and XenLoop. Inter-core cache hits could be the
reason for this observation, since UDP protocol process-
ing times are shorter compared to TCP, it could lead to
better inter-core cache hits. This will benefit data copies
done across cores (for example, in XenLoop, the receiver
VM’s copy from the shared region to the kernel buffer
will be benefited). There will be no benefit for Netfront
because it does page remapping as explained earlier.

Figure 6 presents the TCP latency results for varying
request sizes. MMNet is almost four times better than
Netfront. Moreover, MMNet latencies are comparable
to XenLoop for smaller message sizes. However, as the
message sizes increase, the additional copies that Xen-
Loop incurs hurt latency and hence, MMNet outperforms
XenLoop. Netfront has the worst latency results because
of the additional dom0 hop in the network path.

4.3 MMBlk Evaluation

We compare the throughput and latency of MMBlk
driver with two other block driver implementations: i)
Loop: the monolithic block layer implementation where
the components share a single kernel space; ii) Xen-
Blk: a split architecture where the block layer spans two
VMs connected via the default Xen block device drivers.
These configurations are illustrated in Figure 3B.

To eliminate the disk bottleneck, we create a block de-
vice (using loop driver) on TMPFS. In the Loop setup, an
ext3 file system is directly created on this device. In the
other setups, the block device is created in one (backend)
VM and exported via the XenBlk/MMBlk mechanisms
to another (frontend) VM. The frontend VM creates an
ext3 file system on the exported block device. The back-
end and the frontend VMs were configured with 4 GB
and 1 GB of memory, respectively. The in-memory block
device is 3 GB in size and we use a 2.6 GB file in all tests.

Figure 7 presents the memory read and write through-
put results for different block sizes measured using the
IOZone [15] microbenchmark (version 3.303). For the
Loop tests, we observe that the IOZone workload per-
forms poorly. To investigate this issue, we profiled exe-
cutions of all three setups. Compared to the split cases,
execution of Loop has larger number of wait cycles.
From our profile traces, we believe that the two filesys-
tems (TMPFS and ext3) compete for memory – trying to
allocate new pages. TMPFS is blocked as most of the
memory is occupied by the buffer cache staging ext3’s
writes. To improve Loop’s performance, we configure
the monolithic system with 8GB of memory.

We consistently find that read throughput at a partic-
ular record size is better than the corresponding write
throughput. This is due to soft page faults in TMPFS
for new writes (writes to previously unwritten blocks).

From Figure 7A, we see that MMBlk writes perform
better than XenBlk writes by 39%. This is because Xen-
Blk incurs page remapping costs in the write path, while
MMBlk does not. Further, due to inefficiencies in Loop,
on average MMBlk is faster by 45%. In the case of reads,
as shown in Figure 7B, XenBlk is only 0.4% slower than
the monolithic Loop case. On smaller record sizes, Loop
outperforms XenBlk due to a cheaper local calls. On
larger record sizes, XenBlk becomes faster leveraging
the potential to batch requests and better pipeline execu-
tion. XenBlk outperforms MMBlk by 35%. In the read
path, MMBlk does an additional copy, whereas XenBlk
does page remapping. Eliminating the copy (or page flip)
in the MMBlk read path is part of future work.

5 Case Study: Virtualized Storage System
Architecture

Commercial storage systems [8, 14, 21] are an important
class of enterprise server appliances. In this case study,
we examine inter-VM communication overheads in a vir-
tualized storage-system architecture and explore the use
of Fido to alleviate these overheads. We first describe the
architecture of a typical network-attached storage sys-
tem, then we outline a proposal to virtualize its archi-
tecture and finally, evaluate the performance of the virtu-
alized architecture.

5.1 Storage System Architecture

The composition of the software stack of a storage sys-
tem is highly vendor-specific. For our analysis, we use
the NetApp software stack [27] as the reference system.
Since all storage systems need to satisfy certain common
customer requirements and have similar components and
interfaces, we believe our analysis and insights are also
applicable to other storage systems in the same class as
our reference system.

The data flow in a typical monolithic storage system
is structured as a pipeline of requests through a series of
components. Network packets are received by the net-
work component (e.g., network device driver). These
packets are passed up the network stack for protocol pro-
cessing (e.g., TCP/IP followed by NFS). The request is
then transformed into a file system operation. The file
system, in turn, translates the request into disk accesses
and issues them to a software-RAID component. RAID
converts the disk accesses it receives into one or more
disk accesses (data and parity) to be issued to a storage
component. The storage component, in turn, performs
the actual disk operations. Once the data has been re-
trieved from or written to the disks, an appropriate re-

9

322	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 200

 400

 600

 800

 1000

4 8 16 32 64 128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
 (i

n
M

B/
s)

Record size (in KB)

A) Sequential writes

Loop
MMBlk
XenBlk

 0

 200

 400

 600

 800

 1000

4 8 16 32 64 128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
 (i

n
M

B/
s)

Record size (in KB)

B) Sequential reads

Loop
MMBlk
XenBlk

Figure 7: MMBlk Throughput Results

sponse is sent via the same path in reverse.

5.2 Virtualized Architecture

We design and implement a modular architecture for an
enterprise-class storage system that leverages virtualiza-
tion technologies. Software components are partitioned
into separate VMs. For the purposes of understanding the
impact of inter-VM communication in such an architec-
ture as well as evaluating our mechanisms, we partition
components as shown in Figure 8. While this architec-
ture is a representative architecture, it might not neces-
sarily be the ideal one from a modularization perspec-
tive. Identifying the ideal modular architecture merits a
separate study and is outside the scope of our work.

Our architecture consists of four different component
VMs — Network VM, Protocols and File system VM,
RAID VM and Storage VM. Such an architecture can
leverage many benefits from virtualization (Section 2.2):
• Virtualization provides much-needed fault isolation

between components. In addition, the ability to re-
boot individual components independently greatly
enhances the availability of the appliance.

• Significant performance isolation across file system
volumes can be achieved by having multiple sets of
File system, RAID, and Storage VMs, each set serv-
ing a different volume. One can also migrate one
such set of VMs to a different physical machine for
balancing load.

• Component independence helps with faster develop-
ment and deployment of new features. For instance,
changes to device drivers in the Storage VM (say to
support new devices or fix bugs) can be deployed in-
dependently of other VMs. In fact, one might be able
to upgrade components in a running system.

The data flow in the virtualized architecture starts from
the Network VM, passes successively through the File
system and RAID VMs and ends in the Storage VM, re-
sembling a pipeline. This pipelined processing requires
data to traverse several VM boundaries entailing inter-
VM communication performance overheads. In order
to ensure high end-to-end performance of the system, it

Figure 8: Architecture with storage components in VMs

Figure 9: Full system with MMNet and MMBlk

is imperative that we address the inter-VM communica-
tion performance. As mentioned in Section 2, inter-VM
communication performance is just one of the perfor-
mance issues for this architecture; other issues like high-
performance device access are outside our scope.
5.3 System Implementation Overview
In Figure 9, we illustrate our full system implementa-
tion incorporating MMNet and MMBlk between the dif-
ferent components. Our prototype has four component
VMs:
• Network VM: The network VM has access to the

physical network interface. In addition, it has a MM-
Net network device to interface with the (Protocols
+ FS) VM. The two network interfaces are linked to-
gether by means of a Layer 2 software bridge.

• Protocols + FS VM: This VM is connected to the
Network VM via the MMNet network device. We
run an in-kernel NFSv3 server exporting an ext3 file
system to network clients via the MMNet interface.
The file system is laid out on a RAID device exported
by the RAID VM via an MMBlk block device. This

10

USENIX Association	 2009 USENIX Annual Technical Conference	 323

VM is referred to as FS VM subsequently.
• RAID VM: This VM exports a RAID device to the

FS VM using the MMBlk block device interface. We
use the MD software RAID5 implementation avail-
able in Linux. The constituting data and parity disks
are actually virtual disk devices exported again via
MMBlk devices from the neighboring storage VM.

• Storage VM: The storage VM accesses physical
disks, which are exported to the RAID VM via sepa-
rate MMBlk block device interfaces.

The goal of our prototype is to evaluate the perfor-
mance overheads in a virtualized storage system ar-
chitecture. Therefore, we did not attempt to improve
the performance of the base storage system components
themselves by making intrusive changes. For example,
the Linux implementation of the NFS server incurs two
data copies in the critical path. The first copy is from
the network buffers to the NFS buffers. This is fol-
lowed by another copy from the NFS buffer to the Linux
buffer cache. The implication of these data copies is that
we cannot illustrate true end-to-end transitive zero-copy.
Nevertheless, for a subset of communicating component
VMs, i.e., from the FS VM onto the RAID and Stor-
age VMs, transitive zero-copy is achieved by incorpo-
rating our PGVAS enhancements (Section 3.3.4). This
improves our end-to-end performance significantly.

5.4 Case Study Evaluation

To evaluate the performance of the virtualized storage
system architecture, we run a set of experiments on the
following three systems:
• Monolithic-Linux: Traditional Linux running on

hardware, with all storage components located in the
same kernel address space.

• Native-Xen: Virtualized storage architecture with
four VMs (Section 5.3) connected using the na-
tive Xen inter-VM communication mechanisms—
Netfront/NetBack and Blkfront/Blkback.

• MM-Xen: Virtualized storage architecture with
MMNet and MMBlk as shown in Figure 9.

Rephrasing the evaluation goals in the context of these
systems, we expect that for the MMNet and MMBlk
mechanisms to be effective, performance of MM-Xen
should be significantly better than Native-Xen and for the
virtualized architecture to be viable, the performance dif-
ference between Monolithic-Linux and MM-Xen should
be minimal.

5.4.1 System Configuration

We now present the configuration details of the system.
The physical machine described in Section 4.1 is used
as the storage server. The client machine, running Linux
(kernel version 2.6.18), has similar configuration as the

server, except for the following differences: two dual-
core 2.1 GHz AMD Opteron processors, 8 GB of mem-
ory and a single internal disk. The two machines are
connected via a Gigabit Ethernet switch.

In the Monolithic-Linux experiments, we run native
Linux with eight physical cores and 7 GB of memory.
In the Native-Xen and MM-Xen experiments, there are
four VMs on the server (the disk driver VM is basically
dom0). The FS VM is configured with two virtual CPUs,
each of the other VMs have one virtual CPU. Each virtual
CPU is assigned to a dedicated physical processor core.
The FS VM is configured with 4 GB of memory and the
other VMs are configured with 1 GB each. The RAID
VM includes a Linux MD [22] software RAID5 device
of 480 GB capacity, constructed with two data disks and
one parity disk. The RAID device is configured with a
1024 KB chunk size and a 64 KB stripe cache (write-
through cache of recently accessed stripes). The ext3 file
system created on the RAID5 device is exported by the
NFS server in “async” mode. The “async” export op-
tion mimics the behavior of enterprise-class networked
storage systems, which typically employ some form of
non-volatile memory to hold dirty write data [12] for im-
proved write performance. Finally, the client machine
uses the native Linux NFS client to mount the exported
file system. The NFS client uses TCP as the transport
protocol with a 32 KB block size for read and write.

5.4.2 Microbenchmarks

We use the IOZone [15] benchmark to compare the per-
formance of Monolithic-Linux, Native-Xen and MM-
Xen. We perform read and write tests, in both sequential
and random modes. In each of these tests, we vary the
IOZone record sizes, but keep the file size constant. The
file size is 8 GB for both sequential and random tests.

Figure 10 presents the throughput results. For se-
quential writes, as shown in Figure 10A, MM-Xen
achieves an average improvement of 88% over the
Native-Xen configuration. This shows that Fido per-
formance improvements help the throughput of data
transfer significantly. Moreover, MM-Xen outperforms
even Monolithic-Linux by 9.5% on average. From Fig-
ure 10C, we see that MM-Xen achieves similar relative
performance even with random writes. This could be
due to the benefits of increased parallelism and pipelin-
ing achieved by running VMs on isolated cores. In the
monolithic case, kernel locking and scheduling ineffi-
ciencies could limit such pipelining. Even with sequen-
tial reads, as shown in Figure 10B, MM-Xen outperforms
both Monolithic-Linux and Native-Xen by about 13%.
These results imply that our architecture has secondary
performance benefits when the kernels in individual VMs
exhibit SMP inefficiencies.

With random workloads, since the size of the test file

11

324	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 20

 40

 60

 80

 100

4 8 16 32 64 128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
 (i

n
M

B/
s)

Record size (in KB)

C) Random Writes

Monolithic
MM-Xen

Native-Xen

 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64 128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
 (i

n
M

B/
s)

Record size (in KB)

A) Sequential Writes

Monolithic
MM-Xen

Native-Xen

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 128 256 512 1024 2048 4096
Th

ro
ug

hp
ut

 (i
n

M
B/

s)
Record size (in KB)

D) Random Reads

Monolithic
MM-Xen

Native-Xen

 0

 20

 40

 60

 80

 100

4 8 16 32 64 128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
 (i

n
M

B/
s)

Record size (in KB)

B) Sequential Reads

Monolithic
MM-Xen

Native-Xen

Figure 10: IOZone Throughput Results

remains constant, the number of seeks reduces as we in-
crease the record size. This explains why the random
read throughput (Figure 10D) increases with increasing
record sizes. However, random writes (Figure 10C) do
not exhibit similar throughput increase due to the miti-
gation of seeks by the coalescing of writes in the buffer
cache (recall that the NFS server exports the file system
in ”async” mode).

Finally, Figure 11 presents the IOZone latency results.
We observe that MM-Xen is always better than Native-
Xen. Moreover, MM-Xen latencies are comparable to
Monolithic-Linux in all cases.
5.4.3 Macrobenchmarks
TPCC-UVa [18] is an open source implementation of the
TPC-C benchmark version 5. TPC-C simulates read-
only and update intensive transactions, which are typi-
cal of complex OLTP (On-Line Transaction Processing)
systems. TPCC-UVa is configured to run a one hour test,
using 50 warehouses, a ramp-up period of 20 minutes
and no database vacuum (garbage collection and analy-
sis) operations.

Table 1 provides a comparison of TPC-C perfor-
mance across three configurations: Monolithic-Linux,
Native-Xen, and MM-Xen. The main TPC-C metric is
tpmC, the cumulative number of transactions executed
per minute. Compared to Monolithic-Linux, Native-Xen
exhibits a 38% drop in tpmC. In contrast, MM-Xen is
only 3.1% worse than Monolithic-Linux.

The response time numbers presented in Table 1 are
averages of the response times from five types of transac-

tpmC Avg. Response
(transactions/min) Time (sec)

Monolithic 293.833 26.5
Native-Xen 183.032 350.8
MM-Xen 284.832 30.4

Table 1: TPC-C Benchmark Results

tions that TPC-C reports. We see that MM-Xen is within
13% of the average response time of Monolithic-Linux.
These results demonstrate that our inter-VM communi-
cation improvements in the form of MMNet and MMBlk
translate to good performance with macrobenchmarks.

6 Related Work
In this section we first present a survey of the different
existing inter-VM communication approaches and artic-
ulate the trade-offs between them. Subsequently, since
we use a shared-memory communication method, we
articulate how our research leverages and complements
prior work in this area.
6.1 Inter-VM Communication Mechanisms
Numerous inter-VM communication mechanisms al-
ready exist. Xen VMM supports a restricted inter-VM
communication path in the form of Xen split drivers [9].
This mechanism incurs prohibitive overheads due to data
copies or page-flipping via hypervisor calls in the critical
path. XenSocket [28] provides a socket-like interface.
However, XenSocket approach is not transparent. That
is, the existing socket interface calls have to be changed.
XenLoop [26] achieves efficient inter-VM communica-

12

USENIX Association	 2009 USENIX Annual Technical Conference	 325

 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y

(in
 m

s/
op

)

Record size (in KB)

C) Random Writes

Monolithic
MM-Xen

Native-Xen

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y

(in
 m

s/
op

)

Record size (in KB)

A) Sequential Writes

Monolithic
MM-Xen

Native-Xen

 0

 20

 40

 60

 80

 100

4 8 16 32 64 128 256 512 1024 2048 4096
La

te
nc

y
(in

 m
s/

op
)

Record size (in KB)

D) Random Reads

Monolithic
MM-Xen

Native-Xen

 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y

(in
 m

s/
op

)

Record size (in KB)

B) Sequential Reads

Monolithic
MM-Xen

Native-Xen

Figure 11: IOZone Latency Results

tion by snooping on every packet and short- circuiting
packets destined to co-located VMs. While this approach
is transparent, as well as non-intrusive, its performance
trails MMNet performance since it incurs copies due to
a bounded shared memory region between the commu-
nicating VMs. The XWay [17] communication mecha-
nism hooks in at the transport layer. Moreover, this in-
trusive approach is limited to applications that are TCP
oriented. In comparison to XWay and XenSocket, MM-
Net does not require any change in the application code,
and MMNet’s performance is better than XenLoop and
XenSocket. Finally, IVC [13] and VMWare VMCI [24]
provide library level solutions that are not system-wide.

6.2 Prior IPC Research

A lot of prior research has been conducted in the area
of inter-process communication. Message passing and
shared-memory abstractions are the two major forms of
IPC techniques. Mechanisms used in Fbufs [6], IO-
Lite [23], Beltway buffers [5] and Linux Splice [19] are
similar to the IPC mechanism presented in this paper.

Fbufs is an operating system facility for I/O buffer
management and efficient data transfer across protection
domains on shared memory machines. Fbufs combine
virtual page remapping and memory sharing. Fbufs tar-
get throughput of I/O intensive applications that require
significant amount of data to be transferred across protec-
tion boundaries. A buffer is allocated by the sender with
appropriate write permissions whereas the rest of the I/O
paths access it in read-only mode. Thus, buffers are im-
mutable. However, append operation is supported by ag-

gregating multiple data-buffers into a logical message.
Fbufs employ the following optimizations: a) mapping
of buffers into the same virtual address space (removes
lookup for a free virtual address) b) buffer reuse (buffer
stays mapped in all address spaces along the path) and
c) allows volatile buffers (sender doesn’t have to make
them read-only upon send). IO-Lite is similar in spirit
to Fbufs, it focuses on zero-copy transfers between ker-
nel modules by means of unified buffering. Some of the
design principles behind Fbufs and IO-Lite can be lever-
aged on top of PGVAS in a virtualized architecture.

Beltway buffers [5] trade protection for performance
implementing a zero-copy communication. Beltway al-
locates a system-wide communication buffer and trans-
lates pointers to them across address spaces. Beltway
does not describe how it handles buffer memory exhaus-
tion except for the networking case, in which it suggests
to drop packets. Beltway enforces protection per-buffer,
making a compromise between sharing entire address
spaces and full isolation. Compared to us, Beltway sim-
plifies pointer translation across address spaces – it trans-
lates only a pointer to buffer, inside the buffer linear ad-
dressing is used, so indexes inside the buffer remain valid
across address spaces.
splice [19] is a Linux system call providing a zero-

copy I/O path between processes (i.e. a process can
send data to another process without lifting them to user-
space). Essentially, Splice is an interface to access the
in-kernel buffer with data. This means that a process
can forward the data but cannot access it in a zero-
copy way. Buffer memory management is implemented

13

326	 2009 USENIX Annual Technical Conference	 USENIX Association

through reference counting. Splice ”copy” is essentially
a creation of a reference counted pointer. Splice appeared
in Linux since 2.6.17 onwards.

7 Conclusion
In this paper, we present Fido, a high-performance inter-
VM communication mechanism tailored to software ar-
chitectures of enterprise-class server appliances. On top
of Fido, we have built two device abstractions-MMNet
and MMBlk exporting the performance characteristics of
Fido to higher layers. We evaluated MMNet and MM-
Blk separately as well in the context of a virtualized
network-attached storage system architecture and we ob-
serve almost imperceptible performance penalty due to
these mechanisms. In all, employing Fido in appliance
architectures makes it viable for them to leverage virtu-
alization technologies.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In SOSP ’03, New York, 2003.

[2] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot — A technique for cheap recov-
ery. In OSDI’04, pages 3–3, Berkeley, CA, USA, 2004.
USENIX Association.

[3] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. La-
zowska. Sharing and protection in a single-address-space
operating system. ACM Trans. Comput. Syst., 12(4):271–
307, 1994.

[4] Cisco Systems. Cisco Products. http://www.cisco.com/
products.

[5] W. de Bruijn and H. Bos. Beltway buffers: Avoiding the
os traffic jam. In Proceedings of INFOCOM 2008, 2008.

[6] P. Druschel and L. L. Peterson. Fbufs: a high-bandwidth
cross-domain transfer facility. In SOSP ’93: Proceedings
of the fourteenth ACM symposium on Operating systems
principles, pages 189–202, New York, NY, USA, 1993.
ACM.

[7] B. Dufrasne, W. Gardt, J. Jamsek, P. Kimmel, J. Myyry-
lainen, M. Oscheka, G. Pieper, S. West, A. Westphal, and
R. Wolf. IBM System Storage DS8000 Series: Architec-
ture and Implementation, Apr. 2008.

[8] EMC. The EMC Celerra Family. http://www.emc.com/
products/family/celerra-family.htm.

[9] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. In OASIS, Oct 2004.

[10] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z.-Y. Yang. Char-
acterization of Linux Kernel Behavior under Errors. In
Proceedings of the International Conference on Depend-
able Systems and Networks (DSN’03), 2003.

[11] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and
J. Liedtke. The Mungi single-address-space operating
system. Softw. Pract. Exper., 28(9):901–928, 1998.

[12] D. Hitz, J. Lau, and M. Malcolm. File system design
for an NFS file server appliance. In WTEC’94: Proceed-
ings of the USENIX Winter 1994 Technical Conference on
USENIX Winter 1994 Technical Conference, pages 19–
19, Berkeley, CA, USA, 1994. USENIX Association.

[13] W. Huang, M. J. Koop, Q. Gao, and D. K. Panda. Virtual
Machine Aware Communication Libraries for High Per-
formance Computing. In Proceedings of the ACM/IEEE
Conference on High Performance Networking and Com-
puting, SC 2007, Reno, Nevada, USA, November 2007.

[14] IBM Corporation. IBM Storage Controllers. http://www-
03.ibm.com/systems/storage/network/index.html.

[15] IOZone. IOZone Filesystem Benchmark. http://www.
iozone.org.

[16] Juniper Networks. Juniper Networks Products.
http://www.juniper.com/products.

[17] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S.
Kim. Inter-domain socket communications support-
ing high performance and full binary compatibility on
Xen. In VEE ’08: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual exe-
cution environments, New York, NY, USA, 2008. ACM.

[18] D. R. Llanos. Tpcc-uva: an open-source tpc-c implemen-
tation for global performance measurement of computer
systems. SIGMOD Rec., 35(4):6–15, 2006.

[19] L. McVoy. The splice I/O model. http://ftp.tux.org/
pub/sites/ftp.bitmover.com/pub/splice.ps.

[20] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing
network virtualization in Xen. In ATEC ’06: Proceedings
of the annual conference on USENIX ’06 Annual Tech-
nical Conference, pages 2–2, Berkeley, CA, USA, 2006.
USENIX Association.

[21] NetApp, Inc. NetApp Storage Systems. http://www. ne-
tapp.com/products.

[22] OSDL. Overview - Linux-RAID. http://linux-
raid.osdl.org/index.php/Overview.

[23] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite:
A Unified I/O Buffering and Caching System. In ACM
Transactions on Computer Systems, pages 15–28, 2000.

[24] VMWare. Virtual Machine Communication Interface.
http://pubs.vmware.com/ vmci-sdk/VMCI intro.html.

[25] VMWare. VMWare Inc. http://www.vmware.com.
[26] J. Wang, K.-L. Wright, and K. Gopalan. XenLoop: A

Transparent High Performance Inter-VM Network Loop-
back. In Proc. of International Symposium on High Per-
formance Distributed Computing (HPDC), June 2008.

[27] A. Watson, P. Benn, A. G. Yoder, and H. Sun. Multi-
protocol Data Access: NFS, CIFS, and HTTP. Technical
Report 3014, NetApp, Inc., Sept. 2001.

[28] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Grif-
fin. XenSocket: A High-Throughput Interdomain
Transport for Virtual Machines. In Middleware 2007:
ACM/IFIP/USENIX 8th International Middleware Con-
ference, Newport Beach, CA, USA, November 2007.

14

USENIX Association	 2009 USENIX Annual Technical Conference	 327

STOW: A Spatially and Temporally Optimized Write Caching Algorithm

Binny S. Gill
IBM Almaden Research Center

Michael Ko
IBM Almaden Research Center

Biplob Debnath
University of Minnesota

Wendy Belluomini
IBM Almaden Research Center

Abstract

Non-volatile write-back caches enable storage con-
trollers to provide quick write response times by hiding
the latency of the disks. Managing a write cache well is
critical to the performance of storage controllers. Over
two decades, various algorithms have been proposed, in-
cluding the most popular, LRW, CSCAN, and WOW.
While LRW leverages temporal locality in the work-
load, and CSCAN creates spatial locality in the destages,
WOW combines the benefits of both temporal and spa-
tial localities in a unified ordering for destages. How-
ever, there remains an equally important aspect of write
caching to be considered, namely, the rate of destages.
For the best performance, it is important to destage at a
steady rate while making sure that the write cache is not
under-utilized or over-committed. Most algorithms have
not seriously considered this problem, and as a conse-
quence, forgo a significant portion of the performance
gains that can be achieved.

We propose a simple and adaptive algorithm, STOW,
which not only exploits both spatial and temporal local-
ities in a new order of destages, but also facilitates and
controls the rate of destages effectively. Further, STOW
partitions the write cache into a sequential queue and a
random queue, and dynamically and continuously adapts
their relative sizes. Treating the two kinds of writes sepa-
rately provides for better destage rate control, resistance
to one-time sequential requests polluting the cache, and
a workload-responsive write caching policy.

STOW represents a leap ahead of all previously pro-
posed write cache management algorithms. As anecdotal
evidence, with a write cache of 32K pages, serving a 4+P
RAID-5 array, using an SPC-1 Like Benchmark, STOW
outperforms WOW by 70%, CSCAN by 96%, and LRW
by 39%, in terms of measured throughput. STOW con-
sistently provides much higher throughputs coupled with
lower response times across a wide range of cache sizes,
workloads, and experimental configurations.

1 Introduction

In spite of the recent slowdown in processor frequency
scaling due to power and density issues, the advent of
multi-core technology has enabled processors to con-
tinue their relentless increase in I/O rate to storage sys-
tems. In contrast, the electro-mechanical disks have not
been able to keep up with a comparable improvement in
access times. As this schism between disk and processor
speeds widens, caching is attracting significant interest.

Enterprise storage controllers use caching as a funda-
mental technique to hide I/O latency. This is done by us-
ing fast but relatively expensive random access memory
to hold data belonging to slow but relatively inexpensive
disks.

Over a period of four decades, a large number of read
cache management algorithms have been devised, in-
cluding Least Recently Used (LRU), Frequency-Based
Replacement (FBR) [19], Least Frequently Recently
Used (LFRU) [15], Low Inter-Reference Recency Set
(LIRS) [13], Multi-Queue (MQ) [24], Adaptive Replace-
ment Cache (ARC) [17], CLOCK with Adaptive Re-
placement (CAR) [2], Sequential Prefetching in Adap-
tive Replacement Cache (SARC) [8], etc. While, the
concept of a write cache has been around for over two
decades, we realize that it is a more complex and less
studied problem. We focus this paper on furthering
our understanding of write caches and improving signif-
icantly on the state of the art.

1.1 What Makes a Good Write Caching
Algorithm?

A write-back (or fast-write) cache relies on fast, non-
volatile storage to hide latency of disk writes. It can
contribute to performance in five ways. It can (i) har-
ness temporal locality, thereby reducing the number of
pages that have to be destaged to disks; (ii) leverage
spatial locality, by reordering the destages in the most

328	 2009 USENIX Annual Technical Conference	 USENIX Association

disk-friendly order, thereby reducing the average cost
of destages; (iii) absorb write bursts from applications
by maintaining a steady and reasonable amount of free
space, thereby guaranteeing a low response time for
writes; (iv) distribute the write load evenly over time to
minimize the impact to concurrent reads; and (v) serve
read hits that occur within the write cache.

There are two critical decisions regarding destaging
in write caching: the destage order and the destage
rate. The destage order deals with leveraging temporal
and spatial localities, while the destage rate deals with
guaranteeing free space and destaging at a smooth rate.
Write caching has so far been treated mainly as an evic-
tion problem, with most algorithms focusing only on the
destage order. The most powerful write caching algo-
rithms will arise when we explore the class of algorithms
that simultaneously optimize for both the destage order
and the destage rate.

1.2 Our Contributions
Firstly, we present a detailed analysis of the problem of
managing the destage rate in a write cache. While this
has remained a relatively unexplored area of research,
we demonstrate that it is an extremely important aspect
of write caching with the potential of significant gains if
done right. Further, we show that to manage the destage
rate well, we actually need a new destaging order.

Secondly, we present a Spatially and Temporally Opti-
mized Write caching algorithm (STOW), that for the first
time, exploits not only temporal and spatial localities,
but also manages both the destage rate and destage or-
der effectively in a single powerful algorithm that hand-
somely beats popular algorithms like WOW, CSCAN,
and LRW, across a wide range of experimental scenar-
ios. Anecdotally, with a write cache of 32K pages (and
high destage thresholds), serving a RAID-5 array, the
measured throughput for STOW at 20 ms response time,
outperform WOW by 70%, CSCAN by 96%, and LRW
by 39%. STOW consistently and significantly outper-
forms all other algorithms across a wide range of cache
sizes, workload intensities, destage threshold choices,
and backend RAID configurations.

1.3 Outline of the paper
In Section 2, we briefly survey previous related research.
In Section 3, we explore why the destage rate is a crucial
aspect of any good write caching algorithm. In Section 4,
we present the new algorithm STOW. In Section 5, we
describe the experimental setup and workloads, and in
Section 6, we present our main quantitative results. Fi-
nally, in Section 7 we conclude with the main findings of
this paper.

2 Related Work

Although an extensive amount of work has been done in
the area of read caching, not all techniques are directly
applicable to write caching. While read caching is es-
sentially a two dimensional optimization problem (maxi-
mizing hit ratio and minimizing prefetch wastage), write
caching is a five dimensional optimization problem (as
explained in Section 1.1).

In a write-back cache, the response time for a write is
small if there is space in the write cache to store the new
data. The data in the write cache is destaged to disks
periodically, indirectly affecting any concurrent reads by
increasing their average service response time. To reduce
the number of destages from the write cache to the disks,
it is important to leverage temporal locality and, just like
in read caches, maximize the hit (overwrite) ratio. The
primary way to maximize temporal locality is to attempt
to evict the least recently written (LRW) pages from the
cache. An efficient approximation of this is available in
the CLOCK [5] algorithm which is widely used in op-
erating systems and databases. These algorithms, how-
ever, do not account for the spatial locality factor in write
cache performance.

Orthogonally, the order of destages can be chosen so
as to minimize the average cost of each destage. This
is achieved by destaging data that are physically prox-
imate on the disks. Such spatial locality maximization
has been studied mostly in the context of disk scheduling
algorithms, such as shortest seek time first (SSTF) [6],
SCAN [6], cyclical SCAN (CSCAN) [20], LOOK [18],
VSCAN [7], and FSCAN [4]. Some of these require
knowledge of the current state of the disk head [12, 21],
which is either not available or too cumbersome to track
in the larger context of storage controllers. Others, such
as CSCAN, order the destages by logical block address
(LBA) and do not rely on knowing the internal state of
the disk.

In the first attempt to combine spatial and temporal lo-
cality in write caching for storage systems [10], a com-
bination of LRW [1, 3, 11] and LST [10, 22] was used to
balance spatial and temporal locality. This work had the
drawback that it only dealt with one disk and it did not
adapt to the workload.

In general, the order of destages is different for lever-
aging temporal locality versus spatial locality. One no-
table write caching algorithm, Wise Ordering for Writes
(WOW) [9], removed this apparent contradiction, by
combining the strength of CLOCK [5] in exploiting tem-
poral locality and Cyclical SCAN (CSCAN) [20] in ex-
ploiting spatial locality. As shown in Figure 1, WOW
groups the pages in the cache in terms of write groups
and sorts them in their LBA order. To remember if a
write group was recently used, a recency bit is main-

USENIX Association	 2009 USENIX Annual Technical Conference	 329

17

43

65

9

15

16

21

42

51 55

68

85

89

82

80

74

69

63

44

45
46

13

79

98

0

0

1
0

1000
1

1

0

0

1

0

1
0

1 1 1 0
1

1

0

1

Figure 1: The data structure of the WOW algorithm

tained in each write group. When a page is written in
a write group already present in the cache, the recency
bit of the write group is set to 1. Destages are done in the
sorted order of the write groups. However, if the recency
bit of a write group is 1, the write group is bypassed after
resetting the recency bit to 0.

While WOW solves the destage order problem, the
destage rate problem has attracted little research. Both
WOW and an earlier work on destage algorithms [23]
use a linear thresholding scheme that grows the rate of
destages linearly as the number of modified pages in the
cache grows. While this scheme is quite robust, destage
orders like WOW and CSCAN cannot achieve their full
potential due to a destructive interaction between the
destage rate and the destage order policies. We are un-
aware of any research that studies the interaction between
the two vital aspects of write caching: the destage order
and the destage rate.

CSCAN LRW WOW STOW
Spatial Locality Yes No Yes Yes
Temporal Locality No Yes Yes Yes
Scan Resistance No No Little Yes
Stable Destage Rate No Little No Yes
Stable Occupancy No Little No Yes

Table 1: Comparison of Various Write Cache Algorithms

Table 1 shows how the set of algorithms discussed
above compare. LRW considers only recency (tempo-
ral locality), CSCAN considers only spatial locality, and
WOW considers both spatial and temporal locality. Our
algorithm, STOW (Spatially and Temporally Optimized
Writes), tracks spatial and temporal localities, and is
scan resistant because it shields useful random data from
being pushed out due to the influx of large amounts se-

quential data. STOW also avoids large fluctuations in the
destage rate and cache occupancy.

3 Taming the Destage Rate

Historically caching has always been treated as an evic-
tion problem. While it might be true for demand-paging
read caches, it is only partially true for write caches. The
rate of eviction or the destage rate has attracted little re-
search so far. In this section we explore why the destage
rate is a crucial aspect of any good write caching algo-
rithm.

3.1 The Goals

Any good write caching algorithm needs to manage the
destage rate to achieve the following three objectives: (i)
Match the destage rate (if possible) to the average incom-
ing rate to avoid hitting 100% full cache condition (lead-
ing to synchronous writes); (ii) Avoid underutilizing the
write cache space; (iii) Destage smoothly to minimally
impact concurrent reads.

3.2 Tutorial: How to Get it Wrong?

Rather than simply present our approach, we explain
why we reject other seemingly reasonable approaches,
some of which have been used in the past.

3.2.1 Ignore Parity Groups

More often than not, a write cache in a storage controller
serves a RAID array involving parity groups (e.g. RAID-
5, RAID-6). In such scenarios, it is important to group
together destages of separate pages within the same par-
ity group to minimize the number of parity updates. The
best case happens when all members of the parity group
are present in the cache. The parity group can option-
ally be extended to beyond one parity stripe or even to
RAID-10 (see WOW [9]).

3.2.2 Destage Quickly

One approach is to destage as soon as there are dirty
pages and as fast as the system would allow. While this
would guarantee that the cache stays away from the full-
cache condition most effectively even for strong work-
loads, it wipes out any temporal and spatial locality ben-
efits for gentler workloads. The left panel in Figure 2
shows that a quick destaging policy can lead to very low
cache occupancy.

330	 2009 USENIX Annual Technical Conference	 USENIX Association

10

20

30

 0 100 200 300 400 500 600R
es

p
Ti

m
e

(m
s)

Time (sec)

11.9 ms (avg)
Read Response Time
Write Response Time

10K
20K
30K
40K
50K
60K
70K
80K
90K

 0 100 200 300 400 500 600

Pa
ge

s
in

 c
ac

he
 -o

r-
To

ta
l D

es
ta

ge
s

Pages in Cache
Total Destages

10

20

30

 0 100 200 300 400 500 600R
es

p
Ti

m
e

(m
s)

Time (sec)

10.3 ms (avg)
Read Response Time
Write Response Time

10K
20K
30K
40K
50K
60K
70K
80K
90K

 0 100 200 300 400 500 600

Pa
ge

s
in

 c
ac

he
 -o

r-
To

ta
l D

es
ta

ge
s

Se
qu

en
tia

l

R
an

do
m

Pages in Cache
Total Destages

Figure 2: Left panel: We destage in the order specified by the WOW algorithm, and as fast as the disks allow. The
cache remains relatively empty and the observed read response time is around 11.9 ms on average. Right panel: We
destage in the WOW order, however we destage only if the cache is more than 60% full (out of 64K pages). We
observe a better average read response time, but the cache occupancy exhibits spikes when random data is destaged.
When sequential data is destaged, the disks are under-utilized as shown by the flat steps in the total destages curve.

3.2.3 Fixed Threshold

In the right panel of Figure 2, we examine a policy which
destages quickly only if the cache is more than 60% full.
This performs better on average but displays ominous
“spikes” in cache occupancy which correspond to spikes
in the read response times. The non-uniform destage
rate is bad for concurrent reads. Furthermore, a higher
fixed threshold is more likely to hit 100% cache occu-
pancy, while a lower fixed threshold underutilizes the
write cache most of the time.

The Spikes: Any write caching algorithm destages
writes in a particular order. If the workload is such
that the algorithm destages sequential data for some time
followed by random data, such peaks are inevitable be-
cause destaging random data is far more time consuming
and during such intervals, the cache occupancy can spike
even for steady workloads. With WOW or CSCAN, such
spikes appear when the workload has a sequential and a
random component that target different portions of the
LBA space. This is commonly observed in both real-life
and benchmark workloads.

3.2.4 Linear Threshold

In the WOW [9] paper, a linear threshold scheme is pro-
posed which is better than the fixed threshold scheme
because it provides a gradual gradation of destage rates
which is more friendly to concurrent reads and also al-
lows the thresholds to be safely closer to the 100%
mark. For example, instead of destaging at full force af-
ter reaching 60% occupancy, linear threshold would use
a number of concurrent destage requests that is propor-

tional to how close the write cache is to a high threshold
(say 80% occupancy). Beyond the high threshold it will
destage at the full rate. This is the best scheme so far that
we are aware of, however, it cannot address the spike
problem, as evidenced in Figure 3. In this paper we use
an H/L notation for the thresholds: e.g. 90/80 implies
that the high threshold is at 90% of the cache and the low
threshold is at 80%.

3.2.5 Adaptive Threshold

One might suggest that we should develop a scheme that
adaptively determines the correct high and low thresh-
olds for the linear threshold scheme. However, the reader
will observe that the spikes are very tall, and any such ef-
fort will result in a serious underutilization of the write
cache space.

3.3 Maybe Not WOW Then?
While the order of destages proposed in the WOW algo-
rithm is disk-friendly, the same order makes the destage
rate problem a tough nut to crack. We propose to change
the destage order to allow us to tame the destage rate.

3.3.1 Separate Random and Sequential Data

The spikes in cache occupancy are caused by long alter-
nating regimes of sequential and random destages. We
separate the sequential data and the random data into two
WOW-like data-structures in the write cache. Whenever
there is a need to destage, we destage from the larger of
the two queues, as a first approximation. Later, we shall

USENIX Association	 2009 USENIX Annual Technical Conference	 331

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700

 40

 70

 80

 90

 100
Pa

ge
s

in
 c

ac
he

Th
re

sh
ol

d
le

ve
ls

 (%
)

Time (sec)

WOW (H/L:70/40)
WOW (H/L:90/80)

SeqQ/RanQ (H/L:70/40)

Figure 3: We examine cache occupancy for a work-
load with both sequential and random writes when us-
ing the linear thresholding scheme to determine destage
rate. WOW exhibits spikes which go down up to the
low threshold when sequential data is destaged, and rise
when random data is destaged. For higher thresholds,
WOW hits cache full condition more often. If we destage
sequential and random data together (SeqQ/RanQ), we
elimintate the spikes, but the cache is almost always full.

see that the ideal partitioning of the cache requires adapt-
ing to the workload. While the intermixing of destages
from the sequential and the random queues eliminates the
spikes beautifully (the SeqQ/RanQ curve in Figure 3), it
pollutes the spatial locality in the destage order by send-
ing the disk heads potentially to two separate regions on
the disk causing longer seek times. The SeqQ/RanQ vari-
ant suffers from the full-cache condition almost all the
time, nullifying any gains from eliminating the spikes.

3.3.2 Use Hysteresis in Destaging

We need to be able to control the spikes in cache oc-
cupancy without derailing the spatial locality of the
destages. We discovered that if we destage no less than
a fixed hysteresis amount from the larger queue, we re-
duce the negative impact of having two destage sources.
This brings us to the STOW algorithm which integrates
all our intuitions so far (and some more) into a powerful,
practical and simple write caching algorithm.

4 STOW: The Algorithm

4.1 The STOW Principle
The STOW algorithm uses two WOW-like sorted cir-
cular queues for housing random and sequential data
separately. The relative sizes of the queues is continu-
ously adapted according to workload to maximize per-

formance. The decisions for: which queue to destage
from, when to destage, and at what rate, are carefully
managed to leverage spatial and temporal locality in the
workload, as well as to maintain steady cache occupancy
levels and destage rates. Despite its simplicity, STOW
represents the most comprehensive and powerful algo-
rithm for write cache management.

4.2 Data Structures
4.2.1 Honoring Parity Groups

A write hit (over-write) on a page generally implies that
the page and its neighbors are likely to be accessed again.
In the context of a storage controller connected to a
RAID controller, we would like to postpone the destage
of such pages hoping to absorb further writes, thereby
reducing the destage load on the disks.

In RAID, each participating disk contributes one strip
(e.g. 64 KB) towards each RAID stripe. A RAID stripe
consists of logically contiguous strips, one from each
data disk. Destaging two distinct pages in the same
RAID stripe together is easier than destaging them sepa-
rately, because in the former case the parity strip needs to
be updated only once. We say a stripe hit has occurred
when a new page is written in a RAID stripe that already
has a member in the write cache. In RAID 5, therefore,
a stripe hit saves two disk operations (the read and write
of the parity strip), while a hit on a page saves four.

While we divide the write cache in pages of 4KB each,
we manage the data structures in terms of write groups,
where a write group is defined as a collection of a fixed
number (one or more) of logically consecutive RAID
stripes. In this paper, we define the write group to be
equal to a RAID stripe. We say a write group is present
in the cache if at least one of its member pages is physi-
cally present in the cache. Managing the cache in terms
of such write groups allows us to better exploit both tem-
poral locality by saving repeated destages and spatial lo-
cality by issuing writes in the same write group together,
thus minimizing parity updates.

4.2.2 Separating Sequential From Random

Sequential data, by definition, has high spatial locality,
and appears in large clumps in the sorted LBA space for
algorithms such as WOW or CSCAN. In between clumps
of sequential data are random data. We discovered that
destaging random data, even when it is sorted, is far more
time consuming than destaging sequential data. There-
fore, when the destage pointer is in an area full of ran-
dom data, the slower destage rate causes the cache oc-
cupancy to go up. These spikes in the cache occupancy
could lead to full-cache conditions even for steady work-
loads, severely impacting the cache performance. Fur-

332	 2009 USENIX Annual Technical Conference	 USENIX Association

ther, during a spike, a cache is especially vulnerable to
reaching the 100% occupancy mark even with smaller
write bursts. This discovery led us to partition the cache
directory in STOW into two separate queues RanQ and
SeqQ for the “random” and the “sequential” components
of a workload. It is easy to determine whether a write is
sequential by looking for the presence of earlier pages in
the cache [8] and keeping a counter. The first few pages
of a sequential stream are treated as random. If a page is
deemed to belong to a sequential stream it is populated
in SeqQ; otherwise, the page is stored in RanQ.

Separating sequential data from random data is a nec-
essary first step towards alleviating the problem caused
by the spikes in the cache occupancy. However, this is
not sufficient by itself, as we will learn in Section 4.3.4
when we discuss destaging.

4.2.3 Two Sorted Circular Queues

The STOW cache management policy is depicted in Al-
gorithm 1. In each queue, RanQ or SeqQ, the write
groups are arranged in an ascending order of logical
block addresses (LBA), forming a circular queue, much
like WOW, as shown in Figure 4. A destage pointer (akin
to a clock arm) in each queue, points to the next write
group in the queue to be considered for destaging to disk.
Upon a page miss (a write that is not an over-write), if
the write group does not exist in either queue, the write
group with the new page is inserted in the correct sorted
order in either RanQ or SeqQ depending on whether the
page is determined to be a random or a sequential page.
If the write group already exists, then the new page is
inserted in the existing write group.

The LBA ordering in both queues allows us to mini-
mize the cost of a destage which depends on how far the
disk head would have to seek to complete an operation.
The write groups, on the other hand, allow us to exploit
any spatio-temporal locality in the workload, wherein a
write on one page in a write group suggests an imminent
write to another page within the same write group. Not
only do we save on parity updates, but we also have the
opportunity to coalesce consecutive pages together into
the same write operation.

When either RanQ or SeqQ is empty, because the
workload lacks the random or the sequential component,
then STOW converges to WOW, and by the same token,
is better than CSCAN and LRU.

4.3 Operation
4.3.1 What to Destage From a Queue?

The destage pointer traverses the sorted circular queue
looking for destage victims. Write groups with a recency
bit of 1 are skipped after resetting the recency bit to 0.

Algorithm 1 STOW: Cache Management Policy
Write page x in write group g:

1: if g ∈ RanQ ∪ SeqQ then //a write group hit
2: if x /∈ RanQ ∪ SeqQ then //page miss
3: allocate x from FreePageQueue
4: insert x in g
5: end if
6: if x is sequential and is last page of g then
7: set recency-bit of g to 0
8: else
9: set recency-bit of g to 1

10: end if
11: else
12: allocate g from FreeWriteGroupQueue
13: allocate x from FreePageQueue
14: insert x into g
15: if x is sequential then
16: insert g into sorted queue in SeqQ
17: if x is last page of g then
18: set recency-bit of g to 0
19: else
20: set recency-bit of g to 1
21: end if
22: else
23: insert g into sorted queue in RanQ
24: set recency-bit of g to 0
25: end if
26: end if

If the recency bit of the write group was found to be 0,
then the pages present in the write group are destaged.
Thus, write groups with a recency bit of one get an extra
life equal to the time it takes for the destage pointer to go
around the clock once.
Setting the recency bit in RanQ: When a new write

group is created in RanQ, the recency bit is set to 0
(line 24 in Algorithm 1). On a subsequent page hit or a
write group hit, the recency bit is set to 1 (line 9), giving
all present members of the write group a longer life in the
cache, during which they can exploit any overwrites of
the present pages or accumulate new neighboring pages
in the same write group. This leads to enhanced hit ratio,
fewer parity updates, and coalesced writes reducing the
total number of destages.
Setting the recency bit in SeqQ: Whenever a page is

written to SeqQ, the recency bit in the corresponding
write group is set to 1 (lines 9 and 20). This is because
we anticipate that subsequent pages will soon be writ-
ten to the write group by the sequential stream. Destag-
ing to disk is more efficient if the whole write group is
present since this avoids the extra read-modify-write of
the parity group in a RAID-5 configuration and also co-
alesces consecutive pages into the same disk IO if possi-

USENIX Association	 2009 USENIX Annual Technical Conference	 333

595857

36
91

94

60

90

93

95

56

37

31
32

33

34

35 92

SeqQ for Sequential Stream

17

43

65

15

16

21

42

51 55

68

85

98
89

82

80

79

74

69

63

44

45

46

13
9

RanQ for Random Stream

1

0

0

0

0

0

0

0

0

0

0

1

00 0

0
00

0

0

1
0

1000
1

1

0

0

1

0

1
0

1 1 0
1

1

0

1

1

Figure 4: The data structure of the STOW algorithm

ble. However, if the page written is the last page of the
write group then the recency bit is forced to 0 (lines 7
and 18). Since the last page of the write group has been
written, we do not anticipate any further writes and can
free up the cache space the next time the destage pointer
visits this write group.

4.3.2 What Rate to Destage at?

Cache Occupancy
100% Full

High Threshold

0% Full

Low Threshold

Current
Occupancy

Destage Rate

Figure 5: Linear threshold scheme for determining
destage rate based on how close the cache occupancy is
to the high threshold.

In STOW, we use a linear threshold scheme (see Fig-
ure 5, as described in WOW[9]) to determine when and
at what rate to destage. We set a low threshold and a high
threshold for the cache occupancy. When the cache oc-
cupancy is below the low threshold, we leave the write

data in the cache in order to gather potential write hits.
When the cache occupancy is above the high threshold,
we destage data to disks at the full rate in order to avoid
the full-cache condition which is detrimental to response
time. When the cache occupancy is between the low
and high threshold, the number of concurrent destage
requests is linearly proportional to how close we are to
the high threshold. Note, a higher number of concurrent
destage requests to the disks results in a higher through-
put for destages, but of course at the cost of making
the disks busier and the concurrent reads slower. The
maximum number of concurrent destage requests (queue
depth) is set to a reasonable 20 [9] in our experiments.

4.3.3 Which Queue to Destage From?

Algorithm 3 shows how STOW calculates and adapts the
desired size of SeqQ (DesiredSeqQSize). Algorithm 2
destages from SeqQ if it is larger than DesiredSeqQ-
Size, else, it destages from RanQ (line 3). While strictly
following this simple policy eliminates any deleterious
spikes in the cache occupancy, it is not optimal because
it sends the disk heads to possibly two distinct locations
(the sorted order from RanQ and from SeqQ) simultane-
ously, resulting in an inter-mingling of two sorted orders,
polluting the spatial locality in the destages.

Once we have decided to destage from a queue, we
should stick with that decision for a reasonable amount
of time, so as to minimize the spatial locality pollution
caused by the mixing of two sorted orders. To real-
ize this, we define a fixed number called the Hystere-
sisCount. Once a decision has been made to destage
from a particular queue, we continue destaging from
the same queue until, (i) we have destaged Hystere-

334	 2009 USENIX Annual Technical Conference	 USENIX Association

Algorithm 2 STOW: Destage Policy
1: while needToDestage() do
2: if hysteresisCountDone() then
3: if |SeqQ| > DesiredSeqQSize then
4: set currentDestagePtr to SeqQDestagePtr
5: else
6: set currentDestagePtr to RanQDestagePtr
7: end if
8: end if
9: g = write group pointed to by currentDestagePtr

10: while g−>recency-bit == 1 do
11: g−>recency-bit = 0

12: g = advanceDestagePtr(currentDestagePtr)
13: end while
14: destage all pages in g
15: move destaged pages to FreePageQueue
16: move g to FreeWriteGroupQueue
17: advanceDestagePtr(currentDestagePtr)
18: end while

sisCount pages from the queue; or (ii) either queue
has since grown by more than HysteresisCount pages.
Note that destages from RanQ are slower and the second
condition avoids a large buildup in SeqQ in the mean-
time. Once either condition is met, we reevaluate which
queue to destage from.

Normally, we fix HysteresisCount to be equal to 128

times the number of spindles in the RAID array. This en-
sures that a reasonable number of destage operations are
performed in one queue’s sorted order, before moving to
the other queue’s sorted order. However, we observed
that fluctuations in the cache occupancy are proportional
to the HysteresisCount. To maintain a smooth destage
rate these fluctuations need to be small relative to the dif-
ference between the high and low thresholds. Therefore,
we limit HysteresisCount to be no more than 1/8th of
the difference (in terms of pages) between the thresholds.

4.3.4 Adapting the Queue Sizes

As we stated earlier, we use the size of SeqQ relative
to DesiredSeqQSize for determining which queue to
destage from, every time we have destaged Hysteresis-
Count pages. Therefore, we need to wisely and contin-
uously adapt DesiredSeqQSize to be responsive to the
workload so as to maximize the aggregate utility of the
cache. The marginal utility, in terms of IOPS gained, of
increasing the size of either RanQ or SeqQ, is not well
understood. Therefore, we propose intuitive heuristics
that are very simple to calculate and result in good per-
formance.
Marginal utility for RanQ: We would like to estimate

the extra IOs incurred if we make RanQ smaller by unit

Algorithm 3 STOW: Queue Size Management Policy
1: if page x in write group g is written then
2: if g ∈ RanQ then //(RAID-10: use x ∈ RanQ)
3: if g−>recency-bit == 0 then
4: if (|SeqQ| - DesiredSeqQSize) <

HysteresisCount then
5: DesiredSeqQSize -= 1
6: end if
7: end if
8: end if
9: end if

10: if write group g is destaged then
11: if g not contiguous with previous destage then
12: if previous stretch <queue depth then
13: if |RanQ| / (|RanQ| + |SeqQ|) >

RanRq / (RanRq + SeqRq) then
14: DesiredSeqQSize += n∗|RanQ|/|SeqQ|
15: //n = num of disks in RAID5 or RAID10
16: end if
17: end if
18: end if
19: end if

cache size (a page). We first approximate the number of
misses that would be incurred if we reduce the size of
RanQ. Let h be the hit rate for first time hits in RanQ
(where the recency bit is previously zero). We consider
only page hits for RAID-10 but any stripe hit for RAID-
5, since in RAID-5, stripe hits save parity updates (two
IOs) and are more common than page hits. Assuming
a uniform distribution of these hits, we can compute the
density of hits to be h/|RanQ|. Since a cache does have
diminishing returns as its size grows, we add a factor of
0.5 (empirically determined). Each extra miss results in
two extra IOs to the disk, yielding a marginal utility of
h/|RanQ|.
Marginal utility for SeqQ: We would like to estimate

the extra IOs incurred by making SeqQ smaller by unit
cache size. We first measure the rate, s, at which there
are breaks in the logical write group addresses being
destaged from SeqQ. Each contiguous group of pages
destaged is called a stretch. The smaller the size of SeqQ,
the higher is the rate s. Since s is inversely proportional
to the cache size, the marginal increase in s equal to
s/|SeqQ| (since s∗|SeqQ| = const, ds

d|SeqQ| = − s
|SeqQ|).

Each extra break in SeqQ results in one extra write to all
n disks. This yields a marigical utility of n ∗ s/|Seq|.

We adapt the sizes of RanQ and SeqQ targeting a con-
dition where h/|RanQ| = n ∗ s/|SeqQ|, to minimize
the IOs to the disk, maximizing the performance of the
cache.

We implement the above in Algorithm 3 as follows:
Initialization: The initial value of DesiredSeqQSize

USENIX Association	 2009 USENIX Annual Technical Conference	 335

is the size of SeqQ when the write cache first reaches the
low threshold of destaging.

Decrement: DesiredSeqQSize is reduced by one if:
We have a hit (page hit for RAID-10 and write group
hit for RAID-5) in RanQ (line 2), where the recency
bit is zero (line 3), and the DesiredSeqQSize is not
already HysteresisCount lower than the current SeqQ
size (line 4).

Increment: DesiredSeqQSize is incremented when-
ever there is break in the logical addresses of the write
groups in SeqQ being destaged (line 11). The amount
incremented is n∗ |RanQ|/|SeqQ|, where n is the num-
ber of disks in the RAID array. There are two conditions
when we do not increment DesiredSeqQSize: (i) When
the break in the logical address occurred after a relatively
long stretch (more than what the queue depth allows to
be destaged together) (line 12); or (ii) RanQ is already
below its rightful share of the cache based on the propor-
tion of random requests in the workload (line 13).

5 Experimental Setup

A schematic diagram of the experimental system is de-
picted in Figure 6.

WRITE CACHE
READS IF NOT IN

WRITES

VIRTUAL DISK

Disk 1 Disk 2 Disk 4 Disk 5Disk 3

 SOFTWARE RAID

 DESTAGER

WRITE CACHE

DIRTY PAGES

WORKLOAD APPS

FREE PAGES

 CSCAN

 STOW

WOW

LRW

Figure 6: Overall design of the experimental system

5.1 The Basic Hardware Setup
We use an IBM xSeries 3650 machine equipped with
two Intel Xeon 3 GHz processors, 4 GB DDR2 mem-
ory at 667 MHz, and eight 2.5” 10K RPM SAS disks
(IBM 40K1052, 4.5 ms avg. seek time) of 73.4 GB each.
A Linux kernel (version 2.6.23) runs on this machine to
host all our applications and standard workload genera-
tors. We employ five SAS disks for our experiments, and
one for the operating system, our software, and work-
loads.

5.2 Storage Configuration
We study two popular RAID configurations, viz. RAID-
5 and RAID-10, using Linux Software RAID. We issue
direct I/O to the virtual RAID disk device, always by-
passing the kernel buffer. For RAID-5, we use 5 SAS
disks to create an array consisting of 4 data disks and 1
parity disk. We choose the strip size for each disk to be
64 KB, with the resulting stripe group size being 256 KB.
For RAID-10, we use 4 SAS disks to create an array in a
2 + 2 configuration. We use the same strip size of 64 KB
for each disk.

We use the entire available storage in one configura-
tion which we call the Full Backend. For RAID-5, with
the storage capacity of four disks, Full Backend amounts
to 573 million 512-byte sectors. For RAID-10, with the
storage capacity of two disks, Full Backend amounts to
286 million 512-byte sectors. We also define a Partial
Backend configuration, where we use only 1/100th of
the available storage. While Full Backend is character-
ized by large disk seeks and low hit ratio, the Partial
Backend generates only short seeks coupled with high
hit ratios.

5.3 The Cache
For simplicity, we use volatile DDR2 memory as our
write cache. In a real life storage controller, the write
cache is necessarily non-volatile (e.g. battery-backed).
In our setup, the write cache is managed outside the ker-
nel so that its size can be easily varied allowing us to
benchmark a wide range of write cache sizes.

We do not use a separate read cache in our exper-
iments for the following reason. Read misses disrupt
the sequentiality of destages determined by any write
caching algorithm. A read cache reduces the read misses
and amplifies the gains of the better write caching al-
gorithm. Therefore the most adverse environment for a
write caching algorithm is when there is no read cache.
This maximizes the number of read misses that the disks
have to service concurrent to the writes and provides the
most valuable comparison of write caching algorithms.

Nevertheless, we do service read hits from the write
cache for consistency.

5.4 SPC-1 Benchmark
SPC-1 [16, 14] is the most respected performance bench-
mark in the storage industry. The benchmark simulates
real world environments in a typical server class com-
puter system by presenting a set of I/O operations that
are typical for business critical applications like OLTP
systems, database systems and mail server applications.
We use a prototype implementation of the SPC-1 bench-
mark that we refer to as SPC-1 Like.

336	 2009 USENIX Annual Technical Conference	 USENIX Association

The SPC-1 workload roughly consists of 40% read re-
quests and 60% write requests. For each request, there
is a 40% chance that the request is sequential and a 60%
chance that the request is random with some temporal lo-
cality. SPC-1 scales the footprint of the workload based
on the amount of storage space specified. Therefore for
a given cache size, the number of read and write hits will
be larger if the backend is smaller (Partial Backend), and
smaller if the amount of storage exposed to the bench-
mark is larger (Full Backend).

SPC-1 assumes three disjoint application storage units
(ASU). ASU-1 is assigned 45% of the available back-end
storage and represents “Data Store”. ASU-2 is assigned
45% and represents “User Store”. The remaining 10%
is assigned to ASU-3 and represents “Log/Sequential
Write”. In all configurations, we lay out ASU-3 at the
outer rim of the disks followed by ASU-1 and ASU-2.

6 Results

We compare the performance of LRW, CSCAN, WOW
and STOW under a wide range of cache size, workload,
and backend configurations. We use linear thresholding
to determine the rate of destages for all algorithms.

6.1 Stable Occupancy and Destage Rate
6.1.1 Full Backend

In Figure 7(a), we observe that the occupancy graph
for WOW as well as CSCAN fluctuates wildly between
the low threshold and the 100% occupancy level. For
the same scenario, LRW’s cache occupancy remains at
100% occupancy, which implies that most of the time
it does not have space for new writes. Only STOW ex-
hibits measured changes in the overall cache occupancy,
consistently staying away from the full-cache condition.
Note that with linear thresholding, the destage rate is a
function of the cache occupancy, and consequently, large
fluctuations are detrimental to performance.

The sequential writes in the SPC-1 benchmark are
huddled in a small fraction of the address space. As the
destage pointer in WOW or CSCAN moves past this se-
quential region and into the subsequent random region,
the occupancy graph spikes upwards because the cache
cannot keep up with the incoming rate while destaging
in the random region. This disparity can be so large that
even the maximum destage concurrency may not be suf-
ficient to keep up with the incoming rate, leading to the
dreaded full-cache condition (Figure 7(a)).

Also note the flat bottoms at the low threshold on the
occupancy graphs for WOW and CSCAN in Figure 7(a).
Since destaging sequential data is quick and easy, the
cache occupancy quickly drops down close to the low

threshold, where it uses only a small portion of the al-
lowed destage queue depth to keep up with the incoming
rate of the overall workload. The lackadaisical destage
rate in the sequential region results in underutilization of
disks which is ironic given that the disks cannot keep up
with the incoming rate when destages move to the sub-
sequent random regions.

6.1.2 Partial Backend

In Figure 7(b), we observe that the fluctuations in WOW
are compressed together. This is because the higher hit
ratio causes the destage pointer in WOW to advance
much more quickly. CSCAN, on the other hand, does
not skip over recently hit pages, and produces less fre-
quent fluctuations but stays in the full-cache condition
most of the time.

STOW wisely alternates between the two types of
destages, ensuring that the disks are continuously uti-
lized at a relatively constant rate. This eliminates large
fluctuations in the occupancy curve for STOW in both
the full and partial backend cases.

6.2 Throughput and Response Time
Presenting meaningful results: We use the best way
to present results for write caching improvements: the
throughput-response time curve. We present gains in
terms of bandwidth improvements at the same (reason-
able) response time. Another approach is to present gains
in terms of response times at the same throughput. E.g.,
at 900 IOPS in Figure 8(a), we could report at least a
10x improvement in response time over the contenders.
While it is accurate, we believe, it is not as informative
because it can be cherry-picked to aggrandize even mod-
est gains in such “hockey-stick” plots.

Backward bending: We also observe the backward
bending phenomenon in some curves which happens
whenever a storage controller is overdriven [9]. In
this regime, congestion caused by the increasing queue
lengths, lock contention, and CPU consumption, bogs
down a storage controller such that the disks no longer
remain the bottleneck.

6.2.1 Full Backend

In the top panel of Figure 8, we compare the average re-
sponse time (aggregate read and write) as a function of
the throughput achieved when the target throughput is
gradually increased in the SPC1-Like workload genera-
tor. Overall, STOW outperforms all algorithms signif-
icantly across all load levels. Observe that WOW and
CSCAN improve as the threshold range becomes wider
since a wider range allow them to contain the fluctu-
ations better, hitting the full-cache condition for lesser

USENIX Association	 2009 USENIX Annual Technical Conference	 337

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700

Pa
ge

s
in

 c
ac

he

Time (sec)

100%

HT

LT

WOW
STOW

CSCAN
LRW

(a) Full Backend: target 1050 IOPS, threshold:90/80

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600 700

Pa
ge

s
in

 c
ac

he

Time (sec)

100%

HT

LT

WOW
STOW

CSCAN
LRW

(b) Partial Backend: target 3500 IOPS, threshold:70/40

Figure 7: Cache occupancy as a function of time in a 32K page cache serving RAID-5 (RAID-10 is similar). STOW
neither exhibits large fluctuations in cache occupancy, nor reaches cache full conditions for the same workload.

amount of time. Since there are no large fluctuations in
STOW’s cache occupancy, STOW delivers a consistent
performance with any threshold, beating the best config-
uration for either WOW or CSCAN.

In particular, at around 20ms response time, with a
threshold of 90/80, in terms of SPC-1 Like IOPS in
RAID-5, STOW outperforms WOW by 70%, CSCAN
by 96%, and LRW by 39%. With a threshold of 70/40,
STOW beats WOW by 18%, CSCAN by 26%, and LRW
by 39%. Similarly, in RAID-10 with a 90/80 threshold,
STOW outperforms WOW by 40%, CSCAN by 53%,
and LRW by 27%, while, with a threshold of 70/40,
STOW beats WOW by 20%, and CSCAN and LRW by
27%. These gains are not trivial in the world of hard
drives which sees only a meager improvement rate of 8%
per year. Although we include data points at response
times greater than 30ms, they are not of much practical
significance as applications would become very slow at
those speeds. Even the SPC-1 Benchmark disallows sub-
missions with greater than 30ms response times.

6.2.2 Partial Backend

For the partial backend scenario, depicted in the lower
panel in Figure 8, we use only the outer 1/100th of each
disk in the RAID array, creating a high hit ratio sce-
nario with short-stroking on the disks. In this setup,
the fluctuations in the occupancy for WOW are closer
together (Figure 7(b)), resulting in a more rapid alter-
nation between sequential and random destages. This
helps WOW somewhat, however, in terms of SPC-1 Like
IOPS at 20ms, STOW still beats WOW by 12%, CSCAN
by 160%, and LRW by 24% in a RAID-5 setup. In
the RAID-10 setup, where writes become less important
(because of no read-modify-write penalties), STOW still

beats WOW by 3% (actually it is much better at lower
response times), CSCAN by 120%, and LRW by 42%.

6.2.3 WOW’s thresholding dilemma

Full Backend Partial Backend
H/L: 90/80 70/40 H/L: 90/80 70/40

STOW 5.18 5.58 1.28 2.23
WOW 22.69 5.78 1.38 2.26
CSCAN 27.19 6.03 41.32 24.08
LRW 6.14 6.58 1.50 2.23

Table 2: Response times (in milliseconds) at lower
throughputs (better numbers in bold). For full backend,
the response times correspond to a target of 750 IOPS
from Figure 8(a), and for partial backend to a target of
2000 IOPS from Figure 8(c). WOW’s best threshold
choice, unlike STOW, depends on the backend setup.

The response time in a lightly loaded system is also
an important metric [14]. We present the actual numbers
corresponding to RAID-5 in Figure 8 in Table 2.

Note that in all cases, STOW beats the competition
easily. However, WOW is unique in that it requires dif-
ferent thresholds to perform its best for different back-
end scenarios. While, choosing a conservative (70/40)
threshold allows WOW to beat CSCAN and LRW, WOW
is forced to sustain a response time of 2.26 ms in the par-
tial backend case, even though it could have delivered
1.38 ms response time with a higher threshold which
allows for higher hit ratio. Since the workload is not
known a priori, the right choice of threshold levels re-
mains elusive for WOW. So, in real life, STOW would
cut the response time not by just 7% (1.28 ms vs 1.38 ms)
when compared to WOW, but rather by 43% (1.28 ms vs

338	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200 300 400 500 600 700 800 900 1000

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

IOPS

STOW (H/L:90/80)
STOW (H/L:70/40)
WOW (H/L:90/80)
WOW (H/L:70/40)

CSCAN (H/L:90/80)
CSCAN (H/L:70/40)

LRW (H/L:90/80)
LRW (H/L:70/40)

(a) Full Backend: RAID 5

 0

 20

 40

 60

 80

 100

 120

 140

 200 400 600 800 1000 1200 1400

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

IOPS

STOW (H/L:90/80)
STOW (H/L:70/40)
WOW (H/L:90/80)
WOW (H/L:70/40)

CSCAN (H/L:90/80)
CSCAN (H/L:70/40)

LRW (H/L:90/80)
LRW (H/L:70/40)

(b) Full Backend: RAID 10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 500 1000 1500 2000 2500 3000 3500 4000

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

IOPS

STOW (H/L:90/80)
STOW (H/L:70/40)
WOW (H/L:90/80)
WOW (H/L:70/40)

CSCAN (H/L:90/80)
CSCAN (H/L:70/40)

LRW (H/L:90/80)
LRW (H/L:70/40)

(c) Partial Backend: RAID 5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2000 3000 4000 5000 6000 7000 8000

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

IOPS

STOW (H/L:90/80)
STOW (H/L:70/40)
WOW (H/L:90/80)
WOW (H/L:70/40)

CSCAN (H/L:90/80)
CSCAN (H/L:70/40)

LRW (H/L:90/80)
LRW (H/L:70/40)

(d) Partial Backend: RAID 10

Figure 8: We increase the target throughput for the SPC1-Like Benchmark and present the achieved throughput as a
function of the aggregate (read and write) response time for both the 90/80 and 70/40 destage thresholds in a 32K
page cache. Each data point is the average of measurements over 5 minutes after 5 mintues of warmup time. While
WOW beats LRW and CSCAN, STOW outperforms WOW consistently.

2.26 ms). An adaptive threshold determination scheme
might help WOW somewhat, but in no instance would it
be able to compete with STOW, which at the fixed 90/80

threshold consistently outperforms its competition.

6.3 Varying Threshold Level

In Figure 9, we examine how changing the thresholds
alone while keeping the workload constant changes the
performance of a write cache. For WOW and CSCAN,
in the full backend case, we can clearly see that as
the thresholds become lower, the performance improves.
While the lower thresholds help keep the occupancy fluc-
tuations away from 100% occupancy more effectively, it
cannot completely eradicate the phenomenon and, conse-
quently, both WOW and CSCAN fare worse than STOW.
STOW beats WOW and CSCAN by 19% on average, and

LRW by 46% in terms of SPC-1 Like IOPS.
In the partial backend case, both WOW and LRW are

better than CSCAN because they can leverage temporal
locality more effectively. Further, the performance does
not depend on the choice of the threshold in this case
because what is gained by keeping lower thresholds is
lost in the extra misses incurred in this high hit ratio sce-
nario. In terms of SPC-1 Like IOPS, STOW beats WOW
by about 7%, LRW by 22%, and CSCAN by about 96%.

6.4 Varying Cache Size
Any good adaptive caching algorithm should be able to
perform well for all cache sizes. In Figure 10(a), we ob-
serve that for the full backend scenario, across all cache
sizes, STOW outperforms WOW by 17-30%, CSCAN
by 19-40%, and LRW by 35-48%. The gains are more

USENIX Association	 2009 USENIX Annual Technical Conference	 339

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 5 10 15 20 25 30

IO
PS

Difference between High and Low Thresholds (in %)

STOW
WOW

CSCAN
LRW

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 5 10 15 20 25 30

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

Difference between High and Low Thresholds (in %)

STOW
WOW

CSCAN
LRW

(a) Full Backend: Target of 1200 IOPS

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 5 10 15 20 25 30

IO
PS

Difference between High and Low Thresholds (in %)

STOW
WOW

CSCAN
LRW

 0

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30

Av
g.

 R
es

po
ns

e
Ti

m
e

(m
s)

Difference between High and Low Thresholds (in %)

STOW
WOW

CSCAN
LRW

(b) Partial Backend: Target of 3500 IOPS

Figure 9: We vary the spread between the high and low thresholds while keeping target workload fixed (32K page
cache, RAID-5). The left panel shows the measured throughput and the right panel the corresponding averge response
times. RAID-10 has similar results.

significant for larger caches because of two reasons: (i) a
larger cache causes the cache occupancy spikes in WOW
and CSCAN to be further apart and much larger in am-
plitude, making it easier to hit the full-cache condition
(the performance of CSCAN actually dips as the cache
size increases to 131072 pages!); (ii) a larger cache in
LRW, WOW, and CSCAN proportionally devotes more
cache space to sequential data even though there might
be nothing to gain. STOW adapts the sizes of SeqQ and
RanQ, which limits the size of SeqQ in larger caches, and
creates better spatial locality in the larger RanQ.

The partial backend scenario, presented in Fig-
ure 10(b), also indicates that STOW is the best algo-
rithm overall. With smaller cache sizes, the lower hit
ratio overdrives the cache for all algorithms resulting in
very high response times, which are not of much prac-
tical interest. If we had scaled the workload according
to what the cache could support, the benefit of STOW

would be seen consistently even for lower cache sizes.
At a cache size of 32K pages, in terms of SPC-1 Like
IOPS, STOW outperforms WOW by 21%, CSCAN by
104%, and LRW by 43%. The performance at higher
cache sizes is similar for all algorithms because the work-
ing set fits in the cache, eliminating the disk bottleneck.

7 Conclusions

STOW represents a significant improvement over the
state of the art in write caching algorithms. While write
caching algorithms have mainly focused on the order
of destages, we have shown that it is critical to wisely
control the rate of destages as well. STOW outper-
forms WOW by a wider margin than WOW outperforms
CSCAN and LRW. The observation that the order of
destages needs to change to accommodate a better con-
trol on the rate of destages is a key one. We hope that we

340	 2009 USENIX Annual Technical Conference	 USENIX Association

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 4096 8192 16384 32768 65536 131072

IO
PS

Cache Size (4K pages)

STOW
WOW

CSCAN
LRW

(a) Full Backend: Target of 1050 IOPS

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4096 8192 16384 32768 65536 131072

IO
PS

Cache Size (4K pages)

STOW
WOW

CSCAN
LRW

(b) Partial Backend: Target of 4000 IOPS

Figure 10: Measured throughput as we vary cache size in a RAID-5 setup (RAID-10 is similar) with 90/80 thresholds.

have furthered the appreciation of the multi-dimensional
nature of the write caching problem, which will spark
new efforts towards advancements in this critical field.

References
[1] BAKER, M., ASAMI, S., DEPRIT, E., OUSTERHOUT, J., AND

SELTZER, M. Non-volatile memory for fast, reliable file systems.
SIGPLAN Not. 27, 9 (1992), 10–22.

[2] BANSAL, S., AND MODHA, D. S. CAR: Clock with Adaptive
Replacement. In Proc. Third USENIX Conf. on File and Storage
Technologies (FAST 04) (2004), pp. 187–200.

[3] BISWAS, P., RAMAKRISHNAN, K. K., TOWSLEY, D. F., AND
KRISHNA, C. M. Performance analysis of distributed file sys-
tems with non-volatile caches. In Proc. 2nd Int’l Symp. High
Perf. Distributed Computing (1993), pp. 252–262.

[4] COFFMAN, E. G., KLIMKO, L. A., AND RYAN, B. Analysis of
scanning policies for reducing disk seek times. SIAM J. Comput.
1, 3 (1972), 269–279.

[5] CORBATO, F. J. A paging experiment with the Multics system.
Tech. rep., Massachusetts Inst. of Tech. Cambridge Project MAC,
1968.

[6] DENNING, P. J. Effects of scheduling on file memory operations.
In Proc. AFIPS Spring Joint Comput. Conf. (1967), pp. 9–21.

[7] GEIST, R., AND DANIEL, S. A continuum of disk scheduling
algorithms. ACM Trans. Comput. Syst. 5, 1 (1987), 77–92.

[8] GILL, B. S., AND MODHA, D. S. SARC: Sequential prefetching
in Adaptive Replacement Cache. In Proc. USENIX 2005 Annual
Technical Conf. (USENIX) (2005), pp. 293–308.

[9] GILL, B. S., AND MODHA, D. S. WOW: Wise Ordering for
Writes - combining spatial and temporal locality in non-volatile
caches. In Proc. Fourth USENIX Conf. on File and Storage Tech-
nologies (FAST 05) (2005), pp. 129–142.

[10] HAINING, T. R. Non-volatile cache management for improving
write response time with rotating magnetic media. PhD thesis,
University of California, Santa Cruz, 2000.

[11] HSU, W. W., SMITH, A. J., AND YOUNG, H. C. I/O refer-
ence behavior of production database workloads and the TPC
benchmarks—an analysis at the logical level. ACM Trans.
Database Syst. 26, 1 (2001), 96–143.

[12] JACOBSON, D., AND WILKES, J. Disk scheduling algorithms
based on rotational position. Tech. Rep. HPL-CSP-91-7rev1, HP
Labs, February 1991.

[13] JIANG, S., AND ZHANG, X. LIRS: An efficient Low Inter-
reference Recency Set replacement policy to improve buffer
cache performance. In Proc. ACM SIGMETRICS Int’l Conf. Mea-
surement and modeling of computer systems (2002), pp. 31–42.

[14] JOHNSON, S., MCNUTT, B., AND REICH, R. The making of
a standard benchmark for open system storage. J. Comput. Re-
source Management, 101 (2001), 26–32.

[15] LEE, D., CHOI, J., KIM, J.-H., NOH, S. H., MIN, S. L., CHO,
Y., AND KIM, C. S. On the existence of a spectrum of policies
that subsumes the least recently used (LRU) and least frequently
used (LFU) policies. In Proc. ACM SIGMETRICS Int’l Conf.
Measurement and modeling of computer systems (1999), pp. 134–
143.

[16] MCNUTT, B., AND JOHNSON, S. A standard test of I/O cache.
In Proc. Int’l CMG Conference (2001), pp. 327–332.

[17] MEGIDDO, N., AND MODHA, D. S. ARC: A self-tuning, low
overhead replacement cache. In Proc. Second USENIX Conf. on
File and Storage Technologies (FAST 03) (2003), pp. 115–130.

[18] MERTEN, A. G. Some quantitative techniques for file organiza-
tion. PhD thesis, Univ. of Wisconsin, June 1970.

[19] ROBINSON, J. T., AND DEVARAKONDA, M. V. Data cache man-
agement using frequency-based replacement. In Proc. ACM SIG-
METRICS Int’l Conf. Measurement and modeling of computer
systems (1990), pp. 134–142.

[20] SEAMAN, P. H., LIND, R. A., AND WILSON, T. L. On telepro-
cessing system design Part IV: An analysis of auxiliary storage
activity. IBM Systems Journal 5, 3 (1966), 158–170.

[21] SELTZER, M., CHEN, P., AND OUSTERHOUT, J. Disk schedul-
ing revisited. In Proc. USENIX Winter 1990 Tech. Conf. (1990),
pp. 313–324.

[22] VARMA, A., AND JACOBSON, Q. Destage algorithms for disk ar-
rays with nonvolatile caches. IEEE Trans. Comput. 47, 2 (1998),
228–235.

[23] VARMA, A., AND JACOBSON, Q. Destage algorithms for disk
arrays with nonvolatile caches. IEEE Trans. Computers 47, 2
(1998), 228–235.

[24] ZHOU, Y., CHEN, Z., AND LI, K. Second-level buffer cache
management. IEEE Trans. Parallel and Distrib. Syst. 15, 6
(2004), 505–519.

USENIX Association	 2009 USENIX Annual Technical Conference	 341

Black-Box Performance Control for High-Volume Non-Interactive Systems

Chunqiang Tang1, Sunjit Tara2, Rong N. Chang1, and Chun Zhang1

1 IBM T.J. Watson Research Center 2 IBM Software Group, Tivoli
{ctang, sunjit.tara, rong, czhang1}@us.ibm.com

Abstract
This paper studies performance control for high-
volume non-interactive systems, and uses IBM Tivoli
Netcool/Impact—a software product in the IT moni-
toring and management domain—as a concrete exam-
ple. High-volume non-interactive systems include a large
class of applications where requests or processing tasks
are generated automatically in high volume by software
tools rather than by interactive users, e.g., data stream
processing and search engine index update. These sys-
tems are becoming increasingly popular and their perfor-
mance characteristics are radically different from those
of typical online Web applications. Most notably, Web
applications are response time sensitive, whereas these
systems are throughput centric.

This paper presents a performance controller, TCC,
for throughput-centric systems. It takes a black-box
approach to probe the achievable maximum throughput
that does not saturate any bottleneck resource in a dis-
tributed system. Experiments show that TCC performs
robustly under different system topologies, handles dif-
ferent types of bottleneck resources (e.g., CPU, mem-
ory, disk, and network), and is reactive to resource con-
tentions caused by an uncontrolled external program.

1 Introduction
Performance control for online interactive Web appli-

cations has been a research topic for years, and tremen-
dous progress has been made in that area [2, 10, 23, 28].
By contrast, relatively little attention has been paid to
performance control for a large class of increasingly pop-
ular applications, where requests or processing tasks are
generated automatically in high volume by software tools
rather than by interactive users. Many emerging stream
processing systems [1] fall into this category, e.g., con-
tinuous analysis and distribution of news articles, as in
Google Reader [11] and System S [19].

Moreover, almost every high-volume interactive Web
application is supported behind the scene by a set of
high-volume non-interactive processes, e.g., Web crawl-
ing and index update in search engines [7], Web log min-
ing for portal personalization [22], video preprocessing
and format conversion in YouTube, and batch conversion
of rich-media Web sites for mobile phone users [3].

Beyond the Web domain, examples of high-volume
non-interactive systems include IT monitoring and man-
agement [15], overnight analysis of retail transaction
logs [5], film animation rendering [14], scientific appli-
cations [6], sensor networks for habitat monitoring [20],
network traffic analysis [26], and video surveillance [8].

The workloads and operating environments of these
high-volume non-interactive systems differ radically
from those of session-based online Web applications.
Most notably, Web applications usually use response
time to guide performance control [2, 23, 28], whereas
high-volume non-interactive systems are throughput cen-
tric and need not guarantee sub-second response time,
because there are no interactive users waiting for im-
mediate responses of individual requests. Instead, these
systems benefit more from high throughput, which helps
lower average response time and hardware requirements.

This paper studies performance control for high-
volume non-interactive systems, and uses IBM Tivoli
Netcool/Impact [16]—a software product in the IT moni-
toring and management domain—as a concrete example.

Today’s enterprise IT environments are extremely
complex. They often include resources from multiple
vendors and platforms. Every hardware, OS, middle-
ware, and application usually comes with its own siloed
monitoring and management tool. To provide a holis-
tic view of the entire IT environment while taking into
account dependencies between IT components, a feder-
ated IT Service Management (ITSM) system may use
a core event-processing engine such as Netcool/Impact
to drive and integrate various siloed software involved in
IT management.

An IT event broadly represents a piece of informa-
tion that need be processed by the ITSM system. For
instance, under normal operations, transaction response
time may be collected continuously to determine the ser-
vice quality. Monitoring tools can also generate events to
report problems, e.g., a database is down. When process-
ing an event, the event-processing engine may interact
with various third-party programs, e.g., retrieving cus-
tomer profile from a remote database and invoking an in-
stant messaging server to notify the system administrator
if a VIP customer is affected.

When a major IT component (e.g., core router) fails,
the rate of IT events may surge by several orders of mag-

342	 2009 USENIX Annual Technical Conference	 USENIX Association

nitude due to the domino effect of the failure. If the
event-processing engine tries to process all events con-
currently, either the engine itself or some third-party pro-
grams working with the engine may become severely
overloaded and suffer from thrashing. In this work, the
purpose of performance control is to dynamically adjust
the concurrency level in the event-processing engine so
as to maximize throughput while avoiding fully saturat-
ing either the engine itself or any third-party program
working with the engine, i.e., targeting 85-95% resource
utilization (as opposed to 100%) even during peak usage.

The main difficulty in achieving this goal is caused by
the diversity and proprietary nature of the multi-vendor
components used in a federated ITSM system. For prac-
tical reasons, we can only take a black-box approach and
cannot rely on many assumptions presumed by existing
performance control algorithms.

• We cannot aggressively maximize performance with-
out considering resource contention with external pro-
grams not under our control. Therefore, we cannot use
greedy parameter search [25].

• We cannot assume a priori knowledge of system topol-
ogy (e.g., three-tier), and hence cannot use solutions
based on static queueing models [23].

• We cannot assume knowledge of every external pro-
gram’s service-level objectives (as in [18]), or knowl-
edge of every component’s performance characteris-
tics, e.g., through offline profiling as in [24]. There-
fore, we cannot directly adopt these methods based on
classical control theory.

• We cannot assume the ability to track resource con-
sumption of every component, or a prior knowledge
of the location or type of the bottleneck. Therefore,
we cannot adopt solutions that adjust program behav-
ior based on measured resource utilization level.

• We have no simple performance indicators to guide
tuning, such as packet loss in TCP [17] or response
time violation in interactive Web applications [2].

1.1 Throughput-guided Concurrency Control

The discussion below assumes that the number of
worker threads in the event-processing engine controls
the concurrency level. We explore the relationship be-
tween throughput and the event-processing concurrency
level to guide performance tuning (see Figure 1). With
too few threads, the throughput is low while system re-
sources are underutilized. As the number of threads
increases, the throughput initially increases almost lin-
early, and then gradually flattens, because the bottleneck
resource is near saturation. Once the bottleneck satu-
rates, adding more threads actually decreases through-
put because of the overhead in managing resource con-

Number of Event Processing Threads

E
v

en
t

 P
ro

ce
ss

in
g

T

h
ro

u
g

h
p

u
t

2

max throughput reached when the

gradual decline due

thrashing

3

4
5

7

6

1

bottleneck resource saturates
to thread overhead

Figure 1: Basic idea of throughput-guided concurrency
control (TCC). The symbols ①-⑦ show the controller’s
operation sequence. If memory is the bottleneck re-
source, the throughput may follow the dotted line and
then suddenly move into thrashing without a gradual
transition. This figure is further explained in Section 3.1.

tention. Finally, using an excessive number of threads
causes thrashing, and the throughput drops sharply.

We refer to our controller as TCC (throughput-guided
concurrency control). Intuitively, it works as follows.
Starting from an initial configuration, it tentatively adds
some threads (transition ①➞② in Figure 1), and then
compares the throughput measured before and after the
change. If the throughput increases “significantly”, it
keeps adding threads (transitions ②➞③➞④), until either
the throughput starts to decline or the improvement in
throughput becomes marginal (transition ④➞⑤). It then
successively removes threads (transitions ⑤➞⑥➞⑦),
until the throughput becomes a certain fraction (e.g.,
95%) of the maximum throughput achieved during the
exploration. The purpose is to reach a stable state that
delivers high throughput while not saturating the bottle-
neck resource.

We address several challenges to make this basic
idea practical. Because the exact shape of the thread-
throughput curve in Figure 1 varies in different envi-
ronments, a robust method is needed to determine when
the throughput “almost” flattens. If the controller adds
threads too aggressively, it may cause resource satura-
tion and gain unfair advantages when competing with
an uncontrolled external program. Another challenge
is to make quick control decisions based on noisy per-
formance measurement data, e.g., abnormal long pauses
caused by Java garbage collection. Our solutions to these
challenges are described in Section 3.

Our controller is flexible. It takes a black-box ap-
proach to maximize throughput while trying to avoid sat-
urating the bottleneck resource. It makes few assump-
tions about the operating environment. It need not know
system topology, performance characteristics of external
programs, resource utilization level, or exactly which re-
source is the bottleneck. It can handle both hardware
(e.g., CPU, memory, disk, or network) and software (e.g.,

USENIX Association	 2009 USENIX Annual Technical Conference	 343

...

...

...

...

...

... ...

Figure 2: A radically simplified architecture diagram of Netcool/Impact (NCI). IT events flow from top to bottom.

database connection pool) bottleneck resources. Be-
cause of its flexibility, it may be broadly applied to high-
volume non-interactive systems [1, 6, 7, 19, 20, 22, 26].

We have implemented TCC and integrated it with IBM
Tivoli Netcool/Impact [16]. The Netcool suite [15] is
a set of software products that help implement a feder-
ated ITSM system, and Netcool/Impact is the stream-
ing event-processing engine of the Netcool suite. Ex-
periments demonstrate that TCC performs robustly un-
der different system topologies, handles different types
of bottleneck resources, and is reactive to resource con-
tentions caused by an uncontrolled external program.

The remainder of the paper is organized as follows.
Section 2 provides an overview of Netcool/Impact. Sec-
tions 3 and 4 present and evaluate TCC, respectively. Re-
lated work is discussed in Section 5. Section 6 concludes
the paper.

2 Overview of Netcool/Impact (NCI)
Our performance controller is generic, and its cur-

rent implementation can actually be configured to com-
pile and run independent of the Netcool/Impact prod-
uct. To make the discussion more concrete, however,
we choose to present it in the context of Netcool/Impact.
Netcool/Impact is a mature product with a large set of
features. Below, we briefly summarize those features
most relevant to our discussion. We simply refer to
Netcool/Impact as NCI.

NCI adopts a clustering architecture (see Figure 2).
The “master NCI server” is the data fetcher and load bal-
ancer. Its “event reader” pulls IT events from various
sources, while its “event listener” receives events pushed
from various sources. It processes some events in its lo-

cal “event-processing engine”, and dispatches the rest to
the “slave NCI servers” for load balancing. The “NCI
name server” manages members of the cluster. If the
master fails, a slave will be converted into master.

The “event-processing engine” executes user-supplied
programs written in the Impact Policy Language (IPL).
IPL is a proprietary scripting language specially de-
signed for event processing, emphasizing ease of use for
system administrators. With the help of various built-in
“external program adapters”, IPL scripts can easily inte-
grate with many third-party programs.

Each NCI server (master or slave) uses a pool of
threads to process events and runs a performance con-
troller to determine for itself the appropriate thread pool
size. When an event arrives, the NCI server goes through
a list of admin-specified matching rules to identify the
IPL script that will be used to process the event. The
event waits in a queue until an event-processing thread
becomes available, and then the thread is dispatched to
interpret the IPL script with the event as input.

In a large IT environment, monitoring events (e.g.,
CPU utilization reports) are generated continuously at a
high rate even under normal operations. Some events are
filtered locally, while the rest are collected in realtime,
e.g., to the Netcool/OMNIbus ObjectServer [15], which
buffers events and feeds them to the master NCI server
in batches, e.g., one batch every five seconds. Events are
not sent to the master individually for the sake of effi-
ciency. Similarly, a slave NCI server fetches events in
batches from the master.

Because events are fetched in batches, an NCI server
often holds a large number of unprocessed events. If the
server tries to process all of them concurrently, either

344	 2009 USENIX Annual Technical Conference	 USENIX Association

the server itself or some third-party programs working
with the server will become severely overloaded and suf-
fer from thrashing. Moreover, it needs to carefully con-
trol the concurrency level of event processing so that it
achieves high throughput while sharing resources with a
competing program in a friendly manner.

Our performance control goal is to maximize event-
processing throughput while avoiding saturating NCI or
any third-party program working with NCI. Even dur-
ing peak usage, the utilization level of the bottleneck re-
source should be controlled, e.g., between 85% and 95%,
instead of 100%. We must avoid saturating the master
NCI server because it hosts other services such as “oper-
ator view” (see Figure 2), which provides a customizable
dashboard for administrators to look into the details of IT
events. In addition, we must avoid saturating third-party
programs working with NCI, because they may serve
clients other than NCI, including interactive users.

In light of today’s complex and heterogeneous IT en-
vironments, the success of the NCI product to a great ex-
tent owes to its common adapter platform that helps in-
tegrate various distributed data sources and siloed mon-
itoring and management tools. Because of the diversity
and proprietary nature of these third-party external pro-
grams working with NCI, we can only take a black-box
approach and cannot rely on many assumptions that are
presumed by existing performance control algorithms (as
those listed in Section 1) .

3 Our Performance Control Algorithm
This section presents our controller TCC in detail. We

start with a description of TCC’s state transition dia-
gram, and then use queuing models to analyze TCC and
demonstrate that it can achieve high resource utilization.
We then derive the friendly resource sharing conditions
for TCC. We also present a statistical method that min-
imizes measurement samples needed for making control
decisions. Finally, we put all the pieces together to guide
the selection of TCC’s parameters.

3.1 State Transition Diagram
TCC operates according to the state-transition diagram

in Figure 3. Most of the time, it stays in the “steady”
state, using a constant number of threads to process
events that continuously arrive in batches. The number
of threads is optimal if those threads can drive the bot-
tleneck resource to a high utilization level (e.g., 85-95%)
while avoiding fully saturating it.

Periodically, TCC gets out of the steady state to ex-
plore whether a better configuration exists. It moves into
the “base” state and reduces the number of threads by
w%, which will serve as the exploration starting point ①
in Figure 1. (How to select parameters such as w% will
be discussed in Section 3.5.) TCC stays in the “base”
state for a short period of time to measure the event-
processing throughput. It then increases the number of

timeout or throughput changed

timeout

remove

thread

accept remove

accept add

reject add

reject remove
tim

eou
t

add

thread

max

steady

base

Figure 3: Simplified state-transition diagram of TCC.

threads by p% and moves into the “add-thread” state. If
this p% increase in threads helps improve throughput by
q% or more, it stays in the add-thread state and repeat-
edly add threads by p% each time. Eventually, the bottle-
neck resource is near saturation so that a p% increase in
threads no longer gives a q% or more increase in through-
put. It then moves into the “max” state.

TCC takes more measurement samples in the “max”
state in order to calculate a more accurate baseline
throughput. It then moves into the “remove-thread” state
to repeatedly removes threads by r% each time so long
as the throughput does not drop below 95% of the highest
throughput achieved during the current tuning cycle.

When the throughput finally drops below the 95%
threshold, it adds back threads removed in the last round,
and moves into the steady state. It stays in the steady
state for a relatively long period of time, using an opti-
mal number of threads to process events. It restarts the
next round of exploration either after a timeout or when
the throughput changes significantly, which indicates a
change in the operating environment.

If memory is the bottleneck, throughput may follow
the dotted line in Figure 1, and then suddenly moves into
thrashing when TCC adds threads. TCC will detect the
decline in throughput, revoke the threads just added, and
continue to remove more threads until the throughput be-
comes 95% of the measured maximum throughput. This
prevents the system from moving into thrashing.

3.2 High Resource Utilization
In this section, we use queuing models to demon-

strate that, for common event processing scenarios, TCC
can achieve high resource utilization (and hence high
throughput) while avoiding resource saturation. The dis-
cussion below assumes that TCC uses the default con-
figuration: p=25%, q=14%, and w=39%. (Section 3.5
discusses parameter selection.) Our queueing models as-
sume the ITSM system consists of one NCI server and
some third-party external programs. We are interested in
system behavior when it continuously processes a block
of events and we assume no threads remain idle due to
the lack of input events.

The first model we use is the machine-repairman
model [12] in Figure 4(a). This model assumes that the

USENIX Association	 2009 USENIX Annual Technical Conference	 345

.

.

.

bottleneck resource

(k service stations)

non-bottleneck resources

(unlimited service stations)

queue

.

.

.

.

.

.

.

.

.

NCI server

event source

database

(a) Machine-repairman model (b) Event-escalation model (c) Event-enrichment model

Figure 4: Using queueing models to analyze TCC. These closed models can be solved by mean value analysis [12].

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.
1

0.
2

0.
4

0.
6

0.
8

0.
9 1

1.
2

1.
4

1.
6

1.
8 2 4 6 8 10

Blocking Ratio r

C
PU

 U
til

iz
at

io
n

0
10
20
30
40
50
60
70
80
90
100

Th
re

ad
s

CPU Utilization

Threads

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.
1

0.
2

0.
4

0.
6

0.
8

0.
9 1

1.
2

1.
4

1.
6

1.
8 2 4 6 8 10

Ext. Program to NCI Service Time Ratio r

C
PU

 U
til

iz
at

io
n

0

5

10

15

20

25

Th
re

ad
s

CPU Utilization

Threads

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.
1

0.
2

0.
4

0.
6

0.
8

0.
9 1

1.
2

1.
4

1.
6

1.
8 2 4 6 8 10 12 14 16 18

Database to NCI Service Time Ratio r

C
PU

 U
til

iz
at

io
n

0

5

10

15

20

25

30

35

Th
re

ad
s

CPU Utilization

Threads

(a) Machine-repairman model (b) Event-escalation model (c) Event-enrichment model

Figure 5: Performance of TCC under different queueing models. Note that the x-axis increases nonlinearly.

ITSM system has a clearly defined bottleneck resource,
whose utilization level is much higher than that of the
other resources. Even if the bottleneck is fully saturated,
the other resources are still underutilized. Therefore,
the queueing delays of the non-bottleneck resources can
be approximately ignored. We use machine-repairman
model’s delay station to represent the sum of the ser-
vice times of all non-bottleneck resources. As the delay
station can abstractly represent multiple distributed re-
sources, real systems of different topologies (e.g., 3 ma-
chines or 7 machines) can be represented by this single
model, so long as they have a clearly defined bottleneck.
Many real systems do satisfy this requirement.

The machine-repairman model can predict event-
processing throughput and resource utilization level un-
der different thread configurations [12]. We modified
our implementation of TCC to take throughput numbers
from the model instead of a live system. This allows us
to systematically evaluate TCC under a wide range of
hypothetical workloads.

Figure 5(a) shows the number of threads recom-
mended by TCC and the corresponding CPU utilization
level. Here we assume that the CPU of the NCI server is
the bottleneck resource, and it has 8 CPUs. CPU utiliza-
tion is affected by the blocking ratio r, which is defined
as the service time ratio of the delay station to the bottle-
neck resource. As r increases, each thread blocks longer
at the delay station, and hence more threads are needed
to drive up CPU utilization. As r varies, TCC is able
to adjust the number of threads accordingly to keep high
CPU utilization while avoiding complete saturation.

Figure 4(b) shows the event-escalation model, where
the NCI server processes an event and then invokes
an external program, e.g., an instant messaging server.

This model differs from the machine-repairman model in
that it does not assume the queueing delays of the non-
bottleneck resources are negligible. Figure 5(b) shows
the performance of TCC when both machines have 8
CPUs. The x-axis is the service time ratio r of the exter-
nal program to the NCI server. The y-axis is the CPU uti-
lization of the bottleneck resource. The bottleneck is the
NCI server if r<1, or the external program if r>1. The
lowest utilization 88% occurs when r=1, i.e., when the
utilization levels of two machines are identical. In this
case, more threads are needed to simultaneously drive
both machines to high utilization.

Figure 4(c) shows the event-enrichment model, where
the NCI server processes an event, enriches it with data
fetched from an external database, and writes it back to
the event source. This is a widely used topology in real
deployments. Figure 5(c) shows the performance of TCC
when each of the three machines has have 8 CPUs. The
x-axis is the service time ratio r of the database to the
NCI server. The database and the event source have the
same mean service time. The y-axis is the utilization of
the bottleneck. The lowest utilization 85% occurs when
r = 1, i.e., when the utilization levels of the three ma-
chines are identical.

Results in Figure 5 show that TCC can drive the bot-
tleneck resource to high utilization under different work-
loads and deployment topologies. On the other hand,
TCC may underutilize resources in some cases, e.g.,
when processing one event goes through a large num-
ber of servers whose utilization levels are identical (i.e.,
r=1). To reduce resource waste in this worst case,
one might be tempted to make TCC more aggressive in
adding threads. However, this would also make TCC less
friendly in resource sharing.

346	 2009 USENIX Annual Technical Conference	 USENIX Association

3.3 Friendly Resource Sharing
Below, we derive the conditions for friendly resource

sharing and demonstrate that, with a proper configura-
tion, TCC shares resources in a friendly manner with an
uncontrolled competing program. Moreover, multiple in-
stances of TCC also share resources in a friendly manner.
We begin our discussion with the basic two-NCI-server
scenario.

Suppose two NCI servers independently execute TCC.
If each server has its own internal bottleneck that limits
its throughput, TCC will independently drive each server
to almost full utilization. A more challenging case is
that a shared bottleneck resource limits the throughput
of both NCI servers, e.g., a shared database. Below, we
will show that, when the shared bottleneck is saturated,
the two NCI servers take turns to reduce their threads un-
til the bottleneck resource is relieved of saturation.

Suppose the bottleneck resource is fully saturated, two
NCI servers X and Y are identical, and they currently
run x0 and y0 threads, respectively, where x0 ≤ y0. A
TCC tuning cycle consists of the tuning steps starting
from the base state and finally settling in the steady state.
We use i to number TCC’s tuning cycles in increasing
order, and assume X and Y take turns to execute in the
tuning cycles, i.e., if X executes in cycle i, then Y will
execute in cycle i+ 1. Let xi and yi denote the numbers
of X and Y ’s threads at the end of tuning cycle i.

Theorem 1 If TCC’s parameters p, q, and w satisfy
Equations (1) and (2) below, then X and Y will take
turns to reduce their threads (i.e., y0 > x1 > y2 >
x3 · · ·) until the bottleneck is relieved of saturation.

q >
p(p+ 1)

p+ 2
(1)

w ≥ 1 − (
p

q
− 1)2 (2)

Moreover, if TCC’s parameters satisfy (1) and (2), a TCC
instance shares resources with an external competing
program in a friendly manner.

Proof sketch: Suppose X is in the process of tuning
its configuration, and just finished increasing its threads
from x

1+p
to x. When X uses x threads to compete with

Y ’s y0 threads, X’s throughput is f(x, y0) = x
x+y0

C,
where C is the maximum throughput of the bottleneck.
TCC keeps adding threads so long as every p% increase
in threads improves throughput by q% or more. There-
fore, X continues to add more threads if and only if

f(x, y0)

f(x
1+p

, y0)
≥ 1 + q , (3)

which is equivalent to x ≤ (p
q
− 1)y0. Let �y denote the

upper bound of this condition:

�y = (
p

q
− 1)y0 . (4)

Suppose X runs no more than �y threads in the base
state. (This assumption holds if (2) holds.) X keeps
adding threads so long as its current number of threads
is no more than �y. Hence, when X stops adding threads,
its final number x1 of threads falls into the range

�y < x1 ≤ (1 + p)�y . (5)

X ends up with fewer threads than Y if (1 + p)�y < y0.
From (4), this condition is equivalent to (1).

When X uses x1 threads to compete with Y ’s y0

threads, X’s share of the bottleneck is bounded by

1 −
q

p
<

x1

x1 + y0
≤

(1 + p)(p− q)

p(1 + p− q)
. (6)

This bound is derived from (4) and (5).
Now suppose Y executes TCC after X settles with x1

threads. Y first reduces its threads by w% in the base
state. Following (4), we define

�x = (
p

q
− 1)x1 . (7)

If Y ’s base state has no more than �x threads, i.e., if

(1 − w)y0 ≤ �x , (8)

then we can follow (5) to obtain the bound of Y ’s final
number y2 of threads when Y stops adding threads:

�x < y2 ≤ (1 + p)�x . (9)

From (4), (5), and (7), we know that (8) holds if (2) holds.
TCC’s default parameters are p=25%, q=14%, and

w=39%, which satisfy (1) and (2). Therefore, it follows
from (5) and (9) that y0 > x1 > y2. This reduction in
threads continues as X and Y repeatedly execute TCC,
until the bottleneck is relieved of saturation.

Following the approach above, one can also show that
TCC shares resources in a friendly manner with an exter-
nal competing program that generates a constant work-
load at the shared bottleneck resource. In the face of
competition, TCC dynamically adjusts the number of
processing threads so that it consumes about 44–49%
of the bottleneck resource. This range is obtained by
substituting the default parameters (p=25% and q=14%)
into (6). By contrast, if one uses a configuration that does
not satisfy (1), TCC’s consumption of the bottleneck re-
source could be unfairly high, e.g., reaching 80–83% for
the configuration p=25% and q=5%.

The analysis above focuses on the base state and
the add-thread state. The remove-thread state removes
threads to avoid saturation, which makes TCC even more
friendly in resource sharing. Therefore, Theorem 1 holds
if the remove-thread state is taken into account. �

With a proper configuration, a TCC instance shares
resources in a friendly manner with an external compet-
ing program, and two TCC instances also share resources
in a friendly manner. Three or more instances of TCC
share resources in a friendly manner only if they execute

USENIX Association	 2009 USENIX Annual Technical Conference	 347

in a loosely synchronized fashion, i.e., they move out of
the steady state into the base state roughly at the same
time. When the shared bottleneck is saturated and mul-
tiple TCC instances attempt to add threads at the same
time, they will observe little improvement in throughput
and gradually remove threads until the bottleneck is re-
lieved of saturation. A detailed analysis is omitted here.
In an NCI cluster, the master can serve as the coordinator
to enforce loose synchronization. Using loosely synchro-
nized execution to enforce friendly resource sharing has
also been proposed in Tri-S [27], although its application
domain is TCP congestion control.

3.4 Accurate Performance Measurement
TCC repeatedly adds threads so long as every p% in-

crease in threads improves throughput by q% or more.
Let C1 and C2 denote the configurations before and af-
ter adding the p% threads, respectively. (This section
uses the add-thread state as example. The remove-thread
state can be analyzed similarly.) In a noisy environment,
throughput is a stochastic process and accurate measure-
ment is challenging. On the one hand, the throughput
of a configuration can be measured more accurately if
TCC stays in that configuration longer and takes more
measurement samples. On the other hand, we want to
minimize the measurement time so that TCC responds to
workload changes quickly.

We formulate the issue of accurate performance mea-
surement as an optimization problem. The optimization
goal is to minimize the total number of samples collected
from configurations C1 and C2, and the constraint is to
ensure a high probability of making a correct control de-
cision. It turns out that the number of samples needed to
make a reliable decision is proportional to the variance
of event-processing time (i.e., more samples are needed
if the system is volatile), and inversely proportional to the
throughput improvement threshold q (i.e., more samples
are needed if we want to tell even a small performance
difference between two configurations).

Below, we present our statistical approach for perfor-
mance measurement, our method for handling unstable
event arrival rate, and our heuristic for filtering out large
noises caused by extreme activities such as Java garbage
collection.
3.4.1 Our Experiment Design Approach

We use subscript i to differentiate the two configu-
rations Ci, i = 1, 2. For configuration Ci, let random
variable Xi denote the inter-departure time between the
completion of event processing. Denote µi and σ2

i the
mean and variance of Xi. Suppose we take ni samples
of Xi, denoted as Xij , 1 ≤ j ≤ ni, and these samples
are independent and identically distributed. Denote Xi

the sample mean of Xij . According to the central limit
theorem, regardless of the distribution of Xi, Xi is ap-
proximately normally distributed, Xi ∼ N(µi, σ

2
i /ni).

Let Y = X1 −X2, which represents the performance
difference between C1 and C2. Assuming X1 and X2

are independent, Y is also approximately normally dis-
tributed, Y ∼ N(µy, σy), where

µy = µ1 − µ2 (10)

σ2
y =

σ2
1

n1
+
σ2

2

n2
. (11)

The mean throughput of configuration Ci is 1/µi.
TCC continues to add threads if the throughput ratio
1

µ2
/ 1

µ1
≥ 1 + q, where q is the throughput improve-

ment threshold. Considering (10), this is equivalent to
µy ≥ µ′, where

µ′ =
q

1 + q
µ1. (12)

We want to collect a minimum number of samples,
n = n1 + n2, so that the variance σ2

y in (11) is small
enough and we can state with high confidence either
Prob{Y ≥µ′}≥1−α or Prob{Y <µ′}≥1−α holds.
Here 1-α is the confidence level (0<α<0.5). However,
in the worst case when µy = µ′, both Prob{Y ≥µ′} and
Prob{Y <µ′} are always 0.5, no matter how many sam-
ples we collect. This precludes us from deciding whether
C2 is significantly better than C1. We use an indifference
zone [L,H] to handle the case when µy ≈ µ′.

L = (1 − β/2) µ′ (13)
H = (1 + β/2) µ′ (14)

Here β is a small constant, e.g., β=0.1. Now we want to
collect just enough samples so that at least one of the two
conditions below holds:

Prob{Y ≥ L} ≥ 1 − α, or (15)
Prob{Y ≤ H} ≥ 1 − α . (16)

TCC adds more threads if only (15) holds, or if both (15)
and (16) hold but Prob{Y≥L} ≥ Prob{Y≤H}.

Let Z ∼ N(0, 1), and Prob{Z ≤ Z1−α} = 1−α.
Combining (15) and (16), we have

σy ≤
1

Z1−α

max(H − µy , µy − L) . (17)

Combing (11) and (17), the problem of minimizing the
total number of measurement samples can be formulated
as the optimization problem below.

Minimize n = n1 + n2

Subject to

σ2
y =

σ2
1

n1
+
σ2

2

n2
≤

�
max(H − µy, µy − L)

Z1−α

�2

(18)

n1, n2 > 0 (19)

Solving this problem using Lagrange multipliers, we ob-
tain the minimum number of samples we need:

348	 2009 USENIX Annual Technical Conference	 USENIX Association

�n1 = σ1(σ1 + σ2)

�
Z1−α

max(H − µy, µy − L)

�2

(20)

�n2 = σ2(σ1 + σ2)

�
Z1−α

max(H − µy, µy − L)

�2

.(21)

Both �n1 and �n2 have the largest value when

µy =
H + L

2
= µ′. (22)

When collecting samples for C1, we have no data for
C2 and hence µy is unknown. We have to make the con-
servative assumption in (22). As C1 and C2 are close, we
assume σ1 ≈ σ2. With these assumptions, (20) is sim-
plified as (23) below. (Note that it is possible to run C1

and C2 back and forth in an interleaving fashion in or-
der to accurately estimate µy rather than conservatively
using (22) for µy , but this would complicate TCC’s state
machine in Figure 3.)

�n1 = 8

�
σ1Z1−α

H − L

�2

. (23)

Finally, combining (12), (13), (14), and (23), we have

�n1 = 2 Z2
1−α

�
1

β

�2 �
1 +

1

q

�2 �
σ1

µ1

�2

. (24)

The minimum number of samples for C2 can be de-
rived from (18) and (23):

�n2 =
(σ2Z1−α)

2

{max(H − µy , µy − L)}
2
− (H−L)2

8

. (25)

When collecting samples for C2, we have data for both
C1 and C2, and hence can estimate µy from (10).

3.4.2 Practical Issues
Our method does not rely on any assumption about the

exact distribution of Xi, but needs to estimate the mean
µi and variance σ2

i , as they are used in (24) and (25).
TCC estimates them by taking n∗

i initial samples from
configuration Ci, and then uses the sample mean µ∗

i and
sample variance S2

i to replace µi and σ2
i . In practice, we

observe that sometimes the event-processing engine ex-
periences long pauses caused by extreme activities such
as Java garbage collection or startup of a heavy external
program. For example, on a fragmented large heap, Java
garbage collection can take as long as 20 seconds.

These long pauses are not an inherent part of the vari-
ance in service time, but they make the calculated sample
variance S2

i (and accordingly �ni) unusually large. We
address this issue by filtering out abnormally large sam-
ples. Empirically, we find that abnormal samples caused
by long pauses are rare, and discarding the top 1% largest
samples is sufficient to filter them out.

Another challenge is to handle the periodical, bulk-
arrival pattern of IT events. After processing one block

arrival of

event blocks

event

processing T
1

T
2

T
3

T
4

T
5

T
6

time

time

Figure 6: TCC excludes idle time from through-
put calculation. Suppose n events are processed
in this example. The throughput is calculated as

n
(T2−T1)+(T4−T3)+(T6−T5)

instead of n
T6−T1

. This
method discounts the influence of an unstable event ar-
rival rate and helps TCC operate robustly.

of events, an NCI server remains idle until the next block
arrives. TCC excludes this idle time from throughput cal-
culation (see Figure 6), because the low throughput in
this case is caused by the lack of input events rather than
by a sub-optimal thread configuration.

3.5 Selection of Parameter Values
Recall that TCC reduces threads in the base state by

w%, and then repeatedly add threads so long as every
p% increase in threads improves throughput by q% or
more. Now we put together the results in Sections 3.2,
3.3, and 3.4 to guide the selection of these parameters.

Equations (1) and (2) are the conditions for friendly re-
source sharing. Suppose p’s value is already determined.
Using queueing models such as those in Figure 4, it can
be shown that, relative to p, q should be as small as possi-
ble in order to achieve maximum throughput. Therefore,
for a given p, we choose for q the smallest value allowed
by (1). Once p and q are determined, we choose for w the
smallest value allowed by (2), because a small w keeps
more threads in the base state and allows TCC to finish
an exploration cycle more quickly. Table 1 lists the ap-
propriate values of q and w for different p.

p 10% 15% 20% 25% 30% 35% 40% 45% 50%
q 5.4% 8.2% 11.5% 14% 17% 20.5% 24% 27% 31%
w 28% 32% 33% 39% 42% 50% 56% 56% 63%

Table 1: Appropriate values of q and w for a given p.

The next step is to choose a configuration in Table 1.
This table as well as (1) and (2) shows that both q and
w increase as p increases. Equation (24) suggests that
a large q is preferred, because it allows TCC to make a
control decision with fewer measurement samples. On
the other hand, we prefer a small w, as it keeps more
threads in the base state. Moreover, we prefer a moderate
p, because a large p has a higher risk of moving the sys-
tem into severe thrashing in a single tuning step, whereas
a small p may require many tuning steps to settle in a
new steady state after a workload change. To strike a bal-
ance between all these requirements, we choose (p=25%,
q=14%, w=39%) as our default configuration.

USENIX Association	 2009 USENIX Annual Technical Conference	 349

In the remove-thread state, TCC repeatedly removes
r% threads until the throughput becomes a certain frac-
tion (e.g., 95%) of the maximum throughput achieved
during a tuning cycle. The remove-thread state does fine
tuning and we use r=10% by default.

4 Experimental Results
We have implemented TCC in Java and integrated it

with IBM Tivoli Netcool/Impact [16]. We have evalu-
ated TCC under a wide range of workloads. Experiments
demonstrate that an NCI cluster is scalable, and TCC can
handle various types of bottleneck resources. We also
compare TCC with revised versions of TCP Vegas [4].

Unless otherwise noted, each machine used in the
experiments has 5GB memory and two 2.33GHz Intel
Xeon CPUs, running Linux 2.6.9. All the machines are
hosted in an IBM BladeCenter, where the network round-
trip time is only 90µs. The network delay of a large
enterprise’s IT environment can be much longer, e.g.,
varying from 1ms to 100ms when the database with cus-
tomer profiles is managed at a central remote site for se-
curity reasons. To evaluate the effect of network delay, in
some experiments, the messages between two machines
go through a software router that allows us to introduce
message delays in a controlled manner.

4.1 NCI Cluster Scalability
Figure 7 shows the scalability of an NCI cluster run-

ning TCC, when executing an event-enrichment policy
that is widely used in real deployments. The topology of
this experiment is shown in Figure 4(c). The event source
is Netcool/OMNIbus ObjectServer 7.1 [15]. We devel-
oped a tool to automatically feed IT events to Object-
Server, from which the master NCI server fetches events.
The external database is MySQL 4.1.12. When process-
ing one event, an NCI server does some local analy-
sis, fetches service contextual information from MySQL,
adds it into the event, and finally writes the enriched
event back to ObjectServer. In this setup, MySQL caches
all data in memory and NCI servers are the bottleneck.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 1 2 3 4 5 6 7 8

Number of NCI Servers

Th
ro

ug
hp

ut
 (

ev
en

ts
 /

se
c)

real

ideal linear scalability

Figure 7: Scalability of NCI.

In Figure 7, the NCI cluster shows almost linear scala-
bility, because the NCI servers fetch events in batches,
and the slave NCI servers directly retrieve data from
MySQL and write events back to ObjectServer without
going the master. In addition, the linear scalability is also
due to another algorithm we designed to dynamically
regulate the event-fetching rate and event batch size so
that the event-processing pipeline moves smoothly with-
out stall. This feature is beyond the scope of this paper.

4.2 CPU Bottleneck
In the rest of the experiments, we study the detailed

behavior of TCC. These experiments use the event-
escalation topology in Figure 4(b), in which the NCI
server processes an event and then invokes an external
program through its HTTP/XML interface for further
processing. Below, we simply refer to this external pro-
gram as the “Web application” and its hosting machine
as the “Web machine.” The IPL script executed by the
NCI server is specially designed so that we can control
its service time on the NCI server. Similarly, the service
time of the Web application can also be controlled. Both
service times follow a Pareto distribution p(x) = k Ck

xk+1 ,
where k = 2.5. We adjust C to control the service time.

Figure 8(a) shows the CPU utilization (“NCI-CPU”
and “Web-CPU”) and the number of threads in an ex-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0

 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

 0

 5

 10

 15

 20

 25

 30

 35

 40

C
P

U
 U

ti
li

za
ti

o
n

[0

-1
0
0
%

]

T
h
re

ad
s

Time (seconds)

Threads

Web-CPU

NCI-CPU

(a) CPU Utilization

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0

 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

 0

 5

 10

 15

 20

 25

 30

 35

 40

T
h
ro

u
g
h
p
u
t

(e

v
en

ts
 /

 s
ec

o
n
d
)

T
h
re

ad
s

Time (seconds)

Threads

Throughput

(b) Throughput

Figure 8: The Web machine’s CPU is the bottleneck.

350	 2009 USENIX Annual Technical Conference	 USENIX Association

periment where one NCI server works with the Web ap-
plication. The x-axis is the wall clock time since the
experiment starts. In real deployments, after process-
ing one block of events, the NCI server remains idle
until the next block arrives. This experiment generates
IT events in such a way that the NCI server never be-
comes idle. Otherwise, the CPU utilization would drop
to 0 during repeated idle time, making the figure com-
pletely cluttered. We conducted separate experiments to
verify that the idle time between event blocks does not
change TCC’s behavior, because TCC excludes the idle
time from throughput calculation (see Figure 6).

In this experiment, the mean service time is 1ms for
NCI and 1.3ms for the Web application. (Note that the
actual service times are random variables rather than
constants.) Therefore, the Web machine is the bottle-
neck. The messages between the NCI server and the Web
application go through the software router, which adds
about 5ms delay in round trip time. The curves show pe-
riodical patterns. Each period is a complete tuning cycle
during which TCC starts from the base state and even-
tually moves back to the steady state. In real deploy-
ments, TCC operates in the steady state for a relatively
long period of time before it starts the next round of ex-
ploration. In this experiment, TCC is configured to stay
in the steady state for only about 50 seconds. Otherwise,
the curves would be mostly flat.

During the first tuning cycle in Figure 8(a), TCC ex-
ponentially increases the number of threads. At time
85 seconds, it moves into the steady state for the first
time with 17 threads. During latter tuning cycles, the
steady-state threads vary between 15 and 17. This os-
cillation is due to noisy measurement data. Regardless,
TCC avoids saturating the bottleneck resource, and the
Web machine’s CPU utilization stays around 90%.

Figure 8(b) shows event-processing throughput, which
closely follows CPU utilization in Figure 8(a). This is
because throughput is proportional to the utilization of
the bottleneck resource (i.e., CPU in this experiment).
Due to space limitation, below we omit throughput fig-
ures and focus on bottleneck resource utilization.

4.3 Memory Bottleneck
The experiment in Figure 9 evaluates how TCC works

with memory bottleneck and how it recovers from mem-
ory thrashing. This experiment uses machines with rel-
atively more CPUs and less memory in order to trigger
memory thrashing—each machine has eight 3.2GHz In-
tel Xeon CPUs and 1GB memory. The mean service time
is 8ms for NCI and 1ms for the Web application. The
message delay is set to 50ms. Initially, the NCI server’s
CPU is the bottleneck, and TCC uses 69 threads in the
steady state to drive its utilization to 95%.

At time 496 seconds, the NCI server starts to invoke
another API of the Web application, which consumes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0

 2
0
0

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

 1
6
0
0

 0

 10

 20

 30

 40

 50

 60

 70

 80

S
w

ap
p
ed

P

ag
es

p
er

S

ec
o
n
d

T
h
re

ad
s

Time (seconds)

Threads

Swap

Figure 9: Memory bottleneck and memory thrashing.

a large amount of memory on the Web machine. In
total, 69 concurrent threads consume more than 1GB
physical memory and immediately drive the Web ma-
chine into memory thrashing. Figure 9 reports the Web
machine’s page swaps monitored through /proc/vmstat.
At time 496 seconds, the free memory drops sharply
from 934MB to 19MB, page swaps increase from 0 to
4,000 pages/second, and the event-processing through-
put drops from 1,011 events/second to 58 events/second.
TCC detects this radical throughput change and restarts
thread exploration. By time 945 seconds, TCC reduces
steady-state threads down to 44. The Web machine be-
comes completely free of page swapping, its free mem-
ory rises to 106MB, and the throughput increases to 625
events/second. The tuning cycles are relatively long be-
cause the throughput is extremely low during memory
thrashing and TCC needs time to collect samples.

After time 1,000 seconds, when TCC periodically re-
explores new thread configurations, it increases the num-
ber of threads beyond 50, and causes page swapping to
happen again (see the repeated spikes on the “Swap”
curve after time 1,000 seconds). TCC observes that
adding threads actually decreases throughput. It then
removes threads and avoids thrashing. This experiment
demonstrates that TCC can not only recover from mem-
ory thrashing but also avoids moving into thrashing.

4.4 Disk Bottleneck
The experiment in Figure 10 evaluates how TCC

works with a disk bottleneck. Each machine used in this
experiment has eight CPUs. The mean service time is
1ms for NCI and 2ms for the Web application. The mes-
sage delay is set to 20ms. Initially, the Web machine’s
CPU is the bottleneck, and TCC uses 107 threads in the
steady state to drive its utilization to 95%.

At time 247 seconds, the NCI server starts to invoke
another API of the Web application, which performs ran-
dom search in a 60GB on-disk database. Now the bottle-
neck shifts to the Web machine’s disk. The Web ma-
chine’s CPU utilization drops from 95% to 5%, while

USENIX Association	 2009 USENIX Annual Technical Conference	 351

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0

 2
5
0

 5
0
0

 7
5
0

 1
0
0
0

 1
2
5
0

 1
5
0
0

 1
7
5
0

 2
0
0
0

 0

 50

 100

 150

 200

 250

D
is

k

R

ea
d

(M

B
/s

)

T
h
re

ad
s

Time (seconds)

Threads

Disk

1st improve

2nd improve

Figure 10: The Web machine’s disk is the bottleneck.
Removing threads actually improves disk throughput.

the amount of data read from disk (monitored through
/proc/diskstats) increases from 0 to 9MB/s. At time 305
seconds, TCC enters the base state and reduces threads
from 107 to 66. With fewer threads, the disk throughput
actually increases from 9MB/s to 12.5MB/s (“1st im-
prove” in the figure). Note that the disk throughput is
proportional to the event-processing throughput. When
TCC reduces the number of threads down to 22 at time
816 seconds, the disk throughput further increases to
14MB/s (“2nd improve” in the figure). TCC continues
to remove threads to avoid saturation. Eventually it sta-
bilizes around 7 threads in the steady state, and the Web
machine’s CPU utilization is only 1.5%. This experi-
ment demonstrates that TCC can radically remove un-
necessary threads (from 107 down to 7) when disk is the
bottleneck, and disk can actually achieve higher through-
put with fewer threads.

4.5 Network Bottleneck
For the experiment in Figure 11, the NCI server ex-

changes a large amount of data with the Web application
when processing events. The mean service time is 1.5ms
for NCI and 1ms for the Web application. There is no
extra message delay between machines. The NCI server
has higher CPU utilization than the Web machine, but the
bottleneck of the whole system is network. Even if CPUs
are still underutilized, TCC stops adding threads when
the network bandwidth utilization reaches around 92%.
Note that TCC works by observing changes in event-
processing throughput, without even knowing which re-
source is actually the bottleneck.

4.6 NCI Working with a Competing Program
The experiment in Figure 12 evaluates TCC’s response

to an external program that competes for the bottleneck
resource. The mean service time is 1ms for NCI and
1.3ms for the Web application. The Web machine is the
bottleneck. The message delay is set to 5ms. At time 286
seconds, an external program is started on the Web ma-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0

 5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 0

 5

 10

 15

 20

R
es

o
u
rc

e
U

ti
li

za
ti

o
n

[0

-1
0
0
%

]

T
h
re

ad
s

Time (seconds)

Threads

Network Utilization

NCI-CPU Utilization

Figure 11: Network bandwidth is the bottleneck.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0

 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 0

 10

 20

 30

 40

 50

 60

C
P

U
 U

ti
li

za
ti

o
n

[0

-1
0
0
%

]

T
h
re

ad
s

Time (seconds)

Threads

Web-CPU

NCI-CPU

Figure 12: An external program competes for the bottle-
neck resource, which is the Web machine’s CPU.

chine to compete for CPU. During the tuning cycle be-
tween time 293 and 368 seconds, TCC reduces steady-
state threads from 17 to 10, and the Web machine is
relieved of 100% saturation starting from time 341 sec-
onds. The tuning cycle between time 406 and 441 sec-
onds further reduces steady-state threads from 10 to 8.
The external program terminates at time 477 seconds,
and the Web machine’s CPU utilization drops sharply
from 95% to 49%. During the following tuning cycle be-
tween time 483 and 553 seconds, TCC quickly increases
steady-state threads from 8 to 17, and drives the Web ma-
chine’s CPU utilization back to 95%. This experiment
demonstrates that TCC shares resources with a compet-
ing program in a friendly manner, and responds quickly
when the bottleneck’s available capacity increases.

4.7 Two NCI Servers Sharing a Bottleneck
The experiment in Figure 13 runs two NCI servers to

share the Web application. The mean service time is 1ms
for NCI and 1.5ms for the Web application. The Web ap-
plication is the shared bottleneck that limits the through-
put of both NCI servers. This experiment introduces no
extra message delays between machines. Server X starts
first and quickly drives the throughput to as high as 1,100

352	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 200

 400

 600

 800

 1000

 1200

 0

 1
0
0
0

 2
0
0
0

 3
0
0
0

 4
0
0
0

 5
0
0
0

 6
0
0
0

 7
0
0
0

 0

 10

 20

 30

 40

 50

 60

T
h
ro

u
g
h
p
u
t

(e

v
en

ts
 /

 s
ec

o
n
d
)

T
h
re

ad
s

Time (seconds)

Threads

Throughput

(a) Server X

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 1
0
0
0

 2
0
0
0

 3
0
0
0

 4
0
0
0

 5
0
0
0

 6
0
0
0

 7
0
0
0

 0

 5

 10

 15

 20

 25

 30

 35

 40

T
h
ro

u
g
h
p
u
t

(e

v
en

ts
 /

 s
ec

o
n
d
)

T
h
re

ad
s

Time (seconds)

Threads

Throughput

(b) Server Y

Figure 13: Two competing NCI servers work with the
Web application. The latter is the shared bottleneck.

events/second (see the throughput spike around time 0).
After server Y starts, X and Y share the bottleneck re-
source in a friendly manner. Their throughput oscillates
around 550 events/second and their steady state oscil-
lates around 8 threads. Sometimes one server mistakenly
increases its threads beyond its fair share (due to noisy
measurement data), which causes the other server to also
increase its threads in order to get its fair share (see the
thread spikes around time 3,000 seconds). However, the
friendly resource sharing logic built in TCC ensures that
the competition does not escalate, and they gradually re-
duce their threads back to the normal level.

4.8 Comparison of Different Controllers
To our knowledge, no existing controllers are designed

to maximize the throughput of general distributed sys-
tems while not saturating the bottleneck resource. The
closest to TCC is TCP Vegas’ congestion avoidance al-
gorithm [4]. It computes the difference D between
the actual throughput and the expected throughput, and
increases the concurrency level if D is small, or de-
creases the concurrency level if D is large. The ex-
pected throughput is calculated as the product of the con-
currency level and a baseline throughput. The baseline
throughput is defined as the throughput achieved when

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

V
eg

as
+

V
eg

as
++

TC
C

-P
10

TC
C

-P
15

TC
C

-P
20

TC
C

-P
25

TC
C

-P
30

TC
C

-P
35

TC
C

-P
40

TC
C

-P
45

TC
C

-P
50

Different Controllers

C
PU

 U
til

iz
at

io
n

Figure 14: Comparison of different controllers.

the concurrency level is one and the network is com-
pletely free of cross traffic. A key challenge is to estimate
the baseline throughput when cross traffic exists.

TCP Vegas is designed for and works well in the net-
work domain, but it critically relies on an assumption that
does not hold in general distributed systems—it assumes
a processing unit’s service time is constant. Because of
this assumption, TCP Vegas can use 1

minRTT
to approx-

imate the baseline throughput, where minRTT is the
minimum round trip time of packets. By contrast, the
service time of a server in a general distributed system is
inherently a stochastic process. For instance, the service
time of a database query may vary over time, depending
on the size of the database and the cache status. As a
result, the actual baseline throughput for a general dis-
tributed system can be much lower than 1

minRTT
.

A complete redesign of TCP Vegas to work for general
distributed systems would require (1) a method to esti-
mate the baseline throughput when servers’ service times
are stochastic processes and there exists cross traffic; (2)
proving that the new algorithm shares resources with un-
controlled competing programs in a friendly manner; and
(3) demonstrating that the new algorithm can achieve
high resource utilization under typical topologies of dis-
tributed systems. The first task is especially challenging,
and our initial study suggests that a satisfactory solution
might not exist at all. We leave it as future work.

In Figure 14, “Vegas+” is our revised version of TCP
Vegas. It runs in NCI at the application layer, and con-
trols the number of event processing threads. It adjusts
the concurrency level after measuring a stable through-
put. In Vegas+, minRTT is the minimum response time
of event processing. In this experiment, the mean service
time is 1ms for NCI and 2ms for the Web application.
The network delay is set to 25ms. The Web machine is
the bottleneck, and Vegas+ can only drives its CPU uti-
lization to 55%. Vegas++ in Figure 14 is an enhanced
version of Vegas+. It uses an accurate baseline through-
put measured offline in a controlled environment that is
free of cross traffic. Vegas++ is not a practical online
algorithm, but we use it to study the potential of TCP

USENIX Association	 2009 USENIX Annual Technical Conference	 353

Vegas. Vegas++ improves the utilization of the bottle-
neck from 55% to 70%, which is still far from ideal. Ve-
gas+ and Vegas++ use the parameters of TCP Vegas as
recommended in [21]. The resource utilization may be
improved by tuning these parameters, but the challenge
is to prove that, with the new parameters, the algorithm
is still friendly in resource sharing.

Vegas+ and Vegas++ are not full redesigns of TCP Ve-
gas, as they do not solve the three challenging redesign
tasks described above. Our initial study suggests that
those tasks might not have a satisfactory solution at all.
Here we use Vegas+ and Vegas++ to emphasize that the
problem TCC solves is challenging, and no prior solu-
tions can be easily adapted to solve the problem.

The other bars in Figure 14 show the performance of
TCC under different configurations in Table 1 of Sec-
tion 3.5. For instance, TCC-P25 is TCC’s default con-
figuration (p=25%, q=14%, w=39%), and TCC-P10 is
(p=10%, q=5.4%, w=28%). With the different configu-
rations, TCC consistently drives the bottleneck resource
utilization to 90-95%, showing that our guidelines in
Section 3.5 for choosing TCC parameters are effective.
Moreover, our guidelines ensure that TCC with these
configurations is friendly in resource sharing.

5 Related Work
Performance control has been studied extensively for

many applications, including Web server [28], search en-
gine [2], storage [18], and scientific applications [25]. To
our knowledge, no existing work uses a black-box ap-
proach to maximize the throughput of general distributed
systems while trying to avoid saturating the bottleneck
resource. TCP Vegas [4] is the closest to our algorithm,
and a detailed discussion is provided in Section 4.8. Most
existing algorithms [2, 23, 28] use a manually-configured
and system-dependent response time threshold to guide
performance control. If the threshold is set too high, the
system will be fully saturated; if the threshold is set too
low, the system will be underutilized.

We broadly classify existing controllers into four cat-
egories. Each category has an enormous body of related
work, and we only review some representative ones.

The first category considers performance optimization
as a search problem in a multi-dimensional parameter
space. For instance, Active Harmony [25] uses the sim-
plex method to perform the search. Existing methods of
this category aggressively maximize performance with-
out considering resource contention with an uncontrolled
external program. Moreover, running multiple instances
of the controller may result in severe resource saturation
as each controller instance attempts to consume 100% of
the shared bottleneck resource.

The second category uses classical control theory [13]
to regulate performance. It requires the administrator to
manually set a performance reference point. The system

then adjusts itself to stabilize around this reference point.
If we apply this method to Netcool/Impact, the refer-
ence point would be achieving 90% bottleneck resource
utilization. However, a straightforward implementation
would require Netcool/Impact to monitor the resource
consumptions of all third-party external programs work-
ing with Netcool/Impact, which is impractical in real de-
ployments because of the diversity and proprietary nature
of the third-party programs. Moreover, existing meth-
ods of this category are not sufficiently “black-box” and
require information not available in Netcool/Impact de-
ployment environments. For example, Triage [18] as-
sumes knowledge of every resource-competing applica-
tion’s service-level objectives, and the method in [24]
assumes knowledge of every component’s performance
characteristics obtained from offline profiling.

The third category uses queueing theory [12] to model
a system with a fixed topology, and takes actions ac-
cording to predictions given by the model. For instance,
Pacifici et al. [23] use online profiling to train a machine-
repairman model, which is used to guide flow control and
service differentiation.

The fourth category includes various heuristic meth-
ods. SEDA [28] adjusts admission rate based on the dif-
ference between the 90-percentile response time and a
manually-set target. Like TCP Vegas, Tri-S [27] is also
designed for TCP congestion control and requires esti-
mating a baseline throughput. MS Manners [9] regulates
low-importance processes and allows them to run only
if the system resources would be idle otherwise. It also
needs to establish a baseline progress rate.

6 Conclusions
We presented TCC, a performance controller for high-

volume non-interactive systems, where processing tasks
are generated automatically in high volume by software
tools rather than by interactive users, e.g., streaming
event processing and index update in search engines.
TCC takes a black-box approach to maximize throughput
while trying to avoid saturating the bottleneck resource.
We used analysis to guide the selection of its parame-
ters, and designed a statistical method to minimize mea-
surement samples needed for making control decisions.
We implemented TCC and integrated it with IBM Tivoli
Netcool/Impact [16]. Experiments demonstrate that TCC
performs robustly under a wide range of workloads. TCC
is flexible as it makes few assumptions about the operat-
ing environment. It may be applied to a large class of
throughput-centric applications.

Acknowledgments
We thank Zhenghua Fu, Yaoping Ruan, other mem-

bers of the Netcool/Impact team, the anonymous review-
ers, and our shepherd Edward Lazowska for their valu-
able feedback.

354	 2009 USENIX Annual Technical Conference	 USENIX Association

References
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and

J. Widom. Models and issues in data stream sys-
tems. In PODS’02, pages 1–16, 2002.

[2] J. M. Blanquer, A. Batchelli, K. Schauser, and
R. Wolski. Quorum: Flexible Quality of Service
for Internet Services. In NSDI’05, pages 159–174,
2005.

[3] L. Bouillon and J. Vanderdonckt. Retargeting of
Web Pages to Other Computing Platforms with
VAQUITA. In The Ninth Working Conference on
Reverse Engineering (WCRE’02), pages 339–348,
2002.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: New Techniques for Congestion De-
tection and Avoidance. In SIGCOMM’94, pages
24–35, 1994.

[5] J. Burrows. Retail crime: prevention through crime
analysis. Home Office, 1988.

[6] A. Chervenak, I. Foster, C. Kesselman, C. Salis-
bury, and S. Tuecke. The data grid: Towards an ar-
chitecture for the distributed management and anal-
ysis of large scientific datasets. Journal of Network
and Computer Applications, 23(3):187–200, 2000.

[7] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
VLDB’00, pages 200–209, 2000.

[8] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi,
D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, and
O. Hasegawa. A System for Video Surveillance
and Monitoring. Technical Report CMU-RI-TR-
00-12, Robotics Institute, Carnegie Mellon Univer-
sity, 2000.

[9] J. R. Douceur and W. J. Bolosky. Progress-
based regulation of low-importance processes. In
SOSP’99, pages 47–260, 1999.

[10] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-Based Scalable Network
Services. In SOSP’97, pages 78–91, 1997.

[11] Google Reader. http://www.google.com/reader.

[12] D. Gross and C. M. Harris. Fundamentals of
Queueing Theory. John Wiley & Sons, Inc., 1998.

[13] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M.
Tilbury. Feedback Control of Computing Systems.
John Wiley & Son, Inc., 2004.

[14] Hewlett-Packard. Servicing the Animation In-
dustry: HP’s Utility Rendering service Pro-
vides On-Demand Computing Resources, 2004.
http://www.hpl.hp.com/SE3D.

[15] IBM Tivoli Netcool Suite.
http://www.ibm.com/software/tivoli/welcome/micromuse/.

[16] IBM Tivoli Netcool/Impact.
http://www.ibm.com/software/tivoli/products/netcool-
impact/.

[17] V. Jacobson. Congestion avoidance and control. In
SIGCOMM’88, pages 314–329, 1988.

[18] M. Karlsson, C. Karamanolis, and X. Zhu. Triage:
Performance differentiation for storage systems us-
ing adaptive control. ACM Transactions on Stor-
age, 1(4):457–480, November 2005.

[19] G. Luo, C. Tang, and P. S. Yu. Resource-Adaptive
Real-Time New Event Detection. In SIGMOD’07,
pages 497–508, 2007.

[20] A. Mainwaring, D. Culler, J. Polastre,
R. Szewczyk, and J. Anderson. Wireless
Sensor Networks for Habitat Monitoring. In
Int’l Workshop on Wireless Sensor Networks and
Applications, pages 88–97, 2002.

[21] J. Mo, R. La, V. Anantharam, and J. Walrand. Anal-
ysis and comparison of TCP Reno and Vegas. In
INFOCOM’99, pages 1556–1563, 1999.

[22] B. Mobasher, R. Cooley, and J. Srivastava. Au-
tomatic personalization based on Web usage min-
ing. Communications of the ACM, 43(8):142–151,
2000.

[23] G. Pacifici, W. Segmuller, M. Spreitzer, M. Stein-
der, A. Tantawi, and I. Whalley. Managing the
Response Time for Multi-tiered Web Applications.
Technical Report RC23942, IBM Research, 2006.

[24] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive
control of virtualized resources in utility computing
environments. In EuroSys, pages 289–302, 2007.

[25] C. Tapus, I.-H. Chung, and J. K. Hollingsworth.
Active Harmony: Towards Automated Perfor-
mance Tuning. In SuperComputing’02, pages 1–
11, 2002.

[26] K. Thompson, G. Miller, and R. Wilder. Wide-area
Internet traffic patterns and characteristics. Net-
work, IEEE, 11(6):10–23, 1997.

[27] Z. Wang and J. Crowcroft. A new congestion
control scheme: slow start and search (Tri-S).
ACM SIGCOMM Computer Communication Re-
view, 21(1):32–43, 1991.

[28] M. Welsh and D. Culler. Adaptive Overload Con-
trol for Busy Internet Servers. In USITS’03, pages
43–56, 2003.

USENIX Association	 2009 USENIX Annual Technical Conference	 355

Server Workload Analysis for Power Minimization using Consolidation

Akshat Verma Gargi Dasgupta Tapan Kumar Nayak Pradipta De Ravi Kothari

IBM India Research Lab

Abstract
Server consolidation has emerged as a promising tech-
nique to reduce the energy costs of a data center. In
this work, we present the first detailed analysis of an
enterprise server workload from the perspective of find-
ing characteristics for consolidation. We observe sig-
nificant potential for power savings if consolidation is
performed using off-peak values for application demand.
However, these savings come up with associated risks
due to consolidation, particularly when the correlation
between applications is not considered. We also inves-
tigate the stability in utilization trends for low-risk con-
solidation. Using the insights from the workload anal-
ysis, two new consolidation methods are designed that
achieve significant power savings, while containing the
performance risk of consolidation. We present an imple-
mentation of the methodologies in a consolidation plan-
ning tool and provide a comprehensive evaluation study
of the proposed methodologies.

1 Introduction

According to an estimate [2] based on trends from
American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE)[1], by 2014, Infras-
tructure and Energy (I&E) costs would contribute about
75% while IT would contribute a significantly smaller
25% towards the overall total cost of operating a data
center. While there may be a difference in opinion on
the relative proportion of I&E and IT costs, there is little
disagreement that I&E costs would comfortably be the
largest contributor to the cost of operating a data center.
Reducing the I&E costs is, or will soon be, a major ini-
tiative of most data centers. One promising approach,
prompted by virtualization and hardware-assisted isola-
tion, for reducing the I&E costs is server consolidation.

Server consolidation is based on the observation that
many enterprise servers do not maximally utilize the

available server resources all of the time. Co-locating ap-
plications, perhaps in individual virtual machines, thus
allows for a reduction in the total number of physical
servers, minimizes server sprawl as well as the total data
center space requirements.

Consolidation reduces the total power consumed by
the applications because existing servers are not energy-
proportional, i.e., a significant amount of power is con-
sumed even at low levels of utilization [26]. Though
server features like voltage and frequency scaling modify
this curve, there is still substantial power drawn at idle or
low utilization. Consolidation thus provides an oppor-
tunity to reduce the overall power consumed by operat-
ing the servers in a range with a more attractive perfor-
mance/Watt. For example, if two identical servers each
utilizing, say 40% of the resources and drawing 80% of
peak power were consolidated onto a single server, the
consolidated server would be able to deliver identical
performance at significantly less than the 160%(80+80)
of the peak power. However, the key to effective consoli-
dation is to estimate the (time-varying) resource require-
ments of individual applications (virtual machines) and
to utilize these estimates along with the power profile of
the physical servers to determine the consolidation strat-
egy that can provide the best space-power benefits.

Server consolidation can be loosely broken into static,
semi-static and dynamic consolidation. In static con-
solidation, applications (or virtual machines) are placed
on physical servers for a long time period (e.g. months,
years), and not migrated continuously in reaction to
load changes. Semi-static refers to the mode of con-
solidating these applications on a daily or weekly ba-
sis. On the other hand, dynamic consolidation spans a
couple of hours and requires a runtime placement man-
ager to migrate virtual machines automatically in re-
sponse to workload variations. Many virtualization ven-
dors provide some tooling support for static consolida-
tion [10, 15] with third party providers providing add-
on features [9, 8] for inferring hardware constraints etc.

356	 2009 USENIX Annual Technical Conference	 USENIX Association

However, these tools essentially provide a policy-based
framework with user defined policies and the placement
intelligence is fairly simplistic. While multiple dynamic
placement frameworks have been researched, in practise,
administrators are often reluctant to migrate virtual ma-
chines automatically. Instead they prefer an offline or
semi-offline framework, to evaluate the proposed place-
ment and manually approve it. Hence, static and semi-
static consolidation, where consolidation is performed
daily or weekly is a much more appealing technique for
administrators in real data centers. Though consolidation
for minimizing server sprawl or power is not new, we are
not aware of any prior study that utilizes correlation be-
tween workloads in a systematic way for determining the
most effective static consolidation configuration.

1.1 Static Consolidation: What is new?
While dynamic workload placement has been a well
studied problem, it assumes that there is minimal change
in the resource requirement of the application during the
(typically short) consolidation interval and hence a sin-
gle resource size suffices. In the past, it has been as-
sumed that the same assumption holds for static consoli-
dation. However, for longer term consolidation there are
significant reasons why this assumption fails. First, over
a longer period of time, one is likely to see periods of
peak as well as reduced application demand. Should the
application size be taken to be the maximum, average or
some other statistic? Second, placement decisions made
based on historical data may not be accurate due to a
systematic drift in the load. Third, there is an oppor-
tunity to utilize correlation between resource utilization
on different virtual servers to influence the consolidation
decision. Finally, long term placement has additional ob-
jectives like workload balance on active servers.

In summary, a static consolidation framework needs
to deal with stochastic variables instead of fixed variables
and the behavior of these variables need to be completely
understood. We need to identify the right parameters
to size workloads for medium or long intervals and as-
sess their impact. It is also important to understand how
correlation between applications can be employed for a
more effective consolidation. The stability of various
workload parameters need to be studied thoroughly to
identify the risks involved in consolidation. Finally, ex-
isting placement methodologies need to be seen in light
of the results of the workload characterization and should
be modified, as needed.

1.2 Contribution
We present in this paper the first systematic server work-
load characterization of a large data center from the per-

spective of medium (semi-static) or long term (static)
consolidation. We study the distribution of the utiliza-
tion and occurrence of the peak utilization on servers rel-
ative to various percentiles and average metrics. We find
that the tail of the distribution does not decay quickly for
most servers implying that sizing applications based on
average utilization has high degree of risk. We also ob-
serve significant correlation between applications hosted
on different servers. We make the important observa-
tion that certain metrics like the 90-percentile as well as
cross correlation between applications are fairly stable
over time.

We use the insights obtained from our workload char-
acterization to design two new consolidation methodolo-
gies, namely Correlation Based Placement (CBP) and
Peak Clustering based Placement (PCP). We implement
the methodologies in a consolidation planning tool and
evaluate the methodologies using traces from a live pro-
duction data center. Our evaluation clearly establishes
the superiority of the proposed algorithms. We also bring
out the various scenarios in which each methodology is
effective and show how to tune various parameters for
different workloads.

The rest of the paper is organized in the following
manner. We provide a background of server consolida-
tion and the need for a system-level workload charac-
terization in Sec. 2. A detailed workload characteriza-
tion of a large data center is presented in Sec. 3. We use
the insights from the workload characterization to design
new placement methodologies in Sec. 4. We present an
implementation and a careful evaluation of the proposed
methodologies in Sec. 5. We conclude the paper with a
summary of our key findings in Sec. 6.

2 Background

In this section, we first present a generalized formulation
for server consolidation. The consolidation exercise can
be formally stated as follows. Let there be N applica-
tions Ai that we need to place on M physical servers Sj

for the period T . For each application Ai, let C(Ai, t)
denote the resource required in order in order to meet its
SLA at time t. This paper does not deal with the prob-
lem of translating an application SLA to a resource value
and assumes that C(Ai, t) are available from monitored
resource data. Let the capacity of a physical server Sj be
denoted by C(Sj) and X denote a specific consolidation
configuration to specify the placement of applications on
physical servers, i.e., an element of X , say xij = 1 if ap-
plication Ai is placed on server Sj and 0 otherwise. Con-
solidation requires finding a configuration that optimizes
a given cost function. For example, if the objective of
consolidation is to optimize power, then we want to find
a configuration X that minimizes P (X), where P (X)

USENIX Association	 2009 USENIX Annual Technical Conference	 357

is a real valued function that provides the power con-
sumed for a specific placement of applications. Further,
the placement should ensure that the resource require-
ments are all applications are met for the entire duration
T , i.e., ∀t ∈ T,

�N

i=1 xijC(Ai, t) ≤ C(Sj). Further,
we need to ensure that all applications are placed, i.e.,
�M

j=1 xij = 1.
Dynamic consolidation assumes that T is very short,

leading to a single time-independent capacity demand
C(Ai) for each application. Hence, the capacity con-
straint is no longer stoachastic in nature. In dynamic con-
solidation, for the estimation of C(Ai) andC(Sj), a pop-
ular metric in use is the RPE2 metric from IDEAS and
almost all the commonly used servers are bench marked
with a fixed RPE2 value [24]. The RPE2 value of the
server is used for C(Sj) whereas the resource require-
ments of the application are estimated from the CPU uti-
lization of the server. More specifically, if virtualization
is not in use then the RPE2 of the host server multiplied
by the maximum CPU utilization of the server in the pe-
riod is used as an estimate of the resource requirements
(size) of the application. If virtualization is in use, then
the size is computed based on the entitlement of each vir-
tual server on its host physical server, the CPU utilization
of the virtual server, and the RPE2 of the host server.

Dynamic consolidation, due to its automated nature,
is not preferred by data center administrators. Instead,
they opt for static or semi-static consolidation strategies,
where they can manually verify and approve the new
configuration. However, for static or semi-static consol-
idation, the crux of the problem is to identify a size pa-
rameter that is useful for longer periods. Typically, an
administrator may migrate virtual machines at the end of
the day or on an identified day of the week. For such
long durations, it is imperative to use a size that is able
to save a lot of power (by consolidating on few power-
efficient machines) as well as ensure that no SLA capac-
ity violations would happen during periods of high load.
Hence, the two important objectives in static consolida-
tion are (i)Overall Power Consumption and (ii) SLA Vi-
olation, defined as number of time instances, when the
capacity of server is less than the demand of all applica-
tions placed on it

�N

i=1 xijC(Ai, t) > C(Sj).

2.1 Related Work
Existing research in workload modeling can be classi-
fied into (a) aggregate workload characterization and (b)
individual server utilization modeling. Aggregate work-
load characterization of a web server by Iyenger et al.
[19] and workload models of a large scale server farm by
Bent et al [3] fall in the first category. Individual server
utilization has been studied in [5, 16, 4]. In [5], Bohrer et
al use peak-trough analysis of commercial web servers to

establish that the average CPU utilization for typical web
servers is fairly low. Similar observations on the peak-
trough nature of enterprise workloads have been made in
[16]. In [4], Bobroff et al perform trace analysis on com-
mercial web servers and outline a method to identify the
servers that are good candidates for dynamic placement.
However, none of these studies provide a characteriza-
tion of the inter-relationship between various workloads,
as required for static consolidation.

There is also a large body of work on energy manage-
ment in web clusters. Most of the cluster energy man-
agement literature addresses the problem of distributing
requests in a web server cluster in such a way that the per-
formance goals are met and the energy consumption is
minimized [6, 21, 25, 17]. There are a number of papers
that describe server or cluster level energy management
using independent [22, 13] or cooperative DVS tech-
niques [12, 18]. There are other efforts in reducing peak
power requirements at server and rack level by doing
dynamic budget allocation among sub-systems [14] or
blades [23]. The work closest to the semi-static or static
consolidation problem addressed in this paper are the dy-
namic consolidation methods proposed in [7, 26, 27, 4].
However, the relatively long duration for static consoli-
dation introduces a stochastic nature to individual appli-
cations that is not captured in any of these frameworks.

3 Server Workload Analysis

We first present the details of the workload analyzed in
this paper.

3.1 Trace Workload Details
The workload analyzed in this paper was collected from
the production data center of a multi-national Fortune
Global 500 company. The data center runs the core
business applications of the enterprise as well as a ser-
vice delivery portal. Each separate application suite was
run from its own server cluster with a dedicated appli-
cation team. Every application component in a suite ran
from a dedicated virtual server, with many virtual servers
hosted on a (typically) high end physical server. The
traces were collected by the MDMS monitoring frame-
work [20] deployed in the data center. The framework
used its own sensors to collect CPU utilization for all the
virtual servers with one entry every 5 minutes. We use
traces collected over a 90 day period in the year 2007 for
our analysis. We use the terms server and application in-
terchangeably as each trace data corresponds to exactly
one virtual server and application component.

The tracing methodology depends on sensors de-
ployed in actual production servers over a long period.
Hence, the data was noisy in parts due to routine system

358	 2009 USENIX Annual Technical Conference	 USENIX Association

Suite-Name # of Servers # of Days
AppSuite-1 10 19
AppSuite-2 18 13
AppSuite-3 13 25
AppSuite-4 16 37

Table 1: Workload Details for each cluster
maintenance (server reboots, performance troubleshoot-
ing that terminated all daemons including the sensors).
Thus, the traces had missing or incorrect data for many
time intervals during the trace period. We used a sim-
ple interval graph technique to identify the longest con-
tiguous interval, where all the servers in one cluster had
monitored data available. Hence, for each server cluster
we identified a smaller period which had accurate mon-
itored data available and used these smaller periods for
our analysis.

The data center had a large number of clusters and we
have selected 4 representative clusters (Table. 1) for this
analysis. ’AppSuite-1’, ’AppSuite-2’ and ’AppSuite-4’
had a 2 tiered application with application server com-
ponents and DB server components. ’AppSuite-3’ was a
3-tiered application suite with a few web servers, a few
application servers, and a few DB servers. In most cases,
multiple application servers used a common DB server.
However, for ’AppSuite-2’, few application servers had
a dedicated DB servers assigned to them. There were no
restrictions on co-locating two or more components of
an application suite on the same physical server. The de-
tailed information about the applications running in the
data center and the virtual server to physical server map-
ping are withheld for privacy and business reasons.

3.2 Macro Workload Analysis
We begin our workload characterization study with
server utilization of individual servers. Due to space lim-
itations, we primarily report our observations on only
one server cluster ’AppSuite-1’, broadening our obser-
vations to other clusters only for important findings.

3.2.1 CPU Utilization Distribution

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

Figure 1: CPU Utilization for AppSuite-1 with Time

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Utilization

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

Figure 2: Cumulative Distribution Function of CPU Uti-
lization for AppSuite-1

Fig. 1 shows the CPU utilization of each server
in ’AppSuite-1’, server1(top) through server10(bottom).
The important observation to make here is that all servers
barring server8 reach a CPU utilization of 100% at some
point in time during the duration of the trace. This has an
important implication for consolidation. Observation 1:
If consolidation is performed by reserving the maximum
utilization for each application, the application may re-
quire capacity equal to the size of its current entitlement.
This observation is reinforced by taking a look at the Cu-
mulative Probability Distribution (CDF) of CPU utiliza-
tion (Fig. 2) for each server of ’AppSuite-1’. An inter-
esting observation in the CDF plot however is the large
skew in the distribution. For most of the applications,
the CPU utilization at 90-percentile of the distribution is
less than half of the peak CPU utilization. Such a skew
can be utilized for a tighter consolidation by provisioning
less than peak resource consumed by each application.

We drill down further into the skew of the CPU utiliza-
tion distribution function in Fig. 3(a). We observe that
the 99-percentile CPU utilization value is significantly
less than the maximum CPU utilization in many cases.
This is also in line with observations on other enterprise
workloads made in [16]. Interestingly, the 90-percentile
CPU utilization is about half or less of the maximum
CPU utilization for 9 out of 10 servers. Interestingly,
the gap between the 80 and 90-percentile values is less
than 10% CPU utilization in all cases and less than 5%
in many cases. We also look at the other server clusters
in Fig. 3 and find the observations to hold there as well.
However, in the ’AppSuite-2’ cluster, a few servers have
high utilization (Servers 15 to 18) for most of the inter-
val. Hence, in these cases, both the 80 and 90-percentile
values are reasonably close to the peak CPU utilization.
The above findings lead us to our second important ob-
servation. Observation 2: If we could size an applica-
tion based on 90-percentile CPU utilization instead of
maximum CPU utilization, it could lead to significant
savings.

We next observe the variability of the CPU utilization
for different servers. To measure the variability, we com-
puted the coefficient of variation (COV) for all the ap-

USENIX Association	 2009 USENIX Annual Technical Conference	 359

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Server Id

CP
U

Ut
iliz

ati
on

(a) AppSuite-1 cluster

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

Server Id

CP
U

Ut
iliz

ati
on

(b) AppSuite-2 cluster

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

Server Id

CP
U

Ut
iliz

ati
on

Mode
80−pcn
90−pcn
99−pcn
Max

(c) AppSuite-3 cluster

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

Server Id

CP
U

Ut
iliz

ati
on

(d) AppSuite-4 cluster
Figure 3: Comparison of Peak, Mode and Percentile CPU Utilization

plications in a cluster. The coefficient of variation is a
normalized measure of dispersion of a probability distri-
bution and is defined as COV = σ/µ, where σ is the
standard deviation and µ is the mean of the distribution.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(C

O
V)

(a) AppSuite-1
0 2 4 6 8 10 12 14 16 18

0

0.5

1

1.5

2

2.5

3

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(C

O
V)

(b) AppSuite-2

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(C

O
V)

(c) AppSuite-3
0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(C

O
V)

(d) AppSuite-4

Figure 4: Coefficient of Variation for all clusters. Servers
in each cluster are sorted by COV for easy comparison.

COV is a useful statistic for comparing the degree of
variation and equals 1 for exponential distribution. Dis-
tributions with COV >1 (such as a hyper-exponential
distribution) are considered high-variance, while those
with COV <1 are considered low-variance. The coeffi-
cient of variations for all the clusters are shown in Fig. 4.
We observe that all clusters have at least a few appli-
cations with high-variance distributions and ’AppSuite-
3’ has the largest number of applications with COV >1.
There are also applications with low-variance distribu-
tions. However, it is well known that combining a heavy

tailed distribution (COV >1) to another independent (or
positively correlated) distribution with an exponentially
decaying tail (COV =1) leads to an aggregate distribu-
tion, which is heavy-tailed. This leads to our third impor-
tant observation. Observation 3: If a statistical measure
that ignores the tail of the distribution is used for sizing
an application, the consolidated server may observe a
large number of SLA capacity violations.

3.2.2 Correlation
Our first few observations bring out the potential sav-
ings if applications were sized based on percentile val-
ues as opposed to peak values. However, sizing based on
a non-peak value may lead to significant SLA violations
if co-located applications peak together. Hence, we next
study the correlation between applications belonging to
the same application suite. The correlation between
a pair of applications with timeseries {x1, x2, . . . , xN}
and {y1, y2, . . . , yN} is represented by the Pearson cor-
relation coefficient,

rxy =
N

�

xiyi −
�

xi

�

yi
�

N
�

x2
i − (

�

xi)2
�

N
�

y2
i − (

�

yi)2
(1)

Fig. 5 shows the pair-wise correlation between the ap-
plications of ’App-Suite1’. One may observe that there
are many applications that have significant positive cor-
relation. On the other hand, there are also a few applica-
tions (e.g., on Server 3,8, and 10) that have minimal cor-
relation with other applications. The observations high-
light that (a) there is a risk of SLA violation if consolida-
tion methods are not aware of correlation and (b) there is

360	 2009 USENIX Annual Technical Conference	 USENIX Association

Server Id

Se
rv

er
 Id

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Inter-Server Correlation for AppSuite-1 cluster

potential for placing non-correlated applications to mit-
igate this risk. The other clusters have less correlation
between servers but there are still a significant number
of servers (more than 25%) that exhibit correlation with
one or more other servers. One may observe that vir-
tual servers that are part of a multi-component applica-
tion have a high likelihood of being correlated. How-
ever, since in most cases, multiple (4 or 8) application
servers were sharing a common DB server, the correla-
tion was not strong. ’App-Suite2’ however had 4 (appli-
cation server, db server) pairs that were dedicated. As
a result, even though the workload to this suite had low
intrinsic correlation, the two-tier nature of the applica-
tion suite introduced correlation. Hence, multi-tier ap-
plications with a one-to-one mapping between servers in
different tiers are likely to exhibit correlation even for
workloads with no intrinsic correlation. This leads to our
next important observation. Observation 4: There are
both positively correlated and uncorrelated applications
in a typical server cluster. Hence, correlation needs to
be considered during placement to avoid SLA capacity
violations.
3.2.3 Temporal Distribution of Peaks

Server Id

Ti
m

e
(M

in
)

1 2 3 4 5 6 7 8 9 10

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 6: Duration of Peak CPU utilization (> 90-
percentile) for AppSuite-1 cluster. Dark lines indicate
sustained peaks.

We have used the correlation coefficient as an indi-
cator of the temporal similarity between two applica-
tions. However, correlation is a comprehensive metric
that captures temporal similarity between two applica-

tions at all levels (both peak and off peak). Capacity vi-
olations, though, occur when two applications sized by
an off-peak value peak together. Hence, we look at the
correlation between only the peaks for various applica-
tions in Fig. 6. We observe that there are apps with low
correlation, but whose peaks may be correlated. Further,
there also exists correlated apps whose peaks typically
do not occur at the same time (e.g., Server 5 and 7). This
leads to our next important observation. Observation 5:
Correlated Applications may not always peak together.
Similarly, non-correlated applications may also peak to-
gether in some cases.

3.3 Stability Analysis
Static and semi-static placement decisions are made for
extended periods of time. Hence, there is a need to ana-
lyze the stability of workload statistical properties to en-
sure the reliability of the placement decisions. In this
section, we study the workload periodicity, variation in
statistical properties like mean, 90-percentile and corre-
lation co-efficient over the observation period.

3.3.1 Periodicity analysis of utilization data

We first analyze the periodicity of the collected data. It
will help to find the repeating patterns, such as the pres-
ence of a periodic signal which has been buried under
noise. The usual method for deciding if a signal is peri-
odic and then estimating its period is the auto-correlation
function. For a discrete timeseries {x1, x2, . . . , xN}
with mean µ and variance σ2, the auto-correlation func-
tion for any non-negative integer k < N is given by

R(k) =
1

(N − k)σ2

N−k
�

n=1

[xn − µ] [xn+k − µ] , (2)

Essentially, the signal {xn} is being convolved with a
time-lagged version of itself and the peaks in the auto-
correlation indicate lag times at which the signal is rel-
atively highly correlated with itself; these can be inter-
preted as periods at which the signal repeats. To en-
hance the analysis, we also computed the magnitude
spectrum of the timeseries, |Xk|, where {Xk} is the Dis-
crete Fourier Transform (DFT) of {xn} and is defined by

Xk =
1

N

N
�

n=1

xne
−

2πi

N
(k−1)(n−1), 1 ≤ k ≤ N. (3)

We study the auto-correlation function and magnitude
spectrum of the utilization data for all the applications
and find that some servers exhibit nice periodic behav-
ior, whereas some servers do not follow any particular
pattern. Fig. 7 shows a periodic pattern with a time pe-
riod of one day as the lag between two consecutive peaks
in the auto-correlation function is one day and there is
a peak in the magnitude spectrum corresponding to it.

USENIX Association	 2009 USENIX Annual Technical Conference	 361

0 2 4 6 8 10 12
0

50

100

Time (Days)

U
til

iz
at

io
n

0 2 4 6 8 10 12

−0.5

0

0.5

1

Lag (Days)

Au
to

C
or

re
la

tio
n

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

x 104

Frequency (HZ/(24*3600))

M
ag

ni
tu

de

Figure 7: The timeseries, auto-correlation and frequency
spectrum of this workload shows a periodicity of 1 day

0 2 4 6 8 10 12
0

50

Time (Days)

U
til

iz
at

io
n

0 2 4 6 8 10 12
−1

−0.5
0

0.5

Lag (Days)Au
to

C
or

re
la

tio
n

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5000

Frequency (HZ/(24*3600))

M
ag

ni
tu

de

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

Time

U
til

iz
at

io
n

mean
90−percentile

90−p Avg

Mean

Figure 8: The timeseries, auto-correlation and frequency
spectrum plot of the workload do not show any periodic-
ity, but the mean and 90-percentile values show stability.

0 2 4 6 8 10 12
0

50

100

Time (Days)

U
til

iz
at

io
n

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

Time

U
til

iz
at

io
n

Mean
90−percentile

Mean Mov Avg

90−p Mov Avg

Mean

90−p Avg

Figure 9: The timeseries has no regular pattern and the
mean and 90-percentile statistics also vary significantly
over the time period, but the moving averages track the
statistic well.

This kind of workloads can be predicted with significant
reliability. Many applications do not show any periodic
pattern in the observed period, however, the statistical
properties remain consistent over a long period. To an-
alyze the consistency, we computed the mean and 90-
percentile statistics over several windows of length 1 day.
Fig. 8 shows that although the workload has no periodic
pattern, the mean and 90-percentile statistics remains sta-
ble over most part of the observed period. Hence, for
such workloads, the statistics can be estimated reliably.
A third category of applications neither show any peri-
odic behavior, nor any statistical consistency over a long
period. However, for these applications, the moving av-
erages follows the actual mean and 90-percentiles closely
over the observed period (Fig. 9) and can be used for esti-
mation. These observations lead to the following conclu-
sion. Observation 6: Some servers exhibit periodic be-
havior and the future pattern can be reliably forecasted
with a day or a week of data. For many non-periodic
servers, the statistical properties are fairly stable over
time. For highly variable servers, an adaptive prediction
method like MovingAverage should be used to estimate
the statistical properties.

3.3.2 Stability in Correlation

1 2 3 4 5 6 7 8 9 10

12345678910
0

0.1

0.2

0.3

0.4

0.5

Server Id
Server Id

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 c

or
r

co
ef

fic
ie

nt
s

Figure 10: Stability of Correlation for App-Suite1 (Half
the values have been deleted for visual clarity)

We have observed that correlation between applica-
tions should be used while making placement decisions.
We next study the stability in correlation for AppSuite-1,
which has the highest correlation amongst all the clus-
ters. For this purpose, we compute the correlation be-
tween all pairs of applications for every day separately
during the whole duration of the trace and compute the
standard deviation across these daily correlation values.
We observe in Fig. 10 that the standard deviation is fairly
low, indicating the stability of correlation across time.
Observation 7: The correlation between the CPU uti-
lization of various servers is fairly stable across time.

362	 2009 USENIX Annual Technical Conference	 USENIX Association

4 Placement Methodologies

We now present various placement methodologies.

4.1 Workload-unaware Placement
We presented the pMapper power-aware application
placement methodology and system in [26] in the context
of a runtime placement controller. pMapper minimizes
fragmentation using an enhancement of First Fit De-
creasing (FFD) bin-packing algorithm and uses a novel
Order Preservation property to select the right server
for any application being migrated in order to mini-
mize power. The algorithm optimizes the use of one
resource (typically CPU utilization) during packing and
treats other resources (e.g., memory, I/O) as constraints.
Hence, it always comes up with a feasible packing for all
resources but allocates only one resource in an optimized
manner. The methodology used by pMapper does not
focus on resource sizing of each VM for the next place-
ment interval, which is predicted by a Performance Man-
ager. An important thing to note here is that pMapper is
designed for short consolidation intervals. There are two
important implications of such an approach. Firstly, each
application is sized independently and a single number is
used to size an application. Secondly, as placement de-
cisions need to be aware of application migration costs,
few applications are migrated and the relocation decision
takes an existing (old) placement into account. However,
such an approach can still be applied for static consoli-
dation with much longer consolidation intervals. In such
a static placement scenario as the one considered in this
paper, the pMapper methodology is naturally adapted
by sizing an application based on the peak resource us-
age of the application in the (longer) placement period.
Note further that in the case of SLA governed data cen-
ters, one can use less strict sizing functions. For example,
if the SLA requires that resource requirements are met
for at least 99% of the time, one could use a VM size
that ensures a tail violation probability of 1%. Similarly,
one may also choose to size all applications based on a
metric like mode or median, if short-term violations are
acceptable. We term this family of placement method-
ologies using peak, percentile, mode etc. based sizing as
Existing placement methodologies.

4.2 Correlation Based Placement
We now present our first methodology that leverages the
observations made from our workload analysis to place
applications in a more effective manner. This method-
ology aptly named as the Correlation Based Placement
(CBP) is based on the following important observations.

• The peak resource usage of an application is signif-
icantly higher than the resource usage at most other

times (e.g., size at 90% cdf). (Fig. 2, 3)

• If we size applications by an off-peak metric and
place correlated applications together, there is a
high risk of SLA capacity violation.

• If two uncorrelated applications are placed together
and sized individually for a violation probability of
X%, the probability that both of them would violate
their sizes at the same time is (X2)%.

To take an example, consider two applications A1 and
A2. Assume that both A1 and A2 have a maximum size
of 1000 RPE2 units with a 90 percentile value of 500
RPE2 units. Further, assume that A1 and A2 are un-
correlated with each other. It is now easy to see that if
we place A1 and A2 on a single server and allocate 500
RPE2 units each to both the applications, the probabil-
ity that both of them would exceed their allocation at the
same time is only 1%. Hence, provisioning based on 90
percentile and placing uncorrelated applications together
can lead to a potential savings of 50% over the peak-
based sizing method. CBP uses exactly these ideas to
size individual applications based on a tail bound instead
of the maximum size of the application. Further, it adds
co-location constraints between positively correlated ap-
plications so that two such applications are not placed on
the same server. The number of actual constraints added
can be controlled using a tunable Correlation Cutoff .
Hence, CBP proceeds in very similar manner to the
pMapper algorithm with few key differences: (i) We
add co-location constraints between any two positively
correlated application pairs (Ai, A

�

i) that exhibit a cor-
relation coefficient above the correlationthreshold (ii)
We size applications based on a tail bound instead of the
maximum value and (iii) In the inner loop of pMapper
where we find the most power-efficient server Sj that has
resources for an application Ai, we also make a check if
none of the already placed applications on Sj have a co-
location constraint with Ai. If indeed there is such an
application, we mark the server ineligible and consider
the next server for placing the application.

It is easy to see that CBP incurs an overhead in the
computation of correlation for all application pairs.

Theorem 1 Given N applications and a timeseries with
d points, CBP takes O(N2d) time to find the new place-
ment.

We have proposed the CBP methodology that takes
an existing dynamic consolidation algorithm and adapts
it to work in a static or semi-static consolidation sce-
nario. CBP adds co-location constraints between cor-
related applications to ensure that an application can be
sized based on an off-peak value. However, it adds a hard
constraint between correlated applications.

USENIX Association	 2009 USENIX Annual Technical Conference	 363

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

C
PU

 (R
PE

2)

Time

Balanced
Skewed

Server Capacity

Server1

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

C
PU

 (R
PE

2)

Time

Balanced
Skewed

Server Capacity

Server 2
Figure 11: Fractional Optimal Solutions: Balanced and
Skewed

We now take a closer look at the problem to under-
stand the nature of the optimal solution. Consider a
set of 6 applications that need to be placed on a set of
servers, each with a capacity of 40. There are two poten-
tially fractional optimal solutions, as shown in Fig. 11.
A balanced solution would pack half of the timeseries in
the first server and the other (balanced) half in the other
server. A skewed solution would pack the first server
to the maximum capacity and pack the remaining appli-
cations in the second server. CBP and other dynamic
consolidation algorithms aim to approach the skewed op-
timal solution. However, from an administrative point
of view it may be preferred to have balanced workload
across all active servers.

A second problem with CBP may arise when there
are many correlated applications. In the above example,
if there are 3 applications that are positively correlated,
we would need a minimum of 3 servers to satisfy the co-
location constraints. Finally, computing the correlation
between all pairs of applications is expensive (quadratic
in nature) and may not be applicable for large number of
applications and trace periods. We address these issues
in another methodology next.

4.3 Peak Clustering Based Placement
We address the issues with CBP in a new consolida-
tion method called Peak Clustering based Placement
(PCP). PCP is based on the following fundamental ob-
servations 1) Correlation between peaks of applications
is more important than correlation across the complete
timeseries of the applications. 2) A set of applications
that peak together are distributed evenly across all active
servers in the optimal solution. However, two applica-
tions with correlated peaks may still be co-located. 3)
Co-located applications that do peak together can use a
common buffer for their peaks and each have a reserva-

tion equal to an off peak value.

for server

3. Server Selection

1. Envelop

Servers

ALL VM
PLACED

Are

2. Cluster

VMServers

VM

Transformed

Clusters

N

DONE

for next server
4. Per−Cluster VM Shortlisting

5. VM Placement for server

Selected

VM

VM
Clusters

Candidate VMs

VM Allocation

Figure 12: Overall Placement Flow

PCP uses these ideas to first identify clusters of ap-
plications with correlated peaks. One may observe that
the number of such clusters may become very large if
we use the original timeseries with the complete range
of values. Hence, PCP uses a novel two-level envelop
of the original time-series of each application for cluster-
ing. The envelop has a single value to represent all CPU
utilization for the body of the distribution and another
value for all points in the tail of the distribution. On each
active server, it then reserves space for each cluster in
proportion to the size (lower level of envelop) of the ap-
plications in that cluster and keeps a buffer space equal to
the maximum peak across all clusters. Each application
cluster shortlists a set of applications for its reservation
and PCP does a final selection of applications for the
server. The overall flow of PCP is described in Fig. 12.

PCapacity Used

PD
F

CB Cmax

B

 0
 5

 10
 15
 20
 25
 30
 35
 40

 5 10 15 20 25 30

C
ap

ac
ity

 U
se

d

Time

CB

Cmax

Original Time Series
Envelop at PB = 0.67

(a) (b)
Figure 13: (a) Calculation of steps CB , Cmax for En-
velop and (b) Envelop Creation

In step 1, PCP starts by using an Envelop function
that transforms the original time series for each applica-
tion to a two-level envelop. Given any tail bound PB

(e.g., 10%), the Envelop computes a value CB such that
the probability that application’s CPU usage exceeds CB

is bounded by PB . It also identifies the maximum capac-

364	 2009 USENIX Annual Technical Conference	 USENIX Association

ity used by the application as Cmax (Fig. 13). We then
transform the original timeseries by a two-level time se-
ries in the following manner. If at a given time, the capac-
ity used by the application is greater than CB , we replace
it with Cmax. Otherwise, replace it with CB . Hence, the
body of the distribution is replaced by CB and is referred
to as size. The tail is replaced by Cmax. The timeseries
for the transformed VM is stored as a set of ranges dur-
ing which the size CB is exceeded. The next step in
PCP is to cluster workloads based on the correlation
of their peak ranges. The clustering step uses a similar-
ity function to identify workloads with correlated peaks.
For each application Ai, the similarity function is used
to identify if the envelop of the application is covered by
any existing cluster center. If no such cluster center ex-
ists, then a new cluster is started with Ai as the cluster
center.

Step 3 in the overall flow of PCP is to sort servers
based on their power efficiency. We define marginal
power efficiency for a server with capacity Capj running
at capacity ρj as the slope of the capacity vs power curve
at ρj capacity and overall power efficiency of the server
as the ratio of the capacity of the server Capj to the
peak power consumed by the server. The server selec-
tion method in our earlier work [26] used marginal power
efficiency as the metric to sort servers. Dynamic consol-
idation requires us to make changes in an incremental,
online manner from an existing configuration and hence,
marginal power efficiency is a good metric for server se-
lection. On the other hand, static consolidation may in-
volve multiple global changes and hence, we use overall
power efficiency to rank servers in PCP .

Peak2

CLUSTER 1
RESERVATION FOR

RESERVATION FOR
CLUSTER 2

RESERVATION FOR

CLUSTER 3

Server Capacity

Time

CP
U

Pe
ak

 B
uff

er

Largest PeakPeak1

Figure 14: Server Reservation: Each cluster gets a pro-
portional reservation. There is a buffer for the maximum
peak across all clusters.

The final steps in PCP pack all the applications on
the minimal number of servers, while packing the more
power efficient servers first. The method picks the next
highest ranked server and selects a set of applications
from each cluster in a proportional manner. Given a
server with capacity Capj to pack and a set of applica-
tions yet to be placed, we calculate the sum of the sizes
(CB) of all remaining applications as TotalSize. For
each cluster Mk, we calculate the sum of the sizes Sizek

Analysis Period 120 hrs
Evaluation Period 24 hrs

PB for PCP 0.9
Correlation Cutoff for CBP 0.5

Table 2: Baseline Parameters

of its applications and Peakk as the sum of the peak
buffers (Cmax − CB) of its applications. We also calcu-
late MaxBuffer as the maximum of the peak buffers
across all clusters. Once these metrics are computed,
each cluster Mk selects a set of applications such that the
overall size CandSizek and peak bufferCandBufferk

of the cluster is given by

CandSizek =
Sizek

TotalSize+ MaxBuffer
(4)

CandBufferk ≤ MaxBuffer (5)

An example server reservation is described in Fig. 14.
In this example, there are three clusters and a propor-
tional reservation is made for each cluster that equals
CandSizek. Further, capacity is kept spare for peaks
and equals the maximum peak across all the three clus-
ters. Since the consolidation can only pick integral so-
lutions, each cluster returns a set of applications whose
sizes add up to its proportion or the last added appli-
cation may exceed its proportion. Hence, as a final se-
lection step, for each cluster that returns k candidates,
we automatically select the first (k − 1) candidates and
add the last candidate to a tentative application pool.
We then globally select the candidates from the tentative
pool such that the capacity bounds of the server is not
violated. In order to reduce fragmentation, at all levels
of selection we break ties between applications by pre-
ferring the larger applications first. This allows PCP
to strike a balance between reducing fragmentation costs
and proportionally selecting applications across different
clusters.

5 Experimental Evaluation

We have performed extensive experiments to evaluate the
proposed methodologies. We first detail out our evalua-
tion setup and then present some of our key findings.

5.1 Evaluation Setup
The methodologies have been implemented as part of an
Consolidation Planning Tool from IBM called Emerald
[11]. Emerald has built-in adapters to input trace data in
various formats, a module to collect the current server in-
ventory and a knowledge base that includes a catalog of
various server platforms, their RPE2 values and power

USENIX Association	 2009 USENIX Annual Technical Conference	 365

models(Power Vs CPU Utilization). The power mod-
els are derived from actual measurements on the servers
and are used by a Power Estimation module to estimate
the power drawn by any candidate placement. We feed
traces for the 4 application suites described in Sec. 3 for
the evaluation study. Each server in this application suite
was either a virtual machine or a standalone server in the
data center. Hence, a single physical server may host one
or more of these virtual servers in the data center. In our
baseline setting, the physical servers were kept to be the
same as in the data center. Further, Emerald allows an
administrator to specify an analysis period for the traces
followed by an evaluation period, where the effectiveness
of the proposed placement is evaluated by the Power Es-
timation module. PCP uses a tail bound parameter PB

to create the envelop whereas CBP uses a correlation
cutoff parameter to identify if two applications are corre-
lated. The baseline settings of all experimental parame-
ters are listed in Table. 2.

We evaluate the performance of the proposed methods
in comparison with Existing methods based on dynamic
consolidation. We run the Existing method with two dif-
ferent sizing functions: (i) Peak Existing sizes all appli-
cations based on their peak values and (ii) Mode Existing
sizes all applications based on the mode of the distribu-
tion. There are three different objectives of consolida-
tion: a)minimize power b) minimize risk of consolida-
tion (c) balance workload across active servers. We use
the number of capacity violations as the metric for risk.
To investigate load imbalance, we estimate the average
CPU utilization for all active servers during the evalu-
ation period and identify the server with the maximum
average CPU utilization. The difference between the
CPU utilization of the highest loaded server and the av-
erage utilization across all servers is taken as the metric
for load imbalance. We compare all the methodologies
along all these objectives. We also measured the running
time of various methodologies to assess their scalability.

In order to generalize our results and look at various
settings, we also experimented with changes in our base-
line setting. Since these methodologies need to deal with
fragmentation, we also simulate a placement where the
initial number of virtual servers on a physical server are
increased or decreased. Towards this purpose, we as-
sume that the virtual servers are placed on a different ca-
pacity server of the same platform, i.e., with more or less
processors as required for the simulation. Further, sea-
sonal variations were observed in many workloads and
hence, we increase and decrease the training period from
the baseline setting. Finally, we vary the tuning parame-
ters of CBP and PCP and study their impact.

5.2 Performance Comparison
Power Consumed and SLA Violations: Fig. 15 shows

AppSuite−1 AppSuite−2 AppSuite−3 AppSuite−4
0

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
 P

ow
er

Peak_Existing
Mode_Existing
CBP
PCP

(a)

AppSuite−1 AppSuite−2 AppSuite−3 AppSuite−4
0

50

100

150

200

250

300

Vi
ol

at
io

ns
 /

Da
y

Peak_Existing
Mode_Existing
CBP
PCP

(b)
Figure 15: (a) Power Consumed and (b) SLA violations
in all Clusters for various placement methodologies. Ab-
sence of bars indicate zero violation.

the power consumed in all 4 clusters as a result of
placement recommendations made by Peak Existing,
Mode Existing, CBP and PCP and the corresponding
SLA violations. A striking observation is that the
Peak Existing methodology saves no power in AppSuite-
1. Closer look at Fig. 3 reveals that barring one appli-
cation, all other applications in this cluster have a peak
CPU utilization of 80% or more. Hence, a methodology
that sizes applications based on peaks is of no use in this
cluster. The overall power consumed by Mode Existing
is typically the lowest as it sizes aggressively, while the
Peak Existing uses the maximum power. On the other
hand, Peak Existing has the lowest violations (typically
zero) whereas Mode Existing has the highest violations.
Both CBP and PCP lie mid-way between these extremes,
with PCP attaining about (20 − 40)% lower power con-
sumption than CBP and significantly lower violations.

Another observation is that CBP saves significant
power in comparison to Peak Existing in all clusters
other than AppSuite-1, while it faces very high viola-
tions for AppSuite-2. To understand this, we recall from
Sec. 3 that the AppSuite-1 cluster has high correlation,
AppSuite-2 has medium correlation and the remaining
two clusters have a low correlation. As a result, CBP
adds many co-location constraints in AppSuite-1 leading
to a large number of active servers and not saving any
power. In contrast, the medium correlation in AppSuite-
2 results in CBP not making recommendations to sepa-
rate these workloads. However, even though the work-
loads are not correlated, their peaks show up in the same
time interval, leading to high violations by CBP . This
peak correlation behavior is exploited only in the PCP

366	 2009 USENIX Annual Technical Conference	 USENIX Association

algorithm which decides to judiciously separate offend-
ing workloads if their simultaneous peaks can risk over-
shooting the server capacity, thereby causing violations.
Thus PCP sees a nominal number of violations per hour
in all clusters.

A surprising result observed is that PCP consumes
less power than Mode Existing for AppSuite-3. Re-
call that the server selection methodology in Existing
methodology explores locally to reduce migration cost.
On the other hand, server selection in PCP can ex-
plore new placements that entail a large number of mi-
grations. Since AppSuite-3 was lightly loaded, consoli-
dation would require large number of migrations. Hence,
PCP came up with a different server selection than other
methodology for this particular cluster, leading to addi-
tional power savings.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Vi
ol

at
io

n
Si

ze
 (F

ra
ct

io
n

of
 S

er
ve

r)

App-suite1 App-suite2 App-suite3 App-suite4

Average Violation
Largest Violation

0.1
0.2

Figure 16: Violations for Mode Existing on all active
servers

We observed in Fig. 15 that Mode Existing has the
potential to save a lot of power but may incur a large
number of violations. The correlation in the first two
clusters of AppSuite-1 and AppSuite-2 especially im-
pacts Mode Existing, leading to very high violations. Re-
sults show that among the 9 active servers in all clus-
ters, 5 of them faced SLA capacity violations. We study
the size of the violations in the placement computed by
Mode Existing in Fig. 16. In practise, administrators al-
low a buffer capacity (typically 10% of the server) and
hope that any peaks can be served from this buffer ca-
pacity. We observe that even a buffer capacity of 20%

is not able to handle the burstiness of the workload.
Amongst 5 servers, the average violation exceeds 20%

of the server capacity in 4 servers and the peak viola-
tion exceeds the size of the server itself in all the servers.
Hence, a workload-unaware strategy that uses a buffer
capacity to handle peaks is not feasible in practise.

Workload Balancing: We next investigate the load
balance across the active servers achieved by var-
ious methodologies in Fig. 17. We observe that
Mode Existing and CBP have servers that are always
overloaded (average utilization of highest loaded server
is 100%) for AppSuite-1 and AppSuite-2. Such a place-
ment is not suitable in practise. Further, for all method-
ologies other than PCP , there is a large imbalance be-
tween the average utilization of the highest loaded server

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Se
rv

er
 U

til
iz

at
io

n Average

Max

Average

Max

Average

Max

Average
Max

App-Suite1 App-Suite2 App-Suite3 App-Suite4

Peak_Existing
Mode_Existing

CBP
PCP

Figure 17: Average and Maximum Utilization of Servers

Cluster Existing PCP CBP
(No. of Apps) (ms) (ms) (ms)

AppSuite-1 (10) 10.1 47.7 34
AppSuite-3 (13) 13.5 55.2 55
AppSuite-4 (16) 30.1 39.8 81
AppSuite-2 (18) 21.2 47.7 107

Table 3: Running Time for various methodologies

and the average utilization of the cluster. This is a direct
consequence of the design of algorithms, where PCP
favors balancing and the other algorithms favor creating
a skew.

Running Time: We study the running time of vari-
ous methods in Table 3. The CBP algorithm very clearly
says a super-linear relationship with the number of ap-
plications (N) because of the N2 correlation co-efficient
computation between all pairs of applications. The Ex-
isting method in general scales linearly with the increase
in number of applications. PCP has a dependence on
(a) the number of applications, (b) the number of peak
ranges in a cluster and (c) the number of clusters it cre-
ates. Recapitulate that AppSuite-3 has the highest CoV
(Fig. 4), which manifests in a large number of peak
ranges. As a result, AppSuite-3 has the highest running
time, even though the number of applications N is only
13. Overall, PCP has a running time that is double of
Existing and fairly stable. The running time of CBP
on the other hand increases super-linearly with the num-
ber of applications N .

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 5 6 7 8 9 10 11 12 13

N
or

m
al

iz
ed

 P
ow

er

Number of Physical Servers

CBP
PCP

 0
 50

 100
 150
 200
 250
 300

 5 6 7 8 9 10 11 12 13

D
ai

ly
 V

io
la

tio
ns

Number of Physical Servers

CBP
PCP

(a) Power (b) Violations

Figure 18: Impact of change in virtual servers per physi-
cal server in AppSuite-2

Fragmentation: We next investigate the ability of
CBP and PCP to deal with fragmentation (ratio of
application capacity C(Ai) to server capacity C(Sj)).
We change the original servers in the data center and
simulate placement on a larger number of lower ca-
pacity servers. Fig 18 shows the behavior of CBP
and PCP with increase in number of physical servers
for AppSuite-2, which has the largest number of virtual

USENIX Association	 2009 USENIX Annual Technical Conference	 367

servers. CBP adds a fixed number of co-location con-
straints and needs at least as many servers as the max-
imum number of constraints added to any application.
Hence, it suffers when few high capacity servers are
available. On the other hand, PCP tries to proportion-
ally allocate applications from each cluster (of applica-
tions with correlated peaks) and hence should perform
better when many applications can be packed on few
high capacity servers. Both these intuitions are validated
in Fig. 18 as CBP performs better with increase in num-
ber of servers and PCP fares worse. However, in both
the cases, CBP suffers more violations than PCP . In
summary, CBP is more suited when large applications
are placed on low or medium capacity servers, whereas
PCP is more suitable for consolidating a large number
of applications on few high-end servers.

5.3 Tuning CBP

0.2 0.3 0.35 0.5 0.65 0.8
0

5

10

15

CBP Correlation Threshold

Vi
ol

at
io

ns
 /

D
ay

PCP Violations/Day

0.2 0.3 0.35 0.5 0.65 0.8
0

0.2

0.4

0.6

0.8

1

CBP Correlation Threshold

Po
w

er
 C

on
su

m
ed

PCP Power Consumed

(a) Violations (b) Power
Figure 19: Power drawn and SLA Violations for CBP
with changing correlation cutoff in AppSuite-4

The performance of CBP depends on the correlation
cutoff parameter that is used to decide if correlation con-
straints need to be added between a pair of applications.
Fig. 19 shows CBP performance with different thresh-
olds, with the corresponding PCP metric shown as a ref-
erence line for AppSuite-4. Using a very low correlation
threshold (0.2) creates constraints even between weakly
correlated workloads thereby reducing the SLA viola-
tions (to even below that of PCP). However this comes
at a cost of increasing the number of active servers,
thereby consuming 50% more power than PCP. On the
other hand, using a high correlation threshold (0.8) cre-
ates constraints only when workloads exhibit very high
degree of correlation. As a result, the power consumed
can be lowered below PCP at the cost of higher viola-
tions. We recommend an operating range (0.35 − 5) for
significant power savings with reasonable number of vi-
olations. However one may set the threshold to 0.2 for
critical applications and 0.8 for best-effort applications.
We do observe that even though CBP can achieve either
significant power savings or low violations, it is not able
to achieve the trade-off as well as PCP .

5.4 Tuning PCP
The important configuration parameters for PCP are
the length of the training period and the tail bound PB

used for creating envelopes. We first show the impact of

0 50 100 150 200 250

0

50

100

Learning Period (Hours)

N
um

be
r o

f
Vi

ol
at

io
ns

0 5 10 15 20 25

0

50

100

150

200

250

Learning Period (Hours)

N
um

be
r o

f
Vi

ol
at

io
ns

(a) (b)
Figure 20: Performance of PCP with change in train-
ing period: (a)AppSuite-2 with weekly periodicity
(b)AppSuite-4 with daily periodicity

available history (length of training period) on the per-
formance of PCP . Fig. 20 shows SLA violations of
AppSuite-2 and AppSuite-4 of PCP with change in the
analysis period. We observe that without adequate his-
tory of workload repeatability, PCP can have very high
number of violations. However, once adequate history is
available, the number of violations fall to 0 for both the
clusters. We have included AppSuite-2 and AppSuite-4
because the first cluster has a daily pattern whereas the
second cluster has a weekly pattern. We observe that
PCP is able to infer the characteristics of the work-
load in about half of the length of the period. Hence,
for AppSuite-2, it takes about half a day of training data
to reduce violations, whereas for AppSuite-4, we require
about 4 days of training data. We also observe that the
impact of historical trends happens in a discrete manner.
Hence, for AppSuite-4, the availability of 2 full days of
data leads to a significant decrease in violations as di-
urnal trends are available. However, any further data is
not useful until we reach 5 days, when weekly trends be-
come available. A key strength of PCP is that a user can
easily determine the length of training period for a server
cluster using a few sample runs and then store only the
relevant history for future analysis. We next investigate

0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

PCP Tail Bound

Vi
ol

at
io

ns
 /

D
ay

0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

PCP Tail Bound

N
or

m
al

iz
ed

 P
ow

er

(a) (b)
Figure 21: Performance of PCP with change in tail
bound: (a) Hourly Violations (b) Power Consumed

the impact of the tail bound on the performance of PCP
in Fig. 21. A high tail bound in PCP leads to a conser-
vative size and smaller durations of peak activity. Hence,
a high tail bound may lead to lesser violations but may
lead to a higher power consumption. We observe this in-
tuition holds in the experiments, as the violations fall to
0 for a tail bound of 0.95 but at the cost of higher power.
Hence, the administrator can choose a bound based on
the criticality of the applications in the cluster.

368	 2009 USENIX Annual Technical Conference	 USENIX Association

6 Conclusion

In this work, we have presented the server workload
analysis of a large data center. We have investigated
a large number of characteristics relevant for medium
(semi-static) to long term (static) consolidation in or-
der to save power. The workload study shows that there
is a large potential for power savings by using off-peak
metrics for sizing applications. However, correlation be-
tween applications can lead to significant capacity vio-
lations if consolidation methodologies do not take them
into account. We design two new consolidation method-
ologies CBP and PCP that use an off-peak metric for
sizing and another metric to ensure that peaks do not
lead to violations. Our experimental evaluation shows
that PCP achieves superior power savings, low viola-
tions and good load balance across active servers. Our
work opens up further research in re-design of placement
methods in light of the workload characteristics observed
in our work.

7 Acknowledgements
We would like to thank our shepherd Mahadev Satya-
narayanan and anonymous reviewers for insighted com-
ments that have helped improve the paper.

References

[1] ASHRAE Technical Committee 9.9. Datacom equipment
power trends and cooling applications, 2005.

[2] C. Belady. In the data center, power
and cooling costs more than the it equip-
ment it supports. http://www.electronics-
cooling.com/articles/2007/feb/a3/, 2007.

[3] L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao.
Characterization of a large web site population with im-
plications for content delivery. In WWW, 2004.

[4] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement
of virtual machines for managing sla violations. In IM,
2007.

[5] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller,
Michael Kistler, Charles Lefurgy, Chandler McDowell,
and Ram Rajamony. The case for power management in
web servers. In Proc. Power aware computing, 2002.

[6] J. Chase and R. Doyle. Balance of Power: Energy Man-
agement for Server Clusters. In Proc. HotOS, 2001.

[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat,
and R. Doyle. Managing energy and server resources in
hosting centers. In Proc. ACM SOSP, 2001.

[8] Cloud computing software for data centers from Cassatt.
http://www.cassatt.com/products.htm.

[9] Server Consolidation and Virtualization Analysis
by CiRBA. http://www.cirba.com/.

[10] VMWare Guided Consolidation.
http://www.vmware.com/products/vi/vc/features.html.

[11] G. Dasgupta, A. Sharma, A. Verma, A. Neogi, and
R. Kothari. Emerald: A tool to help data centers go green.
In Under Review, 2008.

[12] E. Elnozahy, M. Kistler, and R. Rajamony. Energy- effi-
cient server clusters. In Proceedings of the Workshop on
Power-Aware Computing Systems., 2002.

[13] M. Elnozahy, M. Kistler, and R. Rajamony. Energy con-
servation policies for web servers. In Proc. of USENIX
Symposium on Internet Technologies and Systems, 2003.

[14] W. Felter, K. Rajamani, T. Keller, and C. Rusu.
A performance-conserving approach for reducing peak
power consumption in server systems. In Proc. of Inter-
national Conference on Supercomputing, 2005.

[15] Virtual Iron: True Server Virtualization for Everyone.
http://www.virtualiron.com/.

[16] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Workload analysis and demand prediction of enterprise
data center applications. In IISWC, 2007.

[17] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and
R. Bianchini. Energy conservation in heterogeneous
server clusters. In PPoPP, 2005.

[18] Tibor Horvath. Dynamic voltage scaling in multitier web
servers with end-to-end delay control. IEEE Trans. Com-
put., 56(4), 2007.

[19] A. K. Iyengar, M. S. Squillante, and L. Zhang. Analy-
sis and characterization of large-scale web server access
patterns and performance. In Int’l World Wide Web Con-
ference, 1999.

[20] Bharat Krishnamurthy, Anindya Neogi, Bikram Sen-
gupta, and Raghavendra Singh. Data tagging architecture
for system monitoring in dynamic environments. In Proc.
NOMS, 2008.

[21] K. Rajamani and C. Lefurgy. On evaluating request-
distribution schemes for saving energy in server clusters.
In Proc. ISPASS, 2003.

[22] Karthick Rajamani, Heather Hanson, Juan Rubio, Soraya
Ghiasi, and Freeman L. Rawson III. Application-aware
power management. In IISWC, pages 39–48, 2006.

[23] Parthasarathy Ranganathan, Phil Leech, David Irwin, and
Jeffrey Chase. Ensemble-level power management for
dense blade servers. In Proc. of International Symposium
on Computer Architecture, 2006.

[24] About IDEAS Relative Performance Estimate 2 (RPE2).
http://www.ideasinternational.com/performance/.

[25] Cosmin Rusu, Alexandre Ferreira, Claudio Scordino, and
Aaron Watson. Energy-efficient real-time heterogeneous
server clusters. In Proceedings of RTAS, 2006.

[26] A. Verma, P. Ahuja, and A. Neogi. pmapper: Power and
migration cost aware application placement in virtualized
servers. In Proc. of ACM/IFIP/Usenix Middleware, 2008.

[27] A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic
placement of hpc applications. In Proc. of ACM ICS,
2008.

USENIX Association	 2009 USENIX Annual Technical Conference	 369

RCB: A Simple and Practical Framework for

Real-time Collaborative Browsing

Chuan Yue, Zi Chu, and Haining Wang
The College of William and Mary

{cyue,zichu,hnw}@cs.wm.edu

Abstract

Existing co-browsing solutions must use either a spe-
cific collaborative platform, a modified Web server, or a
dedicated proxy to coordinate the browsing activities be-
tween Web users. In addition, these solutions usually re-
quire co-browsing participants to install special software
on their computers. These requirements heavily impede
the wide use of collaborative browsing over the Internet.
In this paper, we propose a simple and practical frame-
work for Real-time Collaborative Browsing (RCB). This
RCB framework is a pure browser-based solution. It
leverages the power of Ajax (Asynchronous JavaScript
and XML) techniques and the end-user extensibility of
modern Web browsers to support co-browsing. RCB en-
ables real-time collaboration among Web users without
the involvement of any third-party platforms, servers, or
proxies. It allows users to perform fine-grained high
quality co-browsing on arbitrary websites and webpages.
We implemented the RCB framework in the Firefox Web
browser and evaluated its performance and usability. Our
evaluation results demonstrate that the proposed RCB is
simple, practical, helpful and easy to use.

1 Introduction

Many end-user real-time applications have been widely
used on the Internet. Real-time audio/video communica-
tion is enabled by voice/video over IP systems, real-time
text-based communication is enabled by instant messag-
ing systems, and real-time document sharing and collab-
oration is enabled by Web-based services such as Google
Docs and Adobe Buzzword. However, one of the most
popular Internet activities, Web browsing, is still heavily
isolated. In other words, browsing regular webpages is
still a process that is mainly between a user client and
a remote Web server, and there is little real-time inter-
action between different users who are visiting the same
webpages.

Collaborative browsing, also known as co-browsing,
is the technique that allows different users to browse the
same webpages in a simultaneous manner and collabora-
tively fulfill certain tasks. Co-browsing has a wide range
of important applications. For example, instructors can
illustrate online materials to distance learning students,
business representatives can provide live online technical
support to customers, and regular Web users can conduct
online searching or shopping with friends.

Several approaches exist to achieve different levels of
co-browsing. At one extreme, simple co-browsing can be
performed by just sharing a URL in a browser’s address
bar via either instant messaging tools or Web browser
add-ons (such as CoBrowse [5]) that are installed on
each user’s computer. URL sharing is lightweight, but
it only enables very limited collaboration on a narrow
scope of webpages. Collaboration is limited since users
can only view webpages but cannot perform activities
such as co-filling online forms or synchronizing mouse-
pointer actions. Webpages eligible for this simple co-
browsing method are also limited because: (1) most
session-protected webpages cannot be accessed by just
copying the URLs, and (2) in many dynamically-updated
webpages such as Google Maps, the retrieved contents
will be different even with the same URL.

At the other extreme, complex co-browsing can be
achieved via screen or application sharing software such
as Microsoft NetMeeting. To enable co-browsing activ-
ities, these solutions must grant the control of a whole
screen or application to remote users. As a result, they
place high demands on both security assurance and net-
work bandwidth, and their use is more appropriate for
some other collaborative applications than co-browsing.

A number of solutions have been proposed to sup-
port full functional co-browsing with moderate overhead.
Based on the high-level architectures, these solutions
can be classified into three categories: platform-based,
server-based, and proxy-based solutions. Platform-based
solutions build their co-browsing functionalities upon

370	 2009 USENIX Annual Technical Conference	 USENIX Association

specific real-time collaborative platforms [9, 11, 15, 30].
Server-based solutions modify Web servers to meet col-
laborative browsing requirements [2, 7, 13, 22, 28].
Proxy-based solutions use external proxies, which are
deployed between Web servers and browsers, to facilitate
collaborative browsing [1, 3, 4, 6, 12, 14]. However, as
discussed in Section 2, the specific architectural require-
ments of these solutions limit their wide use in practice.

In this paper, we propose a simple and practical frame-
work for Real-time Collaborative Browsing (RCB). The
proposed RCB is a pure browser-based solution. It lever-
ages the power of Ajax (Asynchronous JavaScript and
XML) [20] techniques and the end-user extensibility of
modern Web browsers to support co-browsing. RCB en-
ables real-time collaboration among Web users without
using any third-party platforms, servers, or proxies. The
framework of RCB consists of two key components: one
is RCB-Agent, which is a Web browser extension, and
the other is Ajax-Snippet, which is a small piece of Ajax
code that can be embedded within an HTML page and
downloaded to a user’s regular browser. Installed on a
user’s Web browser, RCB-Agent accepts TCP connec-
tions from other users’ browsers and processes both Ajax
requests made by Ajax-Snippet and regular HTTP re-
quests. RCB-Agent and Ajax-Snippet coordinate the co-
browsing sessions and allow users to efficiently view and
operate on the same webpages in a simultaneous manner.

The framework of RCB is simple, practical, and ef-
ficient. A user who wants to host a collaborative Web
session only needs to install an RCB-Agent browser ex-
tension. Users who want to join a collaborative session
just use their regular JavaScript-enabled Web browsers,
and nothing needs to be installed or configured. End-
user extensibility is an important feature supported by
popular Web browsers such as Firefox [24] and Inter-
net Explorer [26]. Thus, it is feasible to implement and
run the RCB-Agent extension on these browsers. Mean-
while, currently 95% of Web users turn on JavaScript in
their browsers [21], and all popular Web browsers sup-
port Ajax techniques [20]. As a result, joining a col-
laborative Web session is like using a regular browser to
visit a regular website. The simplicity and practicabil-
ity of RCB bring important usability advantages to co-
browsing participants, especially in online training and
customer support applications. RCB is also efficient be-
cause co-browsing participants are directly connected to
the user who hosts the session, and there is no third-party
involvement in the co-browsing activities.

Other distinctive features of RCB are summarized as
follows. (1) Ubiquitous co-browsing: since no specific
platform, server, or proxy is needed, co-browsing can
be performed in many different places via any type of
network connection such as Ethernet, Wi-Fi, and Blue-
tooth. (2) Arbitrary co-browsing: co-browsing can be

applied to almost all kinds of Web servers and webpages.
Web contents hosted on HTTP or HTTPS Web servers
can all be synchronized to co-browsing participants by
RCB-Agent. Our RCB-Agent can also send cached con-
tents including image and Cascading Style Sheets (CSS)
files to participants, hence improving performance and
accessibility of co-browsing in some environments. (3)
Fine-grained co-browsing: co-browsed Web elements
and coordinated user actions can be very fine-grained.
Since RCB-Agent is designed as a browser extension,
the seamless browser-integration enables RCB-Agent to
fully control what webpage contents can be shared and
what actions should be allowed to participants, leading
to full functional high quality co-browsing.

We implemented the RCB framework in Firefox. As
a browser extension, RCB-Agent is purely written in
JavaScript. Ajax-Snippet is also written in JavaScript
and it works on different browsers like Firefox and Inter-
net Explorer. We evaluated the real-time performance of
RCB through extensive experiments in LAN and WAN
environments. Based on two real application scenar-
ios (collaboratively shopping online and using Google
Maps), we also conducted a formal usability study to
evaluate the high quality co-browsing capabilities of
RCB. Our evaluation results demonstrate that the pro-
posed RCB is simple, practical, helpful and easy to use.

2 Related Work

The existing co-browsing solutions can be roughly clas-
sified into platform-based, server-based, and proxy-
based solutions. Platform-based solutions build their co-
browsing architectures upon special real-time collabora-
tive platforms. As an early work in this category, Group-
Web [11] is built on top of the GroupKit groupware plat-
form [18], and similarly GroupScape [9] is developed
by using the Clock groupware development toolkit [10].
Two banking applications [15] for synchronous browser
sharing between bank representatives and customers are
designed on top of a multi-party, real-time collabora-
tive platform named CollaborationFramework [19]. Re-
cently, SamePlace [30] is built upon the XMPP (eXten-
sible Messaging & Presence Protocol) platform [32] to
support co-browsing of rich Web contents. The strong
dependence on specific collaborative platforms is the ma-
jor drawback of these co-browsing solutions.

Server-based solutions modify Web servers and inte-
grate collaborative components into servers to support
co-browsing [2, 7, 13]. CWB (Collaborative Web Brows-
ing) [7] is a typical example in this category. CWB con-
sists of a controller module that runs on a Web server
and a control panel that runs on a Web browser. The con-
troller module is implemented as a Java servlet and is the
central control point for collaborative activities. The con-

USENIX Association	 2009 USENIX Annual Technical Conference	 371

trol panel reports local browser instance changes to the
controller module on the Web server, and it also polls the
controller module for changes made by other users. In
addition to CWB, some commercial software like Back-
base Co-browse & Chat suite [22] and PageShare [28]
also adopt this approach. However, these solutions have
two obvious limitations: (1) they require Web develop-
ers to add controller modules to Web servers, and (2) the
server-side modification is usually tailored and dedicated
to individual websites, and it is infeasible to apply such
a modification to most Web servers.

Proxy-based solutions rely on dedicated HTTP prox-
ies to coordinate co-browsing among users [1, 3, 4, 6, 12,
14]. Users configure the proxy setting on their browsers
to access the Internet via an HTTP proxy. The proxy
serves co-browsing users by forwarding their HTTP re-
quests to a Web server and returning identical HTML
pages to them. The proxy also inserts applets (often
in the form of Java applets [4, 12] or JavaScript snip-
pets [3]) into the returned HTML pages to track and syn-
chronize user actions. The major drawback of proxy-
based solutions is the extra cost of setting up and main-
taining such a proxy. Moreover, there are security and
privacy concerns on using a proxy. Since all the HTTP
requests and responses have to go through a proxy, each
user has no choice but to trust the proxy.

3 Framework Design

In this section, we first present the architecture of the
RCB framework. We then justify our design decisions.
Finally, we analyze the co-browsing topologies and poli-
cies of RCB, and discuss the security design of RCB.

3.1 Architecture

The design philosophy of RCB is to make co-browsing
simple, practical, and efficient. As shown in Figure 1, the
architecture of the RCB framework consists of two major
components. One is the RCB-Agent browser extension
that can be seamlessly integrated into a Web browser.
The other is Ajax-Snippet — a small piece of Ajax [20]
code that can be embedded within an HTML page and
downloaded to a user’s regular browser. For a user who
wants to host a co-browsing session, the user (referred
to as a co-browsing host) only needs to install an RCB-
Agent browser extension. For a user who wants to join
a co-browsing session, the user (referred to as a co-

browsing participant) does not need to install anything
and just uses a regular JavaScript-enabled Web browser.
Our design philosophy of making the participant side as
simple as possible is similar to the basic concept of many
thin-client systems such as VNC (virtual network com-
puting) [17].

Host Browser�

RCB-Agent�

Cache�

Participant Browser�

Webpage�

head�

body�

Ajax-Snippet�

Webpage�

head�

body�

Web Servers�

8*�

2� 5� 8� 9�

1�

4�
6�

3� 7�

Figure 1: The architecture of the RCB framework.

In Figure 1, the host browser represents the browser
used by a co-browsing host, and the participant browser
corresponds to the browser used by a co-browsing par-
ticipant. The webpage on each browser stands for a cur-
rently co-browsed HTML webpage. The displayed con-
tent of each webpage is the same on both browsers, but
the source code of each webpage is different on the two
browsers. The cache of the host browser is only read but
not modified by RCB-Agent.

A co-browsing session can be broken down into nine
steps. In step 1, a co-browsing host starts running
RCB-Agent on the host browser with an open TCP port
(e.g., 3000). In step 2, a co-browsing participant types
the URL address of RCB-Agent (e.g., http://example-
address:3000, where the example-address is a reachable
hostname or IP address) into the address bar of the par-
ticipant browser and sends a connection request to RCB-
Agent. The RCB-Agent responds to a valid request
by returning an initial HTML page that contains Ajax-
Snippet. Ajax-Snippet will then periodically poll RCB-
Agent, and the communication channel between the co-
browsing host and participant is established.

On the host browser, whenever the co-browsing host
visits a webpage (step 3), RCB-Agent monitors the inter-
nal browser-state changes and records file-downloading
activities related to the webpage (step 4). When the web-
page is loaded on the host browser, RCB-Agent creates
an in-memory copy of the page’s HTML document and
makes necessary modifications to this copy. Then, in step
5, upon receipt of a polling request from a participant
browser, RCB-Agent will send the content of the modi-
fied copy to the participant browser.

On the participant browser, Ajax-Snippet will ana-
lyze the received content and replace the correspond-
ing HTML elements of the current page, in which Ajax-
Snippet always resides, with the received content (step
6). In addition to the HTML document that describes the
page structure, a webpage often contains supplementary

372	 2009 USENIX Annual Technical Conference	 USENIX Association

objects such as stylesheets, images, and scripts. There-
fore, to accurately render the same webpage, the partic-
ipant browser needs to download all these supplemen-
tary objects. Based on RCB-Agent’s modifications on
the copied HTML document, the RCB framework allows
a participant browser to download these supplementary
objects either from the original Web server (step 7), or
directly from the host browser (step 8 and 8*).

Allowing a participant browser to directly download
cached objects from the host browser can bring two at-
tractive benefits to the co-browsing participant. One is
that the co-browsing participant does not need to have
the capability of establishing network connection with
the original Web server (the connection marked in step
7 is denoted by a dashed line due to this reason). The
other is that if the co-browsing participant has a fast net-
work connection with the co-browsing host (e.g., they
are within the same LAN), downloading cached objects
from the host browser rather than from the remote Web
server can often reduce the response time.

In step 9, any dynamic changes made (e.g., by
JavaScript or Ajax) to a co-browsed webpage can be syn-
chronized in real time from the host browser to the par-
ticipant browser. Meanwhile, one user’s (either a host
user or a participant user) browsing actions such as form
filling and mouse-pointer moving can be monitored and
instantly mirrored to other users. When the co-browsing
host visits new webpages, the loop from steps 3 to 9 is
repeated. In a co-browsing session, users can visit differ-
ent websites and collaboratively browse and operate on
as many webpages as they like.

3.2 Decisions

The design of the RCB framework is mainly based
on three decisions with respect to the communica-
tion model, the service model, and the synchronization
model, respectively.

3.2.1 Direct Communication Model

Our RCB framework uses a direct communication model
to support the collaboration between a co-browsing host
and a co-browsing participant. A participant browser es-
tablishes a TCP connection to a host browser, without the
support of any third-party platform, server, or proxy.

This direct communication model is simple, conve-
nient, and widely applicable. Users in the same LAN can
use Ethernet or Wi-Fi to establish their TCP connections.
For WAN environments, if the host browser is running on
a machine with a resolvable hostname or reachable IP ad-
dress, remote co-browsing participants can use the host-
name or IP address and an allowed TCP port to establish
the connections; otherwise, a co-browsing host can still

allow remote participants to reach a TCP port on a private
IP address inside a LAN using port-forwarding [29] tech-
niques. We also consider to integrate some NAT (net-
work address translation) traversal techniques into RCB-
Agent to further improve its accessibility.

3.2.2 HTTP-based Service Model

In our RCB framework, RCB-Agent on a host browser
uses an HTTP-based service model to serve co-browsing
participants. The key benefit of using this model is that
there is no need for a co-browsing participant to make
any installation or configuration. With the direct com-
munication model, other service models (e.g., a peer-to-
peer model or a non-HTTP based service model) exist
but they all require changes at the participant side.

Integrating this HTTP-based service model into a
browser also simplifies the host side installation since
a co-browsing host only needs to install an RCB-Agent
browser extension. Meanwhile, this browser integration
approach maximizes the co-browsing capability because
a browser extension normally can access both the con-
tent and related events of the browsed webpages. Fur-
thermore, the end-user extensibility provided by mod-
ern Web browsers such as Internet Explorer and Firefox
makes the implementation of this service model feasible.

3.2.3 Poll-based Synchronization Model

After the connection between a co-browsing host and
its participant is established, Ajax-Snippet will period-
ically poll RCB-Agent to synchronize the co-browsing
session. HTTP is a stateless protocol [8], and the com-
munication is initiated by a client. Since the HTTP pro-
tocol does not support the push-based synchronization
model, we use poll-based synchronization to emulate
the effect of pushing webpage content and user interac-
tion information between co-browsing users. In addition
to poll-based synchronization, an HTTP server can use
“multipart/x-mixed-replace” type of responses to emu-
late the content pushing effect. However, compared with
poll-based synchronization, this alternative approach in-
creases the complexity of co-browsing synchronization
and decreases its reliability.

Ajax-Snippet is written in pure JavaScript. All popu-
lar Web browsers support Ajax techniques [20] and cur-
rently about 95% of Web users turn on JavaScript in their
browsers [21]. Therefore, this synchronization model is
well supported on users’ regular browsers.

3.3 Co-browsing Topologies and Policies

The use of RCB is very flexible. Each co-browsing host
can support multiple participants, and a participant can

USENIX Association	 2009 USENIX Annual Technical Conference	 373

join or leave a session at any time. A user can even
host a co-browsing session and meanwhile join sessions
hosted by other users using different browser windows
or tabs. RCB-Agent knows exactly which participants
are connected, and it can notify this information to a co-
browsing host or participant.

Each co-browsing session is hosted and moderated
by a co-browsing host. A participant’s actions such as
mouse click and data input are synchronized to the co-
browsing host, and the co-browsing host will decide on
further navigating actions. A participant browser never
leaves the URL address of RCB-Agent, and contents
from different websites and webpages are simply pushed
to the participant browser. This tightly coupled scenario
is typical for co-browsing applications (e.g., online train-
ing and customer support) that need a user to preside over
a session, and it is also typical for co-browsing applica-
tions (e.g., online shopping) that require users to accom-
plish a common task on session-protected webpages.

To coordinate co-browsing actions among users, RCB-
Agent can enforce different high-level policies for dif-
ferent application scenarios. For example, when a par-
ticipant clicks a link on a co-browsed webpage and this
action information is sent back to the host browser, RCB-
Agent can either immediately perform the click action on
the host browser, or ask the co-browsing host to inspect
and explicitly confirm this click action. Similarly, if mul-
tiple participants are involved in a co-browsing session, it
is up to the high-level policy enforced on RCB-Agent to
decide whom are allowed to perform certain interactions
and whose interaction action will be finally submitted to
a website. However, the specification and enforcement
of co-browsing policies is usually application-dependent,
and it is out of the scope of this paper.

3.4 Security Design and Analysis

For a co-browsing participant, using RCB is as secure as
visiting a trusted HTTP website. This is because a par-
ticipant only needs to type in the URL address of RCB-
Agent given by a trusted co-browsing host and then per-
form regular browsing actions such as clicking and form-
filling on a regular Web browser. We therefore keep the
focus of our security design on the protection of RCB-
Agent by authenticating its received requests.

Our current design on request authentication is based
on a conventional mechanism of sharing a session secret
key and computing the keyed-Hash Message Authentica-
tion Code (HMAC). On a host browser, a session-specific
one-time secret key is randomly generated and used by
RCB-Agent. The co-browsing host shares the secret key
with a participant using some out-of-band mechanisms
such as telephone calls or instant messages. On a partici-
pant browser, the secret key is typed in by a co-browsing

participant via a password field on the initial HTML page
and then stored and used by Ajax-Snippet.

Before sending a request, Ajax-Snippet computes an
HMAC for the request and appends the HMAC as an
additional parameter of the request-URI. After receiv-
ing a request sent by Ajax-Snippet, RCB-Agent com-
putes a new HMAC for the received request (discard-
ing the HMAC parameter) and verifies the new HMAC
against the HMAC embedded in the request-URI. The
data integrity and the authenticity of a request are as-
sured if these two HMACs are identical. Since the size
of a request sent by Ajax-Snippet is small, an HMAC
can be efficiently calculated and any important informa-
tion in a request can also be efficiently encrypted us-
ing a JavaScript implementation [25]. However, using
JavaScript to compute an HMAC for a response (or en-
crypt/decrypt a response) is inefficient, especially if the
size of the response is large. We plan to integrate other
security mechanisms to address this issue in the future.

4 Implementation Details

Although the design of the proposed RCB framework is
relatively simple and straightforward, its implementation
poses several challenges. The implementation of RCB-
Agent has two major challenges: (1) how to efficiently
process requests so that participant browsers can be syn-
chronized in real time, and (2) how to accurately gen-
erate response contents so that fine-grained high-quality
co-browsing activities can be easily supported. The key
implementation challenge of Ajax-Snippet lies in how
to properly and smoothly update webpage contents on
a participant browser. We have implemented the RCB
framework in Firefox and successfully addressed these
challenges. We present the implementation details of the
framework in this section.

4.1 RCB-Agent

RCB-Agent is implemented as a Firefox browser exten-
sion, and it is purely written in JavaScript. Its request
processing and response content generation functionali-
ties are detailed as follows.

4.1.1 Request Processing

The request processing functionality of RCB-Agent is
implemented as a JavaScript object of Mozilla’s nsIS-
erverSocket interface [33]. This interface provides meth-
ods to initialize a server socket and maintain it in the lis-
tening state. For this server socket object, we create a
socket listener object which implements the methods of
Mozilla’s nsIServerSocketListener interface [33]. RCB-
Agent uses this socket listener object to asynchronously

374	 2009 USENIX Annual Technical Conference	 USENIX Association

Accept an HTTP�

Request�

Check�

Request Type�

Cache�
Request Content�

Check and Data Merge�

Generate�

Response with�

Empty Content�

Set "application/xml"�

Response Content Type�

Initial�

HTML�

Page�

Write Data into Output�

Stream from an Input Stream�

Read Cached�

Object�

Read Initial�

HTML Page�

Set "text/html" Response�

Content Type�

Generate�

Response with�

New Content�

Send an HTTP�

Response�

Send New�

Content in�

Response?�

New Connection Request� Object Request (for cache mode)�

Ajax Polling Request�

No� Yes�

Figure 2: Request processing procedure of RCB-Agent.

listen for and accept new TCP connections. We also
create a data listener object which implements Mozilla’s
nsIStreamListener interface [33]. We associate this data
listener object with the input stream of each connected
socket transport. Therefore, over each accepted TCP
connection, RCB-Agent uses this data listener object to
asynchronously accept incoming HTTP requests and ef-
ficiently process them.

Figure 2 illustrates the high-level request processing
procedure of RCB-Agent. From a participant browser,
RCB-Agent may receive three types of HTTP requests:
a new connection request, an object request, and an Ajax
polling request. RCB-Agent identifies the type of request
by simply checking the method token and request-URI

token in the request-line [8]. Both a new connection re-
quest and an object request use the “GET” method, but
they can be differentiated by checking their request-URI
tokens. The former has a root URI, but the later has a
URI pointing to a specific resource such as an image file.
Ajax polling requests always use the “POST” method be-
cause we want to directly piggyback action information
of a co-browsing participant onto a polling request.

A new connection request is sent to RCB-Agent af-
ter the URL of RCB-Agent is entered into the address
bar of a participant browser. RCB-Agent responds to
this request by sending back a “text/html” type of HTTP
response to the participant browser with the content of
an initial HTML page. The head element of this ini-
tial HTML page contains Ajax-Snippet, which will later
send Ajax polling requests to RCB-Agent periodically.

An object request is sent to RCB-Agent if the cache

mode is used to allow a participant browser to directly
download a cached object from the host browser. RCB-

Agent keeps a mapping table, in which the request-URI
of each cached object maps to a corresponding cache
key. After obtaining the cache key for a request-URI,
RCB-Agent reads the data of a cached object by creat-
ing a cache session via Mozilla’s cache service [33]. To
save time and memory, RCB-Agent directly writes data
from the input stream of the cached object into the output
stream of the connected socket transport.

An Ajax polling request is sent by Ajax-Snippet
from a participant browser to check if any page content
changes or browsing actions have occurred on the host
browser. RCB-Agent follows three steps to process an
Ajax polling request: data merging, timestamp inspec-
tion, and response sending.
Data merging: RCB-Agent examines the content of a

“POST” type Ajax polling request and may merge data
if the content contains piggybacked browsing action in-
formation of the co-browsing participant. For example,
if users are co-filling a form, the form data submitted by
a co-browsing participant can be extracted and merged
into the corresponding form on the host browser.
Timestamp inspection: RCB-Agent looks for any new

content needs to be sent back to the co-browsing partic-
ipant. RCB-Agent uses a simple timestamp mechanism
to ensure that only new content, which has never been
sent to this participant before, is included in the response
message. A timestamp used here is the number of mil-
liseconds since midnight of January 1, 1970. RCB-Agent
maintains a timestamp for the latest webpage content on
the host browser. Whenever this new content is sent to a
participant browser, its timestamp is also included in the
same response. Each Ajax polling request from a partic-
ipant browser carries back the timestamp of its current
webpage content, so RCB-Agent can compare the cur-
rent timestamp on the host browser and the received one
to accurately determine whether the page content on each
particular participant browser needs to be updated.
Response sending: if any new content needs to be

sent to a participant browser, RCB-Agent generates a re-
sponse with the new content. Response content gener-
ation is an important functionality of RCB-Agent, and
it is detailed in the following subsection. To facilitate
efficient content parsing in a participant browser, RCB-
Agent sends out the new content in the form of an XML
document using the “application/xml” type of HTTP re-
sponse. If no new content needs to be sent back, RCB-
Agent sends a response with empty content to the partic-
ipant browser in order to avoid hanging requests.

4.1.2 Response Content Generation

The response content generation functionality of RCB-
Agent generates responses with new content for Ajax
polling requests. It guarantees that webpage content can

USENIX Association	 2009 USENIX Annual Technical Conference	 375

Document�

Content Changes�

Cache�

Generate XML Format�

Response Content�

Lookup�

Clone a documentElement Node�

of Current HTMLDocument�

No�

Yes�

Yes�

No� Objects Exist�

 in Cache?�

Change Relative URL Addresses to Absolute URL�

Addresses for Elements in the Cloned Document�

Change Absolute URL Addresses to RCB-Agent�

URL Address for Elements in the Cloned Document�

Cache Mode?�

Document Element Action Rewriting for�

Elements in the Cloned Document�

Figure 3: Response content generation procedure of
RCB-Agent.

be efficiently extracted on a host browser and later on
accurately rendered on a participant browser. The high-
quality implementation of this functionality is essential
for adding upper-level co-browsing features such as form
co-filling and action synchronization.

Figure 3 illustrates the high-level response content
generation procedure of RCB-Agent. When document
content changes on the host browser need to be sent
to a participant browser, RCB-Agent uses the follow-
ing five steps to generate the XML format response con-
tent. First, RCB-Agent clones the documentElement

node (namely the “<html>” root element of an HTML
webpage) of the current HTMLDocument object on the
host browser. The following changes are made only to
the cloned documentElement node (referred to as the
cloned document) so that the content generation proce-
dure will not cause any state change to the current docu-
ment on the host browser.

In the second step, for the supplementary objects of
the cloned document, RCB-Agent changes all the rel-
ative URL addresses to absolute URL addresses of the
original Web servers. This URL conversion is neces-
sary to support RCB’s non-cache mode in which a par-
ticipant browser needs to use absolute URL addresses to
correctly download supplementary objects from original
Web servers. To achieve an accurate URL conversion,
we create an observer object which implements the meth-
ods of Mozilla’s nsIObserverService [33]. Using this ob-
server object, RCB-Agent can record complete URL ad-
dresses for all the object downloading requests.

In the third step, if the cache mode is used, for the
supplementary objects of the cloned document that exist
in the browser cache, their absolute URL addresses are
changed to RCB-Agent URL addresses. Subsequently,

<?xml version=’1.0’ encoding=’utf-8’?>

<newContent>

<docTime>documentTimestamp</docTime>

<docContent>

<docHead>

<hChild1><![CDATA[escape(hData1)]]></hChild1>

<hChild2><![CDATA[escape(hData2)]]></hChild2>

......

</docHead>

<!-- for a page using body element -->

<docBody><![CDATA[escape(bData)]]></docBody>

<!-- for a page using frames -->

<docFrameSet><![CDATA[escape(fData)]]>

</docFrameSet>

<docNoFrames><![CDATA[escape(nData)]]>

</docNoFrames>

</docContent>

<userActions>userActionData</userActions>

<newContent>

Figure 4: XML format response content.

when a participant browser renders the page content, it
will automatically send “GET” type of HTTP requests to
RCB-Agent to retrieve cached objects. For the non-cache
mode, nothing needs to be done in this step. Switching
between these two modes is very flexible and fully con-
trolled by RCB-Agent. For example, RCB-Agent can al-
low different participant browsers to use different modes,
allow different webpages sent to a particular participant
browser to use different modes, and even allow different
objects on the same webpage to use different modes.

In the fourth step, RCB-Agent rewrites event attributes
such as onclick and onsubmit for children elements of the
cloned document. The purpose of this rewriting is to en-
able upper-level co-browsing features such as form co-
filling and action synchronization. For instance, to sup-
port the form co-filling feature, RCB-Agent changes the
onsubmit event attribute values of form elements in the
cloned document. More specifically, RCB-Agent adds
a call to a specific JavaScript function residing in Ajax-
Snippet to each form’s onsubmit event handler. So later
on, when a form is submitted on a participant browser,
this JavaScript function is called and the related form
data can be carried back by an Ajax polling request to
the host browser.

Finally, after making the above changes, RCB-Agent
generates an XML format response content for this Ajax
polling request. From top-level children of the cloned
document, RCB-Agent follows their order in the DOM
(Document Object Model [23]) tree to process these el-
ements, including extracting their attribute name-value
lists and innerHTML values. For most webpages, the
cloned document only contains two top-level children:
a head element and a body element. For some webpages,
their top-level children may include a head element, a
frameset element, and probably a noframes element.

Figure 4 illustrates the simplified XML format of the
generated response content. The newContent element
contains a docTime element that carries the document

376	 2009 USENIX Annual Technical Conference	 USENIX Association

timestamp string, a docContent element that carries the
data extracted from the cloned document, and a userAc-
tions element that can carry additional browsing action
(such as mouse-pointer movement) information.

Within the docContent element, for each child element
of the cloned document head, its attribute name-value list
and innerHTML value are encoded using the JavaScript
escape function and carried inside the CDATA section of
a corresponding hChild element. For example, hChild1
may contain the data for the title child element of the
head, and hChild2 may contain the data for a style ele-
ment of the head. The contents of these children head
elements are separately transmitted so that later Ajax-
Snippet can properly and easily update document con-
tents on different types of browsers such as Firefox and
Internet Explorer. Similarly, the name-value lists and in-
nerHTML values extracted from other top-level children
(e.g., body or frameset) of the cloned document are car-
ried in the CDATA sections of their respective elements.
We use the escape encoding function and CDATA sec-
tion to ensure that the response data can be precisely
contained in an “application/xml” message and correctly
transmitted over the Internet.

The generation of this XML format response content
combines both the structural advantages of using DOM
and the performance and simplicity advantages of us-
ing innerHTML. This implementation ensures that the
response content can be efficiently generated on a host
browser; more importantly, it guarantees the same web-
page content can be accurately and efficiently rendered
on a participant browser. The innerHTML property is
well supported by all popular browsers and has been in-
cluded into the HTML 5 DOM specification. Note that
the whole response content generation procedure is ex-
ecuted only once for each new document content, and
the generated XML format response content is reusable
for multiple participant browsers. Also note that RCB-
Agent does not replicate HTTP cookies or the referer

request header to a participant browser. We can extend
RCB-Agent to have these capabilities, but in our experi-
ments we did not observe the necessity to do so because a
participant browser can download supplementary objects
of a webpage from a website (in the non-cache mode)
or RCB-Agent (in the cache mode) for both HTTP and
HTTPS sessions.

4.2 Ajax-Snippet

Ajax-Snippet is implemented as a set of JavaScript func-
tions. It is embedded in the head element of the initial
HTML page and sent to a participant browser as a part
of RCB-Agent’s response to a new connection request.
Ajax-Snippet uses the XMLHttpRequest object [31] to
asynchronously exchange data with RCB-Agent.

Response is Successful and�

responseXML is Loaded�

New Content?�

Clean up the Head Element of Current�

Document and Only Keep Ajax-Snippet�

No�

Yes�

Send a New Polling Request�

after a Specified Time Interval�

Set the Head Element of Current Document using New Content�

Clean up Other Useless Top Elements of the Current Document�

Set Other Top Elements of Current Document using New Content�

Figure 5: Response processing procedure of Ajax-
Snippet.

4.2.1 Ajax Request Sending

Sending Ajax requests is relatively simple for Ajax-
Snippet. The first Ajax request is sent after the initial
HTML page is loaded on a participant browser. Each
following Ajax request is triggered after the response
to the previous one is received. A new XMLHttpRe-
quest object is created to send each Ajax request. An
“onreadystatechange” event handler is registered for an
XMLHttpRequest object to asynchronously process its
readystatechange events. The XMLHttpRequest object
uses the “POST” method so that action information of a
co-browsing participant can be directly piggybacked in
an Ajax polling request. Before a request is sent out, its
Content-Length request header needs to be correctly set.

4.2.2 Ajax Response Processing

It is more challenging for Ajax-Snippet to properly
process Ajax responses and smoothly update webpage
content on a participant browser. Figure 5 illustrates
the high-level response processing procedure of Ajax-
Snippet. This procedure is implemented in the “on-
readystatechange” event handler. It is triggered when a
response is successful (HTTP status code sent by RCB-
Agent is 200) and the data transfer has been completed
(readyState is “DONE” and responseXML is loaded) for
an XMLHttpRequest. If RCB-Agent indicates “no new
content” with an empty response content, Ajax-Snippet
simply uses the JavaScript setTimeout function to send a
new polling request after a specified time interval; other-
wise, Ajax-Snippet will update the current webpage doc-
ument in which it resides, using the new content con-
tained in the responseXML document.

A new content could be either a brand new webpage
or an update to the existing webpage. To make the
content update process smooth and simple on a partic-
ipant browser, Ajax-Snippet follows a specific four-step
procedure. First, Ajax-Snippet cleans up other content

USENIX Association	 2009 USENIX Annual Technical Conference	 377

in the head element of the current document, but it al-
ways keeps itself as a “<script>” child element within
the head element of any current document. Next, Ajax-
Snippet extracts the attribute name-value lists and inner-
HTML values from the docHead element of the new con-
tent (shown in Figure 4) and appends them to the head
element of the current document. Ajax-Snippet detects
browser capability and executes this step differently to
best accommodate different browser types. For exam-
ple, since the innerHTML property of the head element
is writable in Firefox, Ajax-Snippet will directly set the
new value for it. In contrast, the innerHTML property
is read-only for the head element (and its style child el-
ement) in Internet Explore, so Ajax-Snippet will con-
struct each child element of the head element using DOM
methods (e.g., createElement and appendChild).

After properly updating the content of the head el-
ement in the above two steps, Ajax-Snippet will then
check the new content and clean up other useless top-
level elements of the current document. For example,
if the current document uses a body top-level element
while the new content contains a new webpage with a
frameset top-level element, Ajax-Snippet will remove
the body node of the current document. Finally, Ajax-
Snippet sets other attribute name-value lists and inner-
HTML values of the current document based on the data
extracted from the new content, following their order in
the XML format.

The above procedure ensures that the webpage content
on a participant browser can be accurately and smoothly
synchronized to that on the host browser. Meanwhile,
Ajax-Snippet always resides in the current webpage on a
participant browser to maintain the communication with
the host browser. After updating the current document
with the new content, Ajax-Snippet sends a new polling
request to RCB-Agent, in the same way as it does for the
“no new content” case.

It is also worth mentioning that any dynamic DOM
changes on a host browser are synchronized to a par-
ticipant browser. Since Ajax-Snippet updates the con-
tent mainly using innerHTML, the code between a pair
of “<script>” and “</script>” tags will not be exe-
cuted automatically in both Firefox and Internet Explore.
However, event handlers previously rewritten by RCB-
Agent can be triggered. The executions of these event
handlers on a participant browser will not directly update
any URL or change the DOM; they just ask Ajax-Snippet
to send action information back to the host browser.

5 Evaluations

In this section, we present the performance evaluation
and usability study of our RCB framework.

5.1 Performance Evaluation

To quantify the performance of our RCB framework, we
conducted two sets of experiments: one in a LAN envi-
ronment and the other in a WAN environment.

5.1.1 Experimental Methods

The homepages of 20 sample websites (shown in Ta-
ble 1) were used for co-browsing experiments. These
websites were chosen from the top 50 sites listed by
Alexa.com, with a few diversity-related criteria (such as
geographical location and content category) taken into
consideration.

We introduce six metrics to evaluate the real-time per-
formance of the RCB framework: M1, the time used by a
host browser to load the HTML document of a homepage
from a Web server; M2, the time used by a participant
browser to load the content of the same HTML docu-
ment from the host browser; M3, the time used by the
participant browser to download the supplementary Web
objects (of the HTML document) in the non-cache mode;
M4, the time used by the participant browser to down-
load the supplementary Web objects (of the HTML doc-
ument) in the cache mode; M5, the time used by the host
browser to generate the response content for an HTML
document; M6, the time used by the participant browser
to update its current document based on the new content
of an HTML document.

Intuitively, the metric M1 measures the download
speed of an HTML document while the metric M2 mea-
sures the synchronization speed of the HTML document.
We use M3 and M4 to determine whether using the cache
mode is beneficial to a co-browsing participant. The met-
rics M5 and M6 quantify the speed of RCB-Agent in re-
sponse content generation (i.e., the procedure illustrated
in Figure 3) and the speed of Ajax-Snippet in response
processing (i.e., the procedure illustrated in Figure 5),
respectively. User browsing action information (such as
form co-filling data) can be carried in a small-sized re-
quest or response and efficiently transmitted, so we do
not present the detailed results.

In each experimental environment, we used one host
browser and one participant browser. The polling time
interval of Ajax-Snippet was set to one second, which
we believe is small enough because users’ average think
time on a webpage is about ten seconds [16]. We co-
browsed all the 20 sample sites in the cache mode for
the first round and then in the non-cache mode for the
second round. Both browsers were directly connected
to the Internet without using any proxies. Before each
round of co-browsing, the caches of both browsers were
cleaned up. This procedure was repeated five times and
we present the average results.

378	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 6: HTML document load time in the LAN envi-
ronment.

Figure 7: HTML document load time in the WAN envi-
ronment.

5.1.2 Experimental Results

The first set of experiments were conducted in a
100Mbps Ethernet LAN environment, where the host
and participant PCs resided in the same campus network.
The second set of experiments were performed in a WAN
environment, where the host and participant PCs resided
in two geographically separated homes. Both homes
used slow speed Internet access services with 1.5Mbps
download speed and 384Kbps upload speed.

Figure 6 shows the comparison between metrics M1
and M2 in the LAN environment, and Figure 7 presents
the same comparison in the WAN environment. In the
LAN environment, for all the 20 sample sites, the val-
ues of M2 are less than 0.4 seconds, which are much
smaller than those of M1. In other words, the HTML
document content synchronization delay experienced by
the participant browser is much smaller than the time it
has to spend to directly download the HTML document
from a remote Web server. This result is expected since
the host PC and participant PC were in the same LAN. In
the WAN environment, the values of M2 become larger
than those in the LAN environment. This is mainly be-
cause the upload link speed at the host PC side was slow
(only 384Kbps). However, we can see that most values
of M2 (17 out of 20 sample sites) are still smaller than
those of M1, indicating an acceptable content synchro-
nization speed.

Figure 8: Cache mode performance gain in the LAN en-
vironment.

Index Site Name Page Size M5 non-cache M5 cache M6
(KB) (second) (second) (second)

1 yahoo.com 130.3 0.066 0.098 0.135
2 google.com 6.8 0.015 0.020 0.045
3 youtube.com 69.2 0.107 0.172 0.126
4 live.com 20.9 0.019 0.037 0.057
5 msn.com 49.6 0.079 0.145 0.119
6 myspace.com 53.2 0.085 0.097 0.126
7 wikipedia.org 51.7 0.113 0.138 0.171
8 facebook.com 23.2 0.029 0.036 0.067
9 yahoo.co.jp 101.4 0.111 0.156 0.154
10 ebay.com 50.5 0.049 0.098 0.100
11 aol.com 71.3 0.099 0.189 0.142
12 mail.ru 83.8 0.176 0.346 0.268
13 amazon.com 228.5 0.371 0.687 0.318
14 cnn.com 109.4 0.298 0.599 0.280
15 espn.go.com 110.9 0.175 0.376 0.194
16 free.fr 70.0 0.211 0.279 0.222
17 adobe.com 37.3 0.050 0.085 0.086
18 apple.com 10.0 0.029 0.056 0.118
19 about.com 35.8 0.056 0.100 0.081
20 nytimes.com 120.0 0.221 0.382 0.196

Table 1: Homepage size and processing time of 20 sites.

Figure 8 illustrates the comparison between metrics
M3 and M4 in the LAN environment. We can see that
the values of M4 are less than those of M3 for all the 20
sample sites. It means that for the participant browser,
downloading the supplementary Web objects from the
host browser is faster than retrieving them from the re-
mote Web server. This result is expected as well since the
co-browsing PCs were in the same LAN. Therefore, we
suggest to turn on the cache mode in LAN environments
so that co-browsing participants can take advantage of
the performance gain provided by cache. In the WAN
environment, co-browsing participants can still benefit
from the cache at the host side although the performance
gain is not as significant as that in the LAN environment.
We omit the details to save space.

Table 1 lists the homepage size of the sample sites and
the processing time in terms of the M5 metric for both
the non-cache mode and cache mode, and the M6 metric.
Based on the results in the table, we have the following
observations. First, the larger the HTML document size
is, the more processing time is needed. Second, RCB-
Agent can efficiently generate the response content for
an HTML document. Most pages (16 out of 20 for M5

USENIX Association	 2009 USENIX Annual Technical Conference	 379

non-cache, and 14 out of 20 for M5 cache) can be pro-
cessed in less than 0.2 seconds. Since a generated new
content can be reused by multiple co-browsing partici-
pants, this processing time on the host browser is reason-
ably small. Third, RCB-Agent needs more processing
time in the cache mode than in the non-cache mode, i.e.,
the values of M5 cache are greater than those of M5 non-
cache. This is because extra cache lookup time is spent in
the cache mode. However, this small cost is outweighed
by the benefits of using the cache-mode for co-browsing
participants, especially in LAN environments as shown
above. Finally, Ajax-Snippet can efficiently update web-
page content on a participant browser. As indicated by
the values of the M6 metric, this processing time is less
than one-third of a second for all the 20 webpages.

5.2 Usability Evaluation

To measure whether our RCB framework is helpful and
easy to use, we conducted a usability study based on two
real co-browsing scenarios: (1) coordinating a meeting
spot via Google Maps, and (2) online co-shopping at
Amazon.com. In the remainder of this section, we first
introduce these two scenarios and explain why we chose
them. We then present and analyze the usability study.

5.2.1 Coordinating a Meeting Spot via Google Maps

Suppose Alice is going to visit New York City. She plans
to meet her local cousin Bob at the Cartier jewelry store
on the Fifth Avenue in Manhattan to buy a watch. Bob
wants to use Google Maps to show Alice the direction to
the store. Since the neighborhood around the Fifth Av-
enue in Manhattan is extremely crowded, Bob uses our
RCB tool to give Alice accurate directions to the exact
meeting spot.

Bob hosts a co-browsing session and Alice joins the
session. Bob then searches the store address using
Google Maps. He may zoom in and out of the map, drag
the map, and show different views of the map. What-
ever content Bob is seeing on his browser is instantly
and accurately synchronized to Alice’s browser. Figure 9
shows one snapshot of the destination map shown on Al-
ice’s browser. Bob may even use the street-view Flash of
Google Maps to show Alice panoramic street-level views
of the meeting spot. Note that our current implementa-
tion does not support the synchronization of users’ ac-
tions on a Flash, so Alice and Bob can only individually
operate on a Flash. During the session, they may use
an instant message tool (e.g., MSN Messenger) or tele-
phone as the supplementary communication channel to
mediate actions. Eventually Alice and Bob come to the
agreement that they will meet outside the four red roof
show-windows of Cartier on the Fifth Avenue side.

Figure 9: Snapshot of the destination map shown on Al-
ice’s browser.

This scenario exemplifies that our RCB framework
can efficiently support rich Web contents and commu-
nication intensive webpages. Google Maps actually also
uses Ajax to asynchronously retrieve small images (usu-
ally in the size of 256 by 256 pixels) and smoothly up-
date the map content grid by grid. With our RCB tool,
one user’s view is further synchronized accurately and
smoothly to another user’s browser, achieving real-time
collaborative browsing. In general, the URL in the ad-
dress bar remains the same even if the webpage content
has been updated by Ajax and many other DHTML (Dy-
namic HTML) techniques. Therefore, without RCB, the
map content changes caused by Bob’s browsing actions
such as zooming and panning cannot be synchronized to
Alice by simply sharing URLs.

5.2.2 Online Co-shopping at Amazon.com

Bob is going to buy a present for his cousin Alice. Bob
hosts a co-browsing session and Alice joins the session.
They co-browse a number of webpages at Amazon.com
to select a newly-released MacBook Air laptop favored
by Alice. Both Alice and Bob can type in, search and
click on a webpage. Bob’s browsing requests will be di-
rectly sent to Amazon.com, but Alice’s action informa-
tion such as searching or clicking is first sent back to the
RCB-Agent on Bob’s browser and then sent out to Ama-
zon.com. After they made the decision, Bob adds the
selected laptop to the shopping cart and uses his account
to start the checkout procedure. Bob can ask Alice to co-
fill some forms (e.g., the shipping address form) using
her information, and he finishes the rest of the checkout
procedure. Figure 10 shows the snapshot of the form fill-
ing window on Bob’s browser, on which the form data is
sent back from Alice’s browser.

The online shopping scenario verifies that our RCB
tool can: (1) correctly synchronize webpages with very

380	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 10: Snapshot of the form filling window on Bob’s
browser.

complicated layout and dynamically-generated content,
(2) allow anyone in a co-browsing session to initiate
browsing actions and navigate to new pages, (3) support
co-browsing features such as form co-filling and mouse
clicking, and (4) support session-protected webpages.

5.2.3 Usability Study

The main objective of the usability study is to measure
whether our RCB tool is helpful and easy to use.

(1) Test subjects: A total of 20 adults, 11 females and
9 males, participated as users in our study. These test
subjects were undergraduate and graduate students who
were randomly recruited from nine degree programs at
our university. Eighteen test subjects were between ages
of 18 and 30, and two were over 30 years old. Nineteen
test subjects were using the Internet daily, and one was
using it weekly. We did not screen test subjects based on
experience using Firefox because they simply had to per-
form tasks (such as entering URLs and interacting with
webpages) that are common to different browsers. We
also did not screen test subjects based on experience us-
ing Google Maps or shopping at Amazon.com.

(2) Procedure and Tasks: We combined the two
scenarios (Google Maps and Amazon.com) introduced
above into a single co-browsing session. Each session
consists of 20 tasks as listed in Table 2. Ten tasks were
performed by Bob and ten tasks were performed by Al-
ice, and Alice and Bob represent two role-players regard-
less of their actual genders. The 20 test subjects were
randomly grouped into 10 pairs. We asked each pair of
test subjects to complete two sessions. In the first ses-
sion, we randomly asked one test subject to act as Alice
and the other test subject to act as Bob. After the two test
subjects finished the 20 tasks in a session, they switched
their roles to perform the 20 tasks in the second session.

The two test subjects in a pair were asked to use two
computers located at different locations either in our de-

Task# Brief Task Description

T1-B Bob starts a RCB co-browsing session using a Firefox browser.
T1-A Alice types the URL told by Bob in a Firefox browser to join the session.
T2-B Bob searches the location “653 5th Ave, New York” using Google Maps.
T2-A Alice tells Bob that the map of the location is automatically shown on

her browser.
T3-B Bob zooms in and out of the map, drags up/down/left/right the map.
T3-A Alice tells Bob that the map is automatically updated on her browser.
T4-B Bob clicks to the street-view of the searched location.
T4-A Alice tells Bob that the street-view is also automatically shown on her

browser.
T5-B Bob tells Alice to meet outside the four red roof show-windows of Cartier

shown in the street-view.
T5-A Alice finds the four red roof show-windows of Cartier and agrees with

the meeting spot.
T6-B Bob continues to visit the homepage of Amazon.com website.
T6-A Alice tells Bob that the homepage of Amazon.com is automatically

shown on her browser.
T7-B Bob searches and clicks to find a MacBook Air laptop at the Ama-

zon.com website.
T7-A Alice tells Bob that the pages are automatically updated on her browser.
T8-B Bob asks Alice to search and click on the pages shown on her browser to

choose a different MacBook Air laptop.
T8-A Alice chooses a different MacBook Air laptop and tells Bob that this

laptop is her final choice.
T9-B Bob adds the selected laptop to the shopping cart and starts the checkout

procedure.
T9-A Alice fills the shipping address form shown on her browser.
T10-B Bob finishes the rest of the checkout procedure.
T10-A Alice leaves the co-browsing session.

Table 2: The 20 tasks used in a co-browsing session. Al-
ice and Bob are two role-players. Bob performs ten tasks
from T1-B to T10-B, and Alice performs ten tasks from
T1-A to T10-A. Bob and Alice use a voice supplemen-
tary communication channel to mediate actions.

partment or in the library of university. We pre-installed
RCB-Agent to the Firefox browser on Bob’s computer
so that we can keep the focus of the study on using the
RCB tool itself. Before a pair of test subjects started per-
forming the tasks, we explained the main functionality of
RCB and how to use it. We also gave them an instruction
sheet that describes the two scenarios and lists the tasks
to be completed by a role-player.

(3) Data Collection: We collected data in two ways:
through observation and through two questionnaires.
During each co-browsing session, two experimenters sat
with each test subject to observe the progress of the
tasks. After completing two co-browsing sessions, each
test subject was asked to answer a five-point Likert-scale
(Strongly disagree, Disagree, Neither agree nor disagree,
Agree, Strongly Agree) [27] questionnaire. The 16 ques-
tions in this questionnaire are listed in Table 3. In addi-
tion to this close-ended questionnaire, each test subject
was also asked to answer an open-ended questionnaire to
solicit additional feedback. After finishing the two ques-
tionnaires and before leaving, each test subject was given
a $5 gift card as compensation for the participation.

(4) Results and Analysis: Through observation, we
found that the 10 pairs of test subjects successfully com-
pleted all their co-browsing sessions. Each pair of test
subjects took an average of 10.8 minutes to complete

USENIX Association	 2009 USENIX Annual Technical Conference	 381

Perceived Usefulness

Q1-P: It is helpful to use RCB to coordinate a meeting spot via Google Maps.
Q1-N: It is useless to use RCB to coordinate a meeting spot via Google Maps.
Q2-P: It is helpful to use RCB to perform online co-shopping at Amazon.com.
Q2-N: It is useless to use RCB to perform online co-shopping at Amazon.com.
Ease-of-use as a co-browsing host

Q3-P: It is easy to use RCB to host the Google Maps scenario.
Q3-N: It is hard to use RCB to host the Google Maps scenario.
Q4-P: It is easy to use RCB to host the online co-shopping scenario.
Q4-N: It is hard to use RCB to host the online co-shopping scenario.
Ease-of-use as a co-browsing participant

Q5-P: It is easy to participate in the RCB Google Maps scenario.
Q5-N: It is hard to participate in the RCB Google Maps scenario.
Q6-P: It is easy to participate in the RCB online co-shopping scenario.
Q6-N: It is hard to participate in the RCB online co-shopping scenario.
Potential Usage

Q7-P: It would be helpful to use RCB on other co-browsing activities.
Q7-N: It wouldn’t be helpful to use RCB on other co-browsing activities.
Q8-P: I would like to use RCB in the future.
Q8-N: I wouldn’t like to use RCB in the future.

Table 3: The 16 close-ended questions in four groups.
Test subjects were not aware of the groupings. From Q1-
P to Q8-P are eight positive Likert questions, and from
Q1-N to Q8-N are eight correspondingly inverted nega-
tive Likert questions. These questions were presented to
a test subject in random order to reduce response bias.

two sessions. Such a 100% success ratio may be at-
tributable to two main reasons. One is that all the 20
test subjects were frequent Internet users and they might
be familiar with online shopping and Web mapping ser-
vice sites. The other reason is that RCB does not add
any new user interface artifact and users simply use reg-
ular Web browsers, visit regular websites, and perform
regular browsing activities.

A summary of the responses to the 16 close-ended
questions is presented in Table 4. Since the data col-
lected are ordinal and do not necessarily have interval
scales, we used the median and mode to summarize the
data and used the percentages of responses to express
the variability of the results. Overall, the test subjects
were very enthusiastic about this RCB tool. The median
and mode responses are positive Agree for all the ques-
tions. In terms of the perceived usefulness (Q1-P, Q1-
N, Q2-P, Q2-N), 52.5% of responses agree and 40.0%
of responses strongly agree that it is helpful to use RCB
in both the Google Maps scenario and the Amazon.com
scenario.

In terms of the ease-of-use as a co-browsing host (Q3-
P, Q3-N, Q4-P, Q4-N), 50.0% of responses agree and
40.0% of responses strongly agree that it is easy to use
RCB to host the Google Maps scenario, and 62.5% of re-
sponses agree and 27.5% of responses strongly agree that
it is easy to use RCB to host the online co-shopping sce-
nario. In terms of the ease-of-use as a co-browsing par-
ticipant (Q5-P, Q5-N, Q6-P, Q6-N), 62.5% of responses
agree and 35.0% of responses strongly agree that it is
easy to participate in the RCB Google Maps scenario,
and 57.5% of responses agree and 35.0% of responses

Strongly Disagree Neither agree Agree Strongly Median Mode

disagree nor disagree Agree

Q1-P 0.0% 0.0% 7.5% 52.5% 40.0% Agree Agree
Q2-P 0.0% 0.0% 7.5% 52.5% 40.0% Agree Agree
Q3-P 5.0% 0.0% 5.0% 50.0% 40.0% Agree Agree
Q4-P 0.0% 2.5% 7.5% 62.5% 27.5% Agree Agree
Q5-P 0.0% 2.5% 0.0% 62.5% 35.0% Agree Agree
Q6-P 0.0% 5.0% 2.5% 57.5% 35.0% Agree Agree
Q7-P 0.0% 2.5% 5.0% 55.0% 37.5% Agree Agree
Q8-P 0.0% 0.0% 15.0% 55.0% 30.0% Agree Agree

Table 4: Summary of the responses to the 16 close-ended
questions. To provide statistical coherence, we inverted
the scores to the eight negative Likert questions (Q1-N
to Q8-N) about the neutral mark (i.e., Strongly agree to
Strongly disagree, Agree to Disagree, and vice versa) and
then merged them with the scores to the corresponding
positive Likert questions (Q1-P to Q8-P).

strongly agree that it is easy to participate in the RCB on-
line co-shopping scenario. These two groups of results
also indicate that participating a co-browsing session is
slightly easier than hosting a session.

In terms of the potential usage (Q7-P, Q7-N, Q8-P, Q8-
N), 55.0% of responses agree and 37.5% of responses
strongly agree that it would be helpful to use RCB on
other co-browsing activities, and 55.0% of responses
agree and 30.0% of responses strongly agree that the test
subject would like to use RCB in the future.

In our open-ended questionnaire, the test subjects
were asked to write down whatever they think about
the RCB tool. One test subject did not write anything,
but nineteen test subjects wrote many positive comments
such as “cool”, “it helps cooperation”, “useful”, “simple
operation”, and “love it, fascinating and useful”. Mean-
while, some test subjects also wrote a few suggestions
and expectations to the RCB tool. For example, two test
subjects suggested that indicators of the other person’s
connection and status may be needed. Four test sub-
jects mentioned that it would be great if actions in the
Google Maps street-view Flash could also be synchro-
nized. Seven test subjects expressed that on some pages
the wait time is a bit long, but it is not bad at all.

In summary, the results of the usability study clearly
demonstrate that RCB is very helpful and easy to use. It
is a simple and practical real-time collaborative brows-
ing tool that people would like to use in their everyday
browsing activities.

6 Conclusion

We have presented a simple and practical framework
for Real-time Collaborative Browsing (RCB). Leverag-
ing the power of Ajax techniques and the end-user ex-
tensibility of modern Web browsers, RCB enables real-
time collaboration among Web users without the involve-
ment of any third-party platforms, servers, or proxies.

382	 2009 USENIX Annual Technical Conference	 USENIX Association

A co-browsing host only needs to install an RCB-Agent
browser extension, and co-browsing participants just use
their regular JavaScript-enabled Web browsers. We de-
tailed the design and the Firefox version implementation
of the RCB framework. We measured the real-time per-
formance of RCB through extensive experiments, and we
validated its high quality co-browsing capabilities using
a formal usability study. The evaluation results demon-
strate that our RCB framework is simple, practical, help-
ful and easy to use.

In our future work, we plan to explore co-browsing
in mobile computing environments. We have recently
ported our RCB-Agent implementation to the Fennec
Web browser, which is the mobile version of Firefox.
Our preliminary experiments on a Nokia N810 Internet
tablet show that RCB-Agent can also efficiently support
co-browsing using mobile devices. Currently we are ap-
plying our RCB techniques to enable a few interesting
mobile applications. We also plan to implement RCB-
Agent on other Web browsers. Enabling direct interac-
tions between Web end-users can create many interesting
interactive Internet applications. We believe that further
exploring this end-user direct interaction capability and
its applications is an important future research direction.

7 Acknowledgments

We thank the anonymous reviewers and our shepherd
Niels Provos for their insightful comments and valuable
suggestions. We also thank Professor Peter M. Vish-
ton of the Department of Psychology at the College of
William and Mary for his generous help in usability
study. This work was partially supported by NSF grants
CNS-0627339 and CNS-0627340.

References

[1] ANEIROS, M., AND ESTIVILL-CASTRO, V. Usability of Real-
Time Unconstrained WWW-Co-Browsing for Educational Set-
tings. In Proc. of the IEEE/WIC/ACM International Conference

on Web Intelligence (2005), pp. 105–111.

[2] APPELT, W. WWW Based Collaboration with the BSCW Sys-
tem. In Proc. of the 26th Conference on Current Trends in Theory
and Practice of Informatics (1999), pp. 66–78.

[3] ATTERER, R., SCHMIDT, A., AND WNUK, M. A Proxy-Based
Infrastructure for Web Application Sharing and Remote Collab-
oration on Web Pages. In Proc. of the IFIP TC13 Interantional

Conference on Human-Computer Interaction (2007), pp. 74–87.

[4] CABRI, G., LEONARDI, L., AND ZAMBONELLI, F. A proxy-
based framework to support synchronous cooperation on the
Web. Softw. Pract. Exper. 29, 14 (1999), 1241–1263.

[5] CHANG, M. L. CoBrowse Firefox Add-ons. https://addons.
mozilla.org/en-US/firefox/addon/1469.

[6] COLES, A., DELIOT, E., MELAMED, T., AND LANSARD, K. A
framework for coordinated multi-modal browsing with multiple
clients. In Proc. of the WWW (2003), pp. 718–726.

[7] ESENTHER, A. W. Instant Co-Browsing: Lightweight Real-
time Collaborative Web Browsing. In Proc. of the WWW (2002),
pp. 107–114.

[8] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-
INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext
Transfer Protocol – HTTP/1.1, RFC 2616, 1999.

[9] GRAHAM, T. C. N. GroupScape: Integrating Synchronous
Groupware and the World Wide Web. In Proc. of the IFIP

TC13 Interantional Conference on Human-Computer Interaction

(1997), pp. 547–554.
[10] GRAHAM, T. C. N., URNES, T., AND NEJABI, R. Efficient dis-

tributed implementation of semi-replicated synchronous group-
ware. In Proc. of the ACM UIST (1996), pp. 1–10.

[11] GREENBERG, S., AND ROSEMAN, M. GroupWeb: a WWW
browser as real time groupware. In Proc. of the ACM CHI Com-

panion (1996), pp. 271–272.
[12] HAN, R., PERRET, V., AND NAGHSHINEH, M. WebSplitter:

a unified XML framework for multi-device collaborative Web
browsing. In Proc. of the ACM CSCW (2000), pp. 221–230.

[13] ICHIMURA, S., AND MATSUSHITA, Y. Lightweight Desktop-
Sharing System for Web Browsers. In Proc. of the 3rd Interna-

tional Conference on Information Technology and Applications

(2005), pp. 136–141.
[14] JACOBS, S., GEBHARDT, M., KETHERS, S., AND RZASA, W.

Filling HTML forms simultaneously: CoWeb architecture and
functionality. Comput. Netw. ISDN Syst. 28, 7-11 (1996), 1385–
1395.

[15] KOBAYASHI, M., SHINOZAKI, M., SAKAIRI, T., TOUMA, M.,
DAIJAVAD, S., AND WOLF, C. Collaborative customer services
using synchronous Web browser sharing. In Proc. of the ACM

CSCW (1998), pp. 99–109.
[16] MAH, B. A. An Empirical Model of HTTP Network Traffic. In

Proc. of the INFOCOM (1997), pp. 592–600.
[17] RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R.,

AND HOPPER, A. Virtual network computing. IEEE Internet

Computing 2, 1 (1998), 33–38.
[18] ROSEMAN, M., AND GREENBERG, S. Building real-time group-

ware with GroupKit, a groupware toolkit. ACM Trans. Comput.-

Hum. Interact. 3, 1 (1996), 66–106.
[19] SAKAIRI, T., SHINOZAKI, M., AND KOBAYASHI, M. Collab-

orationFramework: A Toolkit for Sharing Existing Single-User
Applications without Modification. In Proc. of the Asian Pacific

Computer and Human Interaction (1998), pp. 183–188.
[20] Ajax (programming).

http://en.wikipedia.org/wiki/Ajax (programming).
[21] Browser Statistics.

http://www.w3schools.com/browsers/browsers stats.asp.
[22] Cobrowse & Chat for Rich Ajax Applications - Backbase.

http://www.backbase.com/products/ajax-applications/cobrowse.
[23] Document Object Model (DOM). http://www.w3.org/DOM.
[24] Firefox Extensions. http://developer.mozilla.org.
[25] http://point-at-infinity.org.
[26] Internet Explorer Browser Extensions.

http://msdn.microsoft.com/en-us/library/aa753587(VS.85).aspx.
[27] Likert scale. http://en.wikipedia.org/wiki/Likert scale.
[28] PageShare. https://www.pageshare.com/web/products/index.html.
[29] Port forwarding. http://en.wikipedia.org/wiki/Port forwarding.
[30] SamePlace. http://sameplace.cc/wiki/shared-web-applications.
[31] XMLHttpRequest. http://www.w3.org/TR/XMLHttpRequest.
[32] XMPP Standards Foundation. http://www.xmpp.org.
[33] XPCOM. http://www.xulplanet.com/references/xpcomref.

USENIX Association	 2009 USENIX Annual Technical Conference	 383

The Beauty and the Beast: Vulnerabilities in Red Hat’s Packages

Stephan Neuhaus
Dipartimento di Informatica e Telecomunicazioni

Università degli Studi di Trento
I-38100 Trento, Italy

Stephan.Neuhaus@disi.unitn.it

Thomas Zimmermann
Microsoft Research
One Microsoft Way

Redmond, Washington, USA
tz@acm.org

Abstract
In an empirical study of 3241 Red Hat packages, we
show that software vulnerabilities correlate with depen-
dencies between packages. With formal concept analy-
sis and statistical hypothesis testing, we identify depen-
dencies that decrease the risk of vulnerabilities (“beau-
ties”) or increase the risk (“beasts”). Using support vec-
tor machines on dependency data, our prediction models
successfully and consistently catch about two thirds of
vulnerable packages (median recall of 0.65). When our
models predict a package as vulnerable, it is correct more
than eight times out of ten (median precision of 0.83).
Our findings help developers to choose new dependen-
cies wisely and make them aware of risky dependencies.

1 Introduction

The Federal Bureau of Investigation (FBI) estimates that
security incidents cost the U.S. industry at least 67 billion
dollars every year, according to a joint study [14] with
the Computer Security Institute in 2005. While keeping
a single program secure is already difficult, software se-
curity assurance for a large software distribution is a Her-
culean task. For example, the Red Hat distribution con-
tains more than three thousand software packages,1 each
potentially vulnerable. The challenge for Red Hat is to
stay on top of the flood of patches and new versions. In
particular, they need to prioritize work so that available
resources can be spent on packages that need attention
most urgently; for example, because a critical vulnera-
bility has been fixed and the patched version needs to be
distributed.

The efforts by Red Hat are complicated by depen-
dencies between packages. For example, the package
mod php needs to be installed before package mediawiki
can be installed, which is why mediawiki depends on
mod php. Sometimes dependencies form long chains or
are conflicting, which can cause frustration among users,
also known as dependency hell [5].

In this paper, we show that vulnerabilities correlate
with dependencies between software packages. For ex-
ample, when depending on Python the risk of an applica-
tion being vulnerable decreases, while the risk increases
when depending on PHP or Perl. In addition, we demon-
strate how to use dependencies to build prediction mod-
els for vulnerabilities. More specifically, our contribu-
tions are as follows:

1. Empirical evidence that vulnerabilities correlate
with dependencies. Our study of 3241 Red Hat
packages is the largest study of vulnerabilities ever
conducted in terms of number of investigated appli-
cations.

2. Identification of dependencies with positive or neg-
ative impact on vulnerabilities. We combine formal
concept analysis with statistical hypothesis testing
to find dependencies that increase the chance of a
package having vulnerabilities—we call such de-
pendencies “beasts”. We also find dependencies
that decrease the risk of vulnerabilities—we call
such dependencies “beauties” (Section 3).

3. Statistical models to predict vulnerabilities. We use
support vector machines on Red Hat dependency
data to predict which packages will have vulnerabil-
ities (classification) and which packages will have
the most vulnerabilities (ranking). For classification
models, the median precision is 0.83 and the me-
dian recall is 0.65. For ranking, the median Spear-
man correlation is 0.58. These numbers show that
the dependencies of a package can indeed predict its
vulnerability (Section 4).

4. Techniques to predict fragile packages. In early
2008, we predicted that 25 packages will turn vul-
nerable. In the subsequent six months, vulnerabili-
ties were discovered in 9 out the 25 packages (Sec-
tion 5).

384	 2009 USENIX Annual Technical Conference	 USENIX Association

Understanding how dependencies correlate with vulner-
abilities is important to build safe software. When build-
ing new applications, one can choose which packages
are dependable. For example, knowing that Python or
Gnome applications have been less prone to vulnerabili-
ties in the past, helps to make the right decisions and to
minimize risk early. Even if the dependency is unavoid-
able, one can plan for the increased risk by allocating
more resources for quality assurance.

When maintaining existing applications, being aware
of dependencies that likely lead to vulnerabilities helps
to prioritize resources. Instead of tracking changes and
patches for all packages the application depends on, one
only needs to track the risky packages.

In the remainder of this paper, we first describe how
the data for our experiments was collected (Section 2).
We then provide evidence for the correlation of depen-
dencies with vulnerabilities (Section 3) and show how to
build models to predict vulnerable packages (Section 4).
Next, we explain how to make predictions more descrip-
tive and how to identify fragile packages, i.e., packages
that have not yet had vulnerabilities, but soon will have
(Section 5). We continue with some hypotheses on why
dependencies may influence vulnerabiities (Section 6)
and conclude with related work (Section 7) and a dis-
cussion of consequences (Section 8).

2 Data Collection

For the study in this paper, we selected the Red Hat Linux
distribution, which consists of several hundred applica-
tions bundled in software packages, where each pack-
age is in a specific version. Packages are provided in
the Red Hat Package Manager (RPM) file format that al-
lows easy download and installation using specific tools.
In August 2008, there were 3241 RPMs available from
Red Hat.2

To protect its customers, Red Hat issues Red Hat Se-
curity Advisories (RHSAs) on the Internet [29]. RHSAs
describe vulnerabilities that have been found in pack-
ages,3 and how to prevent them. A typical RHSA is
shown in Figure 1. On the bottom of every RHSA is a
list of packages that need to be updated to remove the de-
scribed vulnerability from the system. We refer to this as
a package having an RHSA. By iterating over all RHSAs,
we collected all packages that were linked to vulnerabil-
ities because they had to be updated as part of an RHSA.
We also counted for each package by how many RHSAs
it was affected; we use this count as the number of vul-
nerabilities for a package.

The first RHSA was issued in January 2000. Up un-
til January 2008, there were 1468 RHSAs, which are the
primary dataset used for most experiments in this paper
(see also Figure 2). The following seven months saw an-

General information

Updated packages

(such as severity, affected products)

(for each affected product and platform)

Figure 1: Typical Red Hat Security Advisory.

1468 RHSAs 178 RHSAs
2000-01 2008-01 2008-08

Testing set

for Sections

5.2 and 5.3

Primary dataset

for this paper

(Sections 3 to 5)

Figure 2: RHSAs used in this paper.

other 178 RHSAs, which we will use as testing set for
the prediction of fragile packages (non-vulnerable pack-
ages that turn vulnerable) in Sections 5.2 and 5.3. We
consider a total of 1646 RHSAs for this paper.4

For each package, the RPM file describes which pack-
ages are required to be installed. These dependencies
are stored in so-called tags (type-value pairs) in the RPM
header. Each tag with the type RPMTAG REQUIRENAME

specifies the name of a dependency.5 Extracting de-
pendency information from RPM files is straightforward
with the functionality provided by the RPM Library
(rpmlib) [3]. For our experiments Josh Bressers of the
Red Hat Security Response Team generously provided
us with a list of dependencies.

We represent the dependency and vulnerability data as
follows. If there are n packages in all, dependency data
is represented by an n×n matrix M = m jk, where

m jk =


1 if package j depends on package k;
0 otherwise.

(1)

USENIX Association	 2009 USENIX Annual Technical Conference	 385

Distribution of RHSAs

Number of RHSAs

N
u

m
b

er
 o

f
P

ac
k

ag
es

0 8 18 30 41 73 88 112 129

1
1

0
1

0
0

6
0

0

Figure 3: Distribution of RHSAs

The row vector m j is also called the dependency vector.
The number of dependencies of a package varies from
0 (typically development packages that contain header
files and therefore do not depend on other packages) to
a staggering 96 (for kdebase), with a median number of
4. The number of dependencies per package looks to be
exponentially distributed with a long tail.

Vulnerability information is represented by a vector v
with n components where

vk = number of known vulnerabilities in package k.
(2)

We call v j the associated vulnerability value for a de-
pendency vector m j. At the time of writing, there were
1133 packages with and 2108 packages without vulner-
abilities. The vulnerable packages were updated a to-
tal of 7313 times because of security flaws. The num-
ber of updates (RHSAs) per package looks to be ex-
ponentially distributed with a long tail (see Figure 3;
note the logarithmic y-axis): Many packages needed to
be updated only once (332 packages), but 801 pack-
ages needed more than one update. The most frequently
updated packages were kernel and kernel-doc with 129
RHSAs. The next most frequently mentioned package
was kernel-smp with 112 RHSAs. The packages php-
pgsql, php, php-ldap, php-mysql, php-odbc, and php-
imap were mentioned in 51 RHSAs.

3 Dependencies and Vulnerabilities

In a first experiment, we applied formal concept analy-
sis (FCA) [10] to the dependency and vulnerability data.
FCA takes a matrix as input (in our case M) and returns

all maximum blocks. Each block B consists of two sets
of packages O and A. The set O contains the packages
that depend on all packages in set A, or more formally:6

∀o ∈ O : ∀a ∈ A : moa = 1

Being a maximum block means, there is no true superset
of O for which each package depends on all packages
in A and there is no true superset of A on which each
package in O depends on.

O ⊃ O: ∀o ∈ O: ∀a ∈ A : moa = 1

A ⊃ A : ∀o ∈ O : ∀a ∈ A: moa = 1

In total, FCA identifies 32,805 blocks in the Red Hat
dataset (for a subset see Figure 4). As an example for
a block consider B2 = (O2,A2):

O2 = {PyQt, ark, arts, avahi-qt3, cervisia,
chromium, . . . , 155 packages in total}

A2 = {glibc, qt} (3)

Here each of the 155 packages in O2 depends on glibc
and qt, which are the packages in A2. Some of the pack-
ages in O2 also depend on additional packages; however,
these dependencies are captured by separate, more spe-
cific blocks. Consider B3 = (O3,A3) as an example for a
block that is more specific than B2. Block B3 additionally
takes the dependency xorg-x11-libs into account:

O3 = {PyQt, arts, doxygen-doxywizard, k3b, kdbg,
kdeaddons, . . . , 34 packages in total}

A3 = {glibc, qt, xorg-x11-libs}
(4)

Out of the 155 packages that depend on glibc and qt, only
34 also depend on xorg-x11-libs. Note that between B2
and B3 the set of dependencies grows (A2 ⊂ A3) and the
set of packages shrinks (O2 ⊃ O3).

FCA records specialization relationships between
blocks such as between B2 and B3 in a concept lattice
(Figure 4). We combine this lattice with a statistical
analysis to identify dependencies that correlate with vul-
nerabilities. To assess the vulnerability risk of a block
B = (O,A), we measure the percentage of packages in O
that are vulnerable, i.e., have a non-zero entry in the vul-
nerability vector v. This percentage indicates the risk of
being vulnerable when depending on the packages in the
set A.

risk(B = (O,A)) =
|{o | o ∈ O,vo > 0}|

|O|

In Figure 4, the risk of B2 is 120/155 = 77.4% and the
risk of B3 is 27/34 = 79.4%. The top most block B0 in
the lattice represents all Red Hat packages because when

386	 2009 USENIX Annual Technical Conference	 USENIX Association

B1

B0

B4

B3

B2

glibc, qt, xorg-x11-libs

glibc, qt

77.4% vulnerable

(120 out of 155 pkgs)

79.4% vulnerable

(27 out of 34 pkgs)

glibc

33.5% vulnerable

(692 out of 2066 pkgs)

∅

32.9% vulnerable

(1065 out of 3241 pkgs)

kdelibs

85.6% vulnerable

(143 out of 167 pkgs)

...

......

glibc

+0.6%

qt

+43.9%

kdelibs

+52.7%

xorg-x11-libs

+2.0%

Packages O

Dependencies A

...

......

Figure 4: Part of the Red Hat concept lattice.

A = /0, every package o satisfies the condition ∀a ∈ A :
moa = 1. Thus when nothing is known about their de-
pendencies the risk of packages is 1065/3241 = 32.9%.

Both B2 and B3 have a substantially higher risk than
B0, which means that depending on glibc, qt, and xorg-
x11-libs increases the chances of a package being vulner-
able. To find out which dependencies matter most, we
traverse the concept lattice and test whether the changes
in risk are statistically significant. We use χ2 tests if the
entries in the corresponding contingency table are all at
least 5, and Fischer Exact Value tests if at least one entry
is 4 or less [34, 37].

For example between B0 and B1 there is no statistically
significant change in risk; in other words, a dependency
on glibc has little impact on packages being vulnerable.
However, risk significantly increases between B1 and B2
by 43.9 percentage points, thus depending on qt when
already depending on glibc correlates with the vulnera-
bility of packages. Risk does not change significantly
between B2 and B3, which indicates that xorg-x11-libs
does not increase the risk any further.

Note that in the example, qt increases the risk only
when there is a dependency on glibc. We call such a
condition the context C. The context can be empty; for
example in Figure 4, the block B4 shows that without
any context, a dependency on kdelibs increases the risk
of vulnerabilities by 52.9 percent points.

To find the patterns reported in this paper, we checked
for each edge e = (Bi,B j) in the concept lattice that

• risk(Bi) = risk(B j) at a significance level of p =
0.01 (with χ2 and Fischer Exact Value tests); and

• we have not reported a more general context for the
dependency before. For example, if we find that
dependency qt increases the risk for both contexts
C1 = {glibc} and C2 = {glibc, libstdc++}, we only
report the more general one, which is C1 in this case.

In total we checked 121,202 edges, for which we found
195 patterns. In this paper, we report only patterns with
at least 65 supporting packages (=2% of all Red Hat
packages). Table 1 shows the “beast” dependencies that
increase the risk of vulnerabilities by at least 20 percent
points. In contrast, Table 2 contains the “beauty” depen-
dencies that decrease the risk of vulnerabilities by at least
16.6 percent points.

Several of the beasts in Table 1 are related to secu-
rity and cryptography, for example, krb5-libs, pam and
openssl. One possible reason could be that applications
that depend on these packages have to protect sensitive
data and thus are more likely to be the target of an attack.
Many graphics libraries are beasts as well, for example,
libmng, libjpeg, and libpng (related to image file formats)
as well as freetype and fontconfig (related to fonts). Of-
ten such libraries are misused by developers and buffer
overflows are introduced into an application.

The most notable beauty in Table 2 is python, which
indicates that Python applications are less likely to be
vulnerable. One may ask what about the perl package?
Here we found two beast rules, which are listed below
because they lacked support count to be included in Ta-
ble 1.

Context Dep Count Risk Count Risk Delta

! perl-CGI 3241 0.329 7 0.857 0.529

libxml2 perl 194 0.237 25 0.480 0.243

Context Context+Dep

Applications that depend on perl-CGI or use perl in ad-
dition to libxml2 are more likely to be exposed to vul-
nerabilities. However, we advise caution when interpret-
ing these results; Python applications are not guaranteed
to be better or safer than Perl applications. Whether an
application is vulnerable is not solely determined by de-
pendencies. The experience of developers and the devel-
opment process are other factors with a strong influence
on vulnerabilities.

Another “religious” comparison is between the two ri-
val desktop managers KDE and Gnome. Here, a depen-
dency to kdelibs is listed as a beast, while dependencies
to gnome-keyring and gnome-libs are listed as beauties.
Again, we advise caution when interpreting these results.

USENIX Association	 2009 USENIX Annual Technical Conference	 387

Table 1: The Beasts in Red Hat.

Context Dependency Count Risk
Count

!65
Risk

Delta

!0.200

! openoffice.org-core 3241 0.329 72 1.000 0.671

! kdelibs 3241 0.329 167 0.856 0.528

! cups-libs 3241 0.329 137 0.774 0.445

! libmng 3241 0.329 134 0.769 0.440

glibc qt 2066 0.335 155 0.774 0.439

glibc krb5-libs 2066 0.335 108 0.769 0.434

! e2fsprogs 3241 0.329 87 0.759 0.430

! pam 3241 0.329 116 0.733 0.404

! openssl 3241 0.329 313 0.719 0.390

! freetype 3241 0.329 251 0.645 0.317

! libjpeg 3241 0.329 238 0.639 0.310

! gcc-c++ 3241 0.329 78 0.628 0.300

! libpng 3241 0.329 254 0.626 0.297

! libstdc++ 3241 0.329 360 0.569 0.241

glibc fontconfig 2066 0.335 66 0.576 0.241

! grep 3241 0.329 66 0.545 0.217

! fileutils 3241 0.329 94 0.543 0.214

! libgcc 3241 0.329 391 0.535 0.206

(92 rules below threshold)

Context Context+Dependency

Table 2: The Beauties in Red Hat.

Context Dependency Count Risk
Count

 !65
Risk

Delta

"-0.166

glibc xorg-x11-server-Xorg 2066 0.335 66 0.015 -0.320

compat-glibc glibc zlib audiofile (*) 385 0.613 103 0.359 -0.254

glibc glibc-debug zlib audiofile (*) 410 0.590 94 0.351 -0.239

! gnome-keyring 3241 0.329 69 0.101 -0.227

! libglade2 3241 0.329 90 0.111 -0.217

! python 3241 0.329 190 0.132 -0.197

XFree86-libs glibc imlib 493 0.469 103 0.272 -0.197

XFree86-libs glibc glibc-debug audiofile (*) 397 0.521 104 0.327 -0.194

glibc zlib libSM 700 0.456 99 0.263 -0.193

glibc zlib gnome-libs 700 0.456 89 0.281 -0.175

! libgnomecanvas 3241 0.329 104 0.154 -0.175

XFree86-libs glibc zlib audiofile (*) 324 0.531 111 0.360 -0.171

XFree86-libs glibc esound (*) 493 0.469 114 0.298 -0.170

glibc zlib libart_lgpl (*) 700 0.456 135 0.289 -0.167

compat-glibc glibc gnome-libs 1090 0.439 84 0.274 -0.166

(70 rules below threshold)

Context Context+Dependency

Some dependencies are both beasts and beauties, but
within different contexts. For example consider the fol-
lowing two rules for the package esound:

Context Dep Count Risk Count Risk Delta

glib2 glibc esound 312 0.231 45 0.489 0.258

XFree86-libs glibc esound 493 0.469 114 0.298 -0.170

Context Context+Dep

When applications depend on glib2 and glibc, an addi-
tional dependency to esound increases the risk of vul-
nerabilities. In contrast, when applications depend on
XFree86-libs instead of glib2, the additional esound de-
pendency decreases the risk. Overall, we found only
four hybrid dependencies: audiofile, esound, glib, and
libart lgpl. In Table 2, we mark rules involving hy-

brid dependencies with an asterisk (*); there are no such
rules in Table 1 because they are below the support count
threshold of 65.

Overall, only a few beauties have an empty context,
i.e., decrease the risk unconditionally, while most beasts
always increase risk. To some extent this is intuitive
since any extra dependency adds some potential risk to
an application and only a few dependencies have enough
positive influence to mitigate this risk. Also, it is impor-
tant to point out that we reported statistical results. Just
adding a dependency to python or gnome-keyring will not
guarantee a safe application. In the end, it is always the
developer who introduces a vulnerability, either by using
a library incorrectly or by implementing unsafe code.

388	 2009 USENIX Annual Technical Conference	 USENIX Association

4 Predicting Vulnerable Packages with
SVMs

In the previous section we showed that there is an em-
pirical correlation between certain package dependencies
and vulnerabilities. In this section, we use this observa-
tion to predict which packages have vulnerabilities by
using just the names of the dependencies.

We use Support Vector Machines (SVMs) for our pre-
diction models. SVMs are a supervised learning tech-
nique that is used for classification and regression [36].
In the terminology of Section 2, we are given the depen-
dency matrix M and the vulnerability vector v, and the
SVM computes a model from them. This is known as
training the model. Then, one can use this model on a
new row vector mn+1 to compute a prediction v̂n+1. Hat-
ted values such as v̂k are always the result of a prediction;
un-hatted values are known beforehand and are assumed
to be exact. Our implementation used the SVM library
for the R project [28, 8] with a linear kernel.

We chose SVMs in favor of other machine learning
techniques because they have several advantages [15]:
first, when used for classification, SVMs cope well with
data that is not linearly separable;7 second, SVMs are
less prone to overfitting.8

In order to assess the quality of a classification or
regression model, we split the available packages ran-
domly in two parts: a training set (two thirds) and a test-
ing set (one third). A classification or regression model is
then built from the training set and predictions are made
for the packages in the testing set. These predictions v̂k
are then compared with the actual observed values vk and
differences are penalized as described in the subsequent
sections.

In order to compare the quality of the SVM predic-
tions, we also used decision trees, specifically those re-
sulting from the C4.5 algorithm [27] to train and test the
same splits that were used for SVMs. Decision trees are
readily interpreted by humans (all classifications can be
explained by the path taken in the tree) and therefore
have explanatory power that support vector machines
lack. It is therefore interesting to compare these two ap-
proaches.

4.1 Classifying Vulnerable Packages

For classification, vk is either 0—no vulnerabilities—or
1—vulnerable. Therefore, the classification problem in
our case is, “Given new dependency vectors, will their
associated vulnerability values be 0 or not?” In other
words, given new packages, we want to predict whether
they have vulnerabilities or not. A typical use for such
a prediction is to assess whether a new package needs

additional testing or review before it is included in a dis-
tribution.

For classification, each prediction belongs to one of
the following four categories:

• a true positive (TP), where vk = v̂k = 1,

• a true negative (TN), where vk = v̂k = 0,

• a false positive (FP), where vk = 0 and v̂k = 1, and

• a false negative (FN), where vk = 1 and v̂k = 0.

We want few false positives and false negatives. The two
measures used the most to assess the quality of classifi-
cation models are precision and recall. They are defined
as follows (for both measures, values close to 1 are de-
sirable):

precision = TP/(TP+FP)
recall = TP/(TP+FN)

4.2 Ranking Vulnerable Packages
The regression problem in our case is, “Given new de-
pendency vectors, what is their rank order in number of
vulnerabilities?” In other words, given new packages, we
want to know which of them have the most vulnerabili-
ties. A typical use for such a prediction is to decide on
the order in which packages are tested or reviewed.

For regression, we report the Spearman rank correla-
tion coefficient ρ , which is a real number between −1
and 1. If ρ = 1, the predicted and actual values have
the same ranks (identical rankings): when the predicted
values go up, so do the actual values and vice versa. If
ρ = −1, the predicted and actual values have opposite
ranks (opposite ranking): when the predicted values go
up, the actual values go down, and vice versa. If ρ = 0,
there is no correlation between predicted and actual val-
ues.

Because the rank correlation coefficient is computed
for all packages in a testing set, it is an inappropriate
measure for how well a model prioritizes resources for
quality assurance when only a subset of packages are in-
vestigated. Let us illustrate this with a simple example.
Suppose that we can spend T units of time on testing
and reviewing, and that testing or reviewing one package
always takes one unit. In the best possible case, our pre-
diction puts the actual top T most vulnerable packages in
the top T slots of v̂. However, the relative order of these
packages does not matter because we will eventually in-
vestigate all top T packages. In other words, predicting
the actual top T vulnerable packages in any order is ac-
ceptable, even though some correlation values ρ will be
poor for some of those orderings.

To account for this scenario, we compute an addi-
tional measure, which we call ranking effectiveness. Let

USENIX Association	 2009 USENIX Annual Technical Conference	 389

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Precision versus Recall

Recall

Pr
ec

is
io

n
SVM
Decision Tree

0.52 0.54 0.56 0.58 0.60 0.62

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Rank Correlation

Rank Correlation Coefficient

Fr
ac

tio
n

of
 S

pl
its

0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Ranking Effectiveness

F Fopt

Fr
ac

tio
n

of
 S

pl
its

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision−Recall Diagram

Recall

Pr
ec

is
io

n

Figure 5: Prediction results for 50 random splits (both classification and ranking).

l be the number of new dependency vectors and let
p = (p1, . . . , pl) be a permutation of 1, . . . , l such that the
predictions v̂p = (v̂p1 , . . . v̂pl) are sorted in descending or-
der (i.e., v̂p j ≥ v̂pk for 1 ≤ j < k ≤ l). Let q be another
permutation that sorts the observed values vq in descend-
ing order. When we now investigate package p j, by def-
inition we can find and fix vpk vulnerabilities. Therefore,
when we investigate the top T predicted packages, we
find

F = ∑
1≤ j≤T

vp j

vulnerabilities, but with optimal ordering, we could have
found

Fopt = ∑
1≤ j≤T

vq j

vulnerabilities. Therefore, we will take the quotient

Q = F/Fopt = ∑
1≤ j≤T

vp j


∑

1≤ j≤T
vq j (5)

as another quality measure for ranking vulnerable pack-
ages.

For ranking, we also report a precision-recall graph.
This graph visualizes the trade-off between precision and
recall by plotting precision against recall when packages
are examined in a given order. For effective rankings,
the precision will start out near 1.0 and will gradually
drop to the fraction of vulnerable packages. Precision-
recall graphs indicate how robust prediction models are
and can also help choosing a different operating point.
For example, in cases where 65% recall is considered to
low, a precision-recall diagram allows choosing a higher
recall and shows the resulting precision.

4.3 Results
The results of classifying and ranking 50 random splits
are shown in Figure 5. The first subfigure is for classifi-
cation, the others are for ranking.

• Classification. For the SVM (shown as circles),
the median precision is 0.83 (with a standard de-
viation of 0.0226), and the median recall is 0.65
(with a standard deviation of 0.0250). This means
that our SVM models successfully and consistently
catch about two thirds of vulnerable packages and
that when a package is predicted as vulnerable, they
are correct more than eight times out of ten.

The same figure also contains the respective values
for the decision tree (shown as triangles). The me-
dian precision is 0.79 (standard deviation 0.0277),
and the median recall is 0.50 (standard deviation
0.0264). The median values for both precision and
recall are significantly greater for the SVM than for
the decision tree models (p < 0.001).9 The decision
tree not only performs worse than the SVM both for
precision and recall, the results are also less consis-
tent.

• Ranking. The median rank correlation was 0.58
(standard deviation 0.0233), which indicates a con-
sistently moderate to strong correlation; see the sec-
ond subfigure. The ranking effectiveness values
(third subfigure) were computed for T = 25 and
have a median of 0.70 (standard deviation 0.111),
which means that the top 25 predicted packagescon-
sistently contain about seventy percent of the maxi-
mally possible vulnerabilities.

The last subfigure shows a precision-recall diagram
for each of the random splits. These diagrams show
the behavior for effective predictors: they start out
at or very near to 1.0 and gradually drop to about
0.35, which is the fraction of vulnerable packages
(1133/3241 = 0.35). The different precision-recall
curves also stay close together, indicating consis-
tence across random splits.

5 Discussion

In the previous section we showed that the names of de-
pendencies can actually predict vulnerabilities. In this

390	 2009 USENIX Annual Technical Conference	 USENIX Association

section, we refine these results motivated by two obser-
vations:

1. If developers know which dependency of a package
is most likely to increase the risk of having a vul-
nerability in the future, they can work on shifting
the dependency to another, less risky dependency,
or on providing the used services themselves. If the
package is new, developers can in many cases even
choose dependencies with little or no cost.

2. When we predict that a package has unknown vul-
nerabilities, and this prediction is true in most cases,
it may be worthwhile to examine the packages in
question by testing or review.

In the subsequent subsections, we first describe a tech-
nique to find risky dependencies for a given package
(Section 5.1) and next introduce two techniques to iden-
tify fragile packages, i.e., non-vulnerable packages that
likely will turn vulnerable (Sections 5.2 and 5.3).

5.1 Explaining SVM Predictions

As we have seen, SVMs outperform decision trees for
our data set. However, unlike decision trees, SVMs do
not explain predictions, which makes it hard for develop-
ers to comprehend and have confidence in the outcome of
SVM predictions. Even when they know that our models
are correct in eight out of ten cases, it remains difficult
for them to recognize the two cases where the model errs.
In order to better explain the decision of an SVM to de-
velopers, we describe how to find dependencies that were
most influential for the SVM’s decision. Dependencies
that led the SVM to classify a package as vulnerable are
candidates for removal, replacement, or increased qual-
ity assurance.

An SVM model is a hyperplane H in m dimensions,
where m ≥ n holds to ensure that the data is linearly sep-
arable.10 When used to classify a dependency vector w,
which has n dimensions, the vector is first transformed
to a vector w in m dimensions, according to the kernel
used. Then the model looks on which side of the hy-
perplane vector w lies and returns the respective classi-
fication. The dependency that was most influential for
the classification of a package is that dependency which
moved the package the furthest away from the hyper-
plane, measured by the distance of w to H. One can use
this technique also to rank all dependencies of a package.

Assume first that the linear kernel is used for the SVM.
This kernel does not introduce any additional dimensions
(thus m = n) nor does it perform any transformations
(w = w). Since the dependency vector w is binary (i.e.,
wk is either 0 or 1), one way of computing the most influ-
ential dependency is first to drop a perpendicular vector

p from w on H. Then s is the dimension of this perpen-
dicular vector p for which |ps| is a maximum.

If a kernel other than the linear one is used (m > n),
we can find the most influential dependency as follows.
For every component (dependency) k of the vector w for
which w j = 1, we create a new, artificial, “flipped” de-
pendency vector f by setting this component to 0:

fk =


0 if k = j;
wk otherwise.

Then the most influential dependency is the one for
which the flipped and transformed dependency vec-
tor f  minimizes the distance to the hyperplane H (or
even changes the classification from vulnerable to non-
vulnerable). We call this technique bit-flipping.

As an example, consider the sendmail package with
21 dependencies. The distance between its dependency
vector and the separating hyperplane is 3.88. The maxi-
mum reduction in distance is 0.73 and occurs with the re-
moval of cyrus-sasl from the dependencies of sendmail.
The package cyrus-sasl implements the Simple Authen-
tication and Security Layer (SASL) [21], which is used
to add authentication to connection-based protocols such
as IMAP. The package is one the most popular SASL im-
plementations; however, the high reduction in distance
to the separating hyperplane, suggests that replacing the
dependency with another SASL implementation (such as
GNU SASL [17]) could decrease the risk of vulnerabili-
ties. In any case, one should track patches and vulnera-
bilities in the cyrus-sasl package to check whether they
affect sendmail.

5.2 Predicting Fragile Packages with
SVMs

In order to predict fragile packages, i.e., regular pack-
ages that will turn into vulnerable packages, we again
used SVMs. We took RHSAs prior to January 2008
to build a model from which we predicted which non-
vulnerable packages have yet undiscovered vulnerabil-
ities. We then used RHSAs from January 2008 on-
wards and additional information to assess the quality
our model. The higher the percentage of correctly pre-
dicted packages, the stronger the model.

The basic idea is to learn an SVM regression model
for the entire dataset (until January 2008) and then ap-
ply the model again to the same data. Packages without
vulnerabilities but with predicted vulnerabilities are then
considered to be fragile packages. Essentially, we pre-
dict the packages that the SVMs fails to describe in its
model (and thus having high residuals) to be fragile.

More formally, using the notation of Section 2, we use
an SVM to build a regression model from M. We then

USENIX Association	 2009 USENIX Annual Technical Conference	 391

Table 3: Predicted packages.

Package Reported Vulnerability

 #1 mod php Integration into php [6]
#2 php-dbg
#3 php-dbg-server
#4 perl-DBD-Pg
#5 kudzu
#6 irda-utils
#7 hpoj
#8 libbdevid-python
#9 mrtg

 #10 evolution28-evolution-data-server RHSA-2008:0515-7 (a)

#11 lilo
 #12 ckermit Xatrix Advisory #2006-0029 (b)

 #13 dovecot RHSA-2008:0297-6 (c)

#14 kde2-compat
#15 gq

 #16 vorbis-tools Ubuntu Advisory USN-611-2 (d)

#17 k3b
#18 taskjuggler

 #19 ddd Inspection (see Section 5.2)
#20 tora

 #21 libpurple RHSA-2008:0297-6 (e)

#22 libwvstreams
 #23 pidgin RHSA-2008:0584-2 (f)

#24 linuxwacom
 #25 policycoreutils-newrole Changelog entry (Section 5.2)

URLs:
(a) http://rhn.redhat.com/errata/RHSA-2008-0515.html
(b) http://www.xatrix.org/advisory.php?s=8162
(c) http://rhn.redhat.com/errata/RHSA-2008-0297.html
(d) http://www.ubuntu.com/usn/usn-611-2
(e) http://rhn.redhat.com/errata/RHSA-2008-0297.html
(f) http://rhn.redhat.com/errata/RHSA-2008-0584.html

input the dependency vectors of M into the same SVM
model to get n predictions (v̂1, . . . , v̂n). Next, we con-
sider only the predictions v̂ j for packages with no known
vulnerabilities, that is, for which v j = 0. Finally, we sort
the v̂ j in descending order. We hypothesize that pack-
ages with high v̂ j are more likely to have vulnerabilities
discovered in the future.

For the Red Hat data, we have 3241 packages, of
which 2181 had no vulnerabilities reported by January
2008. Until August 2008, 73 packages turned vulnerable
(or 3.3%). The result of our prediction is a list of 2181
packages, sorted in decreasing order by expected number
of vulnerabilities. We want the newly-found vulnerable
packages to appear early in this list. The top 25 predic-
tions are shown in Table 3. Packages found to have vul-
nerabilities after January 2008 are marked with the sym-
bol . In this case, the last column contains a reference
to the respective advisory.

For Table 3, we used sources in addition to the official
RHSAs.11We marked package evolution28-evolution-
data-server as vulnerable because the main package,
evolution28, was affected by RHSA-2008:0515. In ad-
dition, we marked policycoreutils-newrole because the

Changelog entry for version 1.30.28-1 reads, “Security
fixes to run python in a more locked down manner”. This
was apparently a pro-active fix, since there seems to have
been no exploit.

In Table 3 the top 25 predictions contain 9 packages
with newly-found vulnerabilities (36%). Taking into ac-
count the low percentage of packages that turned vul-
nerable (3.3%), our prediction is significantly better than
random guesses (at p < 0.001). Note that the 36% is a
lower bound for the precision because the non-vulnerable
packages might yet have undiscovered vulnerabilities.

Manual inspection of DDD. In order to assess our pre-
dictions even in the absence of RHSAs or other advi-
sories, we selected the ddd package [9]. DDD stands for
“Data Display Debugger” and is a graphical front-end for
text-based debuggers such as gdb. The latest version as
of this writing is 3.3.9, released on June 24, 2004. The
graphics of DDD are implemented using a combination
of plain Xlib (the lowest level of graphics programming
using the X Window System), a rather low-level GUI
toolkit (Xt), with a GUI library (Motif) on top.

When we performed a cursory review of its source
code, we almost immediately found a code-injection vul-
nerability. This vulnerability occurs in exectty.C, where
a pipe is opened using popen(), but the arguments to the
shell are not properly quoted, thus allowing for the in-
sertion of extraneous shell commands for anyone with
write access to a configuration file. This will make it
possible to run arbitrary code for anyone with local ac-
cess to the machine if the configuration file is not write
protected. Such code injection and arbitrary code execu-
tion vulnerabilities are typically classified as “moderate”
by Red Hat.

Another security code smell occurs in xconfig.C and
concerns the use of fgets():

char buffer[PATH_MAX];
buffer[0] = ’\0’;
fgets(buffer, sizeof(buffer), fp);
pclose(fp);

int len = strlen(buffer);
if (len > 0 && buffer[len - 1] == ’\n’)

buffer[len - 1] = ’\0’;

The C standard guarantees that buffer is null-terminated
when any characters are read at all, and unchanged when
no characters are read. Therefore, in these two cases,
buffer will always be properly null-terminated. However,
if a read error occurs, the contents of buffer are “indeter-
minate” [16, Section 7.19.7.2]. This means that after a
read error, it is no longer guaranteed that buffer is null-
terminated, the strlen call could run away, and the sub-
sequent access to buffer[len - 1] could cause a
buffer overflow. The fix is simple: simply exit whenever

392	 2009 USENIX Annual Technical Conference	 USENIX Association

B0

B5

∅

32.9% vulnerable

(1065 out of 3241 pkgs)

xorg-x11-deprecated-libs

85.7% vulnerable

(6 out of 7 pkgs)

Outlier: ddd

...

......

xorg-x11-deprecated-libs

+52.8%

...

Figure 6: Example of an anomaly.

fgets returns null. The impact of this flaw is not clear;
however, there have been arbitrary code execution vul-
nerabilities resulting from similar errors; see for example
CVE 2007-5135 [23].

5.3 Predicting Fragile Packages with
Anomalies

Another approach for predicting fragile packages is to
search for anomalies in the concept lattice. The basic
idea is that for blocks where all but a few packages are
vulnerable, the non-vulnerable packages are likely to be
fragile. As an example consider B5 = (O5,A5) from Fig-
ure 6:

O5 = {ddd, xpdf, nedit, openmotif, openmotif-devel,
openmotif21, xorg-x11-deprecated-libs-devel}

A5 = {xorg-x11-deprecated-libs}
(6)

All packages in O5 have been vulnerable, except ddd.
Thus it is likely that ddd soon will have vulnerabilities.
We also get a dependency that is responsible for ddd
being fragile, in this example it is xorg-x11-deprecated-
libs.

From the 110 rules found in Section 3 for beasts, we
selected all rules that had at most three outliers. For
the 17 selected rules, we then combined all outliers to
come up with a prediction of 27 unique fragile packages
(including ddd). Out of these, 7 predictions were cor-
rect (precision of 25.9%). As in the previous section,
the results are significantly better than random guesses
(p < 0.001) and should be considered a lower bound for
precision because of yet undiscovered vulnerabilities.

Manual inspection of DDD. We again inspected
DDD, this time with a special focus on the dependency to
xorg-x11-deprecated-libs. This dependency means that

the package depends on a deprecated Xlib implementa-
tion. This is not a vulnerability in itself, but past expe-
rience has shown that low-level X Window System pro-
gramming has been a rich target for exploiters, and dep-
recated libraries could lack important security fixes more
easily than up-to-date ones.

When we look at DDD’s source code, we find this as-
sessment confirmed: much of the graphics code in DDD
is on the lowest level, using Xlib directly; other parts use
Xt, one of the oldest graphics toolkits for X Windows.
This suggests that DDD is old (it was first released in the
1990’s) and has not been actively maintained in the last
few years (the most recent release is from 2004). This
alone makes it unlikely that it has fixes for all the pitfalls
that have surfaced recently. Not surprisingly, the new
DDD maintainer wants to switch over to a more mod-
ern toolkit such as Qt [9, Entry 2008-05-06], certainly to
give DDD a more modern appearance, but also perhaps
to offload the burden of maintaining and fixing low-level
code to a more active project.

5.4 Threats to Validity

In this section, we discuss threats to validity of our study.
For our analysis, we ignore the possible evolution of

dependencies. That is, we assume that the dependency
matrix M (see Equation 1) does not change with time.
We believe that it is reasonable to assume that M will
not change much: a dependency of package j on pack-
age k exists because package j will want to use services
offered by package k. Changing this dependency will
mean that the package will have to supply these services
itself, stop using them entirely, or use another package to
supply them. Any of these alternatives is usually work-
intensive, so there is a strong economic incentive against
frequently changing dependencies.

One complicating factor when using precision and re-
call to evaluate our approach is that there may be undis-
covered vulnerabilities leading to too low values for vk.
For example, it is possible and even likely that for some
packages vk is 0, even though package k does in fact have
a vulnerability. In practice, this means that the computed
value for the precision will be lower than the true pre-
cision value (because the true number of false positives
may be lower than what was computed). We can there-
fore regard our precision values as a lower limit. We can-
not make a similar estimation for the recall values, since
both false-positive and false-negative values can change.
Therefore, the recall values are merely approximations
to their true values.

In determining the most influential dependency, we ig-
nore the joint effect of two or more dependencies: it could
be that two dependencies together are much more influ-
ential than a single dependency, and that two together

USENIX Association	 2009 USENIX Annual Technical Conference	 393

are a better explanation of the classification of a package
than the single dependency that results from the distance
minimization technique. This should be the object of fur-
ther study.

For this paper, we considered only how first-order12

(or direct) dependencies influence vulnerability. We also
did not distinguish between different types and severi-
ties of vulnerabilities. In practice, however, many other
factors such as developer experience, quality assurance,
complexity of source code, and actual usage data likely
influence the number of vulnerabilities as well, either
separately or in combination. However, there is little
scientific evidence for this wisdom and more empirical
studies are needed to learn more about vulnerabilities.
This paper is a first step in this direction.

6 Possible Interpretations

We described the phenomenon that some dependencies
increase vulnerability, and some decrease vulnerability.
We also demonstrated that dependencies have predictive
ability. Why is this the case?

Our first hypothesis is that dependencies describe the
problem domain of packages and that some domains are
simply more risky than others. For example, we would
expect web applications to have more vulnerabilities than
C compilers because they have a much larger attack sur-
face. Schröter et al. found similar evidence for the in-
creased error-proneness of some domains [31].

Our second hypothesis is that certain usages may make
a package more vulnerable. For example, some packages
use unsafe services, i.e., services that are inherently un-
safe. Similar, there can be also unsafe use of services,
i.e., some services are difficult to use safely. Both these
situations reflect in the dependencies of a package. In an
earlier study, Neuhaus found evidence for unsafe usages
on the source-file level of Firefox [24].

We will investigate both hypotheses in future work.

7 Related Work

Only few empirical studies exist for software vulnera-
bilities. Shin and Williams [32] correlated several com-
plexity measures with the number of security problems,
for the JavaScript Engine of Mozilla, but found only a
weak correlation. This indicates that there are further
factors that influence vulnerabilities, like dependencies
as we have showed in this paper.

Gegick et al. used code-level metrics such as lines of
code, code churn, and number of static tool alerts [12] as
well as past non-security faults [11] to predict security
faults. In the most recent work, Gegick et al. achieved a
precision of 0.52 and a recall of 0.57. In comparison, the

precision and recall values are higher in our experiments
(0.83 and 0.65 respectively). However, these numbers
are not directly comparable because different data sets
were used for the experiments

Based on a pilot study by Schröter et al. [31], Neuhaus
et al. [25] investigated the Mozilla project for the corre-
lation of vulnerabilities and imports, that is, the include
directives for the functions called in a C/C++ source file.
They found a correlation and were subsequently able to
predict with SVMs vulnerabilities that were unknown at
the time of the prediction.

Compared to the earlier work by Neuhaus et al. [25],
we introduce in this paper an approach to assess the risk
of dependencies (concept analysis + statistical testing),
compare multiple prediction models (not just SVMs, but
also decision trees and anomalies), and show how to ex-
plain SVM predictions. Also the focus of this paper is en-
tirely different. Instead of a single program, we analyze
vulnerabilities for a large software distribution, Red Hat
Linux, that consists of several thousand packages. Thus
our base of evaluation is much broader: a software dis-
tribution covers a wider range of application scenarios,
programming languages, and probably every other dis-
tinguishing variation, as opposed to a single program.
In addition, a software distribution will typically cover
a greater range of software quality than a single soft-
ware project, where the number of contributors is much
smaller. The extent of these difference is probably best
emphasized by the list of beauties and beasts that we pre-
sented in Section 3. This list can serve as a catalog for
developers to assess the risk of dependencies and help
them make well-informed design decisions.

The idea of finding anomalies using concept analy-
sis (used in Section 5.3) was proposed by Lindig [19].
For the experiments in this paper, we extended Lindig’s
approach with statistical hypothesis testing. That is, we
considered only anomalies for rules which significantly
increased the risk of vulnerabilities. In our experiments,
this enhancement substantially reduced the number of
false positives.

Robles et al. [30] and German [13] studied software
distributions to better understand open-source software
development. Both studies, however, ignored the relation
between package dependencies and vulnerabilities.

Ozment at al. [26] and Li et al. [18] have studied how
the number of defects and security issues evolve over
time. The two studies report conflicting trends. Addi-
tionally, neither of the two approaches allow mapping of
vulnerabilities to packages or predictions. Di Penta et
al. [7] tracked vulnerabilities across versions in order to
investigate how different kinds of vulnerabilities evolve
and decay over time.

Alhazmi et al. use the rate at which vulnerabilities are
discovered to build models to predict the number of fu-

394	 2009 USENIX Annual Technical Conference	 USENIX Association

ture vulnerabilities [2]. In contrast to our approach, their
predictions depend on a model of how vulnerabilities are
discovered. Tofts et al. build simple dynamic models of
security flaws by regarding security as a stochastic pro-
cess [35], but they do not make specific predictions about
vulnerable packages. Yin et al. [38] highlight the need
for a framework for estimating the security risks in large
software systems, but give neither an implementation nor
an evaluation.

8 Conclusion and Consequences

In this paper, we presented a study of vulnerabilities in
3241 software packages of the Red Hat Linux distribu-
tion. We provided empirical evidence for a correlation
between vulnerabilities and certain dependencies. Fur-
thermore, we showed that prediction models using pack-
age dependencies perform well when predicting vulner-
abilities. Another observation is that the popular wisdom
that vulnerable packages will tend to develop even more
vulnerabilities does not hold for the packages within Red
Hat: the number of vulnerable packages needing two
fixes or fewer (584) is greater than the number of pack-
ages needing more than two fixes (549). If the popular
wisdom were correct, one would see a majority of pack-
ages with a high number of fixes.

Our future work will include the following:

• We will work on refining the distance-minimization
technique, looking at how joint effects of dependen-
cies explain SVM predictions.

• We will investigate how the correlation between de-
pendencies and vulnerabilities changes over time.
Some beasts will likely become less risky because
developers learn from past mistakes. At the same
time, new mistakes will likely lead to new beasts.

• We plan to apply our approach to other domains,
which require quality assurance; for example Ap-
ple’s App Store. Applications undergo a review pro-
cess before they can be downloaded from the App
Store. Using (past) quality and dependency infor-
mation, Apple could focus on applications that need
the most reviewing.

• We want to investigate what other factors predict
software vulnerabilities. This paper is just a first
step and more empirical studies are needed to better
understand security problems.

Often empirical findings are highly project-specific and
rarely apply to other projects. This dilemma is illustrated
best by a study of Nagappan et al. [22] who compared
five large subsystems of Microsoft Windows and found

that for each subsystem, there were metrics that worked
reasonably well, but that no single metric worked well
for every subsystem to predict failures. Since any em-
pirical study depends on a large number of context vari-
ables [4], replication has become an important practice
to generalize results.

We believe that the work presented in this paper is a
first step towards a new generation of empirical studies.
Rather than just a few projects, we analyzed vulnerabili-
ties for several thousand Red Hat packages. Our findings
come therefore with a higher generality compared to tra-
ditional single-project studies. While it may be that our
work does not generalize to other package collections,
we consider this highly unlikely, at least for Linux: other
package collections will contain much the same pack-
ages, with much the same dependencies. Another char-
acteristic of our study is that software developers can di-
rectly benefit by the results. By consulting the catalog
of beauties and beasts, developers can quickly assess the
risk of dependencies to other packages and thus make in-
formed decisions. This lookup is possible with little data
(only the dependencies are needed) and without adjust-
ing any prediction models.

To conclude, we are confident that the availability of
cross-project repositories (such as the Red Hat Security
Advisory database) will lead to more large-scale studies
such as the one presented in this paper.

Acknowledgments. Both authors thank Josh Bressers for his
valuable help and feedback on this project. We also thank
Red Hat for having made their data publicly available and
therefore having made this research possible. Thanks to Re-
becca Aiken, Ira Cohen, Ahmed Hassan, Andreas Zeller, and
the anonymous reviewers for valuable and helpful suggestions
on earlier revisions of this paper.

Stephan Neuhaus was supported by funds from the Euro-
pean Commission (contract N◦ 216917 for the FP7-ICT-2007-1
project MASTER). This work was conducted while Tom Zim-
mermann was with the Department of Computer Science at the
University of Calgary, Canada. Tom Zimmermann was sup-
ported by a start-up grant from the University of Calgary.

Notes
1Software packages are sets of related files, e.g., libraries or appli-

cations, distributed in a special file format (RPM) that allows for their
automated management, for example through installation and deinstal-
lation.

2For the study in this paper, we consider only packages that are
available from Red Hat itself because they are the ones supported by
Red Hat with security advisories. The total number of RPMs avail-
able for Red Hat includes third-party RPMs and is thus certainly much
larger than 3241.

3Strictly speaking, the security issues addressed in RHSAs need
not be vulnerabilities—a vulnerability is considered to be a “flaw in
software that can be exploited” [33, p. 52]. From looking at a sample
of RHSAs, we conclude however that this is almost always the case and
thus RHSAs are a good approximation for true vulnerabilities. Josh

USENIX Association	 2009 USENIX Annual Technical Conference	 395

Bressers of the Red Hat Security Response Team also confirmed that
flaws that do not cross a trust boundary are classified as bugs and not
as security advisories [6].

4The first RHSA we consider is RHSA-2000:001 and the last
is RHSA-2008:0812. When the first advisory was issued in 2006,
Red Hat switched to four-digit serial numbers. The serial number at
the end is also incremented for bug fix advisories (RHBA) and en-
hancement advisories (RHEA). Every year the serial number is reset
to 0001.

5Although version information is also present for each dependency
(in the tag RPMTAG REQUIREVERSION), we assumed dependencies
to be constant in our experiments. We discuss this decision as a poten-
tial threat to validity in Section 5.4.

6Formal concept analysis (FCA) is similar to market basket analysis
or frequent pattern mining [1, 20], which made the famous discovery
that diapers and beer are often purchased together. In data mining, the
set A is called a pattern (for example, diapers and beer) and the set O
are the supporting transactions, with |O| being the support count. If |O|
exceeds a given threshold, the pattern A is called frequent. FCA ad-
ditionally provides a lattice with the relations between patterns, which
we use to identify dependencies that significantly increase the risk of
vulnerabilities.

7Two sets of n-dimensional points are said to be linearly separable
if there exists an (n−1)-dimensional hyperplane that separates the two
sets.

8Overfitting often happens when a statistical model has too many
parameters. The model will try to minimize the error for the training
set, but the parameters will offer too many, wildly differing combina-
tions that will make the error small. Choosing one such combination
will then generally increase the error for the testing set. The only possi-
ble remedy for traditional models is to decrease the number of parame-
ters. SVMs are less prone to overfitting because they choose a specific
hyperplane (maximum margin hyperplane) among the many that sepa-
rate the data [36].

9The p-value has been corrected for multiple hypothesis testing us-
ing the Bonferroni method.

10Recall that n is the dimensionality of the input space, in our case
the number of dependencies.

11In using additional sources, we are not suggesting that Red Hat is
negligent in assigning RHSAs. It may well be that the additional advi-
sories found by us are not applicable to Red Hat distributions. Still, se-
curity advisories, even when they are not directly applicable to Red Hat
packages, indicate that investigating those packages would have been
worthwhile.

12If package p depends on package q, we call q a first-order de-
pendency. If p depends only indirectly on q, we call q a higher-order
dependency.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast
algorithms for mining association rules in large
databases. In VLDB’94: Proc. of 20th Int’l. Conf.
on Very Large Data Bases, pages 487–499. Morgan
Kaufmann, 1994.

[2] Omar Alhazmi, Yashwant Malaiya, and Indrajit
Ray. Security Vulnerabilities in Software Systems:
A Quantitative Perspective, volume 3645/2005 of
Lecture Notes in Computer Science, pages 281–
294. Springer Verlag, Berlin, Heidelberg, August
2005.

[3] Edward C. Bailey. Maximum RPM: Taking the red
hat package manager to the limit. http://www.rpm.
org/max-rpm/, 2000. Last accessed on August 22,
2008.

[4] Victor R. Basili, Forrest Shull, and Filippo Lanu-
bile. Building knowledge through families of ex-
periments. IEEE Trans. Software Eng., 25(4):456–
473, 1999.

[5] Ladislav Bodnar. Is RPM doomed? http://
distrowatch.com/dwres.php?resource=article-rpm,
2002. Last accessed: Aug. 2008.

[6] Josh Bressers. Personal communication, March
2008.

[7] Massimiliano Di Penta, Luigi Cerulo, and Lerina
Aversano. The evolution and decay of statically de-
tected source code vulnerabilities. In Proc. Int’l.
Working Conf. on Source Code Analysis and Ma-
nipulation (SCAM), 2008.

[8] Evgenia Dimitriadou, Kurt Hornik, Friedrich
Leisch, David Meyer, and Andreas Weingessel.
r-cran-e1071. http://mloss.org/software/view/94/,
2008.

[9] Free Software Foundation. DDD data display de-
bugger. http://www.gnu.org/software/ddd/, August
2008.

[10] Bernhard Ganter and Rudolf Wille. Formal
Concept Analysis: Mathematical Foundations.
Springer, Berlin, 1999.

[11] Michael Gegick, Pete Rotella, and Laurie William.
Toward non-security failures as a predictor of secu-
rity faults and failures. In Proc. Int’l. Symposium on
Engineering Secure Software and Systems (ESSoS),
2009. To appear.

[12] Michael Gegick, Laurie Williams, Jason Osborne,
and Mladen Vouk. Prioritizing software security
fortification throughcode-level metrics. In QoP
’08: Proc. of the 4th ACM workshop on Quality
of protection, pages 31–38. ACM, 2008.

[13] Daniel M. Germán. Using software distributions
to understand the relationship among free and open
source software projects. In Proc. Int’l. Workshop
on Mining Software Repositories (MSR), page 24,
2007.

[14] Lawrence A. Gordon, Martin P. Loeb, William
Lucyshyn, and Robert Richardson. CSI/FBI com-
puter crime and security survey. Technical report,
Computer Security Institute (CSI), 2005.

396	 2009 USENIX Annual Technical Conference	 USENIX Association

[15] Jiawei Han and Micheline Kamber. Data Mining:
Concepts and Techniques. Morgan Kaufmann, 2nd
edition, 2005.

[16] Int’l. Organization for Standardization and Int’l.
Electrotechnical Commission. ISO/IEC 9899:TC3
committee draft. Technical report, Int’l. Organiza-
tion for Standardization, September 2007.

[17] Simon Josefsson. GNU SASL library—libgsasl.
http://josefsson.org/gsasl, August 2008.

[18] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu,
Yuanyuan Zhou, , and Chengxiang Zhai. Have
things changed now? an empirical study of bug
characteristics in modern open source software. In
Proc. Workshop on Architectural and System Sup-
port for Improving Software Dependability 2006,
pages 25–33, October 2006.

[19] Christian Lindig. Mining patterns and violations
using concept analysis. http://www.st.cs.uni-sb.de/
∼lindig/papers/lindig-2007-mining.pdf, 2007.

[20] Heikki Mannila, Hannu Toivonen, and A. Inkeri
Verkamo. Efficient algorithms for discovering as-
sociation rules. In KDD’94: AAAI Workshop on
Knowledge Discovery in Databases, pages 181–
192, 1994.

[21] John G. Myers. RFC 2222: Simple authentication
and security layer (sasl). http://www.ietf.org/rfc/
rfc2222.txt, October 1997.

[22] Nachiappan Nagappan, Thomas Ball, and Andreas
Zeller. Mining metrics to predict component fail-
ures. In Proc. 27th Int’l. Conf. on Software En-
gineering, New York, NY, USA, May 2005. ACM
Press.

[23] National Institute of Standards. CVE 2007-
5135. http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2007-5135, September 2007.

[24] Stephan Neuhaus. Repeating the Past: Exper-
imental and Empirical Methodsin Software Se-
curity. PhD thesis, Universität des Saarlandes,
Saarbrücken, February 2008.

[25] Stephan Neuhaus, Thomas Zimmermann, Christian
Holler, and Andreas Zeller. Predicting vulnerable
software components. In Proc. 14th ACM Conf.
on Computer and Communications Security (CCS),
pages 529–540, October 2007.

[26] Andy Ozment and Stuart E. Schechter. Milk or
wine: Does software security improve with age?
In Proc. 15th Usenix Security Symposium, August
2006.

[27] Ross Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufman Publishers, San Francisco,
CA, USA, 1993.

[28] R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria,
2008. ISBN 3-900051-07-0.

[29] RedHat Network. Errata. https://rhn.redhat.com/
errata/, August 2008.

[30] Gregorio Robles, Jesús M. González-Barahona,
Martin Michlmayr, and Juan Jose Amor. Mining
large software compilations over time: another per-
spective of software evolution. In Proc. Workshop
on Mining Software Repositories, pages 3–9, 2006.

[31] Adrian Schröter, Thomas Zimmermann, and An-
dreas Zeller. Predicting component failures at de-
sign time. In Proc. 5th Int’l. Symposium on Empiri-
cal Software Engineering, pages 18–27, New York,
NY, USA, September 2006.

[32] Yonghee Shin and Laurie Williams. Is complexity
really the enemy of software security? In QoP ’08:
Proc. 4th ACM workshop on Quality of protection,
pages 31–38. ACM, 2008.

[33] Adam Shostack and Andrew Stewart. The New
School of Information Security. Pearson Education,
Inc., Boston, MA, USA, 2008.

[34] Sidney Siegel and N. John Castellan, Jr. Non-
parametric Statistics for the Behavioral Sciences.
McGraw-Hill, 2nd edition, 1988.

[35] Chris Tofts and Brian Monahan. Towards an an-
alytic model of security flaws. Technical Report
2004-224, HP Trusted Systems Laboratory, Bristol,
UK, December 2004.

[36] Vladimir Naumovich Vapnik. The Nature of Sta-
tistical Learning Theory. Springer Verlag, Berlin,
1995.

[37] Larry Wasserman. All of Statistics: A Concise
Course in Statistical Inference. Springer, 2nd edi-
tion, 2004.

[38] Jian Yin, Chunqiang Tang, Xiaolan Zhang, and
Michael McIntosh. On estimating the security risks
of composite software services. In Proc. PASS-
WORD Workshop, June 2006.

USENIX Association	 2009 USENIX Annual Technical Conference	 397

Immediate Multi-Threaded Dynamic Software Updates
Using Stack Reconstruction

Kristis Makris Rida A. Bazzi
Arizona State University

Tempe, AZ
{makristis,bazzi}@asu.edu

Abstract
We propose a new approach for dynamic software up-

dates. This approach allows updating applications that
until now could not be updated at runtime at all or could
be updated but with a possibly indefinite delay between
the time an update is initiated and the time the update is
effected (during this period no service is provided). Un-
like existing approaches, we allow arbitrary changes to
functions active on the stack and without requiring the
programmer to anticipate the future evolution of a pro-
gram. We argue, using actual examples, that this capa-
bility is needed to dynamically update common real ap-
plications.

At the heart of our approach is a stack reconstruction
technique that allows all functions on the call stack to
be updated at the same time to guarantee that all active
functions have the same version after an update. This is
the first general approach that maintains both code and
data representation consistency for multi-threaded appli-
cations. Our system UpStare was used to update the
PostgreSQL database management system (more than
200,000 lines of code) and apply 5.5 years-worth of
updates to the very secure FTP server vsFTPd (about
12,000 lines of code).

1 Introduction

Downtime experienced by applications due to software
updates (feature additions, bug fixes, security patches)
can be prohibitive for applications with high-availability
requirements. Dynamic Software Update (DSU) can
help minimize the downtime by allowing applications to
be updated at runtime. Instead of completely stopping
the application process and then executing the newer ver-
sion, DSU would only momentarily pause the applica-
tion while applying the change in-memory. A typical dy-
namic update would consist of: (1) pausing the execution
of the old version in a given state, s; (2) applying a state

mapping function S to s to obtain a state S(s) = snew

(loading new code segments can be a part of the map-
ping); and (3) resume execution of the new version us-
ing snew as the initial state. In general, a state mapping
needs not happen instantaneously and can be done lazily
in stages. The state mapping should be safe in that the
resulting state snew should be a valid state of the new
application (in a sense that we will make precise in Sec-
tion 2). In general, a valid state mapping is not always
possible, and, when it is possible, it is not necessarily
possible for all states of the old application.

The dynamic software update problem consists of two
components. First, DSU needs to determine the states,
or execution points, of the old application for which it is
possible to apply a valid update, and, for those states for
which a valid update is possible, to determine the state
mapping function to effect the update - this is the up-
date safety problem. Second, DSU needs to effect the
update through a mechanism that maps an old execution
state to a new execution state - this is the update mech-
anism problem. In general, the safety problem is unde-
cidable [6]. This implies that, in general, user help is
needed to determine safe update points and to specify the
state mapping function. Nevertheless, this does not mean
that it is not possible to solve the problem automatically
or semi-automatically without or with little user help for
many practical cases of interest.

Since user help is unavoidable, it is important to pro-
vide the user with an update mechanism and safety
checks that make it easier to reason about the update.
Current DSU mechanisms are limited in their support of
the update of active functions and data structures and in
their support for immediate updates. To support the up-
date of functions that are active on the call stack and for
the update of stack-resident data structures, current DSU
systems require the user to anticipate the future evolu-
tion of a program [3, 14]. Immediate updates are not
supported by existing DSU systems. An update is imme-
diate if it satisfies: (1) atomicity: before the update only

1

398	 2009 USENIX Annual Technical Conference	 USENIX Association

old code executes and after the update only new code ex-
ecutes; (2) bounded delay: if a valid mapping is known
for a given state and the execution is in that state, then the
mapping is applied in a bounded amount of time. Atom-
icity is desirable because it is sufficient to guarantee log-
ical consistency [16, 13]: the execution of the applica-
tion is indistinguishable from an execution in which the
old version executes for some time, then the new version
executes. While bounded wait is not necessary for logi-
cal consistency, we argue that for multithreaded applica-
tions, immediate updates are needed to provide logically
consistent updates without service interruption; i.e. the
update does not cause the service to be unavailable for an
unbounded amount of time.

To address the limitations of current DSU systems, we
propose a new DSU mechanism and a new DSU system
for C programs. Our system UpStare supports the im-
mediate update of functions that are active on the call
stack as well as the update of stack-resident data struc-
tures without requiring the user to anticipate the future
evolution of the program. Our system is also the first sys-
tem to allow immediate update for multi-threaded as well
as multi-process applications. UpStare applies source-
to-source transformations to make applications dynam-
ically updateable. At the heart of the mechanism is a
novel stack reconstruction updating mechanism that al-
lows an application to unroll the call stack when an up-
date occurs (while saving all the stack frames) and then
reconstitute the call stack by replacing old versions of
functions with their updated versions (while at the same
time mapping data structures in the old frames to their
updated versions). Stack reconstruction guarantees that
after an update is applied only new code executes. Map-
ping to the new state is automated with an effective
heuristic: a patch generator produces data transformers
for global variables and for local variables of all stack
frames, and a default stack execution continuation map-
ping resumes execution from the new version. These
mappings and transformers can be further fine-tuned by
the user. UpStare’s immediate data mapping eliminates
the need for data wrappers that are used by other DSU
systems [5, 14, 11, 2] to allow updating datatypes. The
elimination of data wrappers greatly reduces execution
overhead for data intensive applications.

UpStare supports the update of applications anywhere
during their execution including multithreaded applica-
tions with blocking system calls. This is achieved by
inserting update points in long-lived loops and trans-
forming blocking system calls into non-blocking calls.
This guarantees that we can update threads and processes
without interrupting service indefinitely, since we are not
constrained by the need for an active function to exit be-
fore we can update it as in other DSU systems.

In summary, our immediate update mechanism guar-

antees the following: (1) Representation consistency; (2)
Update immediacy for multi-threaded and multi-process
applications; (3) High updateability; (4) No data-access
indirection.

UpStare is able to update real-world applications of
significant size, such as vsFTPd and PostgreSQL, with
minimal manual adjustments from the user and with
modest overhead. Still our current implementation has
some limitations. First, it is not optimized for perfor-
mance due to a limitation of existing compilers when
partitioning code in hot-cold blocks given branch predic-
tion hints. This limitation can lead to large overhead for
systems with a small instruction cache and large func-
tions. Second, it does not yet integrate support to au-
tomatically transform pointers, which we developed in
previous work [10]. Third, it does not support updates
of data in shared memory or in-transit data in internal
buffers, but this is not a limitation of the approach; it is
a limitation of the current implementation. Finally, since
our emphasis in this work is on the updating mechanism,
we do not provide automatic safety checks through code
analysis as in other DSU systems. Adopting such checks
would increase the usefulness of UpStare.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the DSU problem. Section 3 describes
our DSU system. Section 4 presents our implementation.
Section 5 evaluates the performance of our system and
analyzes the sources of overhead. Section 6 discusses
related work.

2 The Dynamic Software Update Problem

In this section, we reintroduce the dynamic software
update problem (DSU), describe some common safety
guarantees that are desirable for DSU systems and argue
for the need for immediate updates.

2.1 Dynamic Software Update
Given (Π, s), where Π is program code and s is an exe-
cution state, updating Π to Πnew, where Πnew is a new
version of Π, consists of:(1) pausing the execution Π; (2)
applying a state mapping function S to s to obtain a state
S(s) = snew; and (3) resuming execution of Πnew from
state snew.

By updating an executing program, we obtain a hy-
brid execution that in general needs not satisfy the se-
mantics of either the old or the new versions. In general,
the desired semantics for the hybrid executions needs to
be determined by the user. We say that a state s for pro-
gram Π is valid for update from Π to Πnew if there is a
state mapping function S that can be by applied in state s

such that the resulting hybrid execution satisfies the de-

2

USENIX Association	 2009 USENIX Annual Technical Conference	 399

sired semantics. The dynamic software update problem
has two aspects:

• Update safety: Identify a valid state s and a corre-
sponding state mapping function.

• Update mechanism: Implement the state mapping
function.

Gupta [6] showed that, even for weak requirements on
the semantics of the hybrid execution, it is undecidable
to determine if a given state s is valid for update from Π
to Πnew . The problem is related to the problem of identi-
fying semantic differences [7] between two versions of a
program. Identifying semantic differences has been stud-
ied extensively and is also undecidable although safe ap-
proximations are known [8].

So, in general, assistance from the user is required to
both identify valid states and guide the state mapping.
Nonetheless, there are many situations in which a default
state mapping can produce a new state that will satisfy
the desired semantics.

2.2 Safety
Given that it is not possible in general to guarantee the
safety of updates without user help, it is helpful to pro-
vide some restricted safety guarantees that are satisfied
by the updated program. The goal is to make it easier for
the user to establish that the default mappings result in
valid updates and, if they do not, to supplement the state
mapping to make it valid. Some useful guarantees are:

1. Type-safety: No old version of code Π should be
executed on a newer version of a datatype representation
τ ′ (oldcode-type-safety) and no new version of code Π′

should be executed on an older version of a datatype rep-
resentation τ (newcode-type-safety).

As an example, consider adding in a C struct that
contains five fields a new field as the third field listed
and properly constructing a new state snew for a variable
of this datatype. If code from the old version accessed
the newer version of this datatype in snew it would in-
correctly access the memory area used by the new field
when intending to access the fourth field, and corrupt
data.

2. Transaction-safety: Some sections of code are de-
noted as transactions and are specified by the user to ex-
ecute completely in the old version or completely in the
new version.

Unlike type safety, transaction safety requires user an-
notations. One way to ensure transaction safety is by pro-
hibiting updates when execution is in such a user speci-
fied section. This can be done at runtime by querying if
the current state is in a forbidden region, but this is not
straightforward to achieve. If a function f is called inside

a transaction and in other parts of the program, then de-
termining the execution state requires knowledge of the
stack contents. Alternatively, transaction safety can be
ensured at compile time by conservatively estimating up-
date points that will not violate the transactional require-
ments.

More generally, a DSU system may be able to provide
the user with a more flexible notation to specify that an
update is not valid in a given state. For example, stat-
ing that an update is not allowed if Thread 1 is executing
in (say) <functionA,lines 135-160> while Thread 2 is
executing anywhere within <functionB> can be suffi-
cient input to a DSU system to apply the update when
these threads do not violate this safety constraint.

3. Representation Consistency: Both state and pro-
gram representation consistency hold. An update guar-
antees state representation consistency if at no time the
executing application expects different representations of
state (such as global variables or the stack-frame con-
tents). An update guarantees program representation
consistency if following the update only Πnew is exe-
cuted over the new state snew; no part of Π is executed
again. Representation consistency (state and program)
makes it easier to reason about the effects of executing
code on the state because Πnew and snew in memory
match the source code, but it is not an end-goal in itself.
The difference between state representation consistency
and type-safety is that one could provide type-safety by
allowing new and old definitions of a type to be valid
simultaneously. For example, one could apply forward
and backward datatype transformers [5], but this makes
it harder to reason about updated programs. Addition-
ally, it may not be possible to convert a datatype for new
code, then backward for old code, and then forward for
new code again, since updated types often contain more
information than older types and data could be lost.

4. Logical Representation Consistency: An update
system provides logical consistency if the hybrid execu-
tion is indistinguishable to an outside observer from exe-
cutions that are obtained with representationally consis-
tent updates [16, 13].

5. Thread-X-safety: An update is thread-X-safe if X-
safety is provided in a multithreaded applications. For
example, thread-type-safety means that type-safety is
provided for a multithreaded application. In general if
a DSU system guarantees that X-safety is satisfied for
individual threads independently, then thread-X-safety is
not necessarily guaranteed.

Our update mechanism provides the user with the abil-
ity to initiate a representationally consistent update in
any state of the program. The emphasis is on the mech-
anism though. Determining the validity of a particular
state for update requires other analyses [8, 16, 13].

3

400	 2009 USENIX Annual Technical Conference	 USENIX Association

2.3 Immediate Updates
In this section, we introduce immediate updates and ar-
gue that they are needed to guarantee that the update of
common multithreaded applications is logically consis-
tent and can be achieved without unbounded service in-
terruption. We first introduce the concept of update with
bounded delay.

Bounded delay update: If a valid mapping is known
for a valid old state s and the application is in state s, a
state mapping can be applied without pausing the appli-
cation for an unbounded amount of time.

An update is immediate if it satisfies representation
consistency and bounded delay. To understand the need
for immediate updates, consider a multithreaded appli-
cation in which each server thread handles a client con-
nection and threads read/write in a shared data structure
after receiving client requests. In general, there might be
a long delay between successive client requests.
Now, consider an update that changes the specification

of the data structure and how it is accessed and assume a
number of connections are active. To effect the update,
there are a number of options:

• Do not allow any new connections and wait until
all active connections terminate. When all connec-
tion terminate, apply the update. This is not a good
option because it can result in the service being un-
available for an unbounded amount of time.

• Allow new connections, but using the old version of
the code. This can result in the update being indef-
initely delayed because the new version may never
get to be executed.

• Allow new connections using the new version of the
code while connections created with the old version
are active (possibly blocked for client input). This
is the more interesting case. Once the shared data
structure is accessed by threads running the new
version, the data representation would have to re-
flect the semantics of the new version. This means
that on the next access by the old version we ei-
ther violate logical representation consistency or we
force the thread running the old version to be trans-
formed to the new version. Since violating logical
consistency is not an option, we are left with the
need to immediately update the thread running the
old version. Otherwise the connection will not be
available for its client for an unbounded amount of
time.

So, for all cases, the capability to immediately update
individual threads is necessary. If multiple threads of
the old version are attempting to access the shared data
structures, the updated mechanism should support their

collective immediate update. The update mechanism we
propose is the first that can support immediate update of
single-threaded as well as multi-threaded applications.

3 Dynamic Update System

We describe our proposed update model and how we ap-
ply state mappings under this model.

3.1 Update Model
We propose an update model that is more flexible than
the update models of existing works in two respects.
First, we consider stack frames as part of updateable pro-
gram state. Stack frames include local variables, for-
mal parameters, and return addresses. Second, we con-
sider the Program Counter as updateable program state.
Unlike existing work, we can ensure updates meet the
safety guarantees of Section 2 while employing an up-
dating model that can modify all aspects of the old pro-
gram state s. This means our approach has a wider reach
(more old valid states) in applying an update compared to
existing work that needs to accept fewer old valid states
if it is to meet these safety guarantees.

A program (Π, s) is a pair of program code Π and pro-
gram state s. Program code Π is a set containing the exe-
cutable code of all the functions of the program. Program
state s = (h, Tsf , TPC) is a tuple consisting of a set h

containing all global variables on the heap, an array Tsf

of ordered lists sf of stack frames, one for each thread of
the program, and an array TPC of Program Counters for
each Thread. Each stack frame f(l, p, ra) in sf contains
a set l of local variables on the stack, the formal param-
eters p and the return address ra. We omit the semantics
of program execution from this description.

Software updates are effected by replacing Π with
Πnew , applying a state transformer S to s, and continu-
ing execution from program Πnew in state S(s) = snew.
Dynamic updates take place at update points, which are
a subset of possible PC locations for the program. Our
compiler inserts update points automatically when com-
piling a program to be update-enabled, as we discuss
Section 4. The update mechanism allows the state trans-
former to modify the entire old program state. For ex-
ample, for each new stack frame f ′(l′, p′, ra′) it can add
new local variables to produce l′, change function signa-
tures by extending or reducing the formal parameters to
obtain the new formal parameters p′, or adjust the return
address ra′ of a stack frame to continue from a different
execution point on the parent stack frame. It can insert
new stack frames in Tsf ′ or remove stack frames. It can
also set a new Program Counter TPC′ for all threads. For
example it can set threads to “escape” from execution of
a loop or a function.

4

USENIX Association	 2009 USENIX Annual Technical Conference	 401

3.2 Default State Mapping

Default state mappings are needed to reduce the effort
required from the user. In general we would hope that
the default mapping is what the user desires, but there
are no guarantees for that. The user is always given the
capability to override default mappings.

Our approach involves an effective heuristic that re-
lies on verification of its validity by the user. We apply
data transformers of global variables on the heap h and
local variables l of every stack frame Tsf , and re-issue
function parameters p. Additionally we map execution
continuation of return addresses ra and Program Coun-
ters TCP . Transformers and mappings are automatically
generated, can be overridden by the user, and, for the
cases we have tested, they are effective enough and re-
quire minimal user involvement.

Datatype updates. When an update is requested,
stack frames Tsf and program counters TPC of all run-
ning threads are saved and the stack is unrolled up to the
thread entry-point function. At this point, the entire old
state s at the time the update was initiated is available
(having just been saved) to systematically produce the
new state snew. For every global variable whose datatype
τ has changed, a new global variable of the new datatype
τ ′ is allocated in h′. If the datatype is a struct or union
and it has been extended, a transformer copies the old
fields (only new fields must be initialized by the user). If
the datatype is reduced, the remaining fields are copied
with no user assistance. If the variable is an array, a trans-
former is applied on all array elements. If the datatype
change simply extends an array with more elements (e.g.
parseconf uint array in vsFTPd offers more configura-
tion options), a new array with more room is allocated
and the values of all old elements are copied.

Stack frames f ′(l′, p′, ra′) are reconstructed with a
default automatic mapping by copying the old stack
frame f(l, p, ra). Local variables l′ are grouped into a
struct and automatically copied from l. Variable addi-
tions are treated as new field additions in a struct and
can be initialized to a default value by a user-supplied
stack transformer. Datatype changes of local variables
l are mapped in a way similar to global variables h and
formal parameters p′ are automatically copied from p or
further extended by the user.

Execution continuations. Return addresses ra and
Program Counters TPC are automatically preserved, and
they correspond to continuation points. Continuation
points are all points prior to function calls and all up-
date points. That’s how execution control flow can de-
scend to reconstruct a callee, or resume a program after
an update, respectively. We take the simple approach of
assigning unique numeric ids to continuation points in
the order they appear in each function body. By default,

struct vsf_transfer_ret
vsf_ftpdataio_transfer_file(
struct vsf_session* p_sess, int remote_fd,
int file_fd, int is_recv, int is_ascii)
{

// Continuation point 1
if (!is_recv) {
if (is_ascii) {

// Continuation point 2
return

do_file_send_ascii(p_sess, remote_fd, file_fd);
} else {

// Continuation point 3
return

do_file_send_binary(p_sess, remote_fd, file_fd);
}

} else {
// Continuation point 4
return do_file_recv(p_sess, remote_fd,

file_fd, is_ascii);
}

}

(a) vsFTPd v1.2.2

struct vsf_transfer_ret
vsf_ftpdataio_transfer_file(
struct vsf_session* p_sess, int remote_fd,
int file_fd, int is_recv, int is_ascii)
{

filesize_t curr_offset;
filesize_t num_send;

// Continuation point 1
if (!is_recv) {
if (is_ascii || p_sess->data_use_ssl) {

// Continuation point 2
return do_file_send_rwloop(p_sess, file_fd,

is_ascii);
} else {

// Continuation point 3
curr_offset =

vsf_sysutil_get_file_offset(file_fd);
// Continuation point 4
num_send = calc_num_send(file_fd, curr_offset);
// Continuation point 5
return do_file_send_sendfile(p_sess, remote_fd,

file_fd, curr_offset, num_send);
}

} else {
// Continuation point 6
return do_file_recv(p_sess, file_fd, is_ascii);

}
}

(b) vsFTPd v2.0.0

Figure 1: Continuation points in vsFTPd.

we map continuation points with the same enumerator in
Π and Πnew. If the call graph of the application did not
change and the loop structure did not change, this map-
ping is very effective for actual updates. By adjusting
a continuation point a user can define how control flow
should continue upon returning to a parent stack frame.
We have not found it necessary to insert additional con-
tinuation points (e.g. one in every basic block).

Figure 1 shows an example of mapping the con-
tinuation of do file send binary in an update of vs-
FTPd from v1.2.2 to v2.0.0. Updating this func-
tion requires mapping the ra to its parent stack frame
vsf ftpdataio transfer file. It requires mapping con-

5

402	 2009 USENIX Annual Technical Conference	 USENIX Association

upstare_mapping_t mappings_v200[] = {
{ "vsf_ftpdataio_transfer_file",
"vsf_ftpdataio_transfer_file",
2, // 2 continuation points are mapped
{ { 3, 5 },

{ 4, 6 }
}

},
{ "do_file_send_binary",
"do_file_send_sendfile",
5, // 5 continuation points are mapped
{ { 6, 2 },

{ 7, 3 },
{ 8, 4 },
{ 9, 5 },
{ 10, 6 }

}
}

};

Figure 2: Relevant continuation mapping for an update
of do file send binary in vsFTPd v1.2.2 to v2.0.0.

tinuation point 3 from v1.2.2 to continuation point
5 in v2.0.0, including supplying the new parameters
curr offset and num send (initialized in the stack
transformer) to the new version do file send sendfile.
Without this mapping an update would incorrectly
resume from ra=3 in v2.0.0, which would load
vsf sysutil get file offset on the stack, and the old state
Tsf of callee stack frames of do file send binary would
not be restored.

Figure 2 shows the relevant declaration of the variable
(source code in C) used to express the continuation map-
ping to update to vsFTPd 2.0.0. There are two mapping
points for vsf ftpdataio transfer file: 3 maps to 5, and 4
maps to 6. 1 and 2 use the default mapping: they map to
their old values of 1 and 2. Also do file send binary is
replaced with do file send sendfile and execution con-
tinues from the replaced function at an offset continua-
tion of -4, which means some code from the beginning
of do file send binary was removed.

Mapping pointers. Mapping pointers of datatypes
known at compile-time is straightforward. However,
void* pointers are cast at runtime to generic datatypes
and are harder to map. Support for tracking pointer types
at runtime is needed to invoke the appropriate datatype
transforms. We have developed this support in previous
work [10] and it has low overhead (1-7%), but we do not
yet integrate it with UpStare.

4 Implementation

UpStare consists of a compiler to generate updateable
programs, a runtime environment for dynamically apply-
ing updates, a patch generator, and a dynamic updating
tool, as shown in Figure 3. This architecture is similar to
those of existing updating systems. The compiler applies
high-level, source-to-source transformations that make

Figure 3: UpStare system architecture.

programs dynamically updateable. It is written in OCaml
using the CIL framework[15] v1.3.6 and is architecture
and operating system independent. Users replace in their
build process (e.g. Makefiles) calls to an existing com-
piler like gcc with calls to the compiler of our system
(hcucc.pl). No source code modifications by a user are
required in existing programs. Programs are transformed
as needed to coordinate application of updates with the
dynamic updating runtime (written in C; 64KB memory
footprint). Updates are initiated by the user with a sep-
arate dynamic updating control tool that connects using
TCP to a thread waiting for update requests. Updates are
loaded in memory using dlopen and applied under the
guidance of the runtime.

Given the source code of the old and updated pro-
grams, a patch generator automatically produces the
source code for a dynamic update patch. The patch in-
cludes the newer versions of functions, and the old and
updated datatype definitions of modified variables, either
global or declared on the stack. It also includes automati-
cally generated datatype and stack transformers, and, op-
tionally, user-defined execution continuation mappings
that override the default ones to produce the new state.

4.1 Stack Reconstruction
Stack reconstruction consists of two major steps. It saves
the existing stack state when unrolling and restores the
updated state when reconstructing. To reduce the size
of active instrumented code, wrapper functions that effi-
ciently save and restore stack frames are produced away

6

USENIX Association	 2009 USENIX Annual Technical Conference	 403

functionA()
{

char a;
int param;

...
functionB(param);

}

(a) Non-Instrumented

typedef struct {
char a;
int param;

} stack_functionA_v1_t;

(*functionB_ptr) (int) =
&functionB_transformed;

functionA_transformed()
{

stack_functionA_v1_t locals;

...
functionB_6_before:
functionB_ptr(locals.param);
if (may_reconstruct && must_reconstruct()) {
if (must_unroll_up(‘‘functionA’’)) {

save_frame__functionA(&locals, 6);
return;

}
goto functionB_6_before;

}
}

(b) Instrumented

Figure 4: Transformation of function calls for stack re-
construction (functionB ptr just returned).

from the text segment in a separate memory area of cold
code executed only during reconstruction.

Figure 4 shows how stack frames are saved. func-
tionA is transformed to check upon returning from the
callee functionB whether the stack should be recon-
structed. Note that may reconstruct is a global flag
raised only in reconstruction mode to improve perfor-
mance. If must reconstruct is true (this thread should
participate in reconstruction) and execution should be
unrolled (must unroll up is true: the topmost frame, by
default, has not been reached yet, but the user can spec-
ify that unrolling stops at a different frame), the stack
frame and continuation point 6 are saved and functionA
returns to its caller. Returning to callers continues until
the start of the program is reached: the main function in
single-threaded applications or the start routine passed
to a pthread create call for multi-threaded applica-
tions. Otherwise unrolling should stop (must unroll up
is false). A goto statement resumes execution from func-
tionB 6 before and descends in functionB for recon-
struction.

Figure 5 shows how execution is resumed from func-
tionA. If on function entry the stack should be recon-
structed downwards, the stack frame is restored. A
switch statement maps the continuation point 6 to con-
tinuation label functionB 6 before using a goto state-

functionA()
{

char a;
int param;

...
functionB(param);

L1:...
}

(a) Non-Instrumented

functionA_transformed()
{

stack_functionA_v1_t locals;

if (may_reconstruct && must_reconstruct()) {
restore_frame__functionA(&locals);
switch (next_continuation_point()) {

...
case 3:
goto try_to_update_3_after;

...
case 6:
goto functionB_6_before;

...
}

}
...
functionB_6_before:
functionB_ptr(locals.param);
if (may_reconstruct && must_reconstruct()) {

if (must_unroll_up(‘‘functionA’’)) {
save_frame__functionA(&locals, 6);
return;

}
goto functionB_6_before;

}
L1:...
}

(b) Instrumented

Figure 5: Transformation of function entrypoints for
stack reconstruction (entering functionA transformed).

ment. Execution flow continues by calling functionB.
When the update is complete (may reconstruct is false:
we are no longer in reconstruction mode) and functionB
finishes, execution continues normally (from L1).

Thread entry-points. If the main function or the start
routine passed to a pthread create attempt to return
during reconstruction they will terminate permanently.
To allow the update of main or thread entry points, calls
to such functions are initiated from a wrapper function.
To accurately discover thread entry-points (and signal-
handlers, discussed next) we use the points-to alias anal-
ysis provided by CIL.

Signal handlers. The address of signal handlers, de-
fined with sigaction and signal, is stored inside the op-
erating system. To avoid resetting signal handlers when
they are updated calls to them are initiated from a wrap-
per function. Additionally, signal handlers return execu-
tion to the kernel and are incompatible with stack recon-
struction. They are instrumented to raise a flag on entry
and reset the flag before exiting. Requests to update are
rejected when a program is executing a signal handler.

7

404	 2009 USENIX Annual Technical Conference	 USENIX Association

functionA()
{

char a;
int param;

while(condition)
{

...
}

}

(a) Non-Instrumented

functionA_transformed()
{

stack_functionA_v1_t locals;

...
while(condition)
{

if (must_update) {
coordinate_update_top(&locals, 3);
return;

try_to_update_3_after:
coordinate_update_bottom();

}
...

}
}

(b) Instrumented

Figure 6: Insertion of an update point at the beginning of
a loop.

They are immediately satisfied when the program con-
tinues in normal execution mode, and can update signal
handlers at that point. Signal handlers are discovered us-
ing points-to alias analysis provided by CIL.

Redirecting function calls. Function calls are exe-
cuted using pointer indirection. For each function f v1,
a global variable f ptr is created that points to &f v1 and
calls to f v1 are transformed to calls to *f ptr. For each
function pointer *g v1, wrapper functions are created
that call it.

Inserting update points. Update points are auto-
matically inserted at the beginning of each function and
each loop so they can be encountered often to allow im-
mediate updates. Figure 6 shows an example update
point inserted at the beginning of a loop. When the
must update flag is raised, the current thread partici-
pates in synchronization to block all threads. The cur-
rent continuation point 3 and the stack frame of func-
tionA are saved, and execution returns to the function’s
caller. When the stack is reconstructed and functionA
is called again (see Figure 5b), execution flow resumes
from try to update 3 after.

Our current implementation is restricted to a coarse-
activation of update points using a single must update
flag. However, it is straightforward to support more
fine-grain selective activation by dynamically disengag-
ing update points. For example, the user could specify
when requesting an update that (say) all update points

except 250-259 should effect the update.
Exporting local variables. The dlopen library call

will successfully load a dynamic update patch only if
the patch references global variables. References to vari-
ables that were declared local in the original version (us-
ing the static keyword) are not accessible after dynamic
loading, leading to system exceptions when executing
state transformers. Our compiler removes the static key-
word from all local variables and exports them to global.

4.2 Multi-Threaded Updates
Updating a multi-threaded or multi-process application
requires all threads to be blocked. If some threads are
not blocked the possibility of thread-safety violations re-
mains open.

We adapted an algorithm that blocks all threads
in heterogeneous checkpointing for multi-threaded
applications[9] to dynamic updates. The idea is to force
all but one thread to block when the application must
update. The one thread that is not blocked will be the
coordinator of the update. It polls the status of the re-
maining threads until it can tell for sure that all threads
are blocked, as defined below.

When a thread reaches an update point and the appli-
cation must update, it raises a flag indicating that it is
willing to cooperate on the update and then attempts to
acquire a coordination lock. The first thread to acquire
the coordination lock is the coordinator of the update.
The coordinator can tell that some threads are blocked
if their cooperation flags are raised. But this does not
cover all threads. Some threads might be blocked wait-
ing on an application lock owned by a thread that is al-
ready willing to cooperate and that is blocked on the co-
ordination lock. To that end, the system needs to keep
track of the blocking status of various threads. Calls
to pthread mutex lock and pthread mutex unlock are
replaced with wrapper calls to keep track of the blocking
status of threads. When a thread attempts to acquire a
lock, it adds the lock to a WANT list. When the lock is
acquired, the lock is removed from the WANT list and
placed on a HAVE list. When the thread releases the
lock, the lock is removed from the HAVE list.

The coordinator determines that a thread is really
blocked if:

1. The thread is willing to update;

2. The thread is blocked waiting on a lock owned by
another thread that is really blocked.

The coordinator keeps on checking the status of the
other threads until it can determine that all other threads
are really blocked, at which time the coordinator initiates
the actual update: the stack of each thread is unrolled

8

USENIX Association	 2009 USENIX Annual Technical Conference	 405

and the threads block; all datatypes are transformed; the
stacks are reconstructed and the threads block; and, the
threads resume executing the updated version.

The algorithm outlined above has been extended to
support blocking threads that use semaphores[9], but our
current implementation does not yet integrate that capa-
bility with the dynamic update system.

Multi-process updates. We extend multi-threaded
updates in multi-process applications. fork calls are re-
placed with wrapper calls that maintain a hierarchy of
children. This information is used by the parent process,
which acts as a central coordinator of the individual up-
date steps, to apply an atomic update among all children:
it waits for all threads of all children to block; all stack
frames to be unrolled; transforms datatypes; reconstructs
stacks; and, releases all children after all their threads
are ready to resume execution. wait and waitpid are also
intercepted to cleanup the children hierarchy.

4.3 Blocking System Calls
To enable the runtime to regain execution when an up-
date is initiated, we transform blocking I/O calls into
non-blocking calls and we segment write calls into writes
of smaller chunks.

Calls to sendfile, which is used in vsFTPd for file
transfer, are segmented into 256KB chunks. We do not
yet implement segmentation for send but it should be
straightforward to do so. read, recv, accept, and se-
lect calls are wrapped to check if the file descriptor is
set to blocking mode. If it is, the file descriptor is con-
verted to non-blocking mode, the operation is issued, and
execution is voluntarily blocked in a manner that allows
unblocking: we issue a select that includes in its read set
the file descriptor of a pipe created by the runtime. If an
update must be applied, hence we need to unblock, we
write to the pipe to force select to return and encounter
an update point. A bottom handler executed after the up-
date point resets the file descriptor to blocking mode. To
allow state transformation while a blocking system call is
issued without corrupting the data buffer of read or recv,
these calls are issued with a buffer allocated on the heap.
When the operations complete, the data are copied back
to the original buffer. A possible optimization, which we
have not yet implemented, is to transform programs to
always allocate I/O data buffers on the heap instead of
the stack, to avoid copying data back to the buffer when
such operations complete.

A more general approach to handling any blocking
system call, not just I/O calls, is to always issue the call
in a separate thread. This allows the runtime to remain
in control and initiate reconstruction even if the system
call has not returned yet. Our original implementation of
blocking I/O calls followed this approach but was not as

efficient as the self-pipe select solution, due to the cost
of pthread create (we did not try worker threads).

5 Evaluation

We demonstrate the working of UpStare on three appli-
cations. The data-intensive KissFFT, the vsFTPd server,
and the PostgreSQL database. We give a detailed analy-
sis of the sources of overhead, such as runtime overhead,
memory footprint, and network overhead.

5.1 KissFFT

We compiled (at -O3) the KissFFT1 v1.2.0 Fast Fourier
Transform library (1936 lines of code) using float
datatypes to be dynamically updateable and performed
100,000 iterations on 20,000 points. This is an applica-
tion with heavy data access and for which source code
instrumented with Ginseng was made available to us.
We did not update this application, but we compiled it
to be updateable. We used this application to get a bet-
ter understanding of the sources of overhead introduced
by our instrumentation. We ran experiments that selec-
tively omitted parts of the code that UpStare introduces
in an application. We measured the time to run this ap-
plication: (1) using the original compiler, (2) using CIL,
(3) when only wrapper functions to save/restore stack
frames are produced, (4) when functions were called di-
rectly without pointer indirection, (5) when if-statements
without a body are inserted for update points (Figure 6),
the switch statement prologue (Figure 5b), or upwards
stack unrolling (Figure 4b); here we aim to measure
the overhead of branch checks when the must update
and must reconstruct flags are not raised, and (6) after
adding the body of these if-statements.

Figure 7 shows the impact of the presence of
reconstruction-aware code in the program. To compare
the results we identify the best compiler to use with
a non-instrumented KissFFT and the best compiler to
use under instrumentation. Given an non-instrumented
KissFFT, gcc 4.1 (GNU C Compiler) is the best com-
piler and given an instrumented KissFFT the best com-
pilers are icc 10.1 (Intel C Compiler) for Ginseng and
gcc 3.4 for UpStare, all on a Pentium M. Under this
comparison, the best performing Ginseng reports over-
head of 149.8% (87.1% for UpStare) and the best per-
forming UpStare reports overhead of 38.2% (179.3% for
Ginseng). The overhead of Ginseng stems from access-
ing data through a versioned pointer indirection instead
of accessing them directly. In comparison, the overhead
of UpStare is rooted at the increase of function size that

1http://sourceforge.net/projects/kissfft

9

406	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70
S

ec
o

n
d

s

KissFFT of 100000 iterations on 2000 points

cc
CIL

UpStare - no-if-stmts-no-indirection
UpStare - no-if-stmts

UpStare - if-stmts-no-body
UpStare

Ginseng - update-points-only
Ginseng

gcc 3.4
8KB L1

256KB L2
Pentium 4

1.6Ghz

gcc 4.1 icc 10.1 gcc 3.4
8KB L1

256KB L2
Xeon

1.5Ghz

gcc 4.1 icc 10.1 gcc 3.4
32KB L1
1MB L2

Pentium M
1.3Ghz

gcc 4.1 icc 8.0 icc 9.1 icc 10.1

Figure 7: KissFFT: Impact of reconstruction code on running time.

overexerts the ITLB and branch predict unit of the pro-
cessor.

CIL. CIL transforms source code in simpler terms and
should not alter performance. It generally doesn’t, but it
reported up to 4.2% overhead (Pentium 4: icc 10.1) and
up to 1.0% improvement (Pentium M: icc 10.1).

Wrapper save/restore functions. Compared to CIL,
producing wrapper functions to save/restore stack frames
should not report overhead because these functions are
stored outside the text segment. However, on a Pentium
M it reported 11.8% overhead with gcc 4.1 and 11.0%
improvement with gcc 3.4. Intel compilers report no
overhead, suggesting a problem with gcc.

Function indirection. Functions called via pointer in-
direction should incur constant overhead. They report
overhead up to 3.0% on a Pentium M (icc 10.1), 1.2% on
a Xeon (gcc 4.1), and 10.3% on a Pentium 4 (gcc 3.4).

If-statements. On a Pentium M, inserting if-
statements adds an overhead of 7.2% for icc 10.1, 7.2%
for gcc 4.1 and 11.3% for gcc 3.4. This suggests branch
prediction can be a significant factor in final perfor-
mance. Still, update points in Ginseng and UpStare incur
comparable overhead.

Increased function size. In comparison to the to-
tal overhead of if-statements without a body (Pentium
M: 18.0% for gcc 4.1; 9.2% for icc 10.1), an increased
function image size adds an overhead of 23.0% and
57.4% respectively, and is responsible for most of the
system overhead. We used OProfile to collect perfor-
mance statistics on the Pentium 4 with gcc 4.1 (over-
head 31.3%) and further investigate this issue. We ob-
served a 15% increase in the number of ITLB trans-
lations and an 11% increase in the number of instruc-
tion fetch requests from the branch predict unit. Other

events like ITLB misses, retired mispredicted branches
and page walks showed no significant deviation.

We attempted to use inline assembly to place the body
of if-statements outside the text segment. Inline assem-
bly convention prohibits using branch instructions since
their presence is not available to high-level optimiza-
tions. The compiler would produce intermediate assem-
bly code for the stack unrolling code that would fail to
link (inline code supplying linking directives in unreach-
able basic blocks would not be produced). We also at-
tempted to partition code in hot and cold blocks with -
freorder-blocks-and-partition using both gcc 4.1 and
icc 10.1 but the compilers moved the cold blocks only to
the end of the function image without reducing the over-
head. Placing the cold blocks to the end of the process
image instead may reduce the final overhead.

Memory footprint. We measured the resident set size
at the various stages of instrumentation. CIL does not in-
crease the working set. Wrapper code that saves/restores
stack frames is responsible for most of the memory in-
crease, up to 236KB (48.7%) using gcc 4.1 on a Pentium
M. If-statements marginally increase memory by 4-8KB
(0.9-1.7%). The best performing UpStare in respect to
running time (Pentium M: gcc 3.4), increased memory
by a total of 260KB (53.7%), while Ginseng (Pentium M:
icc 10.1) increased memory by 76KB (13.3%). Ginseng
increases memory by type wrapping struct datatypes,
while UpStare adds updateable code inside functions and
wrapper functions to save/restore stack frames.

5.2 The Very Secure FTP Daemon

vsFTPd is a fast, secure, widely used FTP application
that forks connection handlers that do not communicate

10

USENIX Association	 2009 USENIX Annual Technical Conference	 407

Ver. Date LoC2 Types Variables Functions
Tot. Same Add. Del. Upd. Tot. Same Add. Del. Upd. Tot. Same Add. Del. Upd.

1.1.0 2002-07-31 8,389 628 - - - - 158 - - - - 436 - - - -
1.1.1 2002-10-07 8,468 628 628 0 0 0 161 156 3 0 2 436 420 0 0 16
1.1.2 2002-10-16 8,731 639 626 11 0 2 165 159 4 0 2 447 428 11 0 8
1.1.3 2002-11-09 8,839 646 638 7 0 1 167 164 2 0 1 449 439 2 0 8
1.2.0 2003-05-29 10,011 659 641 16 3 2 201 163 35 1 3 481 378 39 7 64
1.2.1 2003-11-13 10,506 664 655 7 0 2 205 196 7 3 2 486 447 6 1 33
1.2.2 2004-04-26 10,547 664 664 0 0 0 204 202 1 2 1 487 476 1 0 10
2.0.0 2004-07-01 11,527 998 649 342 8 7 218 200 16 2 2 513 421 35 9 57
2.0.1 2004-07-02 11,543 687 674 8 319 5 219 218 1 0 0 513 506 0 0 7
2.0.2 2005-03-03 11,612 688 687 1 0 0 219 219 0 0 0 513 489 1 1 23
2.0.3 2005-03-19 11,743 688 688 0 0 0 226 216 8 1 2 516 481 5 2 30
2.0.4 2006-01-09 11,857 694 687 6 0 1 229 225 3 0 1 519 499 4 1 16
2.0.5 2006-07-03 11,923 694 693 0 0 1 234 228 5 0 1 519 494 0 0 25
2.0.6 2008-02-13 12,202 701 691 7 0 3 239 231 5 0 3 523 497 4 0 22

Table 1: vsFTPd: Source code evolution.

with each other or their parent. We applied 13 updates
spanning 5.5 years of application evolution, compiled
with gcc 4.1 on a 2.4Ghz Xeon. The updates were pre-
pared automatically using the patch generator. They re-
quired a total of 11 user-defined continuation mappings
for the two use cases we tested. Additional mappings
will probably be needed to update from other update
points. They also involved some manual initialization
of new variables and struct fields.

Table 1 studies the source code evolution of vsFTPd.
New datatypes are more often added than modified. Vari-
able additions are common, and there are few datatype
changes or variable deletions. Functions are updated
very often and are less likely to be deleted. We also
note that a large collection of functions and variables
are added in major revisions of the program, such as
from v1.1.3 to v1.2.0 and from v1.2.2 to v2.0.0. The
large number of types added in v2.0.0 is due to including
header files from GnuTLS (for secure communication)
while in v2.0.1 (released one day later) the OpenSSL
header files were removed. We applied updates to vs-
FTPd under two use cases:

• Idle client. A client connected to the server, authen-
ticated correctly, and was waiting idle for user input
on the command line. An update was applied.

• File transfer. A client connected to the server,
authenticated correctly, and requested to retrieve a
large file. The file begun being transmitted to the
client but has not finished transmission. An update
was applied.

Our goal was to determine if vsFTPd required updates
of functions on the stack under these use cases, which
are typical for this type of application. In 7 out of 13 up-
dates the vsf session struct variable allocated in main
was extended with new fields and needed to be updated.
For an idle client, in 7 out of 13 updates functions on the

2Generated using David A. Wheeler’s ’SLOCCount’.

stack needed to be updated. 5 of those 7 updates were
of forward control flow that had not been executed yet
and was pending on the stack. For a file transfer, in 9
out of 13 updates functions on the stack needed to be up-
dated and 6 of those 9 updates were of forward control
flow. Additionally, we observed a case where an update
applied during a large file transfer possibly needed to es-
cape a loop. During the update from v1.1.2 to 1.1.3 the
new code in do sendfile should be executed only if a
new global flag is on. If the update requires the initial
state of this flag to be off, execution should break out of
the loop and stop transferring the file.

613 update points where automatically inserted in vs-
FTPd v2.0.5. Updating during a large file transfer oc-
curred at stack depth 11 (maximum depth is 16, aver-
age 8.9) and took 59.7ms: 50.2ms to block all processes;
0.4ms to unroll the stack; 0.95ms to unroll the stack of
children processes; 0.45ms to reconstruct; 1ms to recon-
struct the stack of children processes. In comparison,
Ginseng applies a vsFTPd update in under 5ms [14].

While Ginseng can support the update of vsf session
struct, it achieves that with data padding whose limita-
tions we have already discussed.
We setup a client-server configuration connected with

a cross-over cable to eliminate network fluctuations. We
found this setup necessary to accurately measure per-
formance: in preliminary measurements our system re-
ported performance improvement, which was counter-
intuitive. We installed vsFTPd to serve files both from
a hard-disk and from an in-memory filesystem to elimi-
nate performance perturbation of hard-disk accesses and
identify the worst-case overhead. We measured the la-
tency of establishing a connection and retrieving a 32-
byte file 1000 times and the throughput of retrieving
a 300MB file. Table 2 reports the median of 11 runs
and shows comparable performance for files served ei-
ther from a hard-disk or from memory. Stack reconstruc-
tion slows down an updateable vsFTPd v2.0.5 by ∼0.37-
0.50ms (4.9-5.3%), multi-process support by ∼0.65-
0.70ms (6.8-7.4%), and support for blocking system calls

11

408	 2009 USENIX Annual Technical Conference	 USENIX Association

vsFTPd Configuration Connection Latency(ms)
32-byte file

Hard-disk Memory
v2.0.5 - NonInstrumented 9.61 9.49
v2.0.5 - CIL 9.64 (0.3%) 9.54 (0.5%)
v2.0.5 - Reconstruction 10.08 (4.9%) 9.99 (5.3%)
v2.0.5 - MultiProcess 10.26 (6.8%) 10.19 (7.4%)
v2.0.5 - BlockingCalls 9.97 (3.8%) 9.76 (2.9%)
v2.0.5 - UpStare-FULL 11.15 (16.0%) 11.06 (16.5%)
v2.0.6 - NonInstrumented 9.62 9.52
v2.0.6 - CIL 9.63 (0.1%) 9.54 (0.2%)
v2.0.6 - UpStare-FULL 11.16 (16.0%) 11.09 (16.5%)
v2.0.5 - update to v2.0.6 11.22 (16.6%) 11.12 (16.8%)

Table 2: vsFTPd: Impact of instrumentation on latency.

by ∼0.27-0.36ms (2.9-3.8%). The worst-case overhead
is from memory: 1.57ms (16.5%), and 1.63ms (16.8%)
when updated to v2.0.6. Ginseng reported overhead of
3% for an updateable and 5% for an updated vsFTPd, but
did not report if it eliminated hard-disk accesses or the
network from the experiment. In terms of throughput, an
updateable v2.0.5 and an update to v2.0.6 reported zero
overhead, like Ginseng.

The numbers for latency are presented as a worst-case
scenario because, in a practical situation, transferring a
file remotely would incur a latency that is considerably
larger than the latency of retrieving a 32-byte file. For
transferring files, throughput is more relevant and for that
measure our system reports zero overhead.

5.3 PostgreSQL Database
PostgreSQL is an advanced DBMS that forks connec-
tion handlers that communicate with each other through
shared memory. It is a large application of 369K lines
of code, with the postmaster process consuming 225K
lines of code (source code from src/backend/). Us-
ing the patch generator, we automatically prepared an
update from v7.4.16 to v7.4.17 compiled with gcc 4.1
on a 2.4Ghz Xeon. v7.4.17 updated 64 functions and
added one variable. The update was applied dynamically
without any user-specified continuation mappings when
a client was waiting idle for user input. User-specified
mappings will probably be needed to update from other
update points (9931 update points where automatically
inserted in v7.4.16). The update occurred at stack depth
10 (maximum depth is 35, average 15) and took 60ms:
53.7ms to block all processes; 0.2ms to unroll the stack;
0.45ms to unroll the stack of children processes; 0.3ms
to reconstruct the stack; 0.4ms to reconstruct the stack of
children processes.

The instrumented v7.4.16 and the update to v7.4.17
passed 85 (out of 93) tests of the PostgreSQL testsuite,

PostgreSQL Configuration pgbench throughput (t/s)
100,000 transactions

Hard-disk Memory
v7.4.16 - NonInstrumented 175.6 319.7
v7.4.16 - CIL 169.7 (3.4%) 319.0 (0.2%)
v7.4.16 - Reconstruction 133.0 (24.3%) 199.2 (37.7%)
v7.4.16 - MultiProcess 170.5 (2.9%) 312.9 (2.1%)
v7.4.16 - BlockingCalls 161.1 (8.3%) 293.4 (8.2%)
v7.4.16 - UpStare-FULL 130.7 (25.6%) 189.7 (40.7%)
v7.4.17 - NonInstrumented 174.3 317.8
v7.4.17 - CIL 171.3 (1.7%) 316.6 (0.4%)
v7.4.17 - UpStare-FULL 128.0 (26.6%) 189.8 (40.3%)
v7.4.16 - update to v7.4.17 131.8 (24.4%) 188.8 (40.6%)

Table 3: PostgreSQL: Impact of instrumentation on
throughput.

both in serial and parallel execution. For the remain-
ing 8 testcases we verified with MPatrol and Valgrind
that a non-instrumented PostgreSQL was causing buffer
overflows, illegal memory accesses, and uses of unini-
tialized data. While these access errors seem to produce
no problems for an non-instrumented PostgreSQL, they
were contributing to failures of other testcases or crashes
of a PostgreSQL instrumented with stack reconstruction.
Since the memory corruption bugs of PostgreSQL can
produce unpredictable results we cannot guarantee our
implementation will work in the presence of such bugs.

We measured over a cross-over cable the overhead of
an updateable v7.4.16 compared to a non-instrumented
v7.4.16 using the PostgreSQL pgbench tool that runs a
“TPC-B like” benchmark: five SELECT, UPDATE, and
INSERT commands per transaction. We measured the
time to run 100,000 transactions after a ramp-up time
of 40,000 transactions. Table 3 measures the through-
put when the database is loaded both on hard-disk and in
memory. Stack reconstruction reports 37.7% overhead
in memory but this is a worst-case scenario because a
database needs stable storage to be durable (24.3% on
hard-disk). Although only one client connection was
established overall, multi-process support reported over-
head 2.1%-2.9% and blocking system calls 8.3%. An
updateable v7.4.16 was 40.7% slower in memory and
25.6% slower on hard-disk. For these cases, the trans-
actions were all executed over the same connection. The
numbers show that each transaction consumes 5.7ms and
7.7ms for the non-instrumented and updateable v7.4.16
cases respectively. This translates into a latency overhead
of 34.4% for each transaction on average. This latency is
for transactions over the same connection.

To measure a worst-case scenario, we measured la-
tency for establishing a connection and running only one
transaction over the connection. We measure the latency
by running a transaction 1000 times (1000 connections

12

USENIX Association	 2009 USENIX Annual Technical Conference	 409

PostgreSQL Configuration pgbench latency (ms)
Average of 1000 transactions

Hard-disk Memory
v7.4.16 - NonInstrumented 25.62 23.56
v7.4.16 - CIL 25.70 (0.3%) 23.77 (0.9%)
v7.4.16 - Reconstruction 34.98 (36.5%) 33.03 (40.2%)
v7.4.16 - MultiProcess 27.33 (6.7%) 25.44 (8.0%)
v7.4.16 - BlockingCalls 26.94 (5.2%) 25.45 (8.0%)
v7.4.16 - UpStare-FULL 48.09 (87.7%) 45.97 (95.1%)
v7.4.17 - NonInstrumented 25.56 23.53
v7.4.17 - CIL 25.73 (0.7%) 23.64 (0.5%)
v7.4.17 - UpStare-FULL 48.34 (89.1%) 45.85 (94.9%)
v7.4.16 - update to v7.4.17 48.36 (89.2%) 46.21 (96.4%)

Table 4: PostgreSQL: Impact of instrumentation on la-
tency.

were established and torn down). Table 4 reports that
the combination of stack reconstruction, multi-process
support and blocking system calls support have a severe
impact on latency. When isolated, these features report
a total overhead of 48.4-56.2%. However, when com-
bined an updateable v7.4.16 is 22.41-22.47ms slower
(87.7-95.1%), and 89.2-96.4% slower when updated to
v7.4.17. We speculate this is due to the limited size of the
processor cache and we intend to run more experiments
to better understand the results. Note that the overhead
due to reconstruction is comparable to that of KissFFT.
We speculate that is due to the nature of the application
(data-intensive). We could not obtain a number for Gin-
seng because it could not compile PostgreSQL but we
would expect that the data accesses through pointer indi-
rection in Ginseng would result in high overhead.

6 Related Work

Table 5 compares existing DSU systems with UpStare. It
first compares kernel updating systems, and then appli-
cation updating systems.

DynAMOS [11] demonstrates transaction safety
through user-supplied adaptation handlers. However it
may need to wait indefinitely for a safe update point.
Its newcode-type-safety relies on pointer indirection
through “shadow data structures”, which incurs over-
head, to access the new fields of updated datatypes. But it
cannot guarantee oldcode-type-safety if old types change
their semantics, like other binary instrumentation sys-
tems [17, 2, 1].

K42 [3] is an OS that is particularly crafted to be up-
dateable and its approach cannot be generally applied to
existing systems without significant re-engineering. By
design it requires all kernel-threads to be short-lived and
non-blocking to guarantee quiescence: no to-be-updated
functions should be active on the stack.

POLUS [4] accomplishes type-safety of global vari-
ables by trapping all data accesses for the duration of
an update and synchronizing the state of the old and
new types. But it cannot update data on the stack, and
does not address representation consistency or the thread
safety issues of DSU.

Ginseng [14] pads datatypes with enough space to ac-
commodate future growth. Retrieving the appropriate
version of padded datatypes during runtime requires in-
direction for data access. This leads to considerable over-
head in data-intensive applications and after many up-
dates there may be no space left to accommodate the up-
date. Ginseng does not provide state and program rep-
resentation consistency but it offers logical consistency
through static analyses [16, 13] which improve safety
and updateability. Since its state mapping is restricted,
because of its updating mechanism, these conservative
analyses may not always find safe update points for that
mapping. Still, Ginseng can update multi-threaded ap-
plications [12], although continuation may not be imme-
diate. Additionally, Ginseng requires users to anticipate
long-lived loops and mark them for “loop extraction” of
the loop body into a separate function to update them be-
fore the next iteration begins.
Generally, existing systems have difficulty in updat-

ing functions [11, 2, 3, 1, 4, 14] and datatypes [1, 3, 4]
that are already active on the stack, or function re-
turn addresses [17, 11, 2, 3, 1, 4, 14]. They mostly
allow functions to be updated the next time they are
called [11, 2, 1, 3, 4, 14]. This is due to their restric-
tive updating mechanism that opens the possibility for
executing part old code, part new code, and part old code
again, which can be undesirable. Some systems elimi-
nate the possibility of executing mixed code by requiring
quiescence before they update[1, 3, 4] but this limits up-
dateability in practice [1, 4]. In Table 5 the overall ability
to update from as many old states as possible is coarsely
captured in the updateability parameter.

UpStare offers high updateability because of its up-
dating mechanism. It can modify all aspects of the old
program state (stack-resident functions, datatypes, and
return addresses), which allows updating from a wider
range of old valid states. Although it provides useful
safety guarantees, it requires some involvement from the
user in validating semantic safety of updates. UpStare
has the potential to provide transaction-safety by dynam-
ically disengaging update points, although this is not im-
plemented yet. The transaction safety analysis [13] of-
fered by Ginseng could be used by UpStare to reduce
user input in validating state transformers.

Acknowledgements. We would like to thank our
shepherd George Candea, the anonymous reviewers, and
Michael Hicks for their feedback. This work was sup-
ported in part by NSF Grant CSR-0849980.

13

410	 2009 USENIX Annual Technical Conference	 USENIX Association

DynAMOS [11] K42 [3] POLUS [4] Ginseng [14] UpStare
Domain Kernel Kernel Applications Applications Applications
Preparation Binary Source Binary Source Source
No program anticipation by user √ X √ X √

Datatype access Direct Direct Direct Indirect Direct
Updated datatype access Part-indirect Direct Trap+Sync Indirect Direct
User involvement for update High Medium Low Low Medium
Oldcode type-safety X √ Globals only Static Analysis √

Newcode type-safety √ √ Globals only Static Analysis √

Transaction safety Adaptive Quiescence Quiescence Static Analysis Possible
Representation consistency X √ X X √

Logical representation consistency X √ X √ √

Thread safety X √ X √ √

Immediate continuation X √ X X √

Updateability Medium High Low Medium High

Table 5: Comparison of existing DSU systems.

References

[1] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew
Schultz. OPUS: Online Patches and Updates for Secu-
rity. In 14th USENIX Security Symposium, pages 287–
302, July 2005.

[2] Jeff Arnold and M. Frans Kaashoek. KSplice: Automatic
Rebootless Kernel Updates. In EuroSys 2009, April 2009.

[3] Andrew Baumann, Gernot Heiser, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, and Robert W. Wis-
niewski. Providing Dynamic Update in an Operating Sys-
tem. In USENIX Symposium on Operating Systems De-
sign and Implementation, April 2005.

[4] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-
Chung Yew. Polus: A powerful live updating system. In
ICSE ’07: Proceedings of the 29th International Confer-
ence on Software Engineering, pages 271–281, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[5] Dominic Duggan. Type-based hot swapping of running
modules. In International Conference on Functional Pro-
gramming, pages 62–73, 2001.

[6] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A for-
mal framework for on-line software version change. Soft-
ware Engineering, 22(2):120–131, 1996.

[7] Susan Horwitz. Identifying the semantic and textual dif-
ferences between two versions of a program. In Proceed-
ings of the ACM SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, volume 25,
pages 234–245, White Plains, NY, June 1990.

[8] Susan Horwitz and Thomas Reps. The use of program
dependence graphs in software engineering. In In Pro-
ceedings of the Fourteenth International Conference on
Software Engineering, pages 392–411, 1992.

[9] Feras Karablieh and Rida A. Bazzi. Heterogeneous
Checkpointing for Multithreaded Applications. In 21st
Symposium on Reliable Distributed Systems (SRDS), Oc-
tober 2002.

[10] Feras Karablieh, Rida A. Bazzi, and Margaret Hicks.
Compiler-Assisted Heterogenous Checkpointing. In
20th IEEE Symposium on Reliable Distributed Systems
(SRDS), October 2001.

[11] Kristis Makris and Kyung Dong Ryu. Dynamic and
Adaptive Updates of Non-Quiescent Subsystems in Com-
modity Operating System Kernels. In EuroSys 2007,
March 2007.

[12] Iulian Neamtiu. Practical Dynamic Software Updating.
PhD thesis, University of Maryland, August 2008.

[13] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and
Polyvios Pratikakis. Contextual effects for version-
consistent dynamic software updating and safe concurrent
programming. In Proceedings of the ACM Conference
on Principles of Programming Languages (POPL), pages
37–50, January 2008.

[14] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and
Manuel Oriol. Practical Dynamic Software Updating for
C. In Proceedings of the ACM Conference on Program-
ming Language Design and Implementation (PLDI), June
2006.

[15] George C. Necula, Scott McPeak, S.P. Rahul, and Westley
Weimer. CIL: Intermediate Language and Tools for Anal-
ysis and Transformation of C Programs. In Proceedings
of Conference on Compilier Construction, 2002.

[16] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter
Sewell, and Iulian Neamtiu. Mutatis Mutandis: Safe and
flexible dynamic software updating. ACM Transactions
on Programming Languages and Systems (TOPLAS),
2006.

[17] Ariel Tamches and Barton P. Miller. Fine-Grained Dy-
namic Instrumentation of Commodity Operating System
Kernels. In Third Symposium on Operating System De-
sign and Implementation, February 1999.

14

USENIX Association	 2009 USENIX Annual Technical Conference	 411

Zephyr: Efficient Incremental Reprogramming of Sensor Nodes using
Function Call Indirections and Difference Computation

Rajesh Krishna Panta, Saurabh Bagchi, Samuel P. Midkiff
School of Electrical and Computer Engineering, Purdue University

rpanta,sbagchi,smidkiff @purdue.edu

Abstract

Wireless reprogramming of sensor nodes is an essential
requirement for long-lived networks since the software
functionality changes over time. The amount of infor-
mation that needs to be wirelessly transmitted during
reprogramming should be minimized since reprogram-
ming time and energy depend chiefly on the amount of
radio transmissions. In this paper, we present a multi-
hop incremental reprogramming protocol called Zephyr
that transfers the delta between the old and the new soft-
ware and lets the sensor nodes rebuild the new software
using the received delta and the old software. It reduces
the delta size by using application-level modifications to
mitigate the effects of function shifts. Then it compares
the binary images at the byte-level with a novel method
to create small delta, that is then sent over the wireless
network to all the nodes. For a wide range of software
change cases that we experimented with, we find that
Zephyr transfers 1.83 to 1987 times less traffic through
the network than Deluge, the standard reprogramming
protocol for TinyOS, and 1.14 to 49 times less than an
existing incremental reprogramming protocol by Jeong
and Culler.

1 Introduction
Large scale sensor networks may be deployed for long
periods of time during which the requirements from the
network or the environment in which the nodes are de-
ployed may change. This may necessitate modifying the
executing application or retasking the existing applica-
tion with different sets of parameters, which we will col-
lectively refer to as reprogramming. Once deployed, it
may be very difficult to manually reprogram the sensor
nodes because of the scale (possibly hundreds of nodes)
and the embedded nature of the deployment since the
nodes may be situated in places which are difficult to
reach physically. The most relevant form of reprogram-
ming is remote multi-hop reprogramming using the wire-

less mediumwhich reprograms the nodes as they are em-
bedded in their sensing environment. Since the perfor-
mance of the sensor network is greatly degraded, if not
reduced to zero, during reprogramming, it is essential to
minimize the time required to reprogram the network.
Also, as the sensor nodes have limited battery power, en-
ergy consumption during reprogramming should be min-
imized. Since reprogramming time and energy depend
chiefly on the amount of radio transmissions, the repro-
gramming protocol should minimize the amount of in-
formation that needs to be wirelessly transmitted during
reprogramming.
In practice, software running on a node evolves, with

incremental changes to functionality, or modification of
the parameters that control current functionality. Thus
the difference between the currently executing code and
the new code is often much smaller than the entire code.
This makes incremental reprogramming attractive be-
cause only the changes to the code need to be transmitted
and the entire code can be reassembled at the node from
the existing code and the received changes. The goal of
incremental reprogramming is to transfer a small delta
(difference between the old and the new software) so that
reprogramming time and energy can be minimized.
The design of incremental reprogramming on sensor

nodes poses several challenges. A class of operating sys-
tems, including the widely used TinyOS [1], does not
support dynamic linking of software components on a
node. This rules out a straightforward way of transfer-
ring just the components that have changed and linking
them in at the node. The second class of operating sys-
tems, represented by SOS [6] and Contiki [5], do sup-
port dynamic linking. However, their reprogramming
support also does not handle changes to the kernel mod-
ules. Also, the specifics of the position independent code
strategy employed in SOS limits the kinds of changes to
a module that can be handled. In Contiki, the require-
ment to transfer the symbol and relocation tables to the
node for runtime linking increases the amount of traffic

412	 2009 USENIX Annual Technical Conference	 USENIX Association

that needs to be disseminated through the network.
In this paper, we present a fully functional incremen-

tal multi-hop reprogramming protocol called Zephyr. It
transfers the changes to the code, does not need dynamic
linking on the node and does not transfer symbol and
relocation tables. Zephyr uses an optimized version of
the Rsync algorithm [20] to perform byte-level compar-
ison between the old and the new code binaries. How-
ever, even an optimized difference computation at the
low level can generate large deltas because of the change
in the positions of some application components. There-
fore, before performing byte-level comparison, Zephyr
performs application-level modifications, most impor-
tant of which is function call indirections, to mitigate the
effects of the function shifts caused by software modifi-
cation.
We implement Zephyr on TinyOS and demonstrate

it on real multi-hop networks of Mica2 [2] nodes and
through simulations. Zephyr can also be used with SOS
or Contiki to upload incremental changes within a mod-
ule. We evaluate Zephyr for a wide range of software
change cases,—from a small parameter change to almost
complete application rewrite—, using applications from
the TinyOS distribution and various versions of a real
world sensor network application called eStadium [3] de-
ployed at the Ross-Ade football stadium at Purdue Uni-
versity. Our experiments show that Deluge [7], Stream
[16], and the incremental protocol by Jeong and Culler
[8] need to transfer up to 1987, 1324, and 49 times more
number of bytes than Zephyr, respectively. This trans-
lates to a proportional reduction in reprogramming time
and energy for Zephyr. Furthermore, Zephyr enhances
the robustness of the reprogramming process in the pres-
ence of failing nodes and lossy or intermittent radio links
typical in sensor network deployments due to signifi-
cantly smaller amount of data that it needs to transfer
across the network.
Our contributions in this paper are as follows: 1) We

create a small-sized delta for dissemination using opti-
mized byte-level comparisons. 2)We design application-
level modifications to increase the structural similar-
ity between different software versions, also leading to
small delta. 3) We allow modification to any part of the
software (kernel plus user code), without requiring dy-
namic linking on sensor nodes. 4) We present the design,
implementation and demonstration of a fully functional
multi-hop reprogramming system. Most previous work
has concentrated on some of the stages of the incremen-
tal reprogramming system, but not delivered a functional
complete system.

2 Related work
The question of reconfigurability of sensor networks has
been an important theme in the community. Systems

such as Mate [10] and ASVM [11] provide virtual ma-
chines that run on resource-constrained sensor nodes.
They enable efficient code updates, since the virtual ma-
chine code is more compact than the native code. How-
ever, they trade off, to different degrees, less flexibility in
the kinds of tasks that can be accomplished through vir-
tual machine programs and less efficient execution than
native code. Zephyr can be employed to compute incre-
mental changes in the virtual machine byte codes and is
thus complementary to this class.
TinyOS is the primary example of an operating system

that does not support loadable program modules. Sev-
eral protocols provide reprogramming with full binaries,
such as Deluge [7] and Stream [16]. For incremental re-
programming, Jeong and Culler [8] use Rsync to com-
pute the difference between the old and new program
images. However, it can only reprogram a single hop
network and does not use any application-level modifi-
cations to handle function shifts. We compare the delta
size generated by their approach and use it with an exist-
ing multi-hop reprogramming protocol to compare their
reprogramming time and energy with Zephyr. In [19],
the authors modify Unix’s diff program to create an edit
script to generate the delta. They identify that a small
change in code can cause a lot of address changes result-
ing in a large size of the delta. Koshy and Pandey [9] use
slop regions after each function in the application so that
the function can grow. However, the slop regions lead to
fragmentation and inefficient usage of the Flash and the
approach only handles growth of functions up to the slop
region boundary. The authors of Flexcup [13] present
a mechanism for linking components on the sensor node
without support from the underlyingOS. This is achieved
by sending the compiled image of only the changed com-
ponent along with the new symbol and relocation tables
to the nodes. This has been demonstrated only in an em-
ulator and makes extensive use of Flash. Also, the sym-
bol and relocation tables can grow very large resulting in
large updates.
Reconfigurability is simplified in OSes like SOS [6]

and Contiki [5]. In these systems, individual modules
can be loaded dynamically on the nodes. Some mod-
ules can be quite large and Zephyr enables the upload of
only the changed portions of a module. Specific chal-
lenges exist in the matter of reconfiguration in individual
systems. SOS uses position independent code and due
to architectural limitations on common embedded plat-
forms, the relative jumps can only be within a certain
offset (such as 4 KB for the Atmel AVR platform). Con-
tiki disseminates the symbol and relocation tables, which
may be quite large (typically these tables make up 45%
to 55% of the object file [9]). Zephyr, while currently
implemented in TinyOS, can also support incremental
reprogramming in these OSes by enabling incremental

USENIX Association	 2009 USENIX Annual Technical Conference	 413

 New user
application

 Old user
application

Application level
 modifications

Byte level
comparison

Delta
script

 Delta
distribution
 stage

Delta script
 downloaded
 by nodes

 Image
rebuild
and load
 stage

 Old
application

 New
application

Executed on host computer

Executed on sensor nodes

Delta genration steps

Figure 1: Overview of Zephyr

updates to changed module and updates to kernel mod-
ules.
Distinct from this work, in [15], we show that further

orthogonal optimizations are possible to reduce the delta
size, e.g., by mitigating the effect of shifts of global data
variables. One of the drawbacks of Zephyr is that the la-
tency due to function call indirection increases linearly
with time. This is especially true for sensor networks
because typical sensor applications operate in a loop —
sample the sensor, perform some computations, trans-
mit/forward the sensed value to other nodes and repeat
the same process. In [15], we solve this while loading
the newly rebuilt image from the external flash to the
program memory by replacing each jump to the indirec-
tion table with a call to the actual function by reading
the function address from the indirection table. In this
way, we can completely avoid the function call latency
introduced by Zephyr.

3 High level overview of Zephyr
Figure 1 is the schematic diagram showing various stages
of Zephyr. First Zephyr performs application-level mod-
ifications on the old and new versions of the software to
mitigate the effect of function shifts so that the similar-
ity between the two versions of the software is increased.
Then the two executables are compared at the byte-level
using a novel algorithm derived from the Rsync algo-
rithm [4]. This produces the delta script which describes
the difference between the old and new versions of the
software. These computations are performed on the host
computer. The delta script is transmitted wirelessly to
all the nodes in the network using the delta distribution
stage. In this stage, first the delta script is injected by
the host computer to the base node (a node physically at-
tached to the host computer via, say a serial port). The
base node then wirelessly sends the delta script to all
nodes in the network, in a multi hop manner, if required.
The nodes save the delta script in their external flash
memory. After the sensor nodes complete download-
ing the delta script, they rebuild the new image using the

delta and the old image and store it in the external flash.
Finally the bootloader loads the newly built image from
the external flash to the program memory and the node
runs the new software. We describe these stages in the
following sections. We first describe byte-level compar-
ison and show why it is not sufficient and thus motivate
the need for application-level modifications.

4 Byte-level comparison
We first describe the Rsync algorithm [20] and then our
extensions to reduce the size of the delta script that needs
to be disseminated.

4.1 Application of Rsync algorithm
Rsync is an algorithm originally developed to update bi-
nary data between computers over a low bandwidth net-
work. Rsync divides the files containing the binary data
into fixed size blocks. Both sender and receiver compute
the pair (Checksum, MD4) over each block. If this algo-
rithm is used as is for incremental reprogramming, then
the sensor nodes need to perform expensive MD4 com-
putations for the blocks of the binary image that they
have. So, we modify Rsync such that all the expen-
sive operations regarding delta script generation are per-
formed on the host computer and not on the sensor nodes.
The modified algorithm runs on the host computer only
and works as follows: 1) The algorithm first generates
the pair (Checksum, MD4 hash) for each block of the
old image and stores them in a hash table. 2) The check-
sum is calculated for the first block of the new image.
3) The algorithm checks if this checksum matches the
checksum for any block in the old image by hash-table
lookup. If a matching block is found, Rsync compares
if their MD4 hash also match. If MD4 also matches,
then that block is considered as a matching block. If no
matching block is found for either checksum or MD4,
then the algorithm moves to the next byte in the new
image and the same process is repeated until a match-
ing block is found. Note that if two blocks do not have
the same checksum, then MD4 is not computed for that

414	 2009 USENIX Annual Technical Conference	 USENIX Association

block. This ensures that the expensiveMD4 computation
is done onlywhen the inexpensive checksummatches be-
tween the 2 blocks. The probability of collision is not
negligible for two blocks having the same checksum, but
with MD4 the collision probability is negligible.
After running this algorithm, Zephyr generates a list

of COPY and INSERT commands for matching and non
matching blocks respectively:

COPY <oldOffset> <newOffset> <len>
INSERT <newOffset> <len> <data>

COPY command copies len number of bytes from old-
Offset at the old image to newOffset at the new image.
Note that len is equal to the block size used in the Rsync
algorithm. INSERT command inserts len number of
bytes, i.e. data, to newOffset of the new image. Note
that this len is not necessarily equal to the block size or
its multiple.

1
2
3
4
10

x
x+1
x+2
x+3
x+4

1
2
3
4
5

z
z+1
z+2
z+3
z+4

1
2

y
y+1

.

.

.

New Image Old Image

Figure 2: Finding super block

4.2 Rsync optimization
With the Rsync algorithm, if there are contiguous
blocks in the new image that match contiguous blocks
in the old image, number of COPY commands are
generated. We change the algorithm so that it finds the
largest contiguous matching block between the two bi-
nary images. Note that this does not simply mean merg-
ing COPY commands into one COPY command. As
shown in Figure 2, let the blocks at the offsets and
in the new image match those at the offsets and
respectively in the old image. Let blocks at through

of the new image match those at through
respectively of the old image. Note that blocks at and

match those at and and also at and
. The Rsync algorithm creates two COPY com-

mands as follows: COPY y B x and COPY y+1
B x+1 , where is the block size. Then simply com-
bining these 2 commands as COPY y 2*B x does
not result in the largest contiguous matching block. The
blocks at the offsets through form the largest con-
tiguous matching block. We call contiguous matching
blocks a super-block and the largest super-block themax-
imal super-block. The optimized Rsync algorithm finds
the maximal super-block and uses that as the operand in
the COPY command. Thus, optimized Rsync produces a
single COPY command as COPY z 4*B x . Figure

3 shows the pseudo code for optimized Rsync. Its com-
plexity is where is the number of bytes in the
image. This is not of a concern because the algorithm
is run on the host computer and not on the sensor nodes
and only when a new version of the software needs to be
disseminated. As we will show in Section 8.2, optimized
Rsync running on the desktop computer took less than
4.5 seconds for a wide range of software change cases
that we experimented with.

/* Terminology
mbl=matching block list
cbl=contiguous block list
*/
1. j=0 and cblStretch=0
2. while j< number of bytes in the new image
3. mbl=findAllMatchingBlocks(j)
4. if mbl is empty
5. j++
6. if cbl is not empty
7. Store any one element in cbl as maximum superblock
8. go to 2
9. else
10. j=j+blockSize
11. if (cblStretch==0)
12. cbl=mbl
13. cblStretch++
14. go to 2
15. else
16. Empty tempCbl
17. for each element in cbl do
18. if (cbl.element + cblStretch == any entry in mbl)
19. tempCbl=tempCbl U {cbl.element}
20. if tempCbl is empty
21. Store any one element in cbl as maximum superblock
22. Empty cbl
23. cblStretch=0
24. else
25. cbl=tempCbl
26. cblStretch++
27. go to 2
28. end while
findAllMatchingBlocks (j)
 /*Same as Rsync algorithm, but instead of returning the offset
 of just one matching block, returns a linked list consisting
 of offsets of all matching blocks in the old image for the
 block starting at offset j in the new image.*/

Figure 3: Pseudo code of optimized Rsync that finds
maximal super block

4.3 Drawback of using only byte-level com-
parison

To see the drawback of using optimized Rsync alone, we
consider two cases of software changes.
Case 1: Changing Blink application: Blink is an appli-

cation in TinyOS distribution that blinks an LED on the
sensor node every one second. We change the applica-
tion from blinking green LED every second to blinking
it every 2 seconds. Thus, this is an example of a small
parameter change. The delta script produced with opti-
mized Rsync is 23 bytes which is small and congruent
with the actual amount of change made in the software.
Case 2: We added just 4 lines of code to Blink. The

delta script between the Blink application and the one
with these few lines added is 2183 bytes. The actual
amount of change made in the software for this case is

USENIX Association	 2009 USENIX Annual Technical Conference	 415

slightly more than that in the previous case, but the delta
script produced by optimized Rsync in this case is dis-
proportionately larger.
When a single parameter is changed in the application

as in Case 1, no part of the already matching binary code
is shifted. All the functions start at the same location as
in the old image. But with the few lines added to the
code as in Case 2, the functions following those lines are
shifted. As a result, all the calls to those functions refer
to new locations. This produces several changes in the
binary file resulting in the large delta script.
The boundaries between blocks can be defined by Ra-

bin fingerprints as done in [18, 14]. A Rabin finger-
print is the polynomial representation of the data modulo
a predetermined irreducible polynomial. These finger-
prints are efficient to compute on a sliding window in
a file. It should be noted that Rabin fingerprint can be
a substitute for byte-level comparison only. Because of
the content-based boundary between the chunks in Rabin
fingerprint approach, the editing operations change only
the chunks affected by those edits even if they change
the offsets. Only the chunks that have changed need to
be sent. But when the function addresses change, all
the chunks containing the calls to those functions change
and hence need to be sent explicitly. This results in a
large delta—comparable to the delta produced by the op-
timized Rsync algorithm without application-level mod-
ifications. Also the anchors that define the boundary be-
tween the blocks have to be sent explicitly. The chunks
in Rabin fingerprints are typically quite large (8 KB com-
pared to less than 20 bytes for our case). As we can see
from Figure 6, the size of the difference script will be
much larger at 8 KB than at 20 bytes.

5 Application-level modifications
The delta script produced by comparison at the byte-level
is not always consistent with the amount of change made
in the software. This is a direct consequence of neglect-
ing the application-level structures of the software. So
we need to make modifications at the application-level so
that the subsequent stage of byte-level comparison pro-
duces delta script congruent in size with the amount of
software change. One way of tackling this problem is to
leave some slop (empty) space after each function as in
[9]. With this approach, even though a function expands
(or shrinks), the location of the following functions will
not change as long as the expansion is accommodated by
the slop region assigned to that function. But this ap-
proach wastes program memory which is not desirable
for memory-constrained sensor nodes. Also, this creates
a host of complex management issues like what should
be the size of the slop region (possibly different for dif-
ferent functions), what happens if the function expands
beyond the assigned slop region, etc. Choosing too large

a slop region means wastage of precious memory and
too small a slop region means functions frequently need
to be relocated. Another way of mitigating the effect of
function shifts is by making the code position indepen-
dent [6]. Position independent code (PIC) uses relative
jumps instead of absolute jumps. However, not all archi-
tectures and compilers support this. For example, the
AVR platform allows relative jumps within 4KB only
and for MSP430(used in TelOS nodes), no compiler is
known to fully support PIC.

5.1 Function call indirections
For the byte-level comparison to produce a small delta
script, it is necessary to make the adjustments at the
application-level to preserve maximum similarity be-
tween the two versions of the software. For example, let
the application shown in Figure 4-a be changed such that
the functions fun1, fun2, and funn are shifted from their
original positions b, c, and a to new positions b , c , and
a respectively. Note that there can be (and generally will
be) more than one call to a function. When these two im-
ages are compared at the byte-level, the delta script will
be large because all the calls to these functions in the new
image will have different target addresses from those in
the old image. The approach we take to mitigate the ef-

call fun1

funn

fun1

fun2

a

b

c

...

...

...

...

call fun2
 ...

call funn
 ...

call fun1

funn

fun1

fun2

a

b

c

...

call fun2

call funn

call fun1
ret
call fun2
ret

call funn
ret

loc1

loc2

locn

(a)

(b)

...

...

...

...

...

...

Figure 4: Program image (a) without indirection table
and (b) with indirection table.

fects of function shifts is as follows: Let the application
be as shown in Figure 4-a. We modify the linking stage
of the executable generation process to produce the code
as shown in Figure 4-b. Here calls to functions fun1,
fun2,..., funn are replaced by jumps to fixed locations
loc1, loc2,..., locn respectively. In common embedded
platforms, the call can be to an arbitrarily far off location.
The segment of the programmemory starting at the fixed
location loc1 acts like an indirection table. In this table,
the actual calls to the functions are made. When the call
to the actual function returns, the indirection table directs
the flow of the control back to the line following the call

416	 2009 USENIX Annual Technical Conference	 USENIX Association

to loc-x (x=1,..., n). The location of the indirection table
is kept fixed in the old and the new versions to reduce the
size of the delta.
When the application shown in Figure 4-a is changed

to the one where the functions fun1, fun2,..., funn are
shifted, during the process of building the executable for
the new image, we add the following features to the link-
ing stage: When a call to a function is encountered, it
checks if the indirection table in the old file contains the
entry for that function (we also supply the old file (Figure
4-b) as an input to the executable generation process). If
yes, then it creates an entry for that function at the indi-
rection table in the new file at the same location as in the
old file. Otherwise it makes a decision to assign a slot
in the indirection table for that function (call it a rootless
function) but does not yet create the slot. After assigning
slots to the existing functions, it checks if there are any
empty slots in the indirection table. These would corre-
spond to functions which were called in the old file but
are not in the new file. If there are empty slots, it assigns
those slots to the rootless functions. If there are still some
rootless functions without a slot, then the indirection ta-
ble is expanded with new entries to accommodate these
rootless function. Thus, the indirection table entries are
naturally garbage collected and the table expands on an
as-needed basis. As a result, if the user program has
calls to a particular function, they refer to the same lo-
cation in the indirection table and only one call, namely
the call in the indirection table, differs between the two
versions. On the other hand, if no indirection table were
used, all the calls would refer to different locations in
old and new applications.
This approach ensures that the segments of the code,

except the indirection table, preserve the maximum sim-
ilarity between the old and new images because the calls
to the functions are redirected to the fixed locations even
when the functions have moved in the code. The basic
idea behind function call indirections is that the location
of the indirection table is fixed and hence the target ad-
dresses of the jump to the table are identical in the old
and new versions of the software. If we do not fix the
location of the indirection table, the jump to indirection
table will have different target addresses in the two ver-
sions of the software. As a result, the delta script will be
large. In situations where the functions do not shift (as in
Case 1 discussed in Section 4.3) Zephyr will not produce
a delta script larger than optimized Rsync without indi-
rection table. This is due to the fact that the indirection
tables in the old and the new software match and hence
Zephyr finds the large super-block that also contains the
indirection table.
The linking changes in Zephyr are transparent to the

user. She does not need to change the way she programs.
The linking stage automatically makes the above modi-

fications. Also Zephyr introduces one level of indirec-
tion during function calls, but the overhead of function
call indirection is negligible because each such indirec-
tion takes only few clock cycles (e.g., 8 clock cycles on
the AVR platform).

5.2 Pinning the interrupt service routines
It should be noted that due to the change in the software,
not only the positions of the user functions but those of
the interrupt service routines can also change. Such rou-
tines are not explicitly called by the user application. In
most of the microcontrollers, there is an interrupt vector
table at the beginning of the program memory (gener-
ally after the reset vector at 0x0000). Whenever an inter-
rupt occurs, the control goes to the appropriate entry in
the vector table that causes a jump to the required inter-
rupt service routine. Zephyr does not change the inter-
rupt vector table to direct the calls to the indirection ta-
ble as explained above for the normal functions. Instead
it modifies the linking stage to always put the interrupt
service routines at fixed locations in the program mem-
ory so that the targets of the calls in the Interrupt vector
table do not change. This further preserves the similarity
between the versions of the software.

6 Metacommands for common patterns of
changes

After the delta script is created through the above men-
tioned techniques, Zephyr scans through the script file to
identify some common patterns and applies the follow-
ing optimizations to further reduce the delta size.

6.1 CWI command
We noticed that in many cases, the delta script has the
following sequence of commands:

COPY <oldOffset=O1> <len=L1> <newOffset=N1>
INSERT <newOffset> <len=l1> <data1>
COPY <oldOffset=O2> <len=L2> <newOffset=N2>
INSERT <newOffset> <len=l1> <data2>

and so on. Thus, small INSERT commands would be
present in between large COPY commands, e.g., due
to different operands op in instruction ldi r24, op com-
monly found in TinyOS programs while pushing task to
the task queue. Here we have COPY commands that
copy large chunks of size L1, L2, L3, ... from the old
image followed by INSERT commands with very small
values of len= l1. Further we notice thatO1+L1+l1=O2,
O2+L2+l1=O3, and so on. In other words, if the
blocks corresponding to INSERT commands with small
len had matched, we would have obtained a very large
superblock. So we replace such sequences with the
COPY WITH INSERTS (CWI) command.

CWI <oldOffset=O1> <newOffset=N1>
<len=L1+l1+...+Ln> <dataSize=l1>
<numInserts=n> <addr1> <data1>
<addr2> <data2> ... <addrn> <datan>

USENIX Association	 2009 USENIX Annual Technical Conference	 417

Here dataSize=l1 is the size of datai (i=1,2..., n), numIn-
serts=n is the number of (addr,data) pairs, datai are the
data that have to be inserted in the new image at the off-
set addri. This command tells the sensor node to copy
the len=L1+l1+...+Ln number of bytes of data from the
old image at offset O1 to the new image at the offset N1,
but to insert datai at the offset addri (i=1, 2, ..., n).

6.2 REPEAT command
This command is useful for reducing the number of bytes
in the delta script that is used to transfer the indirection
table. As shown in Figure 4-c and 4-d, the indirection
table consists of the pattern call fun1, ret, call fun2, ret
, ... where the same string of bytes (say S1 = ret; call)
repeats with only addresses for fun1, fun2, etc. chang-
ing between them. So we use the following command to
transfer the indirection table.

REPEAT <newOffset> <numRepeats=n>
<addr1> <addr2> ... <addrn>

This command puts the string S1 at the offset newOff-
set in the new image followed by addr1, then S1, then
addr2, and so on till addrn. Note that we could have
used the CWI command for this case also. But since the
string S1 is fixed, we gain more advantage using the RE-
PEAT command. This optimization is not applied if the
addresses of the call instructions match in the indirection
tables of the old and new images. In that case, COPY
command is used to transfer the identical portions of the
indirection table.

6.3 No offset specification
We note that if we build the new image on the sensor
nodes in a monotonic order, then we do not need to spec-
ify the offset in the new file in any of the above com-
mands. Monotonic means we always write at location
of the new image before writing at location , for all

. Instead of the new offset, a counter is maintained
and incremented as the new image is built and the next
write always happens at this counter. So, we can drop the
newOffset field from all the commands.
We find that for Case 2, where some functions were

shifted due to addition of few lines in the software, the
delta script produced with the application-level modifi-
cations is 280 bytes compared to 2183 bytes when op-
timized Rsync was used without application-level mod-
ifications. The size of the delta script without the meta-
commands is 528 bytes. This illustrates the importance
of application-level modifications in reducing the size of
the delta script and making it consistent with the amount
of actual change made in the software.

7 Delta distribution stage
One of the factors that we considered for the delta distri-
bution stage was to have as small a delta script as possi-
ble even in the worst case when there is a huge change

in the software. In such a case there is very little simi-
larity between the old and the new code images and the
delta script basically consists of a large INSERT com-
mand to insert almost the entire binary image. To have
small delta script even in such extreme cases, it is nec-
essary that the binary image itself be small. Since the
binary image transmitted by Stream [16] is almost half
compared to that of Deluge [7], Zephyr uses the approach
from Stream with some modifications for wirelessly dis-
tributing the delta script. The core data dissemination
method of Stream is the same as in Deluge. Deluge uses
a monotonically increasing version number, segments
the binary code image into pages, and pipelines the dif-
ferent pages across the network. The code distribution
occurs through a three-way handshake of advertisement,
request, and code broadcast between neighboring nodes.
Unlike Deluge, Stream does not transfer the entire repro-
gramming component every time code update is done.
The reason behind this requirement in Deluge is that the
reprogramming component needs to be running on the
sensor nodes all the time so that the nodes can be recep-
tive to future code updates and these nodes are not capa-
ble of multitasking (runningmore than one application at
a time). Stream solves this problem by storing the repro-
gramming component in the external flash and running it
on demand—whenever reprogramming is to be done.

Reprogramming
 component

 Delta script

Old application
 (v1)

Indirection table
 for image-2

image-0

image-1

image-2

New application
 (v2)

image-3

 ...
 ...

call loc1;
 ...
 ...

loc1: call fun1;
 ret;
loc2: call fun2;
 ret;

...

...

locn: call funn;
 ret;

Indirection
 table for
 image-3

Unused part

External Flash

Program
memory

bootloader

 New
application
 (v2)

 Read new
application

 Load new
application

 Image
Rebuilder

 Old
application

Zephyr New
application

+ Delta
script

Figure 5: Image rebuild and load stage. The right side
shows the structure of external flash in Zephyr.

Distinct from Stream, Zephyr divides the external
flash as shown in the right side of Figure 5. The re-
programming component and delta script are stored as
image 0 and image 1 respectively. Image 2 and image 3
are the user applications—one old version and the other

418	 2009 USENIX Annual Technical Conference	 USENIX Association

current version which is created from the old image and
the delta script as discussed in Section 7.1. The protocol
works as follows:
1) Let image 2 be the current version () of the user
application. Initially all nodes in the network are running
image 2. At the host computer, delta script is generated
between the old image () and the new image ().
2) The user gives the command to the base node to re-
boot all nodes in the network from image 0 (i.e. the re-
programming component).
3) The base node broadcasts the reboot command and
itself reboots from the reprogramming component.
4) The nodes receiving the reboot command from the
base node rebroadcast the reboot command and them-
selves reboot from the reprogramming component. This
is controlled flooding because each node broadcasts the
reboot command only once. Finally all nodes in the net-
work are executing the reprogramming component.
5) The user then injects the delta script to the base node.
It is wirelessly transmitted to all nodes in the network
using the usual 3-way handshake of advertisement, re-
quest, and code broadcast as in Deluge. Note that unlike
Stream and Deluge which transfer the application image
itself, Zephyr transfers the delta script only.
6) All nodes store the received delta script as image 1.

7.1 Image rebuild and load stage
After the nodes download the delta script, they rebuild
the new image using the script (stored as image 1 in the
external flash) and the old image (stored as image 2 in
the external flash). The image rebuilder stage consists of
a delta interpreter which interprets the COPY, INSERT,
CWI, and REPEAT commands of the delta script and cre-
ates the new image which is stored as image 3 in the ex-
ternal flash.
The methods of rebooting from the new image are

slightly different in Stream and Zephyr. In Stream, a
node automatically reboots from the new code once it
has completed the code update and it has satisfied all
other nodes that depend on this node to download the
new code. This means that different nodes in the net-
work start running the new version of the code at dif-
ferent times. However, for Zephyr, we modified Stream
so that all the nodes reboot from the new code after the
user manually sends the reboot command from the base
station (as in Deluge). We made this change because in
many software change cases, the size of the delta script
is so small that a node (say) nearer to the base station
quickly completes downloading the code before a node
(say) further away from the base station even starts
requesting packets from . As a result, reboots from
the new code so fast that cannot even start the down-
load process. Note that this however does not pose a
correctness issue. After reboots from the new code,

it will switch again to the reprogramming state when it
receives advertisement from . However, this incurs the
performance penalty of rebooting from a new image. Our
design choice has a good consequence—all nodes come
up with the new version of the software at the same time.
This avoids the situation where different nodes in the net-
work run different versions of the software. When a node
receives the reboot command , its bootloader loads the
new software from image 3 of the external flash to the
program memory (Figure 5). In the next round of repro-
gramming, image 3 will become the old image and the
newly rebuilt image will be stored as image 2. As we
will show in Section 8.3, the time to rebuild the image is
negligible compared to the total reprogramming time.

7.2 Dynamic page size
Stream divides the binary image into fixed-sized pages.
The remaining space in the last page is padded with
all 0s. Each page consists of 1104 bytes (48 packets
per page with 23 bytes payload in each packet). With
Zephyr, it is likely that in many cases, the size of the
delta script will be much smaller than 1104 bytes. For
example, we have delta script of sizes of 17 bytes and
280 bytes for Case 1 and Case 2 respectively. Also, as
we will show in Section 8.2, during the natural evolu-
tion of the software, it is more likely that the nature of
the changes will be small or moderate and as a result,
delta scripts will be much smaller than the standard page
size. After all, the basic idea behind any incremental re-
programming protocol is based on the assumption that in
practice, the software changes are generally small so that
the similarities between the two versions of the software
can be exploited to send only small delta. When the size
of the delta script is much smaller than the page size, it
is wasteful to transfer the whole page. So, we change the
basic Stream protocol to use dynamic page sizes.
When the delta script is being injected to the base

node, the host computer informs it of the delta script size.
If it is less than the standard page size, the base node in-
cludes this information in the advertisement packets that
it broadcasts. When other nodes receive the advertise-
ment, they also include this information in the advertise-
ment packets that they send. As a result, all nodes in the
network know the size of the delta script and they make
the page size equal to the actual delta script size. So un-
like Deluge or Stream which transmit all 48 data packets
per page, Zephyr transmits only required number of data
packets if the delta script size is less than 1104 bytes.
Note that the granularity of this scheme is the packet size,
i.e., the last packet of the last page may be padded with
zeros. But this results in small enough wastage that we
did not feel justified in introducing the additional com-
plexity of dynamic packet size. Our scheme can be fur-
ther modified to advertise the actual number of packets

USENIX Association	 2009 USENIX Annual Technical Conference	 419

of the last page. This would minimize the wastage, for
example in the case where the delta script has 1105 bytes,
it would transfer 2 pages, the first page with 48 packets
and the second with 1 packet.

8 Experiments and results
In order to evaluate the performance of Zephyr, we con-
sider a number of software change scenarios. The soft-
ware change cases for standard TinyOS applications that
we consider are as follows:
Case 1: Blink application blinking a green LED every
second to blinking every 2 seconds.
Case 2: Few lines added to the Blink application.
Case 3: Blink application to CntToLedsAndRfm: Cnt-
ToLedsAndRfm is an application that displays the lowest
3 bits of the counting sequence on the LEDs as well as
sends them over radio.
Case 4: CntToLeds to CntToLedsAndRfm: CntToLeds is
the same as CntToLedsAndRfm except that the counting
sequence is not transmitted over radio.
Case 5: Blink to CntToLeds.
Case 6: Blink to Surge: Surge is a multi hop routing
protocol. This case corresponds to a complete change in
the application.
Case 7: CntToRfm to CntToLedsAndRfm: CntToRfm is
the same as CntToLedsAndRfm except that the counting
sequence is not displayed on the LEDs.
In order to evaluate the performance of Zephyr with

respect to natural evolution of the real world software, we
considered a real world sensor network application called
eStadium [3] deployed in Ross Ade football stadium at
Purdue University. eStadium applications provide safety
and security functionality, infotainment features such as
coordinated cheering contests among different parts of
the stadium using the microphone data, information to
fans about lines in front of concession stands, etc. We
considered a subset of the changes that the software had
actually gone through, during various stages of refine-
ment of the application.
Case A: An application that samples battery voltage and
temperature fromMTS310 [2] sensor board to one where
few functions are added to sample the photo sensor also.
Case B: During the deployment phase, we decided to use
opaque boxes for the sensor nodes. So, a few functions
were deleted to remove the light sampling features.
Case C: In addition to temperature and battery voltage,
we added the features for sampling all the sensors on
the MTS310 board except light (e.g., microphone, ac-
celerometer, magnetometer). This was a huge change in
the software with the addition of many functions. For
accelerometer and microphone, we collected mean and
mean square values of the samples taken during a user
specified window size.

Case D: This is the same as Case C but with addition of
few lines of code to get microphone peak value over the
user-specified window size.
Case E: We decided to remove the feature of sensing and
wirelessly transmitting to the base node, the microphone
mean value since we were interested in the energy of the
sound which is given by the mean square value. A few
lines of code were deleted for this change.
Case F: This is same as Case E except we added the
feature of allowing the user to put the nodes to sleep for
a user-specified duration. This was also a huge change in
the software.
Case G: We changed the microphone gain parameter.
This is a simple parameter change.
We can group the above changes into 4 classes:

Class 1 (Small change SC): This includes Case 1 and
Case G where only a parameter of the application was
changed.
Class 2 (Moderate change MC): This includes Case 2,
Case D, and Case E. They consist of addition or deletion
of few lines of the code.
Class 3 (Large change LC): This includes Case 5, Case
7, Case A, and Case B where few functions are added or
deleted or changed.
Class 4 (Very large change VLC) : This includes Case 3,
Case 4, Case 6, Case C, and Case F.
Many of the above cases involve changes in the OS

kernel as well. In TinyOS, strictly speaking, there is no
separation between the OS kernel and the application.
The two are compiled as one big monolithic image that
is run on the sensor nodes. So, if the application is mod-
ified such that new OS components are added or existing
components are removed, then the delta generated would
include OS updates as well. For example, in Case C, we
change the application that samples additemperature and
battery voltage to the one that samples microphone, mag-
netometer and accelerometer sensors in addition to tem-
perature and battery. This causes new OS components to
be added—the device drivers for the added sensors.

8.1 Block size for byte-level comparison
We modified Jarsync [4], a java implementation of the
Rsync algorithm, to achieve the optimizationsmentioned
in Section 4.2. From here onward, by semi-optimized
Rsync, we mean the scheme that combines two or more
contiguousmatching blocks into one super-block. It does
not necessarily produce the maximal super-block. By op-
timized Rsync we mean our scheme that produces the
maximal super-block but without the application-level
modifications.
As shown in Figure 6, the size of the delta script pro-

duced by Rsync as well as optimized Rsync depends on
the block size used in the algorithm. Recollect that the
comparison is done at the granularity of a block. As ex-

420	 2009 USENIX Annual Technical Conference	 USENIX Association

Table 1: Comparison of delta script size of various approaches. Deluge, Stream and Rsync represent prior work.
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case A Case B Case C Case D Case E Case F Case G

Deluge:Zephyr 1400.82 85.05 4.52 4.29 8.47 1.83 29.76 7.60 7.76 2.63 203.57 243.25 2.75 1987.2
Stream:Zephyr 779.29 47.31 2.80 2.65 4.84 1.28 18.42 5.06 5.17 1.82 140.93 168.40 1.83 1324.8
Rsync:Zephyr 35.88 20.81 2.06 1.96 3.03 1.14 8.34 3.35 3.38 1.50 36.03 42.03 1.50 49.6

SemiOptimizedRsync:Zephyr 6.47 11.75 1.80 1.72 2.22 1.11 5.61 2.66 2.71 1.39 14.368 17.66 1.36 6.06
OptimizedRsync:Zephyr 1.35 7.79 1.64 1.57 2.08 1.07 3.87 2.37 2.37 1.35 7.84 9.016 1.33 1.4

ZephyrWithoutMetacommands:Zephyr 1.35 1.99 1.38 1.30 1.39 1.05 1.52 1.6 1.61 1.16 2.33 2.43 1.18 1.4

 0

 5000

 10000

 15000

 20000

 20 40 60 80 100 120 140

D
el

ta
 s

cr
ip

t s
iz

e

Block size

Rsync
Rsync with superblock

Rsync with maximal superblock

Figure 6: Delta script size versus block size

pected, Figure 6 shows that the size of the delta script
is largest for Rsync and smallest for optimized Rsync.
It also shows that as block size increases, the size of
the delta script produced by Rsync and semi-optimized
Rsync decreases till a certain point after which it has an
increasing trend. The size of the delta script depends
on two factors: 1) number of commands in the delta
script and 2) size of data in the INSERT command. For
Rsync and semi-optimized Rsync, for block size below
the minima point, the number of commands is high be-
cause these schemes find lots of matching blocks but not
(necessarily) the maximal super-block. As block size in-
creases in this region, the number of matching blocks
and hence the number of commands drops sharply caus-
ing the delta script size to decrease. However, as the
block size increases beyond the minima point, the de-
crease in the number of commands in the delta script is
dominated by the increase in the size of new data to be
inserted. As a result, the delta script size increases. For
optimized Rsync, there is a monotonic increasing trend
for the delta script size as block size increases. There are
however some small oscillations in the curve, as a result
of which the optimal block size is not always one byte.
The small oscillations are due to the fact that increas-
ing the block size decreases the size of maximal super-
blocks and increases the size of data in INSERT com-
mands. But sometimes the small increase in size of data
can contribute to reducing the size of the delta script by
reducing the number of COPY commands. Nonetheless,
there is an overall increasing trend for optimized Rsync.
This has the important consequence that a system admin-
istrator using Zephyr does not have to figure out the block
size to use in uploading code for each application change.
She can use the smallest or close to smallest block size

and let Zephyr be responsible for compacting the size of
the delta script. In all further experiments, we use the
block size that gives the smallest delta script for each
scheme—Rsync, semi-optimized Rsync, and optimized
Rsync.

 0

 5000

 10000

 15000

 20000

 25000

 30000

Nu
m

be
r o

f b
yte

s

Deluge
Stream
Rsync
Semi Optimized Rsync
Optimized Rsync
Zephyr

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

(a) TinyOS software change cases

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Nu
mb

er
 of

 by
tes

Case A Case B Case C Case D Case E Case F Case G

Stream
Rsync
Semi Optimized Rsync
Optimized Rsync
Zephyr

Deluge

(b) eStadium software change cases

Figure 7: Size of data transmitted for reprogramming

8.2 Size of delta script
The goal of an incremental reprogramming system is to
reduce the size of the delta script that needs to be trans-
mitted to the sensor nodes. A small delta script trans-
lates to smaller reprogramming time and energy due to
less number of packet transmissions over the network
and less number of flash writes on the node. Figure 7
and Table 1 compare the delta script produced by Del-
uge, Stream, Rsync, semi-optimized Rsync, Optimized
Rsync, and Zephyr. For Deluge and Stream, the size of
the information to be transmitted is the size of the bi-
nary image while for the other schemes it is the size of
the delta script. Deluge, Stream, Rsync, and semi op-
timized Rsync take up to 1987, 1324, 49, and 6 times
more bytes than Zephyr, respectively. Note that for cases
belonging to moderate or large change, the application

USENIX Association	 2009 USENIX Annual Technical Conference	 421

level modifications of Zephyr contribute to reducing the
size of delta script significantly compared to optimized
Rsync. Optimized Rsync takes up to 9 times more bytes
than Zephyr. These cases correspond to shifts of some
functions in the software. As a result, application-level
modifications have great effect in those cases. In prac-
tice, these are probably the most frequently occurring
categories of changes in the software. Case 1 and Case
G are parameter change cases which do not shift any
function. As a result, we find that delta scripts produced
by optimized Rsync without application-level modifica-
tions are only slightly larger than the ones produced by
Zephyr. Also even for very large software change cases
(like cases 6, F, and C) Zephyr is more efficient com-
pared to other schemes. In summary, application-level
modifications have the greatest effects in moderate and
large software change cases, significant effect in very
large software change case (in terms of absolute delta
size reduction) and small effect on very small software
change cases.
Comparison with other incremental approaches: Rsync
represents the algorithm used by Jeong and Culler [8]
to generate the delta by comparing the two executables
without any application-level modifications. We find
that [8] produces up to 49 times larger delta script than
Zephyr. Rsync also corresponds approximately to the
system in [19] because it also compares the two executa-
bles without any application-level modifications. Koshy
and Pandey [13] use a slop region after each function
to minimize the likelihood of function shifts. Hence the
delta script for their best case (i.e. when none of the
functions expands beyond its slop region) will be same
as that of Zephyr. But even in their best case scenario,
the program memory is fragmented and less efficiently
used than in Zephyr. This wastage of memory is not de-
sirable for memory-constrained sensor nodes. When the
functions do expand beyond the allocated slop region,
they need to be relocated and as a result, all calls to those
functions need to be patched with the new function ad-
dresses giving larger delta script than in Zephyr. Flexcup
[13], though capable of incremental linking and loading
on TinyOS, generates high traffic through the network
due to large sizes of symbol and relocation tables. Also,
Flexcup is implemented only on an emulator whereas
Zephyr runs on the real sensor node hardware.
In the software change cases that we considered, the

time to compile, link (with the application-level modi-
fications) and generate the executable file was at most
2.85 seconds and the time to generate the delta script
using optimized Rsync was at most 4.12 seconds on a
1.86 GHz Pentium processor. These times are negligible
compared to the time to reprogram the network, for any
but the smallest of networks. Further these times can be
made smaller by using more powerful server-class ma-

chines. TinyOS applies extensive optimizations on the
application binaries to run it efficiently on the resource-
constrained sensor nodes. One of these optimizations in-
volves inlining of several (small) functions. We do not
change any of these optimizations. In systems which do
not inline functions as TinyOS, Zephyr’s advantage will
be even greater since there will be more function calls.
Zephyr’s advantage will be minimum if the software
change does not shift any function. For such a change,
the advantage will be only due to the optimized Rsync
algorithm. But such software changes are very rare, e.g.
when only the values of the parameters in the program
are changed. Any addition/deletion/modification of the
source code in any function except the one which is
placed at the end of the binary will cause the following
functions to be shifted.

8.3 Testbed experiments
We perform testbed experiments using Mica2 [2] nodes
for grid and linear topologies. For the grid network,
the transmission range of a node is set such that

, where is the separation between
the two adjacent nodes in any row or column of the grid.
The linear networks have the nodes with such that

, where is the distance between the adja-
cent nodes. Due to fluctuations in transmission range, oc-
casionally a non-adjacent node will receive a packet. In
our experiments, if a node receives a packet from a non-
adjacent node, it is dropped, to achieve a truly multi-hop
network. A node situated at one corner of the grid or end
of the line acts as the base node. We provide quantita-
tive comparison of Zephyr with Deluge [7], Stream [16],
Rsync [8] and optimized Rsync without application-level
modifications. Note that Jeong and Culler [8] reprogram
only nodes within one hop of the base node, but we used
their approach on top of a multi hop reprogramming pro-
tocol to provide a fair comparison. The metrics for com-
parison are reprogramming time and energy. We perform
these experiments for grids of size 2x2 to 4x4 and linear
networks of size 2 to 10 nodes. We choose four software
change cases, one from each equivalence class: Case 1
for Class 1 (SC), Case D for Class 2 (MC), Case 7 for
Class 3 (LC), and Case C for Class 4 (VLC). Note that in
the evaluations that follow, Rsync refers to the approach
by Jeong and Culler [8].

8.3.1 Reprogramming time
Time to reprogram the network is the sum of the time to
download the delta script and the time to rebuild the new
image. Time to download the delta script is the time in-
terval between the instant when the base node sends
the first advertisement packet to the instant when the
last node (the one which takes the longest time to down-
load the delta script) completes downloading the delta
script. Since clocks maintained by the nodes in the net-

422	 2009 USENIX Annual Technical Conference	 USENIX Association

 0

 100

 200

 300

 400

 500
Ti

m
e(

se
co

nd
s)

Stream

Optimized Rsync
Zephyr

Class 1 (SC)

Rsync

Deluge

2x2 3x3 4x4
 0

 100

 200

 300

 400

 500

 600

Ti
m

e(
se

co
nd

s)

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Class 2 (MC)

Rsync

Deluge

 0

 100

 200

 300

 400

 500

Ti
m

e(
se

co
nd

s)

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 3 (LC)

 0

 100

 200

 300

 400

 500

 600

Ti
m

e(
se

co
nd

s)

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 4 (VLC)

2x2 3x3 4x4
 0

 100

 200

 300

 400

 500

 600

 700

Ti
m

e(
se

co
nd

s)

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 1 (SC)

2Linear 4Linear 6Linear 8Linear 10Linear
 0

 100

 200

 300

 400

 500

 600

 700

 800

Ti
m

e(
se

co
nd

s)

2Linear 4Linear 6Linear 8Linear 10Linear

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 2 (MC)

 0

 100

 200

 300

 400

 500

 600

 700

Ti
m

e(
se

co
nd

s)

2Linear 4Linear 6Linear 8Linear 10Linear

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 3 (LC)

 0

 100

 200

 300

 400

 500

 600

 700

 800

Ti
m

e(
se

co
nd

s)

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 4 (VLC)

2Linear 4Linear 6Linear 8Linear 10Linear

 0

 2

 4

 6

 8

 10

 12

 14

Im
ag

e
re

bu
ild

 tim
e(

se
co

nd
s)

Optimized Rsync
Zephyr

Rsync

Class 1
 (SC)

Class 2
 (MC)

Class 3
 (LC)

Class 4
 (VLC)

Figure 8: Comparison of reprogramming times for grid and linear networks. The last graph shows the time to rebuild
the image on the sensor node.

Table 2: Ratio of reprogramming times of other approaches to Zephyr
Class 1(SC) Class 2(MC) Class 3(LC) Class 4(VLC)

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.
Deluge:Zephyr 22.39 48.9 32.25 25.04 48.7 30.79 14.89 33.24 17.42 1.92 3.08 2.1
Stream:Zephyr 14.06 27.84 22.13 16.77 40.1 22.92 10.26 20.86 10.88 1.54 2.23 1.46
Rsync:Zephyr 1.03 8.17 2.55 5.66 12.78 8.07 5.22 10.89 6.50 1.34 1.71 1.42

Optimized Rsync:Zephyr 1.01 1.1 1.03 2.01 4.09 2.71 2.05 3.55 2.54 1.27 1.55 1.35

work are not synchronized, we cannot take the difference
between the time instant measured by the last node and

measured by the base node. To solve this synchro-
nization problem, we use the approach of [17], which
achieves this with minimal overhead traffic.
Figure 8 (all except the last graph) compares repro-

gramming times of other approaches with Zephyr for
different grid and linear networks. Table 2 compares
the ratio of reprogramming times of other approaches to
Zephyr. It showsminimum,maximum and average ratios
over these grid and linear networks. As expected, Zephyr
outperforms non-incremental reprogramming protocols
like Deluge and Stream significantly for all the cases.
Zephyr is also up to 12.78 times faster than Rsync, the
approach by Jeong and Culler [8]. This illustrates that the
Rsync optimization and the application-level modifica-
tions of Zephyr are important in reducing the time to re-
program the network. Zephyr is also significantly faster

than optimized Rsync without application-level modi-
fications for moderate, large, and very large software
changes. In these cases, the software change causes the
function shifts. So, these results show that application
level modifications greatly mitigate the effect of function
shifts and reduces the reprogramming time significantly.
For small change case where there are no function shifts,
Zephyr, as expected, is only marginally faster than opti-
mized Rsync without application-level modifications. In
this case, the size of the delta script is very small (17 and
23 bytes for Zephyr and optimized Rsync respectively)
and hence there is not much to improve upon. Since
Zephyr transfers less information at each hop, Zephyr’s
advantage will increase with the size of the network. The
last graph in Figure 8 shows the time to rebuild the new
image on a node. It increases with the increase in the
scale of the software change, but is negligible compared
to the total reprogramming time.

USENIX Association	 2009 USENIX Annual Technical Conference	 423

 0

 2000

 4000

 6000

 8000

 10000
N

um
be

r o
f p

ac
ke

ts

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 1 (SC)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
um

be
r o

f p
ac

ke
ts

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 2 (MC)

 0

 2000

 4000

 6000

 8000

 10000

Nu
m

be
r o

f p
ac

ke
ts

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 3 (LC)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
um

be
r o

f p
ac

ke
ts

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 4 (VLC)

 0

 2000

 4000

 6000

 8000

 10000

 12000

Nu
m

be
r o

f p
ac

ke
ts Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 1 (SC)

2Linear 4Linear 6Linear 8Linear 10Linear
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
um

be
r o

f p
ac

ke
ts Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 2 (MC)

2Linear 4Linear 6Linear 8Linear 10Linear

 0

 2000

 4000

 6000

 8000

 10000

 12000

Nu
m

be
r o

f p
ac

ke
ts

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 3 (LC)

2Linear 4Linear 6Linear 8Linear 10Linear
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
um

be
r o

f p
ac

ke
ts

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 4 (VLC)

2Linear 4Linear 6Linear 8Linear10Linear

Figure 9: Comparison of number of packets transmitted during reprogramming.

Table 3: Ratio of number of packets transmitted during reprogramming by other approaches to Zephyr
Class 1(SC) Class 2(MC) Class 3(LC) Class 4(VLC)

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.
Deluge:Zephyr 90.01 215.39 162.56 40 204.3 101.12 12.27 55.46 25.65 2.51 2.9 2.35
Stream:Zephyr 53.76 117.92 74.63 28.16 146.1 82.57 8.6 36.19 15.97 1.62 2.17 1.7
Rsync:Zephyr 2.47 7.45 5.38 6.66 38.28 21.09 3.28 12.68 6.69 1.50 1.78 1.60

Optimized Rsync:Zephyr 1.13 1.69 1.3 4.38 22.97 9.47 2.72 10.58 3.95 1.38 1.64 1.49

8.3.2 Reprogramming energy
Among the various factors that contribute to the energy
consumption during reprogramming, two important ones
are the amount of radio transmissions and the number
of flash writes (the downloaded delta script is written
to the external flash). Since both of them are propor-
tional to the number of packets transmitted in the net-
work during reprogramming, we take the total number
of packets transmitted by all nodes in the network as
the measure of energy consumption. Figure 9 and Ta-
ble 3 compare the number of packets transmitted by
Zephyr with other schemes for grid and linear networks
of different sizes. The number of bytes transmitted by
all nodes in the network for reprogramming by Deluge,
Stream, Rsync, and optimized Rsync is up to 215, 146,
38, and 22 times more than that by Zephyr. The fact
that Rsync:Zephyr 1 indicates that Zephyr is more en-
ergy efficient than the incremental reprogramming ap-
proach of [8]. The application-level modifications are

significant in reducing the number of packets transmitted
by Zephyr compared to optimized Rsync without such
modifications. Note that in cases like Case 7 and Case D
(moderate to large change class), application-level modi-
fications have the greatest impact where the functions get
shifted. Application-level modifications preserve maxi-
mum similarity between the two images in such cases
thereby reducing the reprogramming traffic overhead.
In cases where only some parameters of the software
change without shifting any function, the application-
level modifications achieve smaller reduction. But the
size of the delta is already very small and hence repro-
gramming is not resource intensive in these cases. Even
for very large software changes, Zephyr significantly re-
duces the reprogramming traffic.

8.4 Simulation Results
We perform TOSSIM [12] simulations on grid networks
of varying size (up to 14x14) to demonstrate the scala-
bility of Zephyr and to compare it with other schemes.

424	 2009 USENIX Annual Technical Conference	 USENIX Association

Figure 10 shows the reprogramming time and number
of packets transmitted during reprogramming for Case D
(Class 2 (MC)). We find that Zephyr is up to 92.9, 73.4,
16.1, and 6.3 times faster than Deluge, Stream, Rsync
[8], and optimized Rsync without application-level mod-
ifications, respectively. Also, Deluge, Stream, Rsync [8],
and optimized Rsync transmit up to 146.4, 97.9, 16.2,
and 6.4 times more number of packets than Zephyr, re-
spectively. Most software changes in practice are likely
to belong to this class (moderate change) where we see
that application-level modifications significantly reduce
the reprogramming overhead. Zephyr inherits its scala-
bility property from Deluge since none of the changes
in Zephyr (except the dynamic page size) affects the
network or is driven by the size of the network. All
application-levelmodifications are performed on the host
computer and the image rebuilding on each node does not
depend upon the number of nodes in the network.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Tim
e(s

ec
on

ds
)

6x6 8x8 10x10 12x12 14x14

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

(a)

 0

 50000

 100000

 150000

 200000

Nu
mb

er
of

pa
ck

ets

6x6 8x8 10x10 12x12 14x14

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

(b)

Figure 10: Simulation results for (a) reprogramming
time and (b) number of packets transmitted during

reprogramming (Case D, i.e. Class 2 (MC))

9 Conclusion
In this paper, we presented a multi-hop incremental re-
programming protocol called Zephyr that minimizes the
reprogramming overhead by reducing the size of the
delta script that needs to be disseminated through the
network. To the best of our knowledge, we are the first
to use techniques like function call indirections to mit-
igate the effect of function shifts for reprogramming of
sensor networks. Our scheme can be applied to systems
like TinyOS which do not provide dynamic linking on
the nodes as well as to incrementally upload the changed
modules in operating systems like SOS and Contiki that

provide the dynamic linking feature. Our experimental
results show that for a large variety of software change
cases, Zephyr significantly reduces the volume of traffic
that needs to be disseminated through the network com-
pared to the existing techniques. This leads to reductions
in reprogramming time and energy. We can also use mul-
tiple nodes as the source of the new code instead of a
single base node to further speed up reprogramming.

References
[1] http://www.tinyos.net.

[2] http://www.xbow.com.

[3] http://estadium.purdue.edu.

[4] http://jarsync.sourceforge.net/.

[5] DUNKELS, A., GRONVALL, B., AND VOIGT, T. Contiki-a
lightweight and flexible operating system for tiny networked sen-
sors. IEEE Emnets (2004), 455–462.

[6] HAN, C., RENGASWAMY, R., SHEA, R., KOHLER, E., AND
SRIVASTAVA, M. SOS: A dynamic operating system for sensor
networks. MobiSys (2005), 163–176.

[7] HUI, J., AND CULLER, D. The dynamic behavior of a data dis-
semination protocol for network programming at scale. SenSys
(2004), 81–94.

[8] JEONG, J., AND CULLER, D. Incremental network programming
for wireless sensors. IEEE SECON (2004), 25–33.

[9] KOSHY, J., AND PANDEY, R. Remote incremental linking
for energy-efficient reprogramming of sensor networks. EWSN
(2005), 354–365.

[10] LEVIS, P., AND CULLER, D. Maté: a tiny virtual machine
for sensor networks. ACM SIGOPS Operating Systems Review
(2002), 85–95.

[11] LEVIS, P., GAY, D., AND CULLER, D. Active sensor networks.
NSDI (2005).

[12] LEVIS, P., LEE, N., WELSH, M., AND CULLER, D. TOSSIM:
accurate and scalable simulation of entire tinyOS applications.
SenSys (2003), 126–137.

[13] MARRON, P., GAUGER, M., LACHENMANN, A., MINDER,
D.AND SAUKH, O., AND ROTHERMEL, K. FLEXCUP: A flex-
ible and efficient code update mechanism for sensor networks.
EWSN (2006), 212–227.

[14] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. A
low-bandwidth network file system. SOSP (2001), 174–187.

[15] PANTA, R., AND BAGCHI, S. Hermes: Fast and Energy Effi-
cient Incremental Code Updates for Wireless Sensor Networks.
To appear in IEEE Infocom (2009).

[16] PANTA, R., KHALIL, I., AND BAGCHI, S. Stream: Low Over-
head Wireless Reprogramming for Sensor Networks. IEEE Info-
com (2007), 928–936.

[17] PANTA, R., KHALIL, I., BAGCHI, S., AND MONTESTRUQUE,
L. Single versus Multi-hop Wireless Reprogramming in Sensor
Networks. TridentCom (2008), 1–7.

[18] PUCHA, H., ANDERSEN, D., AND KAMINSKY, M. Exploiting
similarity for multi-source downloads using file handprints. NSDI
(2007).

[19] REIJERS, N., AND LANGENDOEN, K. Efficient code distribution
in wireless sensor networks. WSNA (2003), 60–67.

[20] TRIDGELL, A. Efficient Algorithms for Sorting and Synchro-
nization, PhD thesis, Australian National University.

