USENIX Association

Proceedings of the
2009 USENIX Annual Technical Conference

June 14-19, 2009
San Diego, CA, USA

Program Co-Chairs

Conference Organizers

Geoffrey M. Voelker, University of California, San

Diego

Alec Wolman, Microsoft Research

Program Committee

Remzi Arpaci-Dusseau, University of Wisconsin,

Madison

Ranjita Bhagwan, Microsoft Research India

George Candea, EPFL
Ira Cohen, HP Labs, Israel

Landon Cox, Duke University

John Dunagan, Microsoft Research

Nick Feamster, Georgia Institute of Technology
Michael J. Freedman, Princeton University

Garth Goodson, NetApp

Robert Grimm, New York University
Dirk Grunwald, University of Colorado

Jaeyeon Jung, Intel Research
Sam King, University of Illinois at Urbana-Champaign

Geoff Kuenning, Harvey Mudd College
Ed Lazowska, University of Washington

Atul Adya
Bhavish Aggarwal
Muneeb Ali
David Becker
Sapan Bhatia
Nilton Bila

Silas Boyd-Wickizer
Luis Ceze

Vitaly Chipounov
Anthony Cozzie
Tim Deegan

Fred Douglis
Jeremy Elson

Erich Nahum, /BM T.J. Watson Research Center

Niels Provos, Google, Inc.

Sean Rhea, Meraki, Inc.

Mahadev Satyanarayanan, Carnegie Mellon University

Prashant Shenoy, University of Massachusetts

Marvin Theimer, Amazon.com

Andrew Warfield, University of British Columbia and
Citrix Systems

Yinglian Xie, Microsoft Research Silicon Valley

Ken Yocum, University of California, San Diego

Poster Session Co-Chairs
George Candea, EPFL
Andrew Warfield, University of British Columbia and

Citrix Systems

Invited Talks Program Committee
Dan Klein, USENIX Association
Ellie Young, USENIX Association

The USENIX Association Staff

External Reviewers

Cristian Estan
Steve Gribble
Chris Grier

Dan Halperin
Michael Hicks
Wenjun Hu

Hai Huang

Rahul Iyer
Horatiu Jula
Charles Krassic
Arvind Krishnamurthy
Geoffrey Lefebvre
James Lentini

Jie Liu

Susan Martonosi
Trevor Pering
Alkis Polyzotis
Vijayan Prabhakaran
Moheeb Rajab
Charlie Reis
Eric Rescorla
Yaoping Ruan
Stefan Saroiu
Jiri Schindler
Simon Schubert
Vyas Sekar

Hovav Shacham
Neil Spring

Kiran Srinivasan
Radu Stoica

John Strunk

Sai Susarla
Srinivasan Venkatachary
Michael Vrable

Yi Wang

John Zahorjan
Cristian Zamfir
Nickolai Zeldovich
Lintao Zhang

2009 USENIX Annual Technical Conference
June 14-19, 2009
San Diego, CA, USA

Message from the Program Co-Chairs. e vii

Wednesday, June 17

Virtualization

Satori: Enlightened Page Sharing. 1
Grzegorz Milos, Derek G. Murray, and Steven Hand, University of Cambridge Computer Laboratory; Michael

A. Fetterman, NVIDIA Corporation

VNUMA: A Virtual Shared-Memory MultiproCessor.ttt e e 15
Matthew Chapman, The University of New South Wales and NICTA; Gernot Heiser, The University of New
South Wales, NICTA, and Open Kernel Labs

ShadowNet: A Platform for Rapid and Safe Network Evolution. 29
Xu Chen and Z. Morley Mao, University of Michigan, Jacobus Van der Merwe, AT&T Labs—Research

Networking

Design and Implementation of TCP Data Probes for Reliable and Metric-Rich Network Path Monitoring 43
Xiapu Luo, Edmond W.W. Chan, and Rocky K.C. Chang, The Hong Kong Polytechnic University, Hong Kong

StrobeLight: Lightweight Availability Mapping and Anomaly Detection 57
James W. Mickens, John R. Douceur, and William J. Bolosky, Microsoft Research; Brian D. Noble, University of
Michigan

Hashing Round-down Prefixes for Rapid Packet Classification, 71

Fong Pong, Broadcom Corp.; Nian-Feng Tzeng, Center for Advanced Computer Studies, University of
Louisiana at Lafayette

File and Storage Systems

Tolerating File-System Mistakes with EnvyFS 87
Lakshmi N. Bairavasundaram, NetApp;Inc.; Swaminathan Sundararaman, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Decentralized Deduplication in SAN Cluster File Systems 101
Austin T. Clements, MIT CSAIL; Irfan Ahmad, Murali Vilayannur, and Jinyuan Li, VMware, Inc.
FlexFS: A Flexible Flash File System for MLC NAND FlashMemory 115

Sungjin Lee, Keonsoo Ha, Kangwon Zhang, and Jihong Kim, Seoul National University, Korea; Junghwan Kim,
Samsung Electronics, Korea

Layering in Provenance SYStemSottt et e e e 129
Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko, Diana Maclean, Daniel Margo,
Margo Seltzer, and Robin Smogor, Harvard School of Engineering and Applied Sciences

USENIX Association 2009 USENIX Annual Technical Conference iii

Thursday, June 18

Distributed Systems

Object Storage on CRAQ: High-Throughput Chain Replication for Read-Mostly Workloads. 143
Jeff Terrace and Michael J. Freedman, Princeton University

Census: Location-Aware Membership Management for Large-Scale Distributed Systems. 159
James Cowling, Dan R.K. Ports, Barbara Liskov, and Raluca Ada Popa, MIT CSAIL,; Abhijeet Gaikwad, Ecole
Centrale Paris

Veracity: Practical Secure Network Coordinates via Vote-based Agreements. 173
Micah Sherr, Matt Blaze, and Boon Thau Loo, University of Pennsylvania

Kernel Development

Decaf: Moving Device Drivers to a Modern Language. i 187
Matthew J. Renzelmann and Michael M. Swift, University of Wisconsin—Madison

Rump File Systems: Kernel Code Reborn e 201
Antti Kantee, Helsinki University of Technology

CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems 215
Daniel Lohmann, Wanja Hofer, and Wolfgang Schréder-Preikschat, FAU Erlangen—Nuremberg,; Jochen
Streicher and Olaf Spinczyk, TU Dortmund

Automated Management

Automatically Generating Predicates and Solutions for Configuration Troubleshooting. 229
Ya-Yunn Su, NEC Laboratories America, Jason Flinn, University of Michigan

JustRunlt: Experiment-Based Management of Virtualized Data Centers. 243
Wei Zheng and Ricardo Bianchini, Rutgers University; G. John Janakiraman, Jose Renato Santos, and Yoshio
Turner, HP Labs

vPath: Precise Discovery of Request Processing Paths from Black-Box Observations of Thread and Network
ACHIVIEICS . « . ottt et e e e e e e 259
Byung Chul Tak, Pennsylvania State University;, Chunqgiang Tang and Chun Zhang, IBM T.J. Watson Research
Center; Sriram Govindan and Bhuvan Urgaonkar, Pennsylvania State University; Rong N. Chang, IBM T.J.

Watson Research Center

Short Papers

The Restoration of Early UNIX Artifactsottt et et 273
Warren Toomey, Bond University

Block Management in Solid-State Devicesttt e 279
Abhishek Rajimwale, University of Wisconsin, Madison; Vijayan Prabhakaran and John D. Davis, Microsoft
Research, Silicon Valley

Linux Kernel Developer Responses to Static Analysis Bug Reports 285
Philip J. Guo and Dawson Engler, Stanford University

Hardware Execution Throttling for Multi-core Resource Management i .. 293
Xiao Zhang, Sandhya Dwarkadas, and Kai Shen, University of Rochester

v 2009 USENIX Annual Technical Conference USENIX Association

Friday, June 19

System Optimization
Reducing Seek Overhead with Application-Directed Prefetching 299
Steve VanDeBogart, Christopher Frost, and Eddie Kohler, UCLA

Fido: Fast Inter-Virtual-Machine Communication for Enterprise Appliances 313
Anton Burtsev, University of Utah; Kiran Srinivasan, Prashanth Radhakrishnan, Lakshmi N. Bairavasundaram,
Kaladhar Voruganti, and Garth R. Goodson, NetApp, Inc.

STOW: A Spatially and Temporally Optimized Write Caching Algorithm 327
Binny S. Gill and Michael Ko, IBM Almaden Research Center; Biplob Debnath, University of Minnesota, Wendy
Belluomini, IBM Almaden Research Center

Web, Internet, Data Center

Black-Box Performance Control for High-Volume Non-Interactive Systems. 341
Chungiang Tang, IBM T.J. Watson Research Center; Sunjit Tara, IBM Software Group, Tivoli; Rong N. Chang

and Chun Zhang, IBM T.J. Watson Research Center

Server Workload Analysis for Power Minimization using Consolidation 355
Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi Kothari, IBM India Research Lab

RCB: A Simple and Practical Framework for Real-time Collaborative Browsing 369
Chuan Yue, Zi Chu, and Haining Wang, The College of William and Mary

Bugs and Software Updates

The Beauty and the Beast: Vulnerabilities in Red Hat’s Packages 383
Stephan Neuhaus, Universita degli Studi di Trento; Thomas Zimmermann, Microsoft Research

Immediate Multi-Threaded Dynamic Software Updates Using Stack Reconstruction 397
Kristis Makris and Rida A. Bazzi, Arizona State University

Zephyr: Efficient Incremental Reprogramming of Sensor Nodes using Function Call Indirections and Difference
COMPULATION .« « .« . o ettt ettt e 411
Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff, Purdue University

USENIX Association 2009 USENIX Annual Technical Conference \%

Message from the Program Co-Chairs

Welcome to the 2009 USENIX Annual Technical Conference!

Once again USENIX Annual Tech continues its tradition of high-quality papers that both break new ground and
provide practical insight into modern computer systems. The program committee accepted 32 excellent papers—28
long and 4 short—selected from 191 submissions. The topics range from tolerating file system errors, tracking data
provenance, and reprogramming sensor networks to breathing new life into UNIX artifacts. The program also
features two engaging plenary talks. James Hamilton from Amazon opens the conference with a keynote on the
critical issue of power in large-scale datacenters, and Hugo Award—winning author David Brin closes the confer-
ence with a plenary on new tools for problem solving in the information age and their policy implications in the
near future.

We had an excellent program committee of 26 members drawn from both industry and academia. As with other
conferences receiving a large number of submissions, the PC reviewed the submitted papers in two rounds. In the
first round, every paper received at least three reviews. Based on these reviews, we assigned at least one additional
review for 10 short papers and two additional reviews for 80 long papers. During the process, we also relied upon
the specific expertise of 52 external reviewers. In total, the 191 submitted papers received 743 reviews. The pro-
gram committee then met on March 12, 20009, for a lively full-day discussion that resulted in the final conference
program. The PC shepherded all accepted papers, and the authors produced the polished final papers that constitute
these proceedings.

As program co-chairs, we stand on the shoulders of many who did a tremendous amount of hard work. First, and
most importantly, we thank all of the authors for their creative and compelling research—the conference and the
community around which it forms would not exist without it. We thank the program committee for their diligence
and commitment—each PC member reviewed nearly 30 papers, a dedicated undertaking. We thank our external re-
viewers for contributing much-needed reviews on short notice, Microsoft for hosting the PC meeting in Redmond,
and Eddie Kohler for his tireless efforts supporting the HotCRP conference management software. Finally, we
thank the USENIX staff—Ellie, Jane-Ellen, Devon, Casey, and many others—for all the tremendous behind-the-
scenes work that makes the conference both a success and a reality.

Finally, we would like to thank our industry sponsors for their support in making the 2009 USENIX Annual
Technical Conference possible and enjoyable. In particular we thank VMware, Google, Hewlett-Packard, Microsoft
Research, NetApp, and Berkeley Communications for their generous support.

We hope you enjoy the program and the conference!

Alec Wolman, Microsoft Research
Geoffrey M. Voelker, University of California, San Diego
2009 USENIX Annual Technical Conference Co-Chairs

USENIX Association 2009 USENIX Annual Technical Conference vii

Satori: Enlightened page sharing

Michael A. Fetterman
NVIDIA Corporation

Grzegorz Mito§, Derek G. Murray, Steven Hand
University of Cambridge Computer Laboratory

Cambridge, United Kingdom

First.Last@cl.cam.ac.uk

Abstract

We introduce Satori, an efficient and effective sys-
tem for sharing memory in virtualised systems. Satori
uses enlightenments in guest operating systems to detect
sharing opportunities and manage the surplus memory
that results from sharing. Our approach has three key
benefits over existing systems: it is better able to detect
short-lived sharing opportunities, it is efficient and in-
curs negligible overhead, and it maintains performance
isolation between virtual machines.

We present Satori in terms of hypervisor-agnostic
design decisions, and also discuss our implementation
for the Xen virtual machine monitor. In our evalua-
tion, we show that Satori quickly exploits up to 94%
of the maximum possible sharing with insignificant
performance overhead. Furthermore, we demonstrate
workloads where the additional memory improves mac-
robenchmark performance by a factor of two.

1 Introduction

An operating system can almost always put more mem-
ory to good use. By adding more memory, an OS can ac-
commodate the working set of more processes in physi-
cal memory, and can also cache the contents of recently-
loaded files. In both cases, cutting down on physical I/O
improves overall performance. We have implemented
Satori, anovel system that exploits opportunities for sav-
ing memory when running on a virtual machine monitor
(VMM). In this paper, we explain the policy and archi-
tectural decisions that make Satori efficient and effec-
tive, and evaluate its performance.

Previous work has shown that it is possible to save
memory in virtualised systems by sharing pages that
have identical [23] and/or similar [4] contents. These
systems were designed for unmodified operating sys-
tems, which impose restrictions on the sharing that can
be achieved. First, they detect sharing opportunities by
periodically scanning the memory of all guest VMs. The
scanning rate is a trade-off: scanning at a higher rate de-
tects more sharing opportunities, but uses more of the
CPU. Secondly, since it overcommits the physical mem-
ory available to guests, the VMM must be able to page
guest memory to and from disk, which can lead to poor
performance.

Bedford, Massachusetts, USA

mafetter@nvidia.com

We introduce enlightened page sharing as a collec-
tion of techniques for making informed decisions when
sharing memory and distributing the benefits. Several
projects have shown that the performance of a guest OS
running on a VMM improves when the guest is modified
to exploit the virtualised environment [1, 25]. In Satori,
we add two main enlightenments to guests. We modify
the virtual disk subsystem, to implement sharing-aware
block devices: these detect sharing opportunities in the
page cache immediately as data is read into memory. We
also add a repayment FIFO, through which the guest
provides pages that the VMM can use when sharing is
broken. Through our modifications, we detect the ma-
jority of sharing opportunities much sooner than a mem-
ory scanner would, we obviate the run-time overhead of
scanning, and we avoid paging in the VMM.

We also introduce a novel approach for distributing
the benefits of page sharing. Each guest VM receives
a sharing entitlement that is proportional to the amount
of memory that it shares with other VMs. Therefore,
the guests which share most memory receive the great-
est benefit, and so guests have an incentive to share.
Moreover, this maintains strong isolation between VMs:
when a page is unshared, only the VMs originally in-
volved in sharing the page are affected.

When we developed Satori, we had two main goals:

Detect short-lived sharing: We show in the evaluation
that the majority of sharing opportunities are short-
lived and do not persist long enough for a mem-
ory scanner to detect them. Satori detects sharing
opportunities immediately when pages are loaded,
and quickly passes on the benefits to the guest VMs.

Detect sharing cheaply: We also show that Satori’s
impact on the performance of a macrobenchmark—
even without the benefits of sharing—is insignif-
icant. Furthermore, when sharing is exploited,
we achieve improved performance for some mac-
robenchmarks, because the guests can use the addi-
tional memory to cache more data.

The rest of this paper is organised as follows. We be-
gin by discussing the issues of memory management in
both operating systems and virtualised platforms (Sec-
tion 2). We then survey related systems (Section 3).

USENIX Association

2009 USENIX Annual Technical Conference

We present Satori in two parts: first, we justify the ma-
jor design decisions that differentiate Satori from other
systems (Section 4), then we describe how we imple-
mented a prototype of Satori for the Xen VMM (Sec-
tion 5). Finally, we perform a thorough evaluation of
Satori’s performance, including its effectiveness at find-
ing sharing opportunities and its impact on overall per-
formance (Section 6).

2 Background

The problem of memory management has a long history
in operating systems and virtual machine monitors. In
this section, we review common techniques for manag-
ing memory as a shared resource (§ 2.1). We then de-
scribe the relevant issues for page sharing in virtual ma-
chine monitors (§ 2.2). Finally, we describe how paravir-
tualisation is used to improve performance in virtualised
systems (§ 2.3).

2.1 Virtual memory management

Physical memory is a scarce resource in an operating
system. If more memory is available, it can be put to
good use, for example by obviating the need to swap
pages to disk, or by caching recently-accessed data from
secondary storage. Since memory access is several or-
ders of magnitude faster than disk access, storing as
much data as possible in memory has a dramatic effect
on system performance.

Memory resource management was first formalised
for operating systems by Denning in 1968, with the in-
troduction of the working set model [3]. The working set
of a process at time ¢ is the set of pages that it has refer-
enced in the interval (¢ — 7,¢). This is a good predictor
of what pages should be maintained in memory. Pages
can then be allocated to each process so that its working
set can fit in memory.

Since it is challenging to calculate the working set and
T parameter exactly, an alternative approach is to mon-
itor the page fault frequency for each process [16]. If
a process causes too many page faults, its allocation of
pages is increased; and vice versa. This ensures accept-
able progress for all processes.

OS-level approaches are inappropriate for a virtu-
alised system. One of the key benefits of virtualisation
is that it provides resource isolation between VMs. If
the size of a VM’s working set or its page fault rate is
allowed to determine its memory allocation, a malicious
VM can receive more than its fair share by artificially
inflating either measure. Instead, in our approach, we
give a static allocation of physical memory to each VM,
which provides strong performance isolation [1]. As we
describe in § 4.2, our system provides surplus memory
to VMs that participate in sharing. Our approach fol-
lows previous work on self-paging, which required each

application to use its own resources (disk, memory and
CPU) to deal with its own memory faults [5].

2.2 Memory virtualisation and sharing

A conventional operating system expects to own and
manage a range of contiguously-addressed physical
memory. Page tables in these systems translate vir-
tual addresses into physical addresses. Since virtuali-
sation can multiplex several guest operating systems on
a single host, not all guests will receive such a range
of physical memory. Furthermore, to ensure isolation,
the VMM’s and guests’ memory must be protected from
each other, so the VMM must ensure that all updates to
the hardware page tables are valid.

Therefore, a virtualised system typically has three
classes of address. Virtual addresses are the same as
in a conventional OS. Each VM has a pseudo-physical
address space, which is contiguous and starts at address
zero. Finally, machine addresses refer to the physical lo-
cation of memory in hardware. A common arrangement
is for guests to maintain page tables that translate from
virtual to pseudo-physical addresses, and the VMM to
maintain separate shadow page tables that translate di-
rectly from virtual addresses to machine addresses [23].
A more recent approach is to use additional hardware to
perform the translation from pseudo-physical addresses
to machine addresses [10, 19]. Finally, it is also possible
to modify the OS to use machine addresses and commu-
nicate with the VMM to update the hardware page tables
explicitly [1].

Pseudo-physical addresses provide an additional layer
of indirection that makes it possible to share memory
between virtual machines. Since, for each VM, there
is a pseudo-physical-to-machine (P2M) mapping, it is
possible to make several pseudo-physical frame num-
bers (PFNs) map onto a single machine frame number
(MFN). Therefore, if two VMs each have a page with
the same contents, the VMM can update the P2M map-
ping and the shadow page tables to make those pages use
the same machine frame. We discuss how other systems
detect duplicates in Section 3, and the Satori approach
in Section 4.

If two VMs share a page, an attempt to write to it must
cause a page fault. This is achieved by marking the page
read-only in the shadow page table. Such a page fault
is called a copy-on-write fault. When this occurs, the
VMM handles the fault by allocating a new frame and
making a private copy of the page for the faulting guest.
It also updates the P2M mapping and shadow page tables
to ensure that the guest now uses the private copy.

A consequence of page sharing is that the mem-
ory used by a VM can both dynamically decrease
(when a sharing opportunity is exploited) and dynami-
cally increase (when sharing is broken). This presents

2009 USENIX Annual Technical Conference

USENIX Association

a resource allocation problem for the VMM. A con-
ventional operating system does not have fine-grained,
high-frequency mechanisms to deal with memory being
added or removed at run time (Memory hotplug inter-
faces are unsuitable for frequent, page-granularity ad-
dition and removal [13]). Therefore, one option is to
use a balloon driver in each guest, which pins physi-
cal memory within a guest and donates it back to the
VMM [1, 23]. The “balloon” can inflate and deflate,
which respectively decreases and increases the amount
of physical memory available to a given VM.

However, a balloon driver requires cooperation from
the guest: an alternative is host paging, whereby the
VMM performs page replacement on guests’ pseudo-
physical memory [4, 23]. Host paging is expensive,
because a VM must be paused while evicted pages are
faulted in, and even if the VMM-level and OS-level page
replacement policies are perfectly aligned, double pag-
ing (where an unused page must be paged in by the
VMM when the OS decides to page it out) negatively
affects performance. We deliberately avoid using host
paging, and use a combination of the balloon driver (see
§ 4.2) and volatile pages (see § 4.3) to vary the memory
in each guest dynamically.

Collaborative memory management (CMM) attempts
to address the issue of double paging [14]. This system
was implemented for Linux running on IBM’s z/VM hy-
pervisor for the zSeries architecture. In CMM, the guest
VM provides hints to the VMM that suggest what pages
are being used, and what pages may be evicted with little
penalty. In Satori, we use part of this work for a different
purpose: instead of using hints to improve a host pager,
we use them to specify pages which may be reclaimed
when sharing is broken (see § 5.3).

2.3 Enlightenment

Our approach to memory sharing is based on enlighten-
ments, which involve making modifications to operating
systems in order to achieve the best performance in a vir-
tualised environment; in this paper we use the terms “en-
lightenment” and “paravirtualisation” interchangeably.
Operating systems have been modified to run on VMMs
for almost as long as VMMs have existed: the semi-
nal VM/370 operating system employs handshaking to
allow guests to communicate with the VMM for effi-
ciency reasons [15]. “Paravirtualisation” was coined for
the Denali VMM [25], and Xen was the first VMM to
run paravirtualised commodity operating systems, such
as Linux, BSD and Windows [1]. Xen showed that by
paravirtualising the network and block devices, rather
than relying on emulated physical hardware, it was pos-
sible to achieve near-native I/O speeds.

More extreme paravirtualisation has also been pro-
posed. For example, Pfaff er al. designed Ventana

as a virtualisation-aware file system, to replace virtual
block devices as the storage primitive for one or more
VMs [12]. This design concentrates on adding function-
ality to the file system—for example versioning, isola-
tion and encapsulation—and considers sharing from the
point of view of files shared between users. It does
not specifically address resource management or aim to
improve performance. Our approach is orthogonal to
Ventana, and similar memory sharing benefits could be
achieved with a virtualisation-aware file system. Indeed,
using a system like Ventana would probably make it eas-
ier to identify candidates for sharing, and improve the
overall efficiency of our approach.

Other systems, such as VMware ESX Server [23] and
the Difference Engine [4] have a design goal of sup-
porting unmodified guest OSs. In contrast, we have
concentrated on paravirtualised guests for two reasons.
First, there is an increasing trend towards enlighten-
ments in both Linux and Microsoft Windows operating
systems [18, 20]. Secondly, we believe that where there
is a compelling performance benefit in using enlighten-
ments, the necessary modifications will filter down into
the vanilla releases of these OSs.

3 Related Work

Waldspurger described a broad range of memory man-
agement techniques employed in the VMware ESX
Server hypervisor, including page sharing [23]. In
VMware ESX Server, page sharing opportunities are
discovered by periodically scanning the physical mem-
ory of each guest VM, and recording fingerprints of
each page. When the scanner observes a repeated fin-
gerprint, it compares the contents of the relevant two
pages, and shares them if they are identical. In the
same work, Waldspurger introduced the balloon driver
that is used to alter guest memory allocations. How-
ever, since VMware ESX Server is designed to run un-
modified guest operating systems, it must also support
host paging. In Satori, we avoid host paging because of
its negative performance impact (see § 2.2), and avoid
memory scanning because it does not detect short-lived
sharing opportunities (see § 4.1).

A contemporary research project has added page shar-
ing to the Xen Virtual Machine Monitor. Vrable et al.
began this effort with Potemkin [22], which uses flash
cloning and delta virtualization to enable a large number
of mostly-identical VMs on the same host. Flash cloning
creates a new VM by copying an existing reference VM
image, while delta virtualization provides copy-on-write
sharing of memory between the original image and the
new VM. Kloster et al. later extended this work with a
memory scanner, similar to that found in VMware ESX
Server [7]. Finally, Gupta et al. implemented the Differ-
ence Engine, which uses patching and compression to

USENIX Association

2009 USENIX Annual Technical Conference

duplicate
page

& %

copy

private |4 unique reclaimed
copy write copy

repay use

Figure 1: Sharing cycle

achieve greater memory savings than sharing alone. We
have implemented Satori on Xen in a parallel effort, but
we use guest OS enlightenments to reduce the cost of
duplicate detection and memory balancing.

The Disco VMM includes some work on transpar-
ent page sharing [2]. In Disco, reading from a special
copy-on-write disk involves checking to see if the same
block is already present in main memory and, if so, cre-
ating a shared mapping to the existing page. We apply
a similar policy for duplicate detection, as described in
§ 4.1. However, we also implement content-based shar-
ing for disk I/0 (§ 5.2), so it is not necessary to use copy-
on-write disks, and furthermore we can exploit identical
blocks within the same disk.

4 Design decisions

In this section, we present the major design decisions
that differentiate Satori from previous work on page
sharing [23, 4]. Figure 1 shows the life-cycle of a page
that participates in sharing. This diagram raises three
key questions, which we address in this section:

How are duplicates detected? We use sharing-aware
block devices as a low-overhead mechanism for de-
tecting duplicate pages. Since a large amount of
sharing originates within the page cache, we moni-
tor data as it enters the cache (§ 4.1).

How are memory savings distributed? When 7 iden-
tical pages are discovered, these can be represented
by a single physical page, and n—1 pages are saved.
We distribute these savings to guest VMs in propor-
tion with their contribution towards sharing (§ 4.2).

What if sharing is broken? Shared pages are neces-
sarily read-only. When a guest VM attempts to
write to a shared page, the hypervisor makes a
writable private copy of the page for the guest. We
require that the guest itself provides a list of volatile
pages that may be used to provide the necessary
memory for private copies. In addition, we obvi-
ate the need for copying in certain cases (§ 4.3).

We have taken care to ensure that our answers to the
above questions are hypervisor-agnostic and may be im-
plemented together or individually. Although our pro-
totype uses the Xen VMM (see Section 5), these tech-
niques should also be useful for developers of other hy-
pervisors. In particular, our duplicate detection and sav-
ings distribution policies could be implemented with-
out modifying core OS components in the guest VMs.
However, by enlightening the guest OS, it is possible
to achieve better performance, and we contend that our
techniques are best implemented as a whole.

4.1 How are duplicates detected?

In order to exploit page sharing, it is necessary to detect
duplicate pages. As described in § 2.2, the most common
approach to this problem is to scan the memory of all
guest VMs periodically, and build up a list of page fin-
gerprints that can be used to compare page contents. In
this subsection, we propose sharing-aware block devices
as a more efficient alternative. We discuss the problems
with the scanning-based approach, and explain why the
block interface is an appropriate point at which to detect
potential sharing.

As we show in § 6.1, many sharing opportunities are
short-lived, and yet these provide a large amount of over-
all sharing when taken as a whole. In principle, the
memory scanning algorithm is exhaustive and all du-
plicates will eventually be found. However, in practise
the rate of scanning has to be capped: in the extreme
case, each memory write would trigger fingerprint re-
computation. For example in VMware ESX Server the
default memory scan frequency is set to once an hour,
with a maximum of six times per hour [21]. Therefore,
the theoretical mean duplicate discovery time for the de-
fault setting is 40min, which means that short-lived shar-
ing opportunities will be missed. (We note that there
are at least three relevant configuration options: the scan
period, scan throughput (in MB per second per GHz of
CPU), and maximum scan rate (in pages per second).
In our evaluation (§ 6.1), the “aggressive” settings for
VMware use the maximum for all three of these param-
eters.)

When an operating system loads data from disk, it
is stored in the page cache, and other researchers have
noted that between 63.8% and 93.0% of shareable pages
between VMs are part of the page cache [8]. For ex-
ample, VMs based on the same operating system will
load identical program binaries, configuration files and
data files. (In these systems, the kernel text will also be
identical, but this is loaded by Xen domain builder (boot-
loader), and does not appear in the page cache. Though
we do not implement it here, we could modify the Xen
domain builder to provide sharing hints.)

The efficacy of sharing-aware block devices relies

2009 USENIX Annual Technical Conference

USENIX Association

on the observation that, for the purpose of detecting
duplicates, a good image of the page cache contents
can be built up by observing the content of disk reads.
While this approach does not capture any subsequent in-
memory writes, we do not expect the sharing potential
of dirty pages to be high. Since a VMM uses virtual de-
vices to represent block devices, we have a convenient
place to intercept block reads. We describe our imple-
mentation of sharing-aware block devices in § 5.2.

The situation improves further if several guests share
a common base image for their block device. When
deploying a virtualised system, it is common to use a
single substrate disk for several VMs, and store VM-
private modifications in a copy-on-write overlay file. If
a guest reads a block from the read-only substrate disk,
the block number is sufficient to identify it uniquely, and
there is no need to inspect its contents. This scheme has
the additional advantage that some reads can be satisfied
without accessing the underlying physical device.

Previous work on page sharing emphasises zero pages
as a large source of page duplicates. Clearly, these pages
would not be found by block-device interposition. How-
ever, we take a critical view of zero-page sharing. An
abundance of zero pages is often indicative of low mem-
ory utilisation, especially in operating systems which
implement a scrubber. We believe that free page shar-
ing is usually counterproductive, because it gives a false
sense of memory availability. Consider the example of
a lightly loaded VM, in which 50% of pages are zero
pages. If these pages are reclaimed and used to run an-
other VM, the original VM will effectively run with 50%
of its initial allocation. If this is insufficient to handle
subsequent memory demands, the second VM will have
to relinquish its resources. We believe that free mem-
ory balancing should be explicit: a guest with low mem-
ory utilisation should have its allocation decreased. Sev-
eral systems that perform this resource management au-
tomatically have been proposed [26].

4.2 How are memory savings distributed?

The objective of any memory sharing mechanism is to
reuse the reclaimed pages in order to pay for the cost
of running the sharing machinery. A common approach
is to add the extra memory to a global pool, which can
be used to create additional VMs [4]. However, we be-
lieve that only the VMs that participate in sharing should
reap the benefits of additional memory. This creates an
incentive for VMs to share memory, and prevents ma-
licious VMs from negatively affecting the performance
of other VMs on the same host. Therefore, Satori dis-
tributes reclaimed memory in proportion to the amount
of memory that each VM shares.

When Satori identifies n duplicates of the same page,
it will reclaim n — 1 redundant copies. In the common

1 1
2

entitlements

Wt
[SS1)
W

I | I | pseudo-physical
pages

share

w__
unshare
| ’ ‘ ’ ‘ machine

pages

2
share
X
\ g
unshare

reclaimed extra
reclaimed

unique
copy

Figure 2: Sharing entitlement calculation

case of n = 2, our policy awards each of the contributing
VMs with an entitlement of 0.5 pages—or, more gener-
ally, ”T_l pages—for each shared page (Figure 2). For
each page of physical memory, p, we define n(p) € N as
the sharing rank of that page. For VM ¢, which uses the
set of pages M (4), the total sharing entitlement, s(i), is
calculated as follows:

s@) = Y

pEM (7)

n(p) — 1
n(p)

Satori interrogates the sharing entitlements for each
VM every second, and makes the appropriate amount of
memory available to the VMs.

The sharing rank of a particular page will not neces-
sarily remain constant through the lifetime of the shar-
ing, since additional duplicates may be found, and exist-
ing duplicates may be removed. Therefore, the sharing
entitlement arising from that page may change. Consider
what happens when a new duplicate is discovered for an
already n-way shared page. The VM that provided the
new duplicate will receive an entitlement of HL_H pages,
and the owners of the existing n duplicates will see their

entitlement increase by - — ”;1 = L for each

n(n+1
copy they own. Similarly, the entitlemen(tstn:lst be ad-
justed when a shared page departs.

In Satori, guests claim their sharing entitlement using
memory balloons [23]. When the entitlement increases,
the balloon deflates and releases additional pages to the
guest kernel. In our implementation we set up the guests
to always claim memory as soon as it becomes avail-
able. However, guests can elect to use more complex
policies. For example a guest may refrain from using its
entitlement if it experiences low memory demand, or ex-
pects its shared pages to be short-lived. We have explic-
itly avoided using host paging to deal with fluctuating
memory allocations. As a result, our implementation is
simpler, and we have avoided the well-known problems
associated with host paging. However, without host pag-
ing, we have to guarantee that the hypervisor can recover
memory from the guests when it needs to create private
copies of previously-shared pages. In the next subsec-
tion, we introduce the repayment FIFO, which addresses
this issue.

USENIX Association

2009 USENIX Annual Technical Conference

4.3 What if sharing is broken?

If two or more VMs share the same copy of a page, and
one VM attempts to write to it, the VMM makes a private
copy of the page. Where does the VMM get memory for
this copy?

Satori obtains this memory from a guest-maintained
repayment FIFO, which contains a list of pages the guest
is willing to give up without prior notification. The size
of a VM’s repayment FIFO must be greater than or equal
to its sharing entitlement. Our approach has three major
advantages: (a) the hypervisor can obtain pages quickly,
as there is no synchronous involvement with the guest,
(b) there is no need for host paging, and (c) there is no
risk that guest will be unable to relinquish resources due
to double copy-on-write faults (i.e. a fault in the copy-
on-write fault handler).

Pages in the repayment FIFO must not contain any
irreplaceable information, because the guest will not
have a chance to save their contents before the hyper-
visor reclaims them. Memory management subsystems
already maintain book-keeping information about each
page, which makes it possible to nominate such volatile
pages without invasive changes.

In Satori the hypervisor uses sharing entitlements to
determine the VM from which to reclaim memory. It
does so by inspecting how much memory each VM drew
from the sharing mechanism, in comparison to its cur-
rent sharing entitlement. Since the sum of sharing enti-
tlements is guaranteed to be smaller or equal to the num-
ber of removed duplicate pages, there will always be at
least one VM with a negative memory balance (i.e. the
VM drew more than its entitlement). Note that only the
VMs which are involved in the broken sharing will be
affected. This is essential to maintain performance iso-
lation, as a malicious VM will be unable to affect any
VMs with which it does not share memory.

A special case of broken sharing is when a page is re-
allocated for another purpose. For example, a guest may
decide to evict a shared page from the page cache, scrub
its content and reallocate it. In a copy-on-write system,
the scrubber would cause a page fault when it begins to
scrub the page, and the VMM would wastefully copy the
old contents to produce a private version of the page. We
use a scheme called no-copy-on-write, which informs
the VMM that a page is being reallocated, and instead
allocates a zero page (from a pre-scrubbed pool) for the
private version.

To the best of our knowledge, Satori is the first system
to address a covert channel created by memory sharing.
An attacker can infer the contents of a page in another
guest, by inducing sharing with that page and measuring
the amount of time it takes to complete a write. (If a
page has been shared, the processing of a copy-on-write
fault will measurably increase the write latency.) For

example, we might want to protect the identity of server
processes running in a guest, because security vulnera-
bilities might later be found in them. We allow guests to
protect sensitive data by specifying which pages should
never be shared. Any attempts to share with these pages
will be ignored by the hypervisor.

5 Implementation

We implemented Satori for Xen version 3.1 and Linux
version 2.6.18 in 11551 lines of code (5351 in the Xen
hypervisor, 3894 in the Xen tools and 2306 in Linux).
We chose Xen because it has extensive support for par-
avirtualised guests [1]. In this section, we describe how
we implemented the design decisions from Section 4.
Our changes can be broken down into three main cat-
egories. We first modified the Xen hypervisor, in order
to add support for sharing pages between VMs (§ 5.1).
Next, we added support for sharing-aware block devices
to the Xen control tools (§ 5.2). Finally, we enlightened
the guest operating system, so that it can take advantage
of additional memory and repay that memory when nec-

essary (§ 5.3).

5.1 Hypervisor modifications

The majority of our changes were contained in the hy-
pervisor. First of all, the upstream version of Xen does
not support transparent page sharing between VMs, so it
was necessary to modify the memory management sub-
system. Once this support was in place, we added a hy-
percall interface that the control tools use to inform the
hypervisor that pages may potentially be shared. Finally,
we modified the page fault handler to deal with instances
of broken sharing.

In § 2.2, we explained that each VM has a contigu-
ous, zero-based pseudo-physical address space, and a
P2M mapping for converting pseudo-physical addresses
to machine addresses. To support transparent page shar-
ing, it is necessary to allow multiple pseudo-physical
pages to map to a single frame of machine memory. Fur-
thermore, the machine frame that backs a given pseudo-
physical page may change due to sharing. Therefore, it
is simplest to use shadow page tables in the guest VMs.
However, regular paravirtualised guests in Xen do not
use shadow page tables, so we ported this feature from
the code which supports fully-virtualised guests. In ad-
dition, we had to modify the reference counting mecha-
nism used in Xen to keep track of page owners. In Xen
each page has a single owner, so we added a synthetic
“sharing domain” which owns all shared pages.

As described in § 5.3, we maintain information about
the state of each (pseudo-)physical page in each guest.
Both the guest and the hypervisor may update this infor-
mation, so it is held in a structure that is shared between
the hypervisor and the guest. The hypervisor uses this

2009 USENIX Annual Technical Conference

USENIX Association

structure to select which page should be used to satisfy
a copy-on-write fault (either a page from the repayment
FIFO, or, in the no-copy-on-write case, a zero-page).

We export the sharing functionality to the guest
through the hypercall interface. We add three
new hypercalls, named sharemfns, mark_ro and
get_ro_ref.

The share.mfns hypercall takes two machine
frame numbers (MFNs)—a source MFN and a client
MFN—and informs the hypervisor that all pseudo-
physical pages backed by the client frame should now
use the source frame. The hypercall works as follows:

1. Mark the source and client frame as read-only, if
they are not already.

2. Compare the contents of the source and client
frame. If they are not equal, return an error.

3. Remove all mappings to the client MEN from the
shadow page tables.

4. Update the relevant P2M mappings to indicate that
the source frame should be used in place of the
client frame.

5. Free the client frame for use by the guest VMs.

Note that this hypercall is not guaranteed to succeed.
For example, after the duplicate detector notices that two
pages are the same, but before they are marked read only,
a guest might change the contents of one of the pages.
Therefore, the hypercall may fail, but there is no risk that
the contents of memory will be incorrect: the source and
client frame will continue to be used as before.

For copy-on-write disks, we want to make an early
decision about whether or not physical I/O will be re-
quired. Therefore, we use the mark_ro hypercall to en-
force read-only status on all pages that are read from the
read-only substrate. (Technically, we make a page read-
only by treating it as 1-way shared; if the guest writes
to it, the sharing is simply broken by marking the page
as writable and changing the owner to the guest.) The
complementary get _ro_ref hypercall ensures that the
contents of the frame have not been changed (i.e. that
the MFEN is still read-only), and increments the sharing
reference count to prevent it from being discarded. We
describe the copy-on-write disk support in § 5.2.

The final hypervisor component required for page
sharing is a modified page fault handler. We added two
new types of page fault, which Xen must handle differ-
ently. The first is a straightforward copy-on-write fault,
which is triggered when a guest attempts to write to a
shared page. In this case, the handler recalculates the
sharing entitlements for the affected guests, and reclaims
a page from one of the guests that now has claimed more
memory than its entitlement. The handler removes this
page from the appropriate guest’s repayment FIFO and
copies in the contents of the faulting page. We also add

a discard fault, which arises when a guest attempts to
access a previously-volatile page that the VMM has re-
claimed. If so, the handler injects this fault into the
guest, as described in § 5.3.

5.2 Sharing-aware block devices

We implemented duplicate detection using sharing-
aware block devices. Xen provides a high-performance,
flexible interface for block 1/O using split devices. The
guest contains a front-end driver, which presents itself to
the guest OS as a regular block device, while the control
VM hosts a corresponding back-end driver. Previous
work has shown how the back-end is a suitable interposi-
tion point for various applications [24], in particular for
creating a distributed storage system [9]. We use the ex-
isting block-tap architecture to add duplicate detection.

The key steps in a block-tap read request are as fol-
lows:

1. The front-end (in the guest) issues a read request to
the back-end through the inter-VM device channel,
by providing a block number and an I/O buffer.

2. The back-end maps the I/O buffer into a user-space
control tool, called tapdisk.

3. tapdisk performs device-specific processing for
the given block number, and returns control to the
back-end driver.

4. The back-end unmaps the I/O buffer and notifies
the front-end of completion.

Since tapdisk is implemented as a user-space pro-
cess and provides access to I/O data, it is simple to add
custom block-handling code at this point. Satori modi-
fies the tapdisk read path in order to record informa-
tion about what data is loaded into which locations in
the guests’ memory. We developed two versions of du-
plicate detection: content-based sharing, and copy-on-
write disk sharing.

For content-based sharing, we hash the contents of
each block as it is read from disk. We use the hash
as the key in a hashtable, which stores mappings from
hash values to machine frame numbers (MFNs). First,
we look for a match in this table, and, if this is success-
ful, the resulting MFN is a candidate for sharing with
the I/O buffer. Note that the MFN is merely a hint: the
contents of that frame could have changed, but since we
have already loaded the data into the I/O buffer, it is ac-
ceptable for the sharing attempt to fail. If the hash is not
present in the hashtable, we invalidate any previous en-
try that maps to the I/O buffer’s MFN, and store the new
hash-to-MFN mapping.

For copy-on-write disk sharing, the process is slightly
different (see Figure 3). The first time a block is read
from the substrate disk, Satori invokes the mark_ro
hypercall on that page, and stores a mapping from the

USENIX Association

2009 USENIX Annual Technical Conference

VMI block B read

shareable &

write block B read

tapdisk1

I/O+mark_ro get_ro_ref share mfns

get_ro_ref /o N succeeds
i + mark_ro
tapdisk2 Jails ——
VM2 block B read

Figure 3: mark_ro and get_ro_ref usage for copy-
on-write disks.

block number to the 1/0 buffer MFN. (If the guest sub-
sequently writes to the page before it is shared, the
read-only status is removed.) On subsequent reads,
Satori consults the block number-to-MFN mapping to
see if the block is already cached in memory. If it is,
Satori invokes the get_ro_ref hypercall on the MFN,
which, if it succeeds, ensures that the subsequent call to
share_mfns will be successful. If the block number is
not found in the mapping table or if get _ro_ref fails,
Satori must request physical disk I/O to read the appro-
priate block. At this point, a second look-up could be
used to detect content-based sharing opportunities.

The Xen architecture places each virtual block device
in a separate tapdisk process, to simplify manage-
ment and improve fault isolation. However, we need
to share information between devices, so it was neces-
sary to add a single additional process, called spcctrl
(Shared Page Cache ConTRoLler), which hosts the
mappings between content hashes or block numbers,
and MFNs. The tapdisk processes communicate with
spcctrl using pipes, and our current implementation
of spcctrl is single-threaded.

5.3 Guest enlightenments

In Satori, we have used enlightenments to obtain OS-
level information about guest pages. These extend the
existing paravirtualised Linux guests, which Xen al-
ready supports [1].

For Satori, the most important enlightenment is
adding the repayment FIFO to the guest kernel. Recall
that the repayment FIFO is a list of volatile pages, i.e.
physical pages that the operating system is willing to re-
linquish at any time (in particular, when sharing is bro-
ken and a new frame is needed for a private copy). Since
the guest must relinquish these pages without warning, it
is essential that their contents can be reconstructed from
another source. Hence an obvious source of volatile
pages is the set of clean pages in the page cache. We par-
avirtualised the Linux page cache to provide page hints
about volatile pages.

We based our implementation of volatile pages on
earlier work on Collaborative Memory Management
(CMM) [14]. CMM is, in essence, a memory controller
which relies on page states (especially page volatility)
to dynamically adjust the available (machine) memory

for each guest. CMM is implemented for the IBM
zSeries z/VM hypervisor, but the majority of the code
is architecture-independent, as it deals with page-state
transitions in the Linux page and swap caches. We built
on CMM'’s page hinting by adding support for the x86
architecture and the Xen hypervisor.

The major difference between x86 and zSeries (s390)
in the context of volatile pages is the handling of dirty-
ing. The x86 architecture maintains dirty bits for virtual
pages in the PTE, whereas the s390 architecture main-
tains a dirty bit for each machine page. Since a given
page can only become volatile if it is not dirty, we im-
plemented a machine-page-level dirty bit in software for
the x86 architecture. Our approach is more conservative
than is strictly necessary, because we consider the exis-
tence of any writable mapping to dirty the page, even if
there was no actual write.

Satori uses a shared structure between Xen and each
guest to store and modify page states (as discussed in
§ 5.1). The page states read from this structure are used
in the guest page fault handler to distinguish between
“regular” and discard faults. On a discard fault, Linux
uses reverse mappings to remove all references to the
discarded page, effectively removing the page from its
respective cache (page or swap).

We also use the instrumentation in the page allocator,
already present in order to drive page state transitions, to
support the no-copy-on-write policy. Whenever a page is
reallocated, we update the shared page state structure to
reflect this. On a write fault to a shared page, Xen checks
to see whether the page has been reallocated, and, if so,
provides a page from its zero page cache.

In addition, we have added support to guests for spec-
ifying that some pages must not be shared (to avoid the
secret-stealing attack described in § 4.3). At present,
we allow the guest to specify that a set of pseudo-
physical pages must never be shared (i.e. all calls to
sharemfns or get_ro_ref will fail).

6 Evaluation

To characterise Satori’s performance, we have con-
ducted an evaluation in three parts. First, we have pro-
filed the opportunities for page sharing under different
workloads (§ 6.1). In contrast with previous work, we
specifically consider the duration of each sharing oppor-
tunity, as this is crucial to the utility of page sharing. We
then measure the effectiveness of Satori, and show that
it is capable of quickly detecting a large amount of shar-
ing (§ 6.2). Finally, we measure the effect that Satori has
on performance, in terms of the benefit when sharing is
enabled, and the overhead on I/O operations (§ 6.3).

For our tests we used two Dell PowerEdge 1425
servers each equipped with two 2.8 GHz Xeon CPUs,
2.5 GB of RAM and an 80 GB Seagate SATA disk. VMs

2009 USENIX Annual Technical Conference

USENIX Association

Rank | Pages saved | Percentage saving
2 1565421 79.7%

3 137712 7.01%

4 59790 3.04%

5 18760 0.96%

6 24850 1.27%

8 10059 0.51%

10 10467 0.53%

14 10218 0.52%

others 126865 6.46%

Table 1: Breakdown of sharing opportunities by rank
(excluding zero-pages).

ran Ubuntu Linux 8.04 in all cases, except for two exper-
iments, for which we state the OS version explicitly.

In the following subsections, we make repeated refer-
ence to several workloads, which we abbreviate as fol-

lows:
KBUILD-256 Vanilla Linux 2.6.24 kernel build

with 256 MB of physical memory.
KBUILD-512 As KBUILD-256, with 512 MB.

HTTPERF httperf benchmark [6] run against
Apache web-server with 512 MB of
memory, serving randomly gener-
ated static webpages.

RUBIS RUBIS web auction application with

512 MB, serving requests generated
by the default client workload gen-
erator [11].

6.1 Sharing opportunities

The major difference between Satori and contemporary
page sharing schemes is that it can share many identi-
cal pages as soon as they are populated. In this subsec-
tion, we show that a substantial proportion of sharing is
short-lived. Therefore, Satori is much more likely to ex-
ploit this sharing than schemes that rely on periodically
scanning physical memory, looking for identical page
contents [23, 4].

To analyse the sharing opportunities, we ran each of
the KBUILD-256, KBUILD-512, HTTPERF and RUBIS
workloads in two virtual machines for 30 minutes, and
took a memory dump every 30 seconds.

Table 1 shows the number of pages that can be freed
using page sharing, for each rank. (In a sharing of rank
n, n identical pages map to a single physical page.)
The figures are an aggregate, based on the total of 60
memory dumps sampled from pairs of VMs running the
KBUILD-512, HTTPERF and RUBIS workloads. Note
that most sharing opportunities have rank 2: i.e. two
identical pages exist and can be combined into a single
physical page.

Operation Count | Total (ms) | Avg (us)
mark_ro 127479 5634 44.1
share mfns 61905 474 7.7
get_ro._ref 69124 64 0.9
Total 258508 6172 —

Table 2: Breakdown of Satori hypercalls during

HTTPERF workload

Figure 4 compares the number of unique shared pages
during the KBUILD-256 and KBUILD-512 workloads.
(By considering only unique shared pages, we underesti-
mate the amount of savings for pages with rank > 2. Ta-
ble 1 demonstrates that the majority of shareable pages
have rank 2, except zero pages, which we address sep-
arately below.) We have divided the sharing opportuni-
ties into four duration ranges. The figures clearly show
that a substantial amount of sharing is short-lived, espe-
cially in a more memory-constrained setup (KBUILD-
256). Also, the amount of sharing for the KBUILD-
512 workload is approximately twice as much as that
for KBUILD-256, because of less contention in the page
cache. Finally, the kernel build process completes 6 min-
utes sooner with 512 MB of memory: this makes the
benefits of additional memory clear.

Figure 5 separately categorises shareable non-zero
pages and zero pages into the same duration ranges as
Figure 4. It should be noted that the number of shar-
ing opportunities arising from zero pages (Figures 5(c)
and 5(d)) is approximately 20 times greater than from
non-zero pages (Figures 5(a) and 5(b)). However, more
than 90% of zero-page sharing opportunities exist for
less than five minutes. This supports our argument that
the benefits of zero-page sharing are illusory.

In § 4.1, we stated that, on average, it will take 40
minutes for VMware ESX Server to detect a duplicate
page using its default page scanning options. We ran the
following experiment to validate this claim. Two VMs
ran a process which read the same 256 MB, randomly-
generated file into memory, and Figure 6 shows the num-
ber of shared pages as time progresses. The lower curve,
representing the default settings, shows that half of the
file contents are shared after 37 minutes, which is close
to our predicted value; the acceleration is likely due to
undocumented optimisations in VMware ESX Server.
The higher curve shows the results of the same exper-
iment when using the most aggressive scanning options.
Using the same analysis, we would expect a duplicate
on average to be detected after 7 minutes. In our experi-
ment, half the pages were detected after almost 20 min-
utes, and we suspect that this is a result of the aggressive
settings causing the page hint cache to be flushed more
often.

USENIX Association

2009 USENIX Annual Technical Conference

B <30s [|

<S5mins

Hpages

14000 -
12000 -
10000 -
8000 (-
6000
4000
2000

- min
5 10 15 20 25 30

(a) KBUILD-256

B <i5mins B <30mins

Hpages

25000
20000
15000
10000

5000

min

10
(b) KBUILD-512

15 20

Figure 4: Sharing opportunities during the execution of workloads KBUILD-256 and KBUILD-512.

B <30s 30s < M <5mins

391%

(a) KBUILD-256 (b) KBUILD-512

5min < M <15mins

surviving

15min < @ <30mins

0.159%

l .523%

(d) KBUILD-512

(¢c) KBUILD-256

Figure 5: Duration of page sharing opportunities for kernel compilation workloads. (a) and (b) show non-zero pages,
(c) and (d) zero pages. The exploded sectors show sharings left at the end of the experiment.

6.2 Satori effectiveness

In the next set of experiments, we measured the amount
of sharing that Satori achieved using sharing-aware
block devices. We also examined how the surplus mem-
ory was distributed between individual virtual machines.

The first experiment used two pairs of virtual ma-
chines. Two VMs each ran the HTTPERF-256 work-
load, i.e. the HTTPERF workload with 256 MB of mem-
ory (rather than 512 MB). Because the aggregate amount
of memory was insufficient to cache the entire data set
in memory, the number of shareable pages varied as
data was loaded into and evicted from each VM’s page
cache. The other two VMs each ran the KBUILD-512
workload; however they used Debian Linux rather than
Ubuntu.

Figure 7 shows that the sharing entitlements for the
VMs running KBUILD-512 are unaffected by the highly
variable amount of sharing between the two HTTPERF
workloads. Also, because we used different OSes for
each pair of VMs, the sharing entitlements achieved be-
fore the workloads started (5 to 6 minutes after the mea-
surements began) differ by about 30%.

Next, we ran two instances of a workload in separate

VMs for 30 minutes, and repeated the experiment for
the KBUILD-256, KBUILD-512, HTTPERF and RUBIS
workloads. We ran these experiments under Satori and
measured the number of shared pages, and compared
these to memory dumps using the same methodology as
described in § 6.1.

Figure 8 summarises the amount of sharing that Satori
achieves for each workload. Satori performs best with
the HTTPERF workload, shown in Figure 8(c). In this
case, it achieves 94% of the total sharing opportunities,
which is to be expected since HTTPERF involves serv-
ing a large volume of static content over HTTP, and the
majority of the data is read straight from disk. The RU-
BIS workload performs similarly, with Satori achiev-
ing 91% of the total. The kernel compilation work-
loads, KBUILD-256 and KBUILD-512, perform less
well. KBUILD-512 achieves about 50% of the total shar-
ing opportunities until the very end of the build, when
the kernel image is assembled from individual object
files. KBUILD-256 is more memory-constrained, which
forces the OS to flush dirty (non-shareable) caches.

Finally, we ran two experiments which evaluated
Satori in a more heterogeneous environment. In the

10

2009 USENIX Annual Technical Conference

USENIX Association

-
-

60000 |
50000
40000 -

30000 [J

20000

Amount of sharing (Hpages)

—_— default settings
10000

-= aggressive scanning

(U =
0 20 40 60 80 100 120

Time (min)

Figure 6: Sharing as time progresses for default and ag-
gressive scanning settings in VMware ESX Server.

25000
° HTTPERF-1 \

_ . HTTPERE . Ve /VJ \
8 20000 | o KBUILD-512-1 /- 1
3 A KBUILD-512-2 /
& _
2 150001 et 1
g
2
Z 10000 V. |
o \V4 2
o -t
£ PP o4 S iR
£ 5000F R 1

0 ‘ ‘ ‘

o 10 20 30 40

Time (min)

Figure 7: Sharing entitlements for two KBUILD-512 and
two HTTPERF-256 workloads executing simultaneously.

first experiment, two VMs running the same version
of Ubuntu Linux performed the HTTPERF and RUBIS
workloads. In this setup Satori was able to exploit over
70% of the total sharing opportunities. (The remain-
ing 30% was mostly due to the identical kernel images,
which the current version of Satori does not detect.).
In the second experiment, we used the same workloads
with different guest OSs (Ubuntu and Debian respec-
tively). In this setup, 11 MB of sharing was theoretically
possible, and only because the two distributions use an
identical kernel. In this case, Satori could only achieve
approximately 1 MB of savings (9% of the total).
Although Satori achieves varying results in terms of
memory savings, recall that these results come solely
from using our enlightened block device. These re-
sults show that we can exploit up to 94% (for HTTPERF)
of the total sharing opportunities through this method
alone. The alternative approach, which involves scan-
ning memory, incurs a constant overhead at run-time,
and must be rate-limited to prevent performance degra-
dation [21]. The Difference Engine exhibits an overhead
of up to 7% on some macrobenchmarks, though this in-
cludes the overhead of page compression and sub-page-

level patching [4]. Satori provides a flexible interface for
adding other sharing policies: we are developing a tool
that systemically identifies the source(s) of other sharing
opportunities. We hope that this will lead to additional
enlightenments that improve Satori’s coverage.

In § 4.3, we described an attack on memory shar-
ing that allows a VM to identify sensitive data in an-
other guest. On VMware ESX Server, we were able to
determine the precise version of sshd running in an-
other guest, by loading a page from each of 50 common
distribution-supplied sshd binaries into memory, and
periodically measuring the write latency to these pages.
(On our hardware, we observed a 28-times increase for
the matching page.) In Satori, we were able to protect
the entire sshd address space, and, as a result, this at-
tack failed.

6.3 Performance impact

We initially stated that memory sharing is desirable be-
cause it can improve the overall performance of VMs
running on the same physical machine. In this subsec-
tion, we investigate the performance characteristics of
Satori under various workloads. First, we measure nega-
tive impact: Satori introduces new operations for sharing
memory, and these incur a measurable cost. We mea-
sure the cost of each sharing-related hypercall, and the
overall effect on disk I/O. However, we then show that,
for realistic macrobenchmarks, the overhead is insignif-
icant, and the additional memory can improve overall
performance.

To measure the cost of individual sharing-related op-
erations, we instrumented the Xen hypervisor to record
the number and duration of each hypercall. Table 2
shows the results for a 30-minute HTTPERF workload.
The first thing to note is that Satori-related operations ac-
count for less than 6.2 seconds of the 30-minute bench-
mark. Of the individual operations, mark_ro is the
most expensive, as it must occasionally perform a brute-
force search of the shadow page tables for all mappings
of the page to be marked read-only. We could optimise
performance in this case by making the guest VM ex-
change back-reference information with the hypervisor,
but the overall improvement would be negligible.

Satori detects sharing by monitoring block-device
reads, and therefore the majority of its overhead is felt
when reading data from disk. In order to measure this
overhead, and stress-test our implementation, we ran the
Bonnie filesystem benchmark in a guest VM against a
sharing-aware block device. Table 3 shows a breakdown
of read bandwidths. We ran the benchmark in four con-
figurations, and repeated each experiment five times. In
the baseline configuration, we disabled all Satori mecha-
nisms. In successive configurations, we enabled content
hashing, IPC with spcctrl, and finally hash lookup,

USENIX Association

2009 USENIX Annual Technical Conference

Hpages
14000
12000
10000

8000
6000
4000

2000

min

(a) KBUILD-256

Hpages
100000
80000
60000

40000

20000

0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\min
0 5 10 15 20 25 30

(c) HTTPERF

Hpages

M Ideal
@ Satori

25000

20000

15000

10000

5000

(b) KBUILD-512

Hpages
30000
25000 [
20000
15000

10000 |-

5000 |-

0 1 1 1 | min
0 5 10 15 20

(d) RUBIS

Figure 8: Amount of sharing achieved by Satori for each of the four main workloads (no zero-pages)

in order to isolate the performance impact of each func-
tion. Table 3 reports bandwidth figures for reads using
getc (), and “intelligent reads”, which use a block size
of 16384 bytes.

The first thing to note is that Bonnie performs sequen-
tial reads on a 512 MB file, so the effect of any compu-
tation on the I/O path is amplified. (The impact of Satori
on random reads is negligible.) Therefore, the 34.8%
overhead for chunked reads with Satori fully enabled is
a worst-case figure, and is to be expected. With a realis-
tic workload, the I/O cost is likely to dominate. Never-
theless, it is instructive to consider the individual over-
heads:

e The overhead involved in hashing is relatively con-
stant and less than 0.4%.

e [IPC with the spcctrl process is costly. The
present implementation uses UNIX pipes to com-
municate with spcctrl, which involves two ad-
ditional context switches per read request. We plan
to redesign this component to store the hashtable in
a shared memory segment.

e The relative overhead of fully-enabled Satori is
worse in the chunked read case, because less time
is being wasted in making repeated system calls in
the guest VM.

While we are continuing to improve Satori’s perfor-
mance, and eliminate these bottlenecks, we have only
encountered the above issues when running Bonnie. For
example, we ran a stripped-down kernel compilation in a
single VM, which took an average of 780 seconds with
Satori disabled, and 779 seconds with Satori fully en-
abled. Since the standard deviation over five runs was
27 seconds, it is clear that the overhead is statistically
insignificant. In this experiment, the workload ran in iso-
lation, and there were no benefits from sharing. As we
will see next, the advantage of having additional mem-
ory can improve performance for many workloads.

We first ran an experiment to illustrate the benefit of
memory sharing between VMs that share a copy-on-
write disk. We ran a workload that read the contents
of a copy-on-write disk into memory in a pseudorandom
order. Five seconds later (while the first read was on-
going), we started the same workload, reading from the
same disk in the same sequence, in another VM. Figure 9
shows the progress that both VMs achieved as a propor-
tional gradient. VM1 reads at a consistent rate of 4.96
MB/s. When the workload commences in VM2, its ini-
tial rate is 111 MB/s, as the data that it reads can be pro-
vided by sharing memory with the page cache in VM1.
After 0.22 seconds, VM2 has read all of the data held

12

2009 USENIX Annual Technical Conference

USENIX Association

Read bandwidth (MB/s)
Mode getc () “Intelligent read”
Min | Max | Avg | Overhead | Min | Max | Avg | Overhead

No sharing 26.9 | 28.2 | 27.6 — 47.1 | 474 | 474 —

Hashingonly | 26.1 | 28.4 | 27.5 | 0.4% 471 | 474 | 473 | 0.2%

Hashing + IPC | 22.7 | 23.8 | 23.2 | 15.9% 31.8 | 33.0 | 324 | 31.6%

Sharing enabled | 23.2 | 24.9 | 24.2 | 12.9% 30.7 | 31.1 | 30.9 | 34.8%

Table 3: Results of the Bonnie filesystem benchmark on Satori

Figure 10 shows how the aggregate HTTPERF re-
4.96 MB/s sponse rate changes over time for Satori and VMware
VM1 (with and without VMware Tools). The performance of
Satori can be divided into two phases. First, it achieves
111 MB/s approximately 30 responses per second while the cache
VM2 is being loaded, which takes approximately 85 seconds.
- The response rate then jumps to between 170 and 200 re-
sponses per second as all subsequent requests can be sat-
0 2 4 6 isfied from caches. In order to maintain these response

Figure 9: Copy-on-write disk read rates

—_— Satori
- VMware with Tools
-=- VMware without Tools

200 -

150 -

100 |-

Response rate (rsp/s)

RUANE N\ far 1 LR AL Y I\ B
S SN IO N g I

v U \ 1 A N1

i A ARV b 1 \

X N Vil Ry

. . L L L
0 50 100 150 200 250
Time (s)

Figure 10: Aggregate HTTPERF response rates for the
two VMs running on Satori, VMware, and VMware with
VMware Tools

by VMI, and the two VMs become mutually synchro-
nised, at the original rate, which is limited by the disk
access time. Although this example is artificial, it shows
Satori’s effectiveness at exploiting page cache sharing
for copy-on-write disks. Many recent cloud comput-
ing systems, such as Amazon’s EC2 [17], encourage the
use of standard machine image files, which are natural
candidates for a copy-on-write implementation. Satori
would be particularly effective in this case.

Finally, we ran the HTTPERF workload in two VMs as
a macrobenchmark, to discover how well Satori exploits
the extra memory that is made available through sharing.
We compare Satori to VMware ESX Server—the lead-
ing commercial hypervisor—which uses the techniques
described by Waldspurger to achieve page sharing and
memory overcommitment [23].

rates, the VMs use their sharing entitlements to increase
their page cache sizes. The physical memory available
to each VM grows to over 770 MB over the first 120
seconds of the experiment.

The results for VMware are interesting. We note first
that it was necessary to install the VMware Tools (which
include a balloon driver) in order to achieve performance
that was comparable to Satori. Without the VMware
Tools, the VMM begins paging after approximately 15
seconds, and throughput drops almost to zero. Once host
paging starts, the throughput only recovers occasionally,
and never to more than 5 responses per second. With
the VMware Tools installed, we observed that balloon
permanently limited each VMs physical memory alloca-
tion to 500 MB. Therefore, the VMs were able to make
progress without host paging, but the data set did not fit
in the cache, and the response rate remained at around
40 responses per second. VMware was unable to estab-
lish sufficient sharing because the lifetime of a page in
either page cache was usually too short for the memory
scanner to find it.

7 Conclusions

We described Satori, which employs enlightenments to
improve the effectiveness and efficiency of page shar-
ing in virtualised environments. We have identified sev-
eral cases where the traditional page sharing approach
(i.e. periodic memory scanning) does not discover or
exploit opportunities for sharing. We have shown that,
by using information from the guest VMs, and making
small modifications to the operating systems, it is possi-
ble to discover a large fraction of the sharing opportuni-
ties with insignificant overhead.

Our implementation has concentrated on sharing-
aware block devices. In the future we intend to add other

USENIX Association

2009 USENIX Annual Technical Conference

13

enlightened page sharing mechanisms—such as long-
lived zero-page detection, page-table sharing and kernel
text sharing—which will improve Satori’s sharing dis-
covery rate. We also intend to investigate the application
of our technique to nearly-identical pages [4].

Acknowledgments

We wish to thank members of the Systems Research
Group at the University of Cambridge for the many fruit-
ful discussions that inspired this work. We also wish to
thank our shepherd, Geoffrey Voelker, and the anony-
mous reviewers for their insightful comments and sug-
gestions that improved this paper.

References

(1]

(2]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

E. Bugnion, S. Devine, and M. Rosenblum. Disco: run-
ning commodity operating systems on scalable multipro-
cessors. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997.

P. J. Denning. The working set model for program be-
havior. In Proceedings of the 1st ACM Symposium on
Operating System Principles, 1967.

D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference
engine: Harnessing memory redundancy in virtual ma-
chines. In 8th USENIX symposium on Operating System
Design and Implementation, 2008.

S. M. Hand. Self-paging in the nemesis operating sys-
tem. In Proceedings of the 3rd USENIX symposium on
Operating Systems Design and Implementation, 1999.

Hewlett-Packard Development Company, L.P. httperf

homepage, 2008. http://www.hpl.hp.com/
research/linux/httperf/, accessed 9th Jan-
uary, 2009.

J. E Kloster, J. Kristensen, and A. Mejlholm. On the
Feasibility of Memory Sharing. Master’s thesis, Aalborg
University, June 2006.

J. F. Kloster, J. Kristensen, and A. Mejlholm. Determin-
ing the use of Interdomain Shareable Pages using Kernel
Introspection. Technical report, Aalborg University, Jan-
uary 2007.

D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J.
Feeley, N. C. Hutchinson, and A. Warfield. Parallax: vir-
tual disks for virtual machines. In Proceedings of the 3rd
EuroSys conference on Computer Systems, 2008.

G. Neiger, A. Santoni, F. Leung, D. Rogers, and R. Uh-
lig. Intel® Virtualization Technology: Hardware Sup-
port for Efficient Processor Virtualization. Intel®) Tech-
nology Journal, 10(3):167-178, Aug 2006.

ObjectWeb Consortium. RUBIiS — Home Page, 2008.
http://rubis.objectweb.org/, accessed 9th
January, 2009.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualization
aware file systems: Getting beyond the limitations of vir-
tual disks. In Proceedings of the 3rd USENIX sympo-
sium on Networked Systems Design and Implementation,
2006.

J. H. Schopp, K. Fraser, and M. J. Silbermann. Resizing
Memory with Balloons and Hotplug. In Proceedings of
the 2006 Ottawa Linux Symposium, 2006.

M. Schwidefsky, H. Franke, R. Mansell, H. Raj,
D. Osisek, and J. Choi. Collaborative Memory Manage-
ment in Hosted Linux Environments. In Proceedings of
the 2006 Ottawa Linux Symposium, 2006.

L. H. Seawright and R. A. MacKinnon. VM/370 - A
Study of Multiplicity and Usefulness. IBM Systems Jour-
nal, 18(1):4-17, 1979.

A. S. Tanenbaum. Modern Operating Systems, page 122.
Prentice-Hall, 1992.

(Unattributed). Amazon Elastic Compute Cloud (Ama-
zon EC2). http://aws.amazon.com/ec2/, ac-
cessed Sth January, 2009.

(Unattributed). Understanding Full Virtualization, Par-
avirtualization and Hardware Assist. Technical report,
VMWare, Inc., 2007.

(Unattributed). AMD-V™ Nested Paging. Technical re-
port, Advanced Micro Devices, Inc., Jul 2008.
(Unattributed). Performance and capacity require-
ments for Hyper-V, 2008. http://technet.
microsoft.com/en-us/library/dd277865.
aspx, accessed 9th January 2009.

(Unattributed). Resource Management Guide, ESX
Server 3.5, ESX Server 3i version 3.5, VirtualCen-
ter 2.5, page 171. VMware, Inc., 2008. http:
//www.vmware.com/pdf/vi3_35/esx_3/
r35u2/vi3_35_25_u2_resource_mgmt%.pdf,
accessed 9th January, 2009.

M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. C. Snoeren, G. M. Voelker, and S. Savage. Scala-
bility, fidelity, and containment in the Potemkin virtual
honeyfarm. In Proceedings of the 20th ACM Symposium
on Operating systems Principles, 2005.

C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the 5th USENIX
symposium on Operating Systems Design and Implemen-
tation, 2002.

A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facili-
tating the development of soft devices. In Proceedings of
the 2005 USENIX Annual Technical Conference, 2005.
A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. In Proceedings
of the 5th USENIX symposium on Operating Systems De-
sign and Implementation, 2002.

W. Zhao and Z. Wang. Dynamic Memory Balancing for
Virtual Machines. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual Exe-
cution Environments, 2009.

14

2009 USENIX Annual Technical Conference

USENIX Association

vNUMA: A Virtual Shared-Memory Multiprocessor

Matthew Chapman*f
Gernot Heiser*™
*The University of New South Wales
T NICTA
Y Open Kernel Labs

matthewc @cse.unsw.edu.au

http://ertos.nicta.com.au

Abstract

vNUMA, for virtual NUMA, is a virtual machine that
presents a cluster as a virtual shared-memory multipro-
cessor. It is designed to make the computational power
of clusters available to legacy applications and operating
systems.

A characteristic aspect of VNUMA is that it incorpo-
rates distributed shared memory (DSM) inside the hy-
pervisor, in contrast to the more traditional approach
of providing it in middleware. We present the design
of vNUMA, as well as an implementation on Itanium-
based workstations. We discuss in detail the enhance-
ments to standard protocols that were required or en-
abled when implementing DSM inside a hypervisor, and
discuss some of the tradeoffs we encountered. We ex-
amine the scalability of VNUMA on a small cluster, and
analyse some of the design choices.

1 Introduction

Shared-memory multiprocessor (SMM) systems provide
a simple programming model compatible with a large
base of existing applications and operating systems.
They naturally lend themselves to providing a single sys-
tem image (SSI) running a single operating-system (OS)
instance with a single resource name space.

However, for many compute-intensive applications,
a network of commodity workstations presents a more
cost-effective platform. These systems deliver the same
(theoretical) compute power with much less expensive
hardware, and are easily extensible and re-configurable.
Yet their computing power is much more difficult to har-
ness. Most existing OSes were not designed for clus-
ter environments, and applications designed for shared-
memory systems need to be redesigned for clusters by
using explicit communication over the network.

Previous attempts have been made to bridge the gap
between the ease of programming and legacy support
of SMM systems and the economies of cluster hard-
ware. These include distributed shared memory (DSM)
libraries such as Ivy [23] or Treadmarks [19], which

provide a limited illusion of shared memory to applica-
tions, provided that the programmer uses the primitives
supplied by the library. Other projects have attempted
to retrofit support for cluster-wide process scheduling
and migration into OSes [2, 27, 35]. However, these
approaches require extensive and intrusive OS changes,
which are difficult to keep up to date with the fast pace
of OS development.

This paper explores a different approach: the use of
virtualization to bridge the gap between SMM systems
and workstation clusters. We present vNUMA (“virtual
NUMA”), a virtual shared-memory multiprocessor built
from a cluster of commodity workstations. A hypervisor
runs on each node of the cluster and manages the phys-
ical resources. A single virtualized instance of an OS,
such as Linux, is then started on the cluster. This OS
and its applications executes on a virtual ccNUMA ma-
chine with many virtual CPUs. The virtualization layer
transparently maps the virtual CPUs to real CPUs in the
cluster, and provides DSM using software techniques.
In this way, a single OS instance can be scaled “outside
the box”, utilizing the computing resources of more than
one node. Users gain all of the advantages of such an
SSI multiprocessor, such as a single view of resources
and transparent process scheduling.

The core ideas of vYNUMA have been presented in an
earlier short paper [7]. Here we focus on the design
and implementation issues that are critical to making
vNUMA work. We address the problem of constructing
a high-performance virtual NUMA system on commod-
ity hardware by:

e an approach to write sharing which individually in-
tercepts sparse write accesses, while falling back to
a page-based write-invalidate protocol when appro-
priate,

e introducing the technique of write-broadcast with
deterministic incremental merge for providing total
store order, and

e demonstrating an efficient approach for avoidance
of page thrashing.

USENIX Association

2009 USENIX Annual Technical Conference

Operating system and applications

Virtual machine (4 CPUs, RAM, disk)

Hypervisor Hypervisor Hypervisor Hypervisor
Node 1 Node 2 Node 3 Node 4
(1 CPU, RAM, disk) (1 CPU, RAM) (1 CPU, RAM) (1 CPU, RAM)

I T

T]

Figure 1: Example vNUMA system

In the next section we present an overview of the
VvNUMA hypervisor and its DSM system, which is de-
signed for a small cluster of commodity workstations.
In Section 3 we discuss a number of enhancements to
established DSM protocols that improve their suitability
for use inside a hypervisor. Section 4 takes a detailed
look at implementation issues, including architecture-
specific optimisations. Section 5 presents an evaluation
of our vYNUMA prototype. Related work is summarised
in Section 6.

2 vNUMA Overview
2.1 Approach

In order to minimise overheads, vNUMA is designed as
a Type-I hypervisor, executing on bare hardware with no
host OS. Our prototype was built on Itanium worksta-
tions, which are frequently deployed in clusters for high-
performance computing (HPC) use. While the YNUMA
design is independent of a specific ISA, the implemen-
tation does use processor-specific optimisations.

The majority of previous software DSM systems have
been designed as middleware running on top of an OS.
In vNUMA, the DSM system is integrated with the hy-
pervisor. There are two levels of memory address trans-
lation in a virtualized system. The guest OS maps appli-
cations’ virtual addresses onto a guest-physical address
space, which represents the physical memory of the vir-
tual machine. Then, the hypervisor maps guest physical
addresses to real physical addresses on a host computer.
This lower layer, transparent to the guest OS, is where
the vNUMA DSM system operates. It provides oper-
ating systems with the illusion of a single physical ad-
dress space across multiple host computers, as indicated
in Figure 1.

As a result, the shared address space in VNUMA com-
prises not just some subset of data memory that is known
to be shared, but all of the memory of the virtual ma-
chine. Since our aim is to run unmodified application
binaries (and, ideally, unmodified OSes), VNUMA must
faithfully reproduce the hardware SMP programming
model. Doing this efficiently presents challenges. On
the other hand, vNUMA runs in the processor’s privi-
leged mode, which gives it access to certain techniques

that may be difficult or prohibitively inefficient for a
userspace DSM system. Examples include the efficient
emulation of individual instructions, and the use of the
performance-monitoring unit (PMU) to track the execu-
tion of specific instructions.

2.2 Basic DSM protocol

At the heart of the vYNUMA DSM system is a sim-
ple single-writer/multiple-reader write-invalidate proto-
col based on the Ivy protocol [23]. For page lo-
cation, VNUMA implements a fixed distributed man-
ager scheme, whereby the global guest-physical address
space is divided into equal-sized portions; each node acts
as a manager for one of these portions.

vNUMA's transparency requirements imply that the
concept of a manager node is unknown outside the hy-
pervisor. However, efficiency is improved if the guest
OS has a notion of locality. VNUMA uses the concept of
NUMA node-local memory to ensure that the guest will
favour locally-managed memory when making alloca-
tion decisions, and as such works best with a NUMA-
aware guest OS. While for normal DSM systems the
concept of the manager node is a complication required
for efficiency, for the virtual NUMA system it is actually
a good match.

vNUMA’s DSM algorithm is based on the a version
of the Ivy protocol which the Ivy authors describe as
the “improved” protocol. The improvement keeps the
copyset information (where copies of a page are held)
with a changing page owner rather than the manager.
This helps to minimise the number of messages required,
and to avoid deadlock issues that are a problem with the
basic protocol [13].

3 Enhancements to DSM Protocols

Latency of DSM operations is the crucial limiting fac-
tor for the performance of VNUMA. Whenever a fetch
or invalidation message is sent, consistency requires that
execution on the local processor must stall until the re-
sponse is received. Here we discuss protocol improve-
ments that are designed to minimise the number of stalls
and messages required for DSM operation.

16

2009 USENIX Annual Technical Conference

USENIX Association

3.1 Double faults and ownership

In the original Ivy protocol, a page that has been fetched
on a read fault would have to be re-fetched on a subse-
quent write fault in order to ensure consistency. A later
optimisation avoided the double transfer with the help
of version numbers [20]. We use an optimisation that
seems to have been used in Mirage [11]: an owner can
determine whether the page data needs to be sent simply
by consulting the page’s copyset information. This is be-
cause any intervening writes would have invalidated the
faulting node’s read copy and hence removed it from the
copyset.

Another optimisation also goes back to Mirage but is
simplified in vNUMA: as soon as the manager becomes
a member of the copyset, ownership is automatically
transferred to the manager (Mirage required extra mes-
sages for this).

3.2 Addressing sparse data accesses

Minimising the number of communication events in a
distributed shared memory system depends critically on
caching of remote data. Many commonly used data
structures, such as linked lists and trees, tend to have
poor spatial locality, and may result in a processor ac-
cessing many pages. If locally cached copies of these
pages can be accessed, then overheads are small, but if
each of the pages regularly requires a remote fetch, per-
formance will suffer greatly.

In the absence of writes, pages eventually become
read-shared, allowing each processor to access the
cached copy of those pages without any communication.
This is clearly desirable. Now consider that some pro-
cessor occasionally writes a value to a certain page that
is otherwise read-shared. In the Ivy protocol, first the
writer must stall while all of the read copies are invali-
dated, then all of the active readers eventually stall and
re-fetch the entire page data. Clearly it would be more
efficient, for such sparse updates, to propagate the indi-
vidual write to any readers.

3.2.1 Write detection

In any such protocol, writes must be detected and write
update messages sent to other nodes. Write detection
at sub-page granularity is a challenge to implement effi-
ciently. Page diffing, as implemented in Munin [3] and
many later systems, cannot be used by vNUMA, for sev-
eral reasons.

Firstly, by the time that the diffing is performed, in-
formation has been lost about the size of the writes,
which has implications for the outcome of conflicting
writes. For example, assume that a 4-byte integer vari-
able has an initial value of 0. Consider a case where
processor P1 writes 1 to the variable, P2 writes -1, and
then P3 issues a read. The Itanium architecture dictates

that the outcome will be one of 0, -1 or 1 (depending
on which of the writes have been seen at P3). How-
ever, the diff generated at P1 may contain as little as one
byte, since in binary representation only one byte of the
value has changed. The diff generated at P2 contains
four bytes, since all four bytes of the binary representa-
tion have changed (-1 = Oxffffffff in hexadecimal). After
both diffs are applied, the value at P1 may be OxffffffO1,
which is not one of the valid outcomes. Diffing at a
32-bit granularity would solve this problem for 32-bit
values, but there would still be problems with smaller
and larger types. Systems that employ diffing, such as
TreadMarks [19], rely on the programmer to avoid issu-
ing conflicting writes within an interval, and to take care
when using smaller types than the diff granularity. How-
ever, at the ISA level there is no such requirement; in fact
the example above is completely legal if the programmer
does not require a guarantee as to which change is ap-
plied first. This would present problems for legacy code
on VYNUMA.

Secondly, the standard diffing approach involves mak-
ing the page freely writable on the first write access, in
order to avoid further write faults. However, if a page is
both readable and writeable, then atomic read-modify-
write instructions such as compare-and-exchange will
freely execute, thus destroying their semantics. User-
level DSM systems that employ diffing schemes can
avoid this issue by stating that the programmer must
use the synchronisation constructs provided by the DSM
system, and not rely on the behaviour of atomic in-
structions to shared memory. This is not practical for
vNUMA.

An alternate approach, software write detection, as
used in Midway [37], relies on compiler support. This
would prevent transparent distribution of legacy applica-
tions, and is therefore also not suitable for VNUMA.

We therefore attempt to intercept writes individually,
a technique we describe as write trapping. While this
is prohibitively expensive for user-level DSM systems,
the overhead can be kept much smaller in a thin hyper-
visor such as vNUMA. The current C language imple-
mentation results in an overhead of around 250 cycles
per write, but this is largely due to compiler limitations;
in theory under 100 cycles should be achievable.

Even so, writes are frequent operations and trapping
every write in the system would be impractical; in-
deed the majority of pages in the system are not ac-
tively write-shared at all. vNUMA uses an adaptive
scheme which changes a page’s mode between this
write-trapping (write-update) mode and the basic write-
invalidate mode, depending on the access pattern.

The adaptation scheme currently implemented is sim-
ilar to the read-write-broadcast (RWB) protocol [31] de-
veloped for hardware cache coherence. The run-length

USENIX Association

2009 USENIX Annual Technical Conference

wa B wi

Pl
reply

Jetch write wa

w1
P2 A

A writeu% 2 \ C
P3

Figure 2: Timeline showing a possible ordering problem

of local writes to a page that are uninterrupted by writes
received from other nodes is tracked with a counter.
If the count exceeds a threshold, trapping of individ-
ual writes ceases and the page is transitioned to write-
invalidate mode, in which we use the conventional Ivy-
like write-invalidate protocol described earlier. This can
reflect two types of access patterns — either one node is
accessing the page exclusively, or one node is making a
large number of updates to the page in a short time —
and in both cases invalidation is likely to perform bet-
ter. The decision is made individually by each node, so
even if one node chooses to acquire the page exclusively,
other infrequent writers continue to intercept writes to
the page and report them back to the exclusive owner
(providing there are no reads).

This scheme makes its decision purely on the basis
of tracking write accesses. Its drawback is that it will
not detect producer-consumer sharing with a single in-
termittent writer and multiple readers. This leads to
periodic invalidation of the readers’ copies and subse-
quent re-faulting, even though the write-update mode
may be better in this case. An improved algorithm might
be one similar to the efficient distributed write proto-
col (EDWP) [1], which tracks both read and write ac-
cesses, and prevents a transition to exclusive mode if
more than one processor is accessing the page. How-
ever, this is considerably more complex (since sampling
read accesses is required) and has not been implemented.

3.2.2 Write propagation

For pages in write-update mode, VNUMA broadcasts
writes to all nodes. While this may seem inefficient, it
has some advantages; it greatly reduces the complexity
of the system and naturally results in total store order
(TSO) consistency. Per-packet overheads are amortized
by batching many writes into a single message (see Sec-
tion 4.3). Certainly this design choice would limit scala-
bility, but vNUMA is designed for optimal performance
on a small cluster.

Each node generally applies any write updates that ap-
ply to pages that it has read copies of, and discards any
irrelevant updates. However, care must be taken when
applying write updates to a page that is being migrated.
A node P2 receiving a page from P1 queues the updates

write X =1 (X =2)

P1
S=257
S=258
P2

write X = 2 (drop: 257 < 258. X = 2)

Figure 3: Coherence problem with write notices, and
its resolution by deterministic merging according to se-
quence numbers.

it receives while the page is in flight. Then, it must apply
the subset of queued writes that have not already been
applied at P1. In other words, P2 must apply exactly
those updates which were received at P1 after P1 sent
the page to P2. An example is shown in Figure 2: write
w1 must be applied, while wy must be discarded.

Our algorithm for determining which writes to apply
assumes that the network provides causal order deliv-
ery, which is a property of typical Ethernet switches (c.f.
Section 4.5). We provide a brief description here, more
details are available elsewhere [6].

We maintain at each node a counter of writes, and
that counter value is included in a page-fetch reply mes-
sage. As per Figure 2, A denotes the event of P2 send-
ing a fetch message to P1, B the event of P1 receiving
that message and immediately replying to P2, and C the
event of P2 receiving the page. In the figure, the respec-
tive counter values are Ny = 0, Ng = 1, and N¢o = 2.
N denotes the number of writes from P1 queued at P2
at event C' (N7 = 1 in the figure). The algorithm then
becomes:

e discard the N; messages pending from P1;

e out of the remaining writes, apply the latest No —
Np (and thus discard the earliest Ng — N4 — N;
writes).

In the example, the first step will drop w4 and the second
step will apply w; .

3.2.3 Deterministic incremental merge

The write-update algorithm as presented so far is in-
sufficient to guarantee coherence in a strict sense. In
the example shown in Figure 3, where nodes P1 and
P2 simultaneously write to a location X, P1 could ob-
serve X = 1 followed by X = 2 while P2 observes
X = 2 followed by X = 1, in violation of coher-
ence. Two solutions to this problem exist in the litera-
ture [8]: a central sequencer or associating every write
with a globally-unique sequence number. The central
sequencer, while guaranteeing that all nodes converge
on the same value, does not prevent intermediate values
from being observed at a single node, in violation of the
architecture’s specification of memory coherence. It also
presents a bottleneck.

18

2009 USENIX Annual Technical Conference

USENIX Association

A globally-unique sequence number can be imple-
mented as a local sequence number — synchronised
on communication — with the node number as a tie-
breaker where no causality relationship exists [8, 21].
However, the conventional deterministic merging ap-
proach [8] would involve waiting to receive write mes-
sages from all nodes before deciding on a final value. As
vNUMA only sends write messages as needed, a partic-
ular node may be quiet for a considerable time, which
would necessitate regular empty write messages to en-
sure coherence.

Note, however, that coherence only requires total or-
dering on a per-location basis. Consider the case where
{wy,wa, .., w, } are a set of writes to the same location,
ordered by their global sequence number. From the point
of view of program semantics, it is not essential to guar-
antee that all of {wj..w,} are observed at any particu-
lar node, as long as the observed subset follows the cor-
rect ordering and culminates in the proper final value.
In other words, observing {ws, w1, wy,} is not allowed
since w; must precede ws, but observing {w1,wy,} or
even just {w, } is allowable. Omitted intermediate val-
ues could correspond to the case where a processor was
not fast enough to observe the intervening values.

We make use of this fact to implement a technique
we call incremental deterministic merging. Each incom-
ing write notice is applied immediately, but it is only
applied to a certain location if its sequence number is
greater than that of the last write to that location. Since
every node receives all write notices, the value of that
location always ultimately converges on the write with
the maximum sequence number (w,,), with any interme-
diate values respecting the required ordering. Figure 3
shows how this resolves the original problem.

3.3 Atomic operations

The protocol described so far is sufficient for correct-
ness, but highly inefficient for hosting an OS (such as
Linux) that uses atomic instructions (xchg, fetchadd
or cmpxchg) to implement kernel locks. Any of those
operations results in a fall-back to write-invalidate mode,
making kernel locks very expensive. We therefore intro-
duce an extension to the protocol, which we call write-
update-plus (WU+).

An important observation is that, in the Itanium archi-
tecture and other typical processor architectures, there
is no requirement for ordering between an atomic read-
and-write instruction and remote reads. A remote read
can safely return either the value before or after the
atomic operation. Thus, there is no need for invalidation
of read-only copies when an atomic operation is encoun-
tered; the write phase of the operation can be propagated
to readers via the write-update mechanism.

However, in order to guarantee atomicity of the read

(owner) fetch-and-add X =1 (X=1o0o X =05)
) —
P2

write X = 5 (X =1o0o X =05)

Figure 4: Simultaneous atomic operation and remote
write. P1 is the owner of X and therefore has permission
to execute atomic operations. According to the Itanium
architecture, the correct result is either 5 or 6, depending
on which operation appears first in the total order. Here,
even with deterministic merging, X = 1 may occur.

and write phases, only one processor at any time can be
allowed to perform an atomic operation to a particular
location. In the WU+ protocol, we enforce that only the
owner of a page can execute atomic operations on that
page. Any other node must first acquire ownership.

In addition, simultaneous atomic operations and re-
mote writes can lead to incorrect results, as shown in
Figure 4. The WU+ protocol therefore enforces a single
writer for pages targeted by atomic operations. Thus,
at any point, a page can be in one of three modes:
write-invalidate, write-update/multiple-writer, or write-
update/single-writer. The transition from multiple- to
single-writer mode occurs when atomic operations to a
page are intercepted; nodes are synchronously notified
that they can no longer generate write updates to the
page without acquiring ownership.

4 Implementation

The implementation of vNUMA is around 10,000 lines
of code. Of this around 4,000 lines constitute a
generic Itanium virtual machine monitor, the DSM sys-
tem is around 3,000 lines, and the remainder deals with
machine-specific initialisation and fault handling. In to-
tal the hypervisor code segment is about 450KiB (Ita-
nium is notorious for low code density).

Besides generic protocol optimisations, we used a
number of implementation techniques to optimise per-
formance, which we discuss in this section. Some of
these are processor-independent, others make use of par-
ticular Itanium features (but similar optimisations can be
made for other ISAs).

4.1 Avoiding thrashing

A naive DSM implementation suffers from a page
thrashing problem, indicated in Figure 5. If two nodes
simultaneously write to a page, the page may be trans-
ferred back and forth with no useful work done. A
frequently-used solution to this problem is to introduce
an artificial delay to break the livelock. However, this
is non-optimal by design, as there is no easy way to de-
termine an appropriate delay, and the approach increases

USENIX Association

2009 USENIX Annual Technical Conference

invalidate & send, fault receive & send, re-fault

P1

reply " NG fetch
-~ fetch reply

fetch -~ X fetch

reply

P2 —— , '
Sault receive & send, re-fault

Figure 5: Timeline demonstrating the page thrashing

problem. Solid lines indicate transfers of ownership.

latency. Instead, we use an approach that guarantees that
at least one instruction is executed before a page is trans-
ferred.

One way to implement this is by putting the machine
into single-step mode after receipt of a page, and not
processing any page requests until the trap that is caused
by the execution of the next instruction is processed (at
which time normal execution mode is resumed).

A cheaper alternative (implemented in VNUMA) is
to consult the performance-monitor register that counts
retired instructions to determine whether progress has
been made since the last page transfer. (Note that check-
ing the instruction pointer is not sufficient, as the code
might be executing a tight loop, which could mask
progress.) If lack of progress is detected, then one could
fall back to the single-step approach. Instead we op-
timistically continue and re-check after a short delay.
While this is similar to the timed-backoff scheme im-
plemented in other DSM systems, vNUMA can use a
very short delay to minimise latency, as the hypervisor
can prevent preemption and thus ensure the opportunity
for progress.

A complication of the chosen scheme is that one in-
struction may access several pages, up to four on the Ita-
nium (an instruction page, a data page and two register-
stack engine pages). This introduces the possibility of a
circular wait condition, and thus deadlock.

We prevent deadlock by applying the anti-livelock al-
gorithm only to pages accessed via explicit data refer-
ences, and not instruction or register stack pages. Since
the data reference is always logically the last reference
made by an instruction — occuring after the instruction
reference, and after any register stack accesses — in-
struction completion is guaranteed once the data page is
obtained, and there is no possibility of deadlock. Indeed
it is not necessary to apply the livelock prevention algo-
rithm for instruction and register stack references, since
instruction accesses are always reads, and the Itanium ar-
chitecture specifies that register-stack pages should not
be simultaneously accessed by multiple CPUs (or unde-
fined processor behaviour could result). Even if a ma-
licious application were to invoke this livelock case, it
would not prevent the operating system from taking con-
trol and the process could be killed. Thus, this strat-
egy prevents livelock in a well-behaved operating sys-

Pl P2

Write wq: (S=1) Write wy: (S=2)
XX XX XX XX R 44

\ Observed: Observed:

00 00 00 00 00 00 00 00

XX XX XX XX 00 00 00 YY
XX XX XX YY XX XX XX YY

Figure 6: Combining writes of different sizes. On P2,
write wy appears to modify 3 bytes.

tem while also preventing any possibility of deadlock.

On some other architectures such as x86, this ap-
proach might still result in deadlock, since a single in-
struction may access several data pages. One possibility
would be to release pages after a random period of time,
even if no progress is made. In the worst case, this re-
introduces the problems associated with backoff algo-
rithms, but should perform better in the common case,
while ensuring that a permanent deadlock does not oc-
cur.

4.2 Incremental merging

In Section 3.2.3 we somewhat vaguely referred to “loca-
tions” as the destinations of writes. Given that real ar-
chitectures support writes of different sizes, we need to
understand at which granularity conflict resolution must
be applied. Figure 6 demonstrates that it must be ap-
plied at the byte, not the word level: the 4-byte write wq
at P1 with sequence number S(wg) = 1 logically pre-
cedes the byte-sized write wy, at P2 with S(wp) = 2. If
the newer byte-sized write happens to be applied first at
some node, then when the older 4-byte write is received,
it must only appear to modify the top 3 bytes. This set of
observed values is consistent with the Itanium memory
consistency model [16].

This makes efficient implementation a challenge, as
keeping separate sequence numbers for each byte of
memory is clearly prohibitive. As the majority of up-
dates do not conflict, tracking overhead must be min-
imised.

Fortunately, sequence-number information only needs
to be kept for short periods. Once updates with a certain
minimum sequence number are received from all nodes,
all information related to lower sequence numbers can
be discarded.

This observation enables an implementation of se-
quence numbers that is simple and has low overheads.
We use a fixed-size buffer that stores information about
a certain number of preceding writes (Figure 7). Each
write is described by the address of the 64-bit machine
word that it targets and a mask of bytes within that word
(note that we assume that writes never cross a machine-

20

2009 USENIX Annual Technical Conference

USENIX Association

S(w) —= 0 1 2 3

4 5

address 0x1008 0x1008

0x1008 hashtable

mask it 11110000

00001111

link <invalid> 1

3 address

~ I

<— 0x1008

Figure 7: Data structure for coherence algorithm. The example shows an incoming write with sequence number 3,
address 0x1008 and mask 11111111 (entire 8 bytes); the unshaded fields show the “before” state (but note that entry
4 is originally linked to entry 1). The hash chain is traversed as far back as sequence number 4; since that logically
newer write wrote 00001111 (the lower four bytes), the mask is constrained to 11110000 (the top four bytes). The
appropriate slot for the new write is then updated and linked in place.

word boundary). Writes are directly inserted into the
buffer using the least significant bits of their sequence
number as an index; assuming that sequence numbers
are allocated in a unique and relatively dense fashion,
this mapping is quite efficient. For fast lookup, writes
are then indexed using a hash function of their target
address; writes with the same hash value are linked to-
gether in a chain. This chain is always kept in reverse
sequence number order.

The only operation on this data structure is adding a
new write. While traversing the linked list to insert a
write, all logically newer writes to the same address are
encountered, which are used to constrain the mask of
bytes to be written. Once a link field with an older se-
quence number is reached, traversal stops and the new
write is inserted into the chain. The constrained mask is
returned and used to determine the bytes in memory that
are actually modified.

Since a chain is never traversed past the sequence
number of a newly received write, the chains need never
be garbage-collected. It is sufficient to make the buffer
large enough so that it covers the window of sequence
numbers that can be received from other nodes at any
time. Since each node tracks the last sequence number
received from each other node, a violation of this rule
can be detected and a stall induced if necessary; how-
ever such stalls are clearly undesirable and can be elimi-
nated by ensuring that each node does periodically send
updates.

4.3 Write batching

Write update messages are small, and vNUMA batches
many of them into a single Ethernet message in order
to improve performance. Batching can make use of the
processor’s weak memory ordering model. The Itanium
architecture uses release consistency: normal load and
store instructions carry no ordering guarantees, but load
instructions can optionally be given acquire semantics
(guaranteeing that they become visible prior to subse-
quent accesses), while store instructions can optionally
have release semantics (guaranteeing that they become

visible after preceding accesses).

Acquire semantics require no special care, since the
processor guarantees this behaviour on local operations,
and because operations are never visible remotely before
they are visible locally.

Release semantics require special care, however. Con-
sider an access A that is followed by a write with release
semantics W,.;. A must become visible on all nodes be-
fore W,.¢;. The processor interprets the release annota-
tion and guarantees that A completes before W,..;. How-
ever, in the case that A is a write, local completion does
not imply remote visibility — writes may be queued by
vNUMA before being propagated to remote nodes. It
is up to vNUMA to guarantee that A is observed before
Wrel~

This is trivial if W,..; is to a write-update page: if A
is to an exclusive page, it becomes visible immediately
and thus necessarily before W.,..;; if not, then the DSM
system simply needs to ensure that the writes are sent
in order. The interesting case is where W,¢; is to an
exclusive page and A is a queued write to a write-update
page. In this case, the DSM system needs to ensure that
W1 is propagated before a read response to A.

The challenge is to detect when W, is to an
exclusively-held page, as this cannot be made to trap
without making all ordinary writes to the same page fault
as well. Fortunately, the Itanium performance monitor-
ing unit (PMU) provides a counter which can be con-
figured to count releases. When a read request arrives
for an exclusive page, the counter is checked to deter-
mine whether a release occurred on the last interval. If
s0, the write buffers are flushed before sending the read
response.

As an additional optimisation, the write queue is ea-
gerly flushed at the time that a write is intercepted, if
a release has been seen (either on that instruction or in
the previous interval) and if the network card transmit
queue is empty. This expedites transmission of writes,
since a release is usually used in the context of data that
is intended to be observed by another processor. If the
transmit queue is not empty, then the flush is scheduled

USENIX Association

2009 USENIX Annual Technical Conference

21

to occur after a delay; this rate-limits the update pack-
ets and allows additional writes to accrue while previous
update packets are being transmitted.

4.4 Memory fences

Itanium also provides a memory fence instruction, mf,
that has both acquire and release semantics: loads and
stores cannot pass it in either direction. The PMU counts
mf as a release (as well as an acquire), so the above de-
tection mechanism can be used to ensure that writes are
ordered correctly across a fence. The one case that is
problematic is the ordering between writes and subse-
quent reads. If a write is separated from a subsequent
read by a fence, as in Figure 8, then the strict semantics
of mf would require preventing the read from returning
a cached copy before the write is visible everywhere. In
practice this means that if both both X and Y are ini-
tially zero, at most one processor is allowed to read that
value.

P1 P2
Y=1 X=1
mf mf
read X read Y

Figure 8: The memory fences prevent that both proces-
sors’ reads return the initial values of the respective vari-
ables.

A strict implementation of the mf semantics would
have severe performance implications in VNUMA. In-
stead, we decided to compromise our goal of full trans-
parency, and require that mf operations are replaced by
atomic operations (equivalent to a lock-based implemen-
tation of mf). Despite the assortment of synchronisation
algorithms implemented in Linux, only one case was
encountered in testing which required a full fence —
the implementation of the wait_on_bit_lock func-
tion — and this was resolved via a simple modification.

4.5 Inter-node communication

VNUMA performance is highly sensitive to communi-
cation latency. This rules out hosting device drivers in-
side a guest OS as done in many modern virtual-machine
monitors. Instead, vNUMA contains, inside the hyper-
visor, latency-optimised drivers for a number of Gigabit
Ethernet chipsets.

We further minimise communication overhead by
defining a very simple protocol at the Ethernet layer. We
use the coalescing feature of Ethernet cards to separate
the headers and payload into different buffers to enable
zero-copy in the common case (in the special case where
a local write occurs while a page is being sent, a shadow
copy is created). Transfers of 4KiB pages either use a
single ‘jumbo’ frame or are broken into four fragments.

Fragmenting the packet is actually preferable to reduce
latency, since the fragments can be pipelined through the
network (this is also why four fragments are preferable
to three, although above this the overheads outweigh the
benefits).

vNUMA also makes extensive use of known prop-
erties of networking hardware, in order to avoid pro-
tocol overhead where possible. Specifically, VNUMA
relies on the network to be (mostly) reliable, to provide
causally-ordered delivery, and ideally to provide sender-
oblivious total-order broadcast. The last requirement
means that if P1 broadcasts m, and P2 broadcasts ms,
then either all other observers observe mj before ms,
or all other observers observe mo before m;. “Sender-
oblivious” means that P1 and P2 do not need to make
any conclusions about the total order; this is an optimi-
sation geared towards Ethernet, where a sender does not
receive its own broadcast.

Causally-ordered delivery is guaranteed by the design
of typical Ethernet switches. Reliability is not guaran-
teed, but packet loss is very rare. VNUMA is therefore
optimised for lossless transmission. Timeouts and se-
quence numbers, combined with a knowledge that the
number of messages in-flight is bounded, are used to
deal with occasional packet loss.

Total-order broadcast usually holds in small switches
but may be violated by a switch that contains several
switch chips connected by a trunk, as a broadcast will
be queued in a local port on one chip before forwarded
over the trunk. It may also be violated when packets are
lost. In this case, remote store atomicity may not hold in
vNUMA. This could potentially be resolved with a more
complex protocol for store atomicity, similar to our ap-
proach to coherence. We did not design such a protocol.
In practice, this limitation is of little significance; many
other processor architectures including x86 also do not
guarantee store atomicity.

46 1/0

vINUMA contains support for three classes of virtual de-
vices: network (Ethernet), disk (SCSI) and console.

The network is presented as a single virtual Ether-
net card. As processes arbitrarily and transparently mi-
grate between nodes, and TCP/IP connections are fixed
to a certain IP address, transparency requires a single IP
address for the cluster. Outgoing messages can be sent
from any node, VNUMA simply substitutes the Ether-
net address of the real local network card into outgoing
packets. Incoming packets are all received by a single
node. This has the advantage that the receiving part of
the driver and network stack always runs on a single
node, but the disadvantage that the actual consumer of
the data may well be running on a different node.

The ideal approach for dealing with disks would be

22

2009 USENIX Annual Technical Conference

USENIX Association

to connect them to a storage area network (SAN), so
that they can be accessed from any of the nodes. This is
done by Virtual Iron’s VFe hypervisor [34], but is in con-
flict with vNUMA'’s objective of employing commodity
hardware. Therefore, the VNUMA virtual machine pro-
vides a single virtual SCSI disk. The present implemen-
tation routes all disk I/O to the bootstrap node, which
contains the physical disk(s). It would be possible to
remove this bottleneck by striping or mirroring across
available disks on other nodes.

The console is only supported for debugging, as users
are expected to access the VNUMA system via the net-
work. All console output is currently sent to the local
console (which changes as processes migrate). Input can
be accepted at any node.

4.7 Other implementation issues

vNUMA virtualizes inter-processor interrupts (IPIs) and
global TLB-purge instructions in the obvious way, by
routing them to the appropriate nodes.

In order to boot up a VNUMA system, all of the nodes
in the cluster must be configured to boot the vVNUMA
hypervisor image in place of an operating system kernel.
Then, one of the nodes is selected by the administrator
to be the bootstrap node, by providing it with a guest
kernel image and boot parameters; the other nodes need
no special configuration.

Once the bootstrap node initialises, it uses a discov-
ery protocol to find the other nodes and their resources,
and provides them with information about the rest of the
cluster. It then starts executing the guest kernel. As
part of its normal boot process, the guest OS registers
an SMP startup address and wakes the other nodes by
sending IPIs. The other nodes start executing at the
given address in the globally-shared guest-physical ad-
dress space, thus faulting in the OS image on demand.

4.8 Limitations

Like the ubiquitous x86 architecture, Itanium was orig-
inally not trap-and-emulate virtualizable [24]. While
this has now been mostly remedied by the VT-i exten-
sions [17], a number of challenges [14] remain, partic-
ularly relating to the register stack engine and its inter-
action with the processor’s complex translation modes.
vNUMA utilizes some para-virtualization of the guest
OS, and thus presently only supports Linux guests.

5 Evaluation

We evaluated vNUMA using three types of applications,
which cover some of the most common use scenarios
for large computer systems: computationally-intensive
scientific workloads, software-build workloads, and
database server workloads.

5.1 Test environment

Our test cluster consisted of eight HP rx2600 servers
with 900MHz Itanium 2 processors, connected using a
Gigabit Ethernet via an HP ProCurve 2708 switch. Since
vNUMA does not yet support SMP within a node, only
one CPU was used in each server.

The guest OS was Linux 2.6.16, using default config-
uration settings where possible, including a 16KiB page
size. An exception are the Treadmarks measurements,
which were performed with a 4KiB page size to provide
a fair comparison of DSM performance (since VNUMA
subdivides pages to 4KiB granularity internally).

Pre-virtualization [22] was used to automatically
transform the Linux kernel for execution on vNUMA
(our Itanium machines are not VT-i enabled). Three mi-
nor changes were made manually. Firstly, the Linux
wait_on_bit_lock function was modified as de-
scribed in Section 4.4. Secondly, the clear_page
function was replaced with a hypervisor call to al-
low it to be implemented more optimally. Finally,
the kernel linker script was modified to place the
.data.read mostly section on a separate page to
ease read-sharing (the default setup co-allocates this sec-
tion with one which contains locks).

Results presented are a median of the results from at
least ten runs of a benchmark. The median was chosen
as it naturally avoids counting outliers.

5.2 HPC benchmarks

HPC is a main application of compute clusters, and
therefore a natural application domain for VNUMA.
While many HPC applications use an explicit message-
passing paradigm as supported by libraries such as MPI
[26], a significant number rely on hardware-supported
shared memory or DSM, and are therefore well-suited
to execution on VNUMA. We used TreadMarks [19] as
a DSM baseline. While TreadMarks may no longer rep-
resent the state of the art in DSM research, it is one of
the few DSM systems that has been widely used in the
scientific community.

TreadMarks is distributed with an assortment of
benchmark applications, mostly from the Stanford
SPLLASH-2 suite [36] and the NAS Parallel Bench-
marks from NASA [10]. To avoid biasing the eval-
uation against TreadMarks, we used the unmodified
TreadMarks-optimised sources, and for vNUMA pro-
vided a stub library that maps TreadMarks APIs to
fork () and shared memory. We also ran the bench-
marks on one of our SMP servers on native Linux to
show best-case scalability (although limited to the two
CPUs available).

Figure 9 shows an overview of results for each bench-
mark. While the ultimate limits of scalability are diffi-
cult to establish without a much larger cluster, VNUMA

USENIX Association

2009 USENIX Annual Technical Conference

23

Barnes CG FFT Gauss
8 T T 8 T 8 T T 8 T
VNUMA —— i VNUMA —— i VNUMA —— i VNUMA —— i
7 TreadMarks -~~~ 7 [TreadMarks -~~~ 7 [TreadMarks -~~~ 7 [TreadMarks -~
6L SMP ----] 6L SMP ----] 6 SMP ---- | 6L SMP ---- =
Sr B S5r ! 5r b Sr B
4 B 4 b 4 - A 4 B
3 g 3k R 3 R 3 R
2r b 2F b 2 b 2r b
1 1 1 1 1 1 1 1 1 1 1 1
1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
IS MG Raytrace SOR
8 8 8 8
\)NUMA - i V‘NUMA - i \)NUMA - i V‘NUMA — i
7 [TreadMarks ------ 7 [TreadMarks ------ 7 [TreadMarks ------ 7 [TreadMarks -----
6 S T B 6 S T B 6 S T B 6 [S T 4
5t R 5t R 5t R 5F R
4 4t R 4t 4 4r R
3r b 3r T 3 b 3r b
2 T bl 2 b 2 B 2 B
1 1 1 | e [1 1 1 1 1 1
1 2 4 8 1 2 4 8 1 2 4 8 12 4 8
TSP Water
8 T T 8 T T
VNUMA —— i vNU — i
7 IreadMarks ----- 7 I'TreadMarks -----
6 T b 6 S T 3
Sr S 5r b
4 b 4 A
3 B 3 B
2 R 2 R
1 1 1 1 1 1
1 2 4 8 1 2 4 8

Figure 9: HPC benchmark performance summary. Horizontal axes represent number of nodes, vertical axes represent

speed-up.

was designed for optimal performance on a small clus-
ter. As the graphs show, vNUMA scalability is at least
as good as TreadMarks on all benchmarks, and signifi-
cantly better on Barnes, Water, TSP and IS. In abso-
lute terms MG exhibits the poorest scalability, but it is a
benchmark that poses challenges for all DSM systems,
due to the highly irregular sizes of its three-dimensional
arrays.

5.3 Compile benchmark

Large servers and clusters are frequently used for soft-
ware builds. Figure 10 compares vNUMA'’s scalability
with distcc [29] when compiling VNUMA. As com-
pilation throughput tends to be significantly affected by
disk performance, we eliminated this factor by building
on a memory file system (RAM disk).

The figure shows that VNUMA scales almost exactly
as well as distcc. The line labelled “Optimal” is
an extrapolation of SMP results, based on an idealised
model where the parallelisable portion of the workload
(86 %) scales perfectly. On 4 nodes, the ideal speed-up
is 2.8, while both vNUMA and distcc achieve 2.3. On
8 nodes, the ideal speed-up is 4.0, while both YNUMA
and distcc achieve 3.1.

In the case of distcc, the overheads stem from the
centralised pre-processing of source files (which creates
a bottleneck on the first node), as well as the obvious
overheads of transferring source files and results over the

network. In the case of VNUMA, the largest overhead is
naturally the DSM system. Of the 15 % overhead ac-
countable to vNUMA in the four node case, DSM stalls
comprise 7 %, the cost of intercepting writes is around
3 %, network interrupt processing around 2 % and other
virtualization overheads also around 2 % (see also Sec-
tion 5.4).

The majority of the DSM stalls originate from the
guest kernel. This is because the compiler processes
do not themselves communicate through shared mem-
ory. Their code pages are easily replicated throughout
the cluster and their data pages become locally owned.
However, inputs and outputs are read from and written to
the file system, which shifts the burden of communica-
tion onto the kernel. In general, the compile benchmark
can be considered representative of an application that
consists of many processes which do not interact directly

4 F T
VNUMA ———

distcc -
31 Optimal ---------

Speed-up

1 L L ! ,
1 2 4 6 8

Number of nodes

Figure 10: Compile benchmark performance summary

24

2009 USENIX Annual Technical Conference

USENIX Association

Processor time breakdown (Compile)

100
90 |-- - = Other overhead
Network interrupts
DSMstalls =~ 7"

5 gl Zlmwain NN RN RN
é ,, 4
§ 40 g LA 4
T N 7777 T v /R .
] IR 777 RN e R 1
1L R RRRERRRRIEERL #7777/ EERRRNL #7977 SECEERE 77 R .
0 Write—inval Write—update WU+
Processor time 97.6s 89.2s 78.0s
Speed-up 1.84 2.02 2.34
DSM stall time 26.0s 19.2s 5.1s
(27%) (22%) (7%)
Stalls 420,000 285,000 164,000
Data fetches 276,000 187,000 28,000
Buffered writes 0 435,000 3,284,000
Write notices 0 47,000 496,000

Figure 11: Effect of protocol on compile benchmark

but interact through the filesystem.

Profiling the kernel overheads shows that the largest
communication costs arise from maintaining the page
cache (where cached file data is stored), and acquiring
related locks. Similarly the file system directory en-
try cache (which caches filenames), and related locks,
also feature as major contributors. Nonetheless, consid-
ering that the overall overhead is no greater than that of
distcc —asolution specifically crafted for distributed
compilation — this seems a small price to pay for the
benefits of a single system image.

5.4 Effect of DSM protocol optimisations

To quantify the benefits of the chosen DSM protocols,
we also executed the compile benchmark at three dif-
ferent levels of protocol optimisations: using the ba-
sic Ivy-like write-invalidate protocol, using our write-
update protocol, and using our write-update-plus (WU+)
protocol which intercepts atomic operations as well as
ordinary writes. The results are summarised in Fig-
ure 11.

Performance is improved significantly by the more
advanced protocols, with speed-up on four nodes in-
creasing from 1.84 to 2.02 to 2.34. This is due to
a sharp reduction in the number and latency of stalls.
With the write-invalidate protocol, 420,000 synchronous
stalls are incurred, totalling 26.0 seconds (an average
of 62 ps/stall, which is dominated by the high latency
of fetching page data that is required in 66% of cases).
The write-update protocol reduces the number of syn-
chronous stalls to 285,000, with a proportional decrease
in stall time to 19.2s. However, the write-update-plus
protocol has the most dramatic impact, reducing stall
time to only 5.1s. While the total number of stalls is still

164,000, the majority of these are now ownership trans-
fers, which involve minimum-length packets and there-
fore have low latency (17 ps in the common case). The
number of stalls that must fetch data has decreased to
only 28,000, which shows the effectiveness of this pro-
tocol in enhancing read-caching.

The price of this improved read-caching is that many
more writes must be intercepted and propagated, which
is reflected in higher overheads both for intercepting the
writes (reflected in hypervisor overhead) and at the re-
ceivers of the write notices (reflected in interrupt over-
head). Nonetheless there is still a significant net perfor-
mance improvement.

5.5 Database benchmark

Databases present a third domain where high-end
servers and clusters are used. We benchmarked Post-
greSQL [30], one of the two most popular open source
database servers used on Linux. The open-source na-
ture was important to be able to understand performance
problems. For the same reason — ease of understanding
— simple synthetic benchmarks were employed instead
of a complex hybrid workload such as TPC-C. Two ta-
bles were initialised with 10,000 rows each: one describ-
ing hypothetical users of a system, and the other repre-
senting posts made by those users on a bulletin board. A
pool of client threads then performed continuous queries
on these tables. The total number of queries completed
in 30 seconds (after 5 seconds of warm-up) is recorded.
This is similar in principle to benchmarks like TPC-C,
but utilizes a smaller number of tables and a simpler mix
of transactions.

Four different types of queries were used: SELECT,
which retrieves a row from the users table by matching
on the primary key; SEARCH, which retrieves a row
from the users table by searching a column that is not in-
dexed; AGGREGATE, which sums all entries in a cer-
tain column of the users table, and COMPLEX, which
returns information about the five most prolific posters
(this involves aggregating data in the posts table, and
then performing a ‘join’ with the user table).

The results are summarised in Figure 12. vNUMA
performs well for COMPLEX, which involves a base
throughput of tens of queries a second. However, per-
formance is degraded for the higher-throughput work-
loads, SEARCH and AGGREGATE, and most signif-
icantly so for SELECT, which involves little computa-
tion per query and can thus usually achieve thousands of
queries a second on a single node. SEARCH and AG-
GREGATE barely manage to regain single-node perfor-
mance on 8 nodes, while SELECT does not scale at all.

The cause of this throughput-limiting behaviour is
simple: using multiple distributed nodes suddenly in-
troduces the potential for much larger communication

USENIX Association

2009 USENIX Annual Technical Conference

25

SELECT SEARCH COMPLEX AGGREGATE
T T 300 T T - - 300
2 6000 | NSMAP 1 NUSMAP o | NUSI\I>14AP —
S vNUMA --—-----—-- [vNUMA --—-----—-- "_,«/“ [vNUMA --—-----— i
1:’ 4000 b | 20 20 | 0
k] S A (St R |
E 2000 [1 100 | 10 / sMp 1 100F ~
& | e VNUMA -------
0 L L 0 L L 0 L L 0 L L
12 4 8 12 4 12 4 8 12 4 8

Figure 12: Database benchmark performance summary. Horizontal axes represent number of nodes.

and synchronisation latencies. If one considers that each
query involves at least a certain number of these high-
latency events, then the maximum query throughput per
node is inversely proportional to the number and cost of
those events.

A breakdown of processor time usage for SELECT
shows that only 14 % of available processor time is used
for user-level computation, which explains why the four
nodes cannot match the performance of a single node.
Another 12 % is spent idle, which occurs when the Post-
greSQL server processes are waiting to acquire locks.
DSM stalls account for 57 % of processor time, with
three-quarters of that being in userspace and specifically
in the PostgreSQL server processes, and the other quar-
ter in the Linux kernel. There is 9 % overhead for log-
ging writes for the write-update protocol, and 2 % vir-
tualization overhead (while SELECT normally experi-
ences high virtualization overheads, the fact that it is
only running 14 % of the time makes the virtualization
overhead insignificant).

Further analysis, using performance counters, con-
firms that the major overheads are related to locking
within PostgreSQL. The system uses multiple layers of
locks: spinlocks, “lightweight” locks built on spinlocks,
and heavyweight locks built on lightweight locks. Im-
portantly, each heavyweight lock does not use its own
lightweight lock, but there are a small number of con-
tiguous lightweight locks which are used for protecting
data about all of the heavyweight locks in the system.
Thus, contention for this small number of lightweight
locks can hamper the scalability of all heavyweight
locks. In addition to this bottleneck, the multi-layer
design substantially increases the potential overheads
when lock contention occurs.

While this result is disappointing for vNUMA, it is
not reasonable to extrapolate from PostgreSQL and as-
sume that all database software will experience such se-
vere locking problems. Since VNUMA can provide high
levels of read replication and caching — and potentially
a large amount of distributed RAM that may be faster
than disk — designs that allow lock-free read accesses
to data, such as via read-copy-update techniques [12,25],
could theoretically provide very good performance. In
this case, kernel performance would again become the
ultimate challenge.

6 Related Work

Ivy [23] is the ancestor of most modern DSM systems.
Ivy introduced the basic write-invalidate DSM protocol
that forms an integral part of VNUMA'’s protocol. Mi-
rage [11] moved the DSM system into the OS kernel,
thus improving transparency. It also attempted to ad-
dress the page thrashing problem, which was mentioned
earlier in Section 4.1. Ivy and Mirage were followed by
a large number of similar systems [28].

Munin [5] was the first system to leverage release con-
sistency to allow multiple simultaneous writers. Aside
from release consistency, other systems have also im-
plemented entry consistency (Midway [4]), scope con-
sistency (JIAJIA [9], Brazos [33]) and view-based con-
sistency (VODCA [15]), which further relax the consis-
tency model by associating specific objects with critical
sections. However, all of these systems rely on the pro-
grammer to adhere to a particular memory synchronisa-
tion model, and thus they are not suitable for transparent
execution of unmodified applications.

Recently there has also been much interest in virtual-
ization, with systems such as Xen, VMware ESX Server
and Microsoft Virtual Server making inroads in the en-
terprise. The majority of hypervisors are designed for
the purposes of server consolidation, allowing multi-
ple OS instances to be co-located on a single physical
computer. VNUMA is, in a sense, the opposite, allow-
ing multiple physical computers to host a single OS in-
stance.

Since our initial work [7], three other systems have
emerged which apply similar ideas to VNUMA: Virtual
Iron’s VFe hypervisor [34], ScaleMP’s vSMP [32] and
the University of Tokyo’s Virtual Multiprocessor [18].
While these systems all combine virtualization with dis-
tributed shared memory, they are limited in scope and
performance, and do not address many of the challenges
that this work addresses. In particular, both VFe and
the Tokyo system use simpler virtualization schemes and
distributed shared memory protocols, resulting in severe
performance limitations, especially in the case of Virtual
Multiprocessor. Virtual Iron attempted to address some
of these performance issues by using high-end hardware,
such as InfiniBand rather than Gigabit Ethernet. How-
ever, this greatly increases the cost of such a system,
and limits the target market. Virtual Iron has since aban-

26

2009 USENIX Annual Technical Conference

USENIX Association

doned the product for commercial reasons, which largely
seems to stem from its dependence on such high-end
hardware. vNUMA, in contrast, demonstrates how novel
techniques can achieve good performance on commod-
ity hardware.

Little is known about vSMP, other than that it runs
on x86-64 hardware and also relies on InfiniBand. The
company claims scalability to 128 nodes, but only pub-
lishes benchmarks showing the performance of (single-
threaded) SPEC benchmarks. No real comparison with
vNUMA is possible with the information available.

7 Conclusions and Future Work

We have presented VNUMA, a system that uses virtual-
ization to present a small cluster as a shared-memory
multiprocessor, able to support legacy SMP/NUMA
operating-system and multiprocessor applications. This
approach provides a higher level of transparency than
classical software DSM systems. Implementation in the
hypervisor also has the advantage that many operations
can be implemented more efficiently, and can make use
of all the features of the underlying processor architec-
ture. However, a faithful mirroring of the underlying
ISA is required.

The different trade-offs resulted in protocols and im-
plementation choices that are quite different from most
existing DSM systems. Specifically, we developed
a protocol utilizing broadcast of write-updates, which
adaptively transitions between write-update/multiple-
writer, write-update/single-writer and write-invalidate
modes of operation. We also designed a deterministic
incremental merge scheme that can provide true write
coherence.

The evaluation showed that VNUMA scales signifi-
cantly better than TreadMarks on HPC workloads, and
equal to distcc on compiles. Database benchmarks
showed the limitations of vYNUMA for workloads which
make extensive use of locks.

At the time this project was commenced (2002), Ita-
nium was envisaged as the commodity system of the
future, a 64-bit replacement of x86. This clearly has
not happened, and as such, hardware supporting the
present VNUMA implementation is not exactly consid-
ered “commodity”, widespread deployment of Itanium
systems in HPC environments notwithstanding. We are
therefore investigating a port of VNUMA to AMD64
platforms. Some optimisations, such as those described
in Section 4.3, will not apply there, but there is scope for
other architecture-specific optimisations.

References

[1] James K. Archibald. A cache coherence approach
for large multiprocessor systems. In 2nd Int. Conf.
Supercomp., pages 337-345, 1988.

[2] Amnon Barak, Oren La’adan, and Amnon Shiloh.
Scalable cluster computing with MOSIX for
Linux. In Proceedings of Linux Expo ’99, pages
95-100, 1999.

[3] John K. Bennett, John B. Carter, and Willy
Zwaenepoel. Munin: Distributed shared mem-
ory based on type-specific memory coherence. In
PPOPP, pages 168—176. ACM, 1990.

[4] Brian N. Bershad and Matthew J. Zekauskas. Mid-
way: Shared memory parallel programming with
entry consistency for distributed memory multi-
processors. Technical Report CMU-CS-91-170,
Carnegie Mellon University, 1991.

[5] John B. Carter. Design of the Munin distributed
shared memory system. J. Parall. & Distr. Com-
put., 29:219-227, 1995.

[6] Matthew Chapman. vNUMA: Virtual Shared-
Memory Multiprocessors. PhD thesis, School
Comp. Sci. & Engin., University NSW, Sydney
2052, Australia, Mar 2009.

[7] Matthew Chapman and Gernot Heiser. Implement-
ing transparent shared memory on clusters using
virtual machines. In 2005 USENIX, pages 383—
386, Anaheim, CA, USA, Apr 2005.

[8] Xavier Defago, Andre Schiper, and Peter Urban.
Total order broadcast and multicast algorithms:
Taxonomy and survey. Comput. Surveys, 36:372—
421, 2004.

[91 M. Rasit Eskicioglu, T. Anthony Marsland, Weiwu
Hu, and Weisong Shi. Evaluation of JIAJIA soft-
ware DSM system on high performance computer
architectures. In 32nd HICSS, 1999.

[10] D. Bailey et al. The NAS parallel benchmarks.
Technical Report RNR-94-007, NASA Ames Re-
search Center, Mar 1994.

[11] Brett D. Fleisch and Gerald J. Popek. Mirage:
A coherent distributed shared memory design. In
12th SOSP, pages 211-223, 1989.

[12] Ben Gamsa, Orran Krieger, Jonathan Appavoo,
and Michael Stumm. Tornado: Maximising local-
ity and concurrency in a shared memory multipro-
cessor operating system. In 3rd OSDI, pages 87—
100, New Orleans, LA, USA, Feb 1999.

[13] Ganesh Gopalakrishnan, Dilip Khandekar, Ravi
Kuramkote, and Ratan Nalumasu. Case studies
in symbolic model checking. Technical Report
UUCS-94-009, Dept of Computer Science, Uni-
versity of Utah, 1994,

[14] Charles Gray, Matthew Chapman, Peter Chubb,
David Mosberger-Tang, and Gernot Heiser. Ita-
nium — a system implementor’s tale. In 2005

USENIX Association

2009 USENIX Annual Technical Conference

27

[15]

[16]

[17]

[18]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

USENIX, pages 264-278, Anaheim, CA, USA,
Apr 2005.

Zhiyi Huang, Wenguang Chen, Martin Purvis, and
Weimin Zheng. VODCA: View-oriented, dis-
tributed, cluster-based approach to parallel com-
puting. In 6¢th CCGrid, 2001.

Intel Corp. A Formal Specification of Intel Ita-
nium Processor Family Memory Ordering, Oct

2002. http://www.intel.com/design/
itanium2/documentation.htm.

Intel Corp. Itanium Architecture Soft-
ware Developer’s — Manual, Jan 2006.

http://www.intel.com/design/
itanium2/documentation.htm.

Kenji Kaneda. Virtual machine monitor for provid-
ing a single system image. http://web.yl.
is.s.u-tokyo.ac.jp/~kaneda/dvm/.

Pete Keleher, Alan L. Cox, Sandhya Dwarkadas,
and Willy Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and op-
erating systems. In /1994 Winter USENIX, pages
115-131, 1994.

R.E. Kessler and Miron Livny. An analysis of dis-
tributed shared memory algorithms. In 9th ICDCS,
pages 498-505, 1989.

Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. CACM, 21:558-565,
1978.

Joshua LeVasseur, Volkmar Uhlig, Yaowei Yang,
Matthew Chapman, Peter Chubb, Ben Leslie, and
Gernot Heiser. Pre-virtualization: soft layering for
virtual machines. In Y-C Chung and J Morris,
editors, 13th IEEE Asia-Pacific Comp. Syst. Arch.
Conf, pages 1-9, Hsinchu, Taiwan, Aug 2008.
IEEE Computer Society Press.

Kai Li and Paul Hudak. Memory coherence in
shared virtual memory systems. Trans. Comp.
Syst., 7:321-59, 1989.

Daniel J. Magenheimer and Thomas W. Christian.
vBlades: Optimised paravirtualisation for the Ita-
nium processor family. In 3rd USENIX-VM, pages
73-82, 2004.

Paul E. McKenney and John D. Slingwine. Read-
copy update: Using execution history to solve con-
currency problems. In 10th [ASTED Int. Conf. Par-
all. & Distr. Comput. & Syst., Las Vegas, NV, USA,
Oct 1998.

Message Passing Interface Forum. MPI: A
message-passing interface standard, Nov 2003.

(27]

(28]

[29]

(30]

(31]

[32]

[33]

(36]

(37]

Christine Morin, Renaud Lottiaux, Geoffroy
Vallée, Pascal Gallard, David Margery, Jean-Yves
Berthou, and Isaac D. Scherson. Kerrighed and
data parallelism: cluster computing on single sys-
tem image operating systems. In 6th Int. Conf.
Cluster Comput., pages 277-286, 2004.

Bill Nitzberg and Virginia Lo. Distributed shared
memory: A survey of issues and algorithms. IEEE
Comp., 24(8):52-60, Aug 1991.

Martin Pool. distcc, a fast free distributed com-
piler. In 5th Linux.Conf.Au, Jan 2004. http:
//distcc.samba.org/.

PostgreSQL Global Development Group. Post-
greSQL database software. http://www.
postgresql.org/.

Larry Rudolph and Zary Segall. Dynamic decen-
tralized cache schemes for MIMD parallel proces-
sors. In 11th ISCA, pages 340-347, 1984.

The Versatile SMP (vSMP) architecture and solu-
tions based on vSMP Foundation. ScaleMP White
Paper.

Evan Speight and John K. Bennett. Brazos: A third
generation DSM system. In /st USENIX Windows
NT WS, pages 95-106, 1997.

Alex Vasilevsky. Linux virtualization on Virtual
Iron VFe. In 2005 Ottawa Linux Symp., Jul 2005.

Bruce J. Walker. Open single system image
(openSSI) Linux cluster project. http://www.
openssi.org/ssi-intro.pdf, accessed on
30th September 2008.

Steven Cameron Woo, Moriyoshi Ohara, Evan
Torrie, Jaswinder Pal Singh, and Anoop Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In 22nd ISCA,
pages 24-36, 1995.

Matthew J. Zekauskas, Wayne A. Sawdon, and
Brian N. Bershad. Software write detection for a
distributed shared memory. In /st OSDI, pages 87—
100, 1994.

28

2009 USENIX Annual Technical Conference

USENIX Association

ShadowNet: A Platform for Rapid and Safe Network Evolution

Xu Chen
University of Michigan

Abstract

The ability to rapidly deploy new network services,
service features and operational tools, without impact-
ing existing services, is a significant challenge for all
service providers. In this paper we address this prob-
lem by the introduction of a platform called ShadowNet.
ShadowNet exploits the strong separation provided by
modern computing and network equipment between log-
ical functionality and physical infrastructure. It allows
logical topologies of computing servers, network equip-
ment and links to be dynamically created, and then in-
stantiated to and managed on the physical infrastruc-
ture. ShadowNet is a sharable, programmable and com-
posable infrastructure, consisting of carrier-grade equip-
ment. Furthermore, it is a fully operational network
that is connected to, but functionally separate from the
provider production network. By exploiting the strong
separation support, ShadowNet allows multiple technol-
ogy and service trials to be executed in parallel in a real-
istic operational setting, without impacting the produc-
tion network. In this paper, we describe the ShadowNet
architecture and the control framework designed for its
operation and illustrate the utility of the platform. We
present our prototype implementation and demonstrate
the effectiveness of the platform through extensive eval-
uation.

1 Introduction

Effecting network change is fundamentally difficult.
This is primarily due to the fact that modern networks
are inherently shared and multi-service in nature, and
any change to the network has the potential to negatively
impact existing users and services. Historically, pro-
duction quality network equipment has also been propri-
etary and closed in nature, thus further raising the bar to
the introduction of any new network functionality. The
negative impact of this state of affairs has been widely
recognized as impeding innovation and evolution [23].
Indeed at a macro-level, the status quo has led to calls
for a clean slate redesign of the Internet which in turn has
produced efforts such as GENI [3] and FEDERICA [2].

In the work presented in this paper we recognize that
at a more modest micro-level, the same fundamental
problem, i.e., the fact that network change is inher-
ently difficult, is a major operational concern for service
providers. Specifically, the introduction of new services

Z. Morley Mao

Jacobus Van der Merwe
AT&T Labs - Research

or service features typically involves long deployment
cycles: configuration changes to network equipment are
meticulously lab-tested before staged deployments are
performed in an attempt to reduce the potential of any
negative impact on existing services. The same applies
to any new tools to be deployed in support of network
management and operations. This is especially true as
network management tools are evolving to be more so-
phisticated and capable of controlling network functions
in an automated closed-loop fashion [25, 9, 7]. The op-
eration of such tools depends on the actual state of the
network, presenting further difficulties for testing in a
lab environment due to the challenge of artificially recre-
ating realistic network conditions in a lab setting.

In this paper we address these concerns through a plat-
form called ShadowNet. ShadowNet is designed to be an
operational trial/test network consisting of ShadowNet
nodes distributed throughout the backbone of a tier-1
provider in the continental US. Each ShadowNet node
is composed of a collection of carrier-grade equipment,
namely routers, switches and servers. Each node is con-
nected to the Internet as well as to other ShadowNet
nodes via a (virtual) backbone.

ShadowNet provides a sharable, programmable and
composable infrastructure to enable the rapid trial or de-
ployment of new network services or service features,
or evaluation of new network management tools in a re-
alistic operational network environment. Specifically,
via the Internet connectivity of each ShadowNet node,
traffic from arbitrary end-points can reach ShadowNet.
ShadowNet connects to and interacts with the provider
backbone much like a customer network would. As such
the “regular” provider backbone, just like it would pro-
tect itself from any other customers, is isolated from the
testing and experimentation that take place within Shad-
owNet. In the first instance, ShadowNet provides the
means for testing services and procedures for subsequent
deployment in a (separate) production network. How-
ever, in time we anticipate ShadowNet-like functionality
to be provided by the production network itself to di-
rectly enable rapid but safe service deployment.

ShadowNet has much in common with other test net-
works [10, 27, 22]: (i) ShadowNet utilizes virtualization
and/or partitioning capabilities of equipment to enable
sharing of the platform between different concurrently
running trials/experiments; (ii) equipment in ShadowNet

USENIX Association

2009 USENIX Annual Technical Conference

29

nodes are programmable to enable experimentation and
the introduction of new functionality; (iii) ShadowNet
allows the dynamic composition of test/trial topologies.

What makes ShadowNet unique, however, is that this
functionality is provided in an operational network on
carrier-grade equipment. This is critically important
for our objective to provide a rapid service deploy-
ment/evaluation platform, as technology or service tri-
als performed in ShadowNet should mimic technology
used in the provider network as closely as possible.
This is made possible by recent vendor capabilities that
allow the partitioning of physical routers into subsets
of resources that essentially provide logically separate
(smaller) versions of the physical router [16].

In this paper, we describe the ShadowNet architec-
ture and specifically the ShadowNet control framework.
A distinctive aspect of the control framework is that it
provides a clean separation between the physical-level
equipment in the testbed and the user-level slice speci-
fications that can be constructed “within” this physical
platform. A slice, which encapsulates a service trial, is
essentially a container of the service design including
device connectivity and placement specification. Once
instantiated, a slice also contains the allocated physical
resources to the service trial. Despite this clean separa-
tion, the partitioning capabilities of the underlying hard-
ware allows virtualized equipment to be largely indistin-
guishable from their physical counterparts, except that
they contain fewer resources. The ShadowNet control
framework provides a set of interfaces allowing users to
programmatically interact with the platform to manage
and manipulate their slices.

‘We make the following contributions in this work:

e Present a sharable, programmable, and composable
network architecture which employs strong separa-
tion between user-level topologies/slices and their
physical realization (§2).

e Present a network control framework that allows
users to manipulate their slices and/or the physical
resource contained therein with a simple interface
(83).

e Describe physical-level realizations of user-level
slice specifications using carrier-grade equipment
and network services/capabilities (§4).

e Present a prototype implementation (§5) and evalu-
ation of our architecture (§6).

2 ShadowNet overview

In this paper, we present ShadowNet which serves as a
platform for rapid and safe network change. The pri-
mary goal of ShadowNet is to allow the rapid composi-
tion of distributed computing and networking resources,
contained in a slice, realized in carrier-grade facilities
which can be utilized to introduce and/or test new ser-

vices or network management tools. The ShadowNet
control framework allows the network-wide resources
that make up each slice to be managed either collectively
or individually.

In the first instance, ShadowNet will limit new ser-
vices to the set of resources allocated for that purpose,
i.e., contained in a slice. This would be a sufficient so-
lution for testing and trying out new services in a real-
istic environment before introducing such services into
a production network. Indeed our current deployment
plans espouse this approach with ShadowNet as a sep-
arate overlay facility [24] connected to a tier-1 produc-
tion network. Longer term, however, we expect the base
functionality provided by ShadowNet to evolve into the
production network and to allow resources and function-
ality from different slices to be gracefully merged under
the control of the ShadowNet control framework.

In the remainder of this section we first elaborate on
the challenges network service providers face in effect-
ing network changes. We describe the ShadowNet archi-
tecture and show how it can be used to realize a sophis-
ticated service. Several experimental network platforms
are compared against it, and we show that ShadowNet
is unique in terms of its ability to provide realistic net-
work testing. Finally we describe the architecture of the
primary system component, namely the ShadowNet con-
troller.

2.1 Dealing with network change

There are primarily three drivers for changes in modern
service provider networks:

Growth demands: Fueled by an increase in broadband
subscribers and media rich content, traffic volumes on
the Internet continue to show double digit growth rates
year after year. The implication of this is that service
providers are required to increase link and/or equipment
capacities on a regular basis, even if the network func-
tionality essentially stays the same.

New services and technologies: Satisfying customer
needs through new service offerings is essential to the
survival of any network provider. “Service” here spans
the range from application-level services like VoIP and
IPTV, connectivity services like VPNs and IPv4/IPv6
transport, traffic management services like DDoS miti-
gation or content distribution networks (CDNs), or more
mundane (but equally important and complicated) ser-
vice features like the ability to signal routing preferences
to the provider or load balancing features.

New operational tools and procedures: Increasing use
of IP networks for business critical applications is lead-
ing to growing demands on operational procedures. For
example, end-user applications are often very intolerant
of even the smallest network disruption, leading to the

30

2009 USENIX Annual Technical Conference

USENIX Association

deployment of methods to decrease routing convergence
in the event of network failures. Similarly, availabil-
ity expectations, in turn driven by higher level business
needs, make regularly planned maintenance events prob-
lematic, leading to the development of sophisticated op-
erational methods to limit their impact.

As we have alluded to already, the main concern of
any network change is that it might have an impact on
existing network services, because networks are inher-
ently shared with known and potentially unknown de-
pendencies between components. An example would be
the multi-protocol extensions to BGP to enable MPLS-
VPNs or indeed any new protocol family. The change
associated with rolling out a new extended BGP stack
clearly has the potential to impact existing [Pv4 BGP
interactions, as bugs in new BGP software could nega-
tively impact the BGP stack as a whole.

Note also that network services and service fea-
tures are normally “cumulative” in the sense that once
deployed and used, network services are very rarely
“switched off”. This means that over time the dependen-
cies and the potential for negative impact only increases
rather than diminishes.

A related complication associated with any network
change, especially for new services and service features,
is the requirement for corresponding changes to a vari-
ety of operational support systems including: (i) con-
figuration management systems (new services need to
be configured typically across many network elements),
(i1) network management systems (network elements
and protocols need to be monitored and maintained),
(ii1) service monitoring systems (for example to ensure
that network-wide service level agreements, e.g., loss,
delay or video quality, are met), (iv) provisioning sys-
tems (e.g., to ensure the timely build-out of popular ser-
vices). ShadowNet does not address these concerns per
se. However, as described above, new operational solu-
tions are increasingly more sophisticated and automated,
and ShadowNet provides the means for safely testing out
such functionality in a realistic environment.

Our ultimate goal with the ShadowNet work is to de-
velop mechanisms and network management primitives
that would allow new services and operational tools to be
safely deployed directly in production networks. How-
ever, as we describe next, in the work presented here we
take the more modest first step of allowing such actions
to be performed in an operational network that is sepa-
rate from the production network, which is an important
transitional step.

2.2 ShadowNet architecture

Different viewpoints of the ShadowNet network archi-
tecture are shown in Figures 1(a) and (b). Figure 1(a)
shows the topology from the viewpoint of the tier-1

ShadowNet
Node

ShadowNet
Node

Tier-1 ISP

ShadowNet
Node ShadowNet
Node

— Internet connectivity
ShadowNet
Backbone

Connectivity

(b) ShadowNet View

Figure 1: ShadowNet network viewpoints

User API

ShadowNet Nodes

ShadowNet
Controller

Programatic
Access

M
Persistent storage !
1

ShadowNet Internet

Backbone

Figure 2: ShadowNet functional architecture

provider. ShadowNet nodes connect to the provider net-
work, but are essentially separate from it. Each Shad-
owNet node has connectivity to other ShadowNet nodes
as well as connectivity to the Internet. As shown in Fig-
ure 1(b), connectivity to other ShadowNet nodes effec-
tively creates an overlay network [24] to form a virtual
backbone among the nodes. Via the provided Internet
connectivity, the ShadowNet address space is advertised
(e.g., using BGP) first to the provider network and then
to the rest of the Internet. Thus ShadowNet effectively
becomes a small provider network itself, i.e., a shadow
of the provider network.

The ShadowNet functional architecture is shown in
Figure 2. Each ShadowNet node contains different types
of computing and networking devices, such as servers,
routers, and switches. Combined with the network con-
nectivity received from the ISP, they complete the phys-
ical resource for ShadowNet. ShadowNet manages the
physical resources and enables its users to share them.
The devices provide virtualization/partitioning capabili-
ties so that multiple logical devices can share the same
underlying physical resource. For example, modern
routers allow router resources to be partitioned so that
several logical routers can be configured to run simulta-
neously and separately on a single physical router [16].

USENIX Association

2009 USENIX Annual Technical Conference

31

(Note that modern routers are also programmable in both
control and data planes [18].) Logical interfaces can
be multiplexed from one physical interface via config-
uration and then assigned to different logical routers.
We also take advantage of virtual machine technology
to manage server resources [5]. This technology en-
ables multiple operating systems to run simultaneously
on the same physical machine and is already heavily
used in cloud computing and data-center environments.
To facilitate sharing connectivity, the physical devices in
each ShadowNet node are connected via a configurable
switching layer, which shares the local connectivity, for
example using VLANs. The carrier-supporting-carrier
capabilities enabled by MPLS virtual private networks
(VPNs) [11, 15] offer strong isolation and are therefore
an ideal choice to create the ShadowNet backbone.

As depicted in Figure 2, central to ShadowNet func-
tionality is the ShadowNet Controller. The controller
facilitates the specification and instantiation of a ser-
vice trial in the form of a slice owned by a user. It
provides a programmatic application programming in-
terface (API) to ShadowNet users, allowing them to cre-
ate the topological setup of the intended service trial or
deployment. Alternatively users can access ShadowNet
through a Web-based portal, which in turn will interact
with the ShadowNet Controller via the user-level API.
The ShadowNet Controller keeps track of the physical
devices that make up each ShadowNet node by con-
stantly monitoring them, and further manages and ma-
nipulates those physical devices to realize the user-level
APIs, while maintaining a clean separation between the
abstracted slice specifications and the way they are re-
alized on the physical equipment. The user-level APIs
also enable users to dynamically interact with and man-
age the physical instantiation of their slices. Specifically,
users can directly access and configure each instantiated
logical device.

ShadowNet allows a user to deactivate individual de-
vices in a slice or the slice as a whole, by releasing the
allocated physical resources. ShadowNet decouples the
persistent state from the instantiated physical devices, so
that the state change associated with a device in the spec-
ification is maintained even if the physical instantiation
is released. Subsequently, that device in the specification
can be re-instantiated (assuming that sufficient resources
are available), the saved state restored and thus the user
perceived slice remains intact. For example, the config-
uration change made by the user to a logical router can
be maintained and applied to a new instantiated logical
router, even if the physical placement of that logical de-
vice is different.

G- T mﬂ
Route
t IEE-
C
\
b —>
End-user f x
requests End-user End-user

requests
requests

Figure 3: Usage scenario: load-aware anycast CDN.

2.3 Using ShadowNet

In this section we briefly describe an example usage sce-
nario that illustrates the type of sophisticated network
services that can be tested using the ShadowNet infras-
tructure. We discuss the requirements for testing these
services and explain why existing platforms fall short in
these scenarios.

Assume that ShadowNet is to be used to run a cus-
tomer trial of a load-aware anycast content distribution
network (CDN) [9]. Figure 3 depicts how all the com-
ponents of such a CDN can be realized on the Shad-
owNet platform. Specifically, a network, complete with
provider edge (PE) and core (C) routers, can be dynami-
cally instantiated to represent a small backbone network.
Further, servers in a subset of the ShadowNet nodes can
be allocated and configured to serve as content caches.
A load-aware anycast CDN utilizes route control to in-
form BGP selection based on the cache load, i.e., using
BGP, traffic can be steered away from overloaded cache
servers. In ShadowNet, this BGP speaking route control
entity can be instantiated on either a server or a router de-
pending on the implementation. Appropriate configura-
tion/implementation of BGP, flow-sampling, and server
load monitoring complete the infrastructure picture. Fi-
nally, actual end-user requests can be directed to this in-
frastructure, e.g., by resolving a content URL to the any-
cast address(es) associated with and advertised by the
CDN contained in the ShadowNet infrastructure.

Using this example we can identify several capabili-
ties required of the ShadowNet infrastructure to enable
such realistic service evaluation (see Table 1): (i) to gain
confidence in the equipment used in the trial it should
be the same as, or similar to, equipment used in the pro-
duction network (production-grade devices); (ii) to thor-
oughly test load feedback mechanisms and traffic steer-
ing algorithms, it requires participation of significant
numbers of customers (realistic workloads); (iii) this in
turn requires sufficient network capacity (high capacity
backbone); (iv) realistic network and CDN functionality

32

2009 USENIX Annual Technical Conference

USENIX Association

Production grade devices | Y | N | N N
Realistic workloads Y N |Y Y
High capacity backbone Y | N | N Y
Geographical coverage Y | N | Y Y
Dynamic reconfiguration | Y | N | N N

Table 1: Capability comparison between ShadowNet
(SN), EmuLab (EL), PlanetLab (PL) and VINI (VN)

require realistic network latencies and geographic distri-
bution (geographic coverage); (v) finally, the CDN con-
trol framework could dynamically adjust the resources
allocated to it based on the offered load (dynamic recon-
figuration).

While ShadowNet is designed to satisfy these require-
ments, other testing platforms, with different design
goals and typical usage scenarios, fall short in provid-
ing such support, as we describe next.

Emulab achieves flexible network topology through
emulation within a central testbed environment. There
is a significant gap between emulation environments and
real production networks. For example, software routers
typically do not provide the same throughput as pro-
duction routers with hardware support. As EmuLab is
a closed environment, it is incapable of combining real
Internet workload into experiments. Compared to Em-
uLab, the ShadowNet infrastructure is distributed, thus
the resource placement in ShadowNet more closely re-
sembles future deployment phases. In EmuLab, an ex-
periment in a slice is allocated a fixed set of resources
during its life cycle — a change of specification would
require a “reboot” of the slice. ShadowNet, on the other
hand, can change the specification dynamically. In the
CDN example, machines for content caches and net-
work links can be dynamically spawned or removed in
response to increased or decreased client requests.

PlanetLab has been extremely successful in academic
research, especially in distributed monitoring and P2P
research. It achieves its goal of amazing geographical
coverage, spanning nodes to all over the globe, obtain-
ing great end-host visibility. The PlanetLab nodes, how-
ever, are mostly connected to educational networks with-
out abundant upstream or downstream bandwidth. Plan-
etLab therefore lacks the capacity to realize a capable
backbone between PlanetLab nodes. ShadowNet, on the
other hand, is built upon a production ISP network, hav-
ing its own virtual backbone with bandwidth and latency
guarantees. This pushes the tested service closer to the
core of the ISP network, where the actual production ser-
vice would be deployed.

VINI is closely tied with PlanetLab, but utilizes In-
ternet2 to provide a realistic backbone. Like EmuLab

ShadowNet

Controller Persistent

Storage

User-level
API
[User-level Manager
Physical-level
API Physical Resources:
T - static
[Physical-level Manager ~dynamic

* ¢ - allocation

Configlets
Scripts

Slice information:
- topology
- persistent state

Device
Monitor

Configuration
Effector

Device
Status Y

[Physical Devices |

Figure 4: The ShadowNet controller

and PlanetLab, VINI runs software routers (XORP and
Click), the forwarding capacity of which lags behind
production devices. This is mostly because its focus is to
use commodity hardware to evaluate new Internet archi-
tectures, which is different from the service deployment
focus of ShadowNet. VINI and PlanetLab are based on
the same control framework. Similar to EmuLab, it lacks
the capability of changing slice configurations dynam-
ically, i.e., not closing the loop for more adaptive re-
source management, a functionality readily available in
ShadowNet.

2.4 The ShadowNet Controller

The ShadowNet controller consists of a user-level man-
ager, a physical-level manager, a configuration effector
and a device monitor, as shown in Figure 4. We describe
each component below. The current ShadowNet design
utilizes a centralized controller that interacts with and
controls all ShadowNet nodes.

2.4.1 User-level manager

The user-level manager is designed to take the input of
user-level API calls. Each API call corresponds to an
action that the users of ShadowNet are allowed to per-
form. A user can create a topological specification of a
service trial (§3.1), instantiate the specification to physi-
cal resources (§3.2), interact with the allocated physical
resources (§3.3), and deactivate the slice when the test
finishes (§3.4). The topology specification of a slice is
stored by the user-level manager in persistent storage,
so that it can be retrieved, revived and modified over
time. The user-level manager also helps maintain and
manage the saved persistent state from physical instan-
tiations (§3.3). By retrieving saved states and applying
them to physical instantiations, advanced features, like
device duplication, can be enabled (§3.5).

The user-level manager is essentially a network ser-
vice used to manipulate configurations of user experi-
ments. We allow the user-level manager to be accessed
from within the experiment, facilitating network control

USENIX Association

2009 USENIX Annual Technical Conference

33

in a closed-loop fashion. In the example shown in Fig-
ure 3, the route control component in the experiment can
dynamically add content caches when user demand is
high by calling the user-level API to add more comput-
ing and networking resource via the user-level manager.

2.4.2 Physical-level manager

The physical-level manager fulfills requests from the
user-level manager in the form of physical-level API
calls by manipulating the physical resources in Shad-
owNet. To do this, it maintains three types of informa-
tion: 1) “static” information, such as the devices in each
ShadowNet node and their capabilities; 2) “dynamic”
information, e.g., the online status of all devices and
whether any interface modules are not functioning; 3)
“allocation” information, which is the up-to-date usage
of the physical resources. Static information is changed
when new devices are added or old devices are removed.
Dynamic information is constantly updated by the de-
vice monitor. The three main functions of the physical-
level manager is to configure physical devices to spawn
virtualized device slivers (§4.1) for the instantiation of
user-level devices (§4.1.1) and user-level connectivities
(§4.1.2), to manage their states (§4.4) and to delete ex-
isting instantiated slivers. A sl/iver is a share of the phys-
ical resource, e.g., a virtual machine or a sliced physical
link. The physical-level manager handles requests, such
as creating a VM, by figuring out the physical device to
configure and how to configure it. The actual manage-
ment actions are performed via the configuration effec-
tor module, which we describe next.

2.4.3 Configuration effector

The configuration effector specializes in realizing con-
figuration changes to physical devices. Configlets are
parametrized configuration or script templates, saved in
the persistent storage and retrieved on demand. To real-
ize the physical-level API calls, the physical-level man-
ager decides the appropriate configlet to use and gener-
ates parameters based on the request and the physical re-
source information. The configuration effector executes
the configuration change on target physical devices.

2.4.4 Device monitor

A device monitor actively or passively determines the
status of physical devices or components and propagates
this “dynamic” information to the physical-level man-
ager. Effectively, the device monitor detects any phys-
ical device failures in real time. As the physical-level
manager receives the update, it can perform appropri-
ate actions to mitigate the failure. The goal is to mini-
mize any inconsistency of physical instantiation and user
specifications. We detail the techniques in §4.5. Device
or component recovery can be detected as well, and as

User's input

f).
Deactivate
d)
Modify

Physical Persistent
Instantiations States
Apply

states
e)

Figure 5: The slice life cycle

Internet Internet

Internet

$SL = AddUsrSlice() ;

$S81 = AddUsrSwitch ($SL) ;

$R1 = AddUsrRouter ($SL,"CA") ;

SM1 = AddUsrMachine ($SL,"CA", "Debian") ;

$M2 = AddUsrMachine ($SL, "CA", "Windows") ;

$L1 = AddUsrLink ($M1,$R1); # similar for M2
$L10 = AddUsrLink ($M1,$S1); # similar for M2
$L7 = AddToInternet (SR1, "141.212.111.0/24");

similar for "TX" and "NY"

Figure 6: Example of user-level API calls

such the recovered resource can again be considered us-
able by the physical-level manager.

3 Network service in a slice

A user of ShadowNet creates a service topology in the
form of a slice, which is manipulated through the user-
level API calls supported by the ShadowNet controller.
The three layers embedded in a slice and the interactions
among them are depicted in Figure 5 and detailed below.
In this section, we outline the main user-exposed func-
tionalities that the APIs implement.

3.1 Creating user-level specification

To create a new service trial, an authorized user of Shad-
owNet can create a slice. As a basic support, and usu-
ally the first step to create the service, the user speci-
fies the topological setup through the user-level API (a
in Figure 5). As an example, Figure 6 depicts the in-
tended topology of a hypothetical slice and the API call
sequence that creates it.

The slice created acts like a placeholder for a collec-
tion of user-level objects, including devices and connec-
tivities. We support three generic types of user-level de-
vices (UsrDevice): router (UsrRouter), machine (Usr-
Machine), and switch (UsrSwitch). Two UsrDevices can
be connected to each other via a user-level link (Usr-
Link). User-level interfaces (UsrInt) can be added to

34

2009 USENIX Annual Technical Conference

USENIX Association

a UsrDevice explicitly by the slice owner; however, in
most cases, they are created implicitly when a UsrLink
is added to connect two UsrDevices.

Functionally speaking, a UsrMachine (e.g., M1 in
Figure 6) represents a generic computing resource,
where the user can run service applications. A Us-
rRouter (e.g., R1) can run routing protocols, forward
and filter packets, efc. Further, UsrRouters are pro-
grammable, allowing for custom router functionality. A
UsrLink (e.g., L1) ensures that when the UsrDevice on
one end sends a packet, the UsrDevice on the other
end will receive it. A UsrSwitch (e.g., S1) provides a
single broadcast domain to the UsrDevices connecting
to it. ShadowNet provides the capability and flexibil-
ity of putting geographically dispersed devices on the
same broadcast domain. For example, M1 to M6, al-
though specified in different locations, are all connected
to UsrSwitch S1. Besides internal connectivity among
UsrDevices, ShadowNet can drive live Internet traffic
to a service trial by allocating a public IP prefix for a
UsrInt on a UsrDevice. For example, L7 is used to
connect R1 to the Internet, allocating an IP prefix of
141.212.111.0/24.

Besides creating devices and links, a user of Shad-
owNet can also associate properties with different ob-
jects, e.g., the OS image of a UsrMachine and the IP
addresses of the two interfaces on each side of a Usr-
Link. As a distributed infrastructure, ShadowNet allows
users to specify location preference for each device as
well, e.g., California for M1, M2 and R1. This location
information is used by the physical layer manager when
instantiation is performed.

3.2 Instantiation

A user can instantiate some or all objects in her slice
onto physical resources (b in Figure 5). From this point
on, the slice not only contains abstracted specification,
but also has associated physical resources that the in-
stantiated objects in the specification are mapped to.

ShadowNet provides two types of instantiation strate-
gies. First, a user can design a full specification for the
slice and instantiate all the objects in the specification
together. This is similar to what Emulab and VINI pro-
vide. As a second option, user-level objects in the speci-
fication can be instantiated upon request at any time. For
example, they can be instantiated on-the-fly as they are
added to the service specification.This is useful for users
who would like to build a slice interactively and/or mod-
ify it over time, e.g., extend the slice resources based on
increased demand.

Unlike other platforms, such as PlanetLab and Emu-
Lab, which intend to run as many “slices” as possible,
ShadowNet limits the number of shares (slivers) a phys-
ical resource provides. This simplifies the resource al-

location problem to a straightforward availability check.
We leave more advanced resource allocation methods as
future work.

3.3 Device access & persistent slice state

ShadowNet allows a user to access the physical instanti-
ation of the UsrDevices and UsrLinks in her slice, e.g.,
logging into a router or tapping into a link (¢ in Figure 5).
This support is necessary for many reasons. First, the
user needs to install software on UsrMachines or Usr-
Routers and/or configure UsrRouters for forwarding and
filtering packets. Second, purely from an operational
point of view, operators usually desire direct access to
the devices (e.g., a terminal window on a server, or com-
mand line access to a router).

For UsrMachines and UsrRouters, we allow users to
log into the device and make any changes they want
(84.3). For UsrLinks and UsrSwitches, we provide
packet dump feeds upon request (§4.3). This support
is crucial for service testing, debugging and optimiza-
tion, since it gives the capability and flexibility of sniff-
ing packets at any place within the service deployment
without installing additional software on end-points.

Enabling device access also grants users the ability to
change the persistent state of the physical instantiations,
such as files installed on disks and configuration changes
on routers. In ShadowNet, we decouple the persistent
states from the physical instantiation. When the physical
instantiation is modified, the changed state also become
part of the slice (d in Figure 5).

3.4 Deactivation

The instantiated user-level objects in the specification
of a slice can be deactivated, releasing the physical in-
stantiations of the objects from the slice by giving them
back to the ShadowNet infrastructure. For example, a
user can choose to deactivate an under-utilized slice as
a whole, so that other users can test their slices when
the physical resources are scarce. While releasing the
physical resource, we make sure the persistent state is
extracted and stored as part of the slice (f in Figure 5).
As a result, when the user decides to revive a whole slice
or an object in the slice, new physical resources will be
acquired and the stored state associated with the object
applied to it (e in Figure 5). Operationally speaking, this
enables a user to deactivate a slice and reactivate it later,
most likely on a different set of resources but still func-
tioning like before.

3.5 Management support

Abstracting the persistent state from the physical instan-
tiation enables other useful primitives in the context of
service deployment. If we instantiate a new UsrDevice
and apply the state of an existing UsrDevice to it, we ef-

USENIX Association

2009 USENIX Annual Technical Conference

35

[J Device sliver
Effective direct link
Tunngl !]
R1]; | LR3
[11 B T B | |
Vian Vian Tunnel CsC L2VPN: LR2-LR3 Vian
)
Effective broadcast domain
| | ;
! H
H H —
I S —— |
Vlan CsC VPLS: LR5/6 VM3 Vian

Figure 7: Network connectivity options.

fectively duplicate the existing UsrDevice. For example,
a user may instantiate a new UsrMachine with only the
basic OS setup, log into the machine to install necessary
application code and configure the OS. With the support
provided by ShadowNet, she can then spawn several new
UsrMachines and apply the state of the first machine.
This eases the task of creating a cluster of devices serv-
ing similar purposes. From the ShadowNet control as-
pect, this separation allows sophisticated techniques to
hide physical device failures. For example, a physical
router experiences a power failure, while it hosts many
logical routers as the instantiation of UsrRouters. In this
case, we only need to create new instantiations on other
available devices of the same type, and then apply the
states to them. During the whole process, the slice spec-
ification, which is what the user perceives, is intact. Nat-
urally, the slice will experience some downtime as a re-
sult of the failure.

4 Physical layer operations

While conceptually similar to several existing sys-
tems [10, 27], engineering ShadowNet is challenging
due to the strong isolation concept it rests on, the
production-grade qualities it provides and the distributed
nature of its realization. We describe the key methods
used to realize ShadowNet.

4.1 Instantiating slice specifications

The slice specification instantiation is performed by the
ShadowNet controller in a fully automated fashion. The
methods to instantiate on two types of resource are de-
scribed as follows.

4.1.1 User-level routers and machines

ShadowNet currently utilizes VirtualBox [5] from Sun
Microsystems, and Logical Routers [16] from Juniper
Networks to realize UsrMachines and UsrRouters re-
spectively. Each VM and logical router created is con-
sidered as a device sliver. To instantiate a UsrRouter
or a UsrMachine, a ShadowNet node is chosen based
on the location property specified. Then all matching
physical devices on that node are enumerated for avail-

ability checking, e.g., whether a Juniper router is capa-
ble of spawning a new logical router. When there are
multiple choices, we distribute the usage across devices
in a round-robin fashion. Location preference may be
unspecified because the user does not care about where
the UsrDevice is instantiated, e.g., when testing a router
configuration option. In this case, we greedily choose
the ShadowNet node where that type of device is the
least utilized. When no available resource can be allo-
cated, an error is returned.

4.1.2 User-level connectivity

The production network associated with ShadowNet
provides both Internet connection and virtual backbone
connectivity to each ShadowNet node. We configure a
logical router, which we call the head router of the Shad-
owNet node, to terminate these two connections. With
the ShadowNet backbone connectivity provided by the
ISP, all head routers form a full-mesh, serving as the
core routers of ShadowNet. For Internet connectivity,
the head router interacts with ISP’s border router, e.g.,
announcing BGP routes.

Connecting device slivers on the same ShadowNet
node can be handled by the switching layer of that node.
The head routers are used when device slivers across
nodes need to be connected. In ShadowNet, we make
use of the carrier-supporting-carrier (CsC) capabilities
provided by MPLS enabled networks. CsC utilizes the
VPN service provided by the ISP, and stacks on top of
it another layer of VPN services, running in parallel but
isolated from each other. For example, layer-2 VPNs (so
called pseudo-wire) and VPLS VPNs can be stacked on
top of a layer-3 VPN service [15].

This approach has three key benefits. First, each
layer-2 VPN or VPLS instance encapsulates the network
traffic within the instance, thus provides strong isolation
across links. Second, these are off-the-shelf production-
grade services, which are much more efficient than man-
ually configured tunnels. Third, it is more realistic for
the users, because there is no additional configuration
needed in the logical routers they use. The layer-2
VPN and VPLS options that we heavily use in Shad-
owNet provides layer-2 connectivity, i.e., with router
programmability, any layer-3 protocol besides IP can run
on top of it.

Figure 7 contains various examples of enabling con-

nectivity, which we explain in detail next.
UsrLink: To instantiate a UsrLink, the instantiations of
the two UsrDevices on the two ends of the UsrLink are
first identified. We handle three cases, see Figure 7a).
(We consider the UsrLinks connected to a UsrSwitch
part of that UsrSwitch, which we describe later):

1) Two slivers are on the same physical device: for
example, VM1 and V M2 are on the same server; L R2

36

2009 USENIX Annual Technical Conference

USENIX Association

and Headl are on the same router. In this case, we use
local bridging to realize the UsrLink.

2) Two slivers are on the same ShadowNet node, but
not the same device: for example, VM1 and LRI,
LR1and LR2. We use a dedicated VLAN on that node
for each UsrLink of this type, e.g.,, LR1 will be config-
ured with two interfaces, joining two different VLAN
segments, one for the link to VM1, the other one to
LR2.

3) Two slivers are on different nodes: for example,
LR2 and LR3. In this case, we first connect each sliver
to its local head router, using the two methods above.
Then the head router creates a layer-2 VPN to bridge the
added interfaces, effectively creating a cross-node tunnel
connecting the two slivers.

In each scenario above, the types of the physical inter-
faces that should be used to enable the link are decided,
the selected physical interfaces are configured, and the
resource usage information of the interfaces is updated.

MPLS-VPN technologies achieve much higher lev-
els of realism over software tunnels, because almost no
configuration is required at the end-points that are be-
ing connected. For example, to enable the direct link
between LR2 and LR3, the layer-2 VPN configuration
only happens on Headl and Head2. As a result, if the
user logs into the logical router L R2 after its creation,
she would only sees a “physical” interface setup in the
configuration, even without IP configured, yet that inter-
face leads to L R3 according to the layer-2 topology.
User-view switches: Unlike for UsrMachines and Usr-
Routers, ShadowNet does not allocate user-controllable
device slivers for the instantiation of UsrSwitches, but
rather provide an Ethernet broadcasting medium. (See
Figure 7b).)

To instantiate a UsrSwitch connecting to a set of Us-
rDevices instantiated on the same ShadowNet node, we
allocate a dedicated VLAN-ID on that node and config-
ure those device slivers to join the VLAN (i.e., LR5 and
L R6). If the device slivers mapped to the UsrDevices
distribute across different ShadowNet nodes, we first
recursively bridge the slivers on the same node using
VLANS, and then configure one VPLS-VPN instance on
each head router (i.e., Head3 and Head4) to bridge all
those VLANSs. This puts all those device slivers (i.e.,
VM3, LR5, LR6) onto the same broadcast domain.
Similar to layer-2 VPN, this achieves a high degree of
realism, for example on LR5 and L R6, the instantiated
logical router only shows one “physical” interface in its
configuration.

Internet access: We assume that ShadowNet nodes can
use a set of prefixes to communicate with any end-points
on the Internet. The prefixes can either be announced
through BGP sessions configured on the head routers to

the ISP’s border routers, or statically configured on the
border routers.

To instantiate a UsrDevice’s Internet connectivity, we
first connect the UsrDevice’s instantiation to the head
router on the same node. Then we configure the head
router so that the allocated prefix is correctly forwarded
to the UsrDevice over the established link and the route
for the prefix is announced via BGP to the ISP. For ex-
ample, a user specifies two UsrRouters connecting to the
Internet, allocating them with prefix 136.12.0.0/24
and 136.12.1.0/24. The head router should in turn
announce an aggregated prefix 136.12.0.0/23 to
the ISP border router.

4.2 Achieving isolation and fair sharing

As a shared infrastructure for many users, ShadowNet
attempts to minimize the interference among the physi-
cal instantiation of different slices. Each virtual machine
is allocated with its own memory address space, disk im-
age, and network interfaces. However, some resources,
like CPU, are shared among virtual machines, so that
one virtual machine could potentially drain most of the
CPU cycles. Fortunately, virtual machine technology is
developing better control over CPU usage of individual
virtual machines [5].

A logical router on a Juniper router has its own config-
uration file and maintains its own routing table and for-
warding table. However, control plane resources, such
as CPU and memory are shared among logical routers.
We evaluate this impact in §6.3.

The isolation of packets among different UsrLinks is
guaranteed by the physical device and routing protocol
properties. We leverage router support for packet filter-
ing and shaping, to prevent IP spoofing and bandwidth
abusing. The corresponding configuration is made on
head routers, where end-users cannot access. For each
UsrLink, we impose a default rate-limit (e.g., 10Mbps),
which can be upgraded by sending a request via the user-
level API. We achieve rate limiting via hardware traffic
policers [19] and Linux kernel support [4].

4.3 Enabling device access

Console or remote-desktop access: For each VM run-
ning on VirtualBox, a port is specified on the hosting
server to enable Remote Desktop protocol for graphical
access restricted to that VM. If the user prefers command
line access, a serial port console in the VM images is en-
abled and mapped to a UNIX domain socket on the host-
ing machine’s file system [5]. On a physical router, each
logical router can be configured to be accessible through
SSH using a given username and password pair, while
confining the access to be within the logical router only.

Though the device slivers of a slice can be connected
to the Internet, the management interface of the actual

USENIX Association

2009 USENIX Annual Technical Conference

37

physical devices in ShadowNet should not be. For ex-
ample, the IP address of a physical server should be con-
tained within ShadowNet rather than accessible globally.
We thus enable users to access the device slivers through
one level of indirection via the ShadowNet controller.

Sniffing links: To provide packet traces from a partic-
ular UsrLink or UsrSwitch, we dynamically configure a
SPAN port on the switching layer of a ShadowNet node
so that a dedicated server or a pre-configured VM can
sniff the VLAN segment that the UsrLink or UsrSwitch
is using. The packet trace can be redirected through the
controller to the user in a streaming fashion or saved as
a file for future downloading. There are cases where no
VLAN is used, e.g., for two logical routers on the same
physical router connected via logical tunnel interfaces.
In this case, we deactivate the tunnel interfaces and re-
instantiate the UsrLink using VLAN setup to support
packet capture. This action, however, happens at the
physical-level and thus is transparent to the user-level,
as the slice specification remains intact.

4.4 Managing state

To extract the state of an instantiated UsrMachine, which
essentially is a VM, we keep the hard drive image of
the virtual machine. The configuration file of a logical
router is considered as the persistent state of the corre-
sponding UsrRouter. Reviving stored state for a Usr-
Machine can be done by attaching the saved disk im-
age to a newly instantiated VM. On the other hand, Us-
rRouter state, i.e.,, router configuration files, need ad-
ditional processing. For example, a user-level inter-
face may be instantiated as interface fe-0/1/0.2 and
thus appear in the configuration of the instantiated log-
ical router. When the slice is deactivated and instan-
tiated again, the UsrInt may be mapped to a different
interface, say ge-0/2/0.1. To deal with this com-
plication, we normalize the retrieved configuration and
replace physical-dependent information with user-level
object handles, and save it as the state.

4.5 Mitigating and creating failures

Unexpected physical device failures can occur, and as an
option ShadowNet tries to mitigate failures as quickly
as possible to reduce user perceived down time. One
benefit of separating the states from the physical instan-
tiation is that we can replace a new physical instantia-
tion with the saved state applied without affecting the
user perception. Once a device or a physical compo-
nent is determined to be offline, ShadowNet controller
identifies all instantiated user-level devices associated to
it. New instantiations are created on healthy physical
devices and saved states are applied if possible. Note
that certain users are specifically interested in observing
service behavior during failure scenarios. We allow the

users to specify whether they want physical failures to
pass through, which is disabling our failure mitigation
functionality. On the other hand, failure can be injected
by the ShadowNet user-level API, for example tearing
down the physical instantiation of a link or a device in
the specification to mimic a physical link-down event.

For physical routers, the device monitor performs pe-
riodic retrieval of the current configuration files, preserv-
ing the states of UsrRouters more proactively. When a
whole physical router fails, the controller creates new
logical routers with connectivity satisfying the topology
on other healthy routers and applies the saved configu-
ration, such as BGP setup. If an interface module fails,
the other healthy interfaces on the same router are used
instead. Note that the head router is managed in the
same way as other logical routers, so that ShadowNet
can also recover from router failures where head routers
are down.

A physical machine failure is likely more catas-
trophic, because it is challenging to recover files from
a failed machine and it is not feasible to duplicate large
files like VM images to the controller. One potential so-
lution is to deploy a distributed file system similar to the
Google file system [13] among the physical machines
within one ShadowNet node. We leave this type of func-
tionality for future work.

5 Prototype Implementation

In this section, we briefly describe our prototype im-
plementation of the ShadowNet infrastructure, including
the hardware setup and management controller.

5.1 Hardware setup

To evaluate our architecture we built two ShadowNet
nodes and deployed them locally. (At the time of writ-
ing, a four node ShadowNet instance is being deployed
as an operational network with nodes in Texas, Illinois,
New Jersey and California. Each node has two giga-
bit links to the production network, one used as regular
peering link and the other used as the dedicated back-
bone.)

Each prototype node has two Juniper M7i routers run-
ning JUNOS version 9.0, one Cisco C2960 switch, as
well as four HP DL520 servers. The M7i routers are
equipped with one or two Gigabit Ethernet PICs (Physi-
cal Interface Cards), FastEthernet PIC, and tunneling ca-
pability. Each server has two gigabit Ethernet interfaces,
and we install VirtualBox in the Linux Debian operating
system to host virtual machines. The switch is capable
of configuring VLANs and enabling SPAN ports.

In the local deployment, two Cisco 7206 routers act as
an ISP backbone. MPLS is enabled on the Cisco routers
to provide layer-3 VPN service as the ShadowNet back-
bone. BGP sessions are established between the head

38

2009 USENIX Annual Technical Conference

USENIX Association

router of each node and its adjacent Cisco router, en-
abling external traffic to flow into ShadowNet. We con-
nect the network management interface £xp0 of Ju-
niper routers and one of the two Ethernet interfaces
on machines to a dedicated and separate management
switch. These interfaces are configured with private
IP addresses, and used for physical device management
only, mimicking the out-of-band access which is com-
mon in ISP network management.

5.2 Controller

The ShadowNet controller runs on a dedicated machine,
sitting on the management switch. The controller is
currently implemented in Perl. A Perl module, with
all the user-level APIs, can be imported in Perl scripts
to create, instantiate and access service specifications,
similar to the code shown in Figure 6. A mysqgl
database is running on the same machine as the con-
troller, serving largely, though not entirely, as the per-
sistent storage connecting to the controller. It saves
the physical device information, user specifications, and
normalized configuration files, etc. We use a differ-
ent set of tables to maintain physical-level information,
e.g.,, phy device table, and user-level informa-
tion, e.g,, usr link table. The Perl module re-
trieves information from the tables and updates the ta-
bles when fulfilling API calls.

The configuration effector of the ShadowNet con-
troller is implemented within the Perl module as well.
We make use of the NetConf XML API exposed by Ju-
niper routers to configure and control them. Configlets
in the form of parametrized XML files are stored on
the controller. The controller retrieves the configura-
tion of the physical router in XML format periodically
and when UsrRouters are deactivated. We wrote a spe-
cialized XML parser to extract individual logical router
configurations and normalize relative fields, such as in-
terface related configurations. The normalized config-
urations are serialized in text format and stored in the
mysql database associating to the specific UsrRouter.

Shell and Perl scripts, which wrap the VirtualBox
management interface, are executed on the hosting
servers to automatically create VMs, snapshot running
VMs, stop or destroy VMs. The configuration effector
logs into each hosting server and executes those scripts
with the correct parameters. On the servers, we run
low-priority cron jobs to maintain a fair amount of de-
fault VM images of different OS types. In this case,
the request of creating a new VM can be fulfilled fairly
quickly, amortizing the overhead across time. We use the
following steps to direct the traffic of an interface used
by a VM to a particular VLAN. First, we run tunctl
on the hosting server to create a tap interface, which is
configured in the VMM to be the “physical” interface of

the VM. Second, we make use of 802.1Q kernel mod-
ule to create VLAN interfaces on the hosting server, like
ethl.4, which participates in VLAN4. Finally we use
brctl to bridge the created tap interface and VLAN
interface.

Instead of effecting one configuration change per ac-
tion, the changes to the physical devices are batched and
executed once per device, thus reducing authentication
and committing overheads. All devices are manipulated
in parallel. We evaluate the effectiveness of these two
heuristics in §6.1.

The device monitor module is running as a daecmon
on the controller machine. SNMP trap messages are en-
abled on the routers and sent over the management chan-
nel to the controller machine. Ping messages are sent
periodically to all devices. The two sources of infor-
mation are processed in the background by the monitor-
ing daemon. When failures are detected, the monitoring
module calls the physical-level APIs in the Perl module,
which in response populates configlets and executes on
the routers to handle failures. An error message is also
automatically sent to the administrators.

6 Prototype Evaluation

In this section, we evaluate various aspects of Shad-
owNet based on two example slices instantiated on our
prototype. The user specifications are illustrated on the
left side of Figure 8; the physical realization of that spec-
ification is on the right. In Slicel, two locations are
specified, namely LA and NY. On the LA side, one Us-
rMachine (M1) and one UsrRouter (R1) are specified.
R1 is connected to M1 through a UsrLink. R1 is con-
nected to the Internet through L2 and to R2 directly via
L5. The setup is similar on NY side. We use mini-
mum IP and OSPF configuration to enable the correct
forwarding between M1 and M2. Slice2 has essentially
the same setup, except that the two UsrRouters do not
have Internet access.

The right side of Figure 8 shows the instantiation of
Slicel and Slice2. VM1 and LR1 are the instantiation
of M1 and R1 respectively. UsrLink L1 is instantiated
as a dedicated channel formed by virtualized interfaces
from physical interfaces, ethl and ge-0/1/0, con-
figured to participate in the same VLAN. To create the
UsrLink L5, ShadowNet first uses logical tunnel inter-
faces to connect LR1 and LR2 with their head routers,
which in turn bridge the logical interfaces using layer-2
VPN.

6.1 Slice creation time

Table 2 shows the creation time for Slicel, broken
down into instantiation of machine and router, along
with database access (DB in the table.) Using a naive
approach, the ShadowNet controller needs to spend 82

USENIX Association

2009 USENIX Annual Technical Conference

39

Slice specification

JuniperRouter1

Actual instantiation
JuniperRouter2

Slice1 p |n;eme\(Y Servert Vian3 . Server2 Vlan4 /TRa 7.
N e-0/1/0 A / ge-0/1/0] A /
LA L2/ \l3 NY Ents = Vian1 . g ET Eth1 Vian2
it Nt [T B L o
' @' "E’ : LI Internet 1 - Internet .
LA FC - B A —"
E-L-G-;: L7 Er; -Lg"-i Switon nternet —— IS; —, Internet S
Slice2 "7 Srmmmmmne For L2VPN that connects LR3to LR4 . .esssns For L2VPN that connects LR1 to LR2
For Internet access to LR1/LR2 LTs stands for Logical Tunnels
Figure 8: User slices for evaluation
| | Router ‘ Machine ‘ DB | Total ‘ e B} e
Default (ms) | 81834 | 11955 | 452 [94241 | |~ ,/
Optimized (ms) | 6912 5758 452 | 7364 é 1 . § oo
Table 2: Slice creation time comparison £ ot 2000 \
Routes to receive Time (second)
bandwidth pa.Cket ObserYed Delta (a) Impact of shared control (b) Hardware failure recovery
(Kbps) size | bandwidth | (%) planes
56 1230 gzz ;2 Figure 9: Control plane isolation and recovery test.
64 383 8 05 capacities.
384 1500 386.0 52 When no constraint is placed on L5, the throughput
64 1537.2 44 achieved is around 94.8Mbps, shown as “NoLimit” in
1544 1500 1534.8 60 the table. This is close to maximum, because the routers
5000 1500 49922 16 we used as ISP cores are equipped with FastEthernet in-
NoLimit 1500 94791 2 NA terfaces, which have 100Mbps capacity and the VM is

Table 3: Cross-node link stress test

seconds on the physical routers alone by making 13
changes, resulting a 94-second execution time in total.
For machine configuration, two scripts are executed for
creating the virtual machines, and two for configuring
the link connectivity. With the two simple optimization
heuristics described in §5.2, the total execution time is
reduced to 7.4 seconds. Note that the router and ma-
chine configurations are also parallelized, so that we
have total = DB + max(Router;, Machine;). Par-
allelization ensures that the total time to create a slice
does not increase linearly with the size of the slice. We
estimate creation time for most slices to be within 10
seconds.

6.2 Link stress test

We perform various stress tests to examine ShadowNet’s
capability and fidelity. We make L5 the bottleneck link,
setting different link constraints using Juniper router’s
traffic policer, and then test the observed bandwidth M1
and M2 can achieve on the link by sending packets as
fast as possible. Packets are dropped from the head of
the queue. The results are shown in Table 3, demon-
strating that ShadowNet can closely mimic different link

specified with 100Mbps virtual interface. Physical gi-
gabit switches are usually not the bottleneck, as we ver-
ified that two physical machines on the same physical
machines connected via VLAN switch can achieve ap-
proximately 1Gbps bandwidth.

As we are evaluating on a local testbed, the jitter and
loss rate is almost zero, while the delay is relatively con-
stant. We do not expect this to hold in our wide-area
deployment.

6.3 Slice isolation

We describe our results in evaluating the isolation assur-
ance from the perspectives of both the control and data
plane.

6.3.1 Control plane

To understand the impact of a stressed control plane on
other logical routers, we run software routers, bgpd of
zebra, on both M1 and M3. The two software routers
are configured to peer with the BGP processes on LR1
and LR3. We load the software routers with BGP rout-
ing tables of different sizes, transferred to LR1 and LR3.
The BGP event log on the physical router is analyzed by
measuring the duration from the first BGP update mes-
sage to the time when all received routes are processed.
In Figure 9(a), the bottom line shows the processing

40

2009 USENIX Annual Technical Conference

USENIX Association

— 1000 e — 1000

& 900 A 3

2 a0 £ o BT e s

< ~ + H

S 700 g h

S 600 S 960

o 500 2

g 400 S 940

2 300 2

= 200 =920

g 100 [3

& o L —F— 2 g0 L —+—

0 200 400 600 800 100012001400 0 200 400 600 800 100012001400
Sending rate on M1 (kbps) Sending rate on M3 (kbps)

(a) Variable packet rate (b) Max packet rate

(L6’s rate is maxed) (L6’s rate is variable)

Figure 10: Data plane isolation test.

time of the BGP process on LR1 to process all the routes
if LR3 is BGP-inactive. The top line shows the process-
ing time for LR1 when LR3 is also actively processing
the BGP message stream. Both processing times in-
crease linearly with the number of routes received. The
two lines are almost parallel, meaning that the delay is
proportional to the original processing time. The differ-
ence of receiving 10k routes is about 13 seconds, 73 sec-
onds for 50k routes. We have verified that the CPU usage
is 100% even if only LR1 is BGP-active. We have also
used two physical machines to peer with LR1 and LR3
and confirmed that the bottleneck is due to the Juniper
router control processor. If these limitations prove to
be problematic in practice, solutions exist which allow a
hardware separation of logical router control planes [17].

6.3.2 Data plane

L1 and L6 share the same physical interfaces, ethl
on Serverl and ge-0/1/0 on Juniper Routerl. We
restrict the bandwidth usage of both L1 and L6 to be
IMbps by applying traffic policer on the ingress inter-
faces on LR1 and LR3. From the perspective of a given
UsrLink, say L1, we evaluate two aspects: regardless
of the amount of traffic sent on L6, (1) L1 can always
achieve the maximum bandwidth allocated (e.g., 1Mbps
given a 100Mbps interface); (2) L1 can always obtain
its fair share of the link. To facilitate this test, we apply
traffic policer on the ingress interfaces (ge-0/1/0) on
LR1 and LR3, restricting the bandwidth of L1 and L6 to
1Mbps. Simultaneous traffic is sent from M1 via L1 to
M2, and from M3 via L6 to M4.

Figure 10(a) shows the observed receiving rate on M2
(y-axis) as the sending rate of M1 (x-axis) increases,
while M3 is sending as fast as possible. The receiving
rate matches closely with the sending rate, before reach-
ing the imposed 1Mbps limit, This demonstrates that L1
capacity is not affected, even if L6 is maxed out. Fig-
ure 10(b) shows the max rate of L1 can achieve is always
around 980kbps no matter how fast M2 is sending.

6.4 Device failure mitigation

We evaluate the recovery time in response to a hardware
failure in ShadowNet. While Slicel is running, M1 con-
tinuously sends packets to M2 via L1. We then phys-

ically yanked the Ethernet cable on the Ethernet mod-
ulege-0/1/0, triggering SNMP LinkDown trap mes-
sage and the subsequent reconfiguration activity. A sep-
arate interface (not shown in the figure) is found to be us-
able, then automatically configured to resurrect the down
links. Figure 9(b) shows the packet rate that M2 ob-
serves. The downtime is about 7.7 seconds, mostly spent
on effecting router configuration change. Failure detec-
tion is fast due to continuous SNMP messages, and sim-
ilarly controller processing takes less than 100ms. This
exemplifies the benefit of strong isolation in ShadowNet,
as the physical instantiation is dynamically replaced us-
ing the previous IP and OSPF configuration, leaving the
user perceived slice intact after a short interruption. To
further reduce the recovery time, the ShadowNet con-
troller can spread a UsrLink’s instantiation onto multiple
physical interfaces, each of which provides a portion of
the bandwidth independently.

7 Related work

ShadowNet has much in common with other test/trial
networks [10, 27, 22]. However, to our knowledge,
ShadowNet is the first platform to exploit recent ad-
vances in the capabilities of networking equipment to
provide a sharable, composable and programmable in-
frastructure using carrier-grade equipment running on
a production ISP network. This enables a distinct em-
phasis shift from experimentation/prototyping (enabled
by other test networks), to service trial/deployment (en-
abled by ShadowNet). The fact that ShadowNet uti-
lizes production quality equipment frees us from having
to deal with low-level virtualization/partitioning mech-
anisms, which typically form a significant part of other
sharable environments.

A similar service deployment incentive to that es-
poused by ShadowNet was advocated in [21]. Their ser-
vice definition is, however, narrower than ShadowNet’s
scope which also includes network layer services. Ama-
zon’s EC2 provides a platform for rapid and flexible
edge service deployment with a low cost [1]. This plat-
form only rents computing machines with network ac-
cess, lacking the ability to control the networking as-
pects of service testing, or indeed network infrastructure
of'any kind. PLayer [14] is designed to provide a flexible
and composable switching layer in data-center environ-
ment. It achieves dynamic topology change with low
cost; however, it is not based on commodity hardware.

Alimi et al. proposed the idea of shadow configura-
tion [8], a new set of configuration files that first run in
parallel with existing configuration and then either com-
mitted or discarded. The shadow configuration can be
evaluated using real traffic load. The downside is that
the separation between the production network and the
shadowed configuration may not be strongly guaranteed.

USENIX Association

2009 USENIX Annual Technical Conference

41

This technique requires significant software and hard-
ware modification on proprietary network devices.

We heavily rely on hardware-based and software-
based virtualization support [6] in the realization of
ShadowNet, for example virtual machines [5] and Ju-
niper’s logical router [16]. The isolation between the
logical functionality and the physical resource can be
deployed to achieve advanced techniques, like router
migration in VROOM [26] and virtual machine migra-
tion [20, 12], which can be used by ShadowNet.

8 Conclusion

In this paper, we propose an architecture called Shad-
owNet, designed to accelerate network change in the
form of new networks services and sophisticated net-
work operation mechanisms. Its key property is that the
infrastructure is connected to, but functionally separated
from a production network, thus enabling more realistic
service testing. The fact that production-grade devices
are used in ShadowNet greatly improves the fidelity and
realism achieved. In the design and implementation
of ShadowNet, we created strong separation between
the user-level representations from the physical-level
instantiation, enabling dynamic composition of user-
specified topologies, intelligent resource management
and transparent failure mitigation. Though ShadowNet
currently provides primitives mainly for service testing
purposes, as a next step, we seek to broaden the applica-
bility of ShadowNet, in particular, to merge the control
framework into the production network for allowing
service deployment.

Acknowledgment: We wish to thank our shepherd
Jaeyeon Jung as well as the anonymous reviewers for
their valuable feedback on this paper.

References

[1] Amazon Elastic Compute Cloud. http://aws.amazon.
com/ec2/.

[2] FEDERICA: Federated E-infrastructure Dedicated to European
Researchers Innovating in Computing network Architectures.
http://www.fp7-federica.eu/.

[3] GENI: Global Environment for Network Innovations.
//www.geni.net/.

[4] Traffic Control HOWTO. http://linux-ip.net/
articles/Traffic-Control-HOWTO/.

http:

[5] VirtualBox. http://www.virtualbox.org.

[6] K. Adams and O. Agesen. A comparison of software and hard-
ware techniques for x86 virtualization. In Proceedings of the
12th international conference on Architectural support for pro-
gramming languages and operating systems, 2000.

[7] M. Agrawal, S. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Se-
shan, K. van der Merwe, and J. Yates. Routerfarm: Towards a
dynamic, manageable network edge. SIGCOMM Workshop on
Internet Network Management (INM), September 2006.

(8]

9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[23]

[24]

[25]

[26]

[27]

R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration as
a network management primitive. In Proceedings of ACM SIG-
COMM, Seattle, WA, August 2008.

H. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and J. Van
der Merwe. Anycast CDNs Revisited. 17th International World
Wide Web Conference, April 2008.

A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford.
In VINI veritas: realistic and controlled network experimenta-
tion. SIGCOMM Comput. Commun. Rev., 36(4):3—14, 2006.
Cisco Systems. MPLS VPN Carrier Supporting Car-
rier. http://www.cisco.com/en/US/docs/ios/12
Ost/12 Ostl4/feature/guide/csc.html.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
NSDI'05: Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, 2005.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file sys-
tem. SIGOPS Oper. Syst. Rev., 37(5):29-43, 2003.

D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switch-
ing layer for data centers. SIGCOMM Comput. Commun. Rev.,
38(4), 2008.

Juniper Networks. Configuring Interprovider and Carrier-of-
Carriers VPNs. http://www.juniper.net/.

Juniper Networks. Juniper Logical Routers. http:
//www.juniper.net/techpubs/software/junos/
junos85/feature-guide-85/1d-11139212.html.
Juniper Networks. Juniper Networks JCS 1200 Control Sys-
tem Chassis. http://www.juniper.net/products/
tseries/100218.pdf.

Juniper Networks. Juniper Partner Solution Development Plat-
form. http://www.juniper.net/partners/osdp.
html.

Juniper Networks. JUNOS 9.2 Policy Framework Configura-
tion Guide. http://www.juniper.net/techpubs/
software/junos/junos92/swconfig-policy/
frameset.html.

M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent mi-
gration for virtual machines. In ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical Conference,
pages 25-25, Berkeley, CA, USA, 2005. USENIX Association.
L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint
for Introducing Disruptive Technology Into the Internet. In Proc.
of ACM HotNets, 2002.

L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Expe-
riences building planetlab. In OSDI ’06: Proceedings of the
7th symposium on Operating systems design and implementa-
tion. USENIX Association, 2006.

L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet
Impasse through Virtualization. Proc. of ACM HotNets, 2004.
J. Turner and N. McKeown. Can overlay hosting services
make ip ossification irrelevant? PRESTO: Workshop on Pro-
grammable Routers for the Extensible Services of TOmorrow,
May 2007.

J. E. Van der Merwe et al. Dynamic Connectivity Management
with an Intelligent Route Service Control Point. Proceedings of
ACM SIGCOMM INM, October 2006.

Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
ford. Virtual routers on the move: live router migration as a
network-management primitive. SIGCOMM Comput. Commun.
Rev,, 38(4), 2008.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An Inte-
grated Experimental Environment for Distributed Systems and
Networks. In Proc. of the Fifth Symposium on Operating Sys-
tems Design and Implementation, 2002.

42

2009 USENIX Annual Technical Conference

USENIX Association

Design and implementation of TCP data probes for reliable and
metric-rich network path monitoring

Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang
The Hong Kong Polytechnic University, Hong Kong
{esxluo|cswwchan|csrchang } @ comp.polyu.edu.hk

Abstract

Monitoring network services and diagnosing their prob-
lems often require active probing methods. Current prob-
ing methods, however, are becoming unreliable, because
of interferences from various middleboxes, and inad-
equate due to their limited path metrics support. In
this paper, we present the design and implementation
of OneProbe, a new TCP probing method for reliable
and metric-rich path monitoring. We have implemented
HTTP/OneProbe (i.e., OneProbe for HTTP) which sends
TCP data probes containing legitimate HTTP requests to
induce HTTP responses for path measurement. Since the
probing method is based on TCP’s basic data transmis-
sion mechanisms, OneProbe works correctly on all major
operating systems and web server software, and on 93%
of the 37,874 websites randomly selected from the Inter-
net. We also successfully deployed HTTP/OneProbe to
monitor a number of network paths for over a month and
obtained interesting and useful measurement results.

1 Introduction

The ability of measuring a network path’s quality is im-
portant for monitoring service level agreement, choos-
ing the best route, diagnosing performance problems,
and many others. This paper considers active measure-
ment methods that do not require the remote endpoint’s
cooperation in terms of setting up additional software.
A non-cooperative method therefore measures the path
quality solely based on the response packets induced
by its probes. Compared with cooperative methods,
non-cooperative methods offer the potential advantage of
monitoring a large number of paths from a single system.

The design and implementation of a reliable non-
cooperative method is very challenging for the Internet
landscape today. A main challenge is to obtain reliable
measurement in the midst of interferences from various
middleboxes. By reliability, we mean three specific re-
quirements. First, the method can always induce the ex-
pected response packets from the remote endpoints, re-

gardless of their operating systems, for path measure-
ment. Second, the method can measure the path qual-
ity experienced by data packets. Third, the method can
support an adequate sampling rate and sound sampling
patterns for obtaining reliable measurement samples.

However, the most practiced measurement methods
are not reliable according to our definition. Most no-
tably, routers and end hosts do not always respond to
ICMP Ping and Traceroute [24]. Even when ICMP pack-
ets are returned, the Ping measurement results may not
be trustworthy [38], because the ICMP packets and TCP
data packets are processed on different paths in routers.
The same can also be said for the probe and response
packets that are TCP SYNs, TCP RSTs, and TCP ACKs
(pure TCP acknowledgment packets). Other middle-
boxes, such as accelerators, traffic shapers, load balan-
cers, and intrusion detection systems, can further in-
crease the measurement inaccuracy. A related problem
is that their sampling rates cannot be too high.

Another motivation for this work is that an existing
non-cooperative method usually supports a very limited
number of path metrics. As the quality expected from
network paths could be different for various applications,
it is necessary to measure the path quality using as many
metrics as possible. There are three specific shortcom-
ings responsible for the current limitation. First, many
methods, such as Ping, can only measure round-trip path
quality. Second, almost all methods (with the exception
of tulip [26]) only support one or two types of metrics
(e.g., sting [34] for packet loss and POINTER [25] for
packet reordering). Third, all methods cannot measure
path metrics with different response packet sizes (e.g.,
sting measures reverse-path packet loss using only TCP
ACKs).

1.1 A new non-cooperative measurement approach

Our approach to tackling the reliable path monitoring
problem is to conduct measurement in a legitimate TCP
application session and to use TCP data packets for the

USENIX Association

2009 USENIX Annual Technical Conference

43

probe and response packets. We avoid using the TCP
ACKs returned from the remote endpoints for measure-
ment, because some systems do not return them. More-
over, TCP ACKs are not reliable, and their packet size
cannot be changed. Using TCP data packets for the probe
and response packets resolves all three problems.

The new TCP data probe is also capable of measuring
multiple path metrics —round-trip time (RTT), forward-
path and reverse-path packet loss rates, and forward-path
and reverse-path packet reordering rates —all at the same
time from the same probe. Therefore, we call this new
TCP probing method OneProbe: the same probe for mul-
tiple path metrics. Although tulip also measures multiple
metrics, it cannot measure some packet loss scenarios
[26]. Moreover, the tulip probes are different for loss
and reordering measurement.

We have implemented HTTP/OneProbe (i.e., One-
Probe for HTTP/1.1) which sends legitimate HTTP GET
requests in the TCP data probes to induce HTTP re-
sponse messages for path measurement. Our validation
results have shown that the TCP data probes work cor-
rectly on all major operating systems and web server
software. It also worked on 93% of the 37,874 web-
sites randomly selected from the Internet. We have also
enhanced the basic HTTP/OneProbe by using concur-
rent TCP connections and TCP timestamps option, and
improving the process of obtaining sufficient HTTP re-
sponses for continuous measurement.

TCP Sidecar [35, 36], a measurement platform based
on TCP, is closest to our work regarding the requirement
of evading middleboxes’ interferences. TCP Sidecar’s
approach is to inject probes into an externally generated
TCP flow. Since the focus of TCP Sidecar is to pro-
vide a platform for unobtrusive measurement, it does not
provide a new probing method to its “passengers.” One-
Probe, on the other hand, establishes a new TCP flow for
measurement and customizes TCP data probes for mea-
suring multiple path metrics.

1.2 Contributions of this work

1. This paper explains why the existing non-
cooperative measurement methods are becoming
unreliable and inadequate for the Internet today and
proposes to use TCP data probes for reliable and
metric-rich path measurement.

2. This paper proposes a new TCP probing method
called OneProbe which sends two TCP data packets
to measure multiple path metrics. The correctness
of the probe responses was validated on operating
systems, web server software, and websites.

3. This paper describes the implementation details of
HTTP/OneProbe, such as the method of obtain-
ing suitable http URLs for measurement and using
HTTP/1.1’s request pipelining to facilitate continu-

ous measurement in a persistent HTTP connection.

4. This paper prescribes three enhancements to the
basic HTTP/OneProbe: improving the process of
inducing HTTP responses, using TCP timestamps
option to enhance the measurement, and employ-
ing concurrent TCP connections to support a higher
sampling rate and different sampling patterns.

5. This paper presents testbed experiment results
for evaluating HTTP/OneProbe’s performance and
measurement accuracy, and our measurement expe-
rience of monitoring network paths for over a month
using HTTP/OneProbe and other tools.

2 Related work

Since OneProbe measures RTT, packet loss, and packet
reordering in an legitimate TCP session, it is mostly
related to several non-cooperative measurement tools:
sting, POINTER, tulip [26], and TCP sidecar.

OneProbe overcomes sting’s two main shortcomings
for loss-only measurement: unreliability due to anoma-
lous probe traffic and a lack of support for variable re-
sponse packet size. The probe packets in sting may be fil-
tered due to their highly unusual patterns (a burst of out-
of-ordered TCP probes with zero advertised window).
The reverse-path loss measurement based on TCP ACKs
may be under-estimated for a larger packet size [15]. We
recently evaluated sting on the set of 37,874 websites
with the two probe packet sizes considered in [34]. With
the 41-byte probes, the sting measurement was unsuc-
cessful for 54.8% of the servers; the non-success rate for
the 1052-byte probes was even close to 100%.

OneProbe overcomes POINTER’s two similar short-
comings for reordering-only measurement. The first
two POINTER methods (ACM and SAMI1) send TCP
probe packets with unacceptable acknowledgment num-
bers (ANs) and sequence number (SNs) to induce TCP
ACKs for measurement. Therefore, the probes could be
considered anomalous, and the response packet size can-
not be changed. The third method (SAM2), on the other
hand, sends probes with acceptable SNs but the ANs be-
come unacceptable if the probe packets are reordered.

Tulip, being a hop-by-hop measurement tool, was de-
signed to localize packet loss and reordering events on
network paths, and to measure queueing delay. Tulip’s
loss and reordering measurement, however, is based on
the unwarranted assumption that the remote hosts and
routers support consecutive IPID (IP’s identification) val-
ues. We tested tulip using the same set of web servers for
sting. In our experiments, tulip measured the last hops
of the paths. The tests were unsuccessful for 80% of
the servers for loss and reordering measurement—50%
of them failed to respond to tulip’s UDP probes, and an-
other 30% failed to return consecutive IPID values.

TCP Sidecar provides support for injecting measure-

44

2009 USENIX Annual Technical Conference

USENIX Association

ment probes in a non-measurement TCP connection. The
probes are limited to TCP ACKs and replayed TCP data
packets, because they must not interfere with the normal
data transmissions in the TCP connection. As a result,
the probes do not measure all packet loss scenarios and
packet reordering. Due to the same reason, the sampling
pattern and rate cannot be controlled, because a probe is
sent only after the connection is idle for some time (e.g.,
500 milliseconds in [36]).

3 OneProbe

OneProbe is a new probing method operating at the TCP
layer. Each probe consists of two customized TCP data
packets to induce at most two new TCP data packets from
the remote endpoint for path measurement. Moreover,
the probe and response packets carry legitimate applica-
tion data, so that the remote side will perceive the probe
traffic as coming from a legitimate application session.
In a client-server application protocol, the probes usu-
ally carry application requests, and the response packets
contain the requested objects. Therefore, an OneProbe
implementation comprises two main components: One-
Probe and a TCP application-dependent component.
OneProbe can be implemented for any TCP appli-
cation protocol that provides support for requesting
data from the remote endpoint. This paper presents
HTTP/OneProbe (HTTP/OP in short), an OneProbe im-
plementation for HTTP/1.1 [33]. Figure 1 shows the
main components of HTTP/OP. An HTTP/OP user inputs
an http URL, and the probe and response packet sizes
(measured in terms of the IP packet size). The HTTP
helper, an application-dependent component, first comes
up a set of qualified URLSs for the specified packet sizes
and then prepares the corresponding HTTP GET mes-
sages. The user may also specify the sampling pattern
and rate which, together with the HTTP GET messages,
are used for OneProbe measurement at the TCP layer.

3.1 The probe design

The probe is the result of several design choices. The first
advantage of using TCP probes (instead of application-
layer probes) is that the same probing mechanism could
be implemented for many TCP application protocols.
TCP probes can also provide more accurate measure-
ment about the network path quality than higher-layer
probes. Moreover, using two packets is a minimum
requirement for packet reordering measurement. For
loss measurement, the second packet can help determine
where—the forward path (from OneProbe to the remote
endpoint) or the reverse path—the first packet is lost.
Another key issue in the probe design is what kind of
response packets to induce from the remote endpoint. To
measure the reverse-path quality with the same types of
metrics, the probe is designed to induce at most two new

Sampling rate (e.g.,
2Hz) and sampling
pattern (e.g.,

Probe and
response packet
sizes (e.g., 1500

URL (e.g.,
http://
usenix.org)

and 240 bytes) Poisson)
User
_________) A,
" Find qualified URLs } |5
N i _________ o sl
_________________ =~ -
HTTP " Prepare HTTP GET % | & %
et g S
2
HTTP GET requests =
——————————— b 3
=2
C OneProbe)(— ®
TCP
Probe packetsJ, Response packets

Network

Figure 1: The main components of HTTP/OneProbe.

TCP data packets from the remote endpoint. These two
response packets are used for measuring the reverse-path
quality in a similar way as the two probe packets for the
forward-path quality. Furthermore, the response packets
are distinguishable for almost all possible delivery sta-
tuses of the probe and response packets. As a result,
OneProbe can measure both forward-path and reverse-
path quality primarily based on the response packets.

3.2 The probing process

HTTP/OP sends a sequence of probes in a persistent
HTTP connection (over a single TCP connection). Each
probe packet contains a legitimate HTTP request, and
each response packet contains legitimate data requested
by HTTP/OP. To focus on the probing process in this
section, we temporarily ignore the application-level is-
sues and assume that the TCP server always has enough
application data to send back to HTTP/OP. We also post-
pone the explanation on how OneProbe can set the user-
specified packet sizes to section 4.

We use Figure 2 to explain the probing process. De-
note a probe packet by Cm/|n and a response packet by
Sm|n. Both packets are TCP data packets, and m and n
are the TCP data segment’s SN and AN, respectively. All
the TCP data segments considered in this paper are of full
size (i.e., the maximum segment size, MSS). Therefore,
we simply use m = 1,2,--- to enumerate the server’s
TCP data segments and 1,2, - - - OneProbe’s TCP data
segments. For example, OneProbe sends its fourth data
segment in C4’|2 that also acknowledges the first two
data segments from the server. Moreover, when the AN
is not important, we just use C'm and Sm.

OneProbe customizes and dispatches the successive
probes according to the following three rules:

USENIX Association

2009 USENIX Annual Technical Conference

45

P1. (Dispatching a new probe) A new probe is dis-
patched only after receiving two new data segments
from the server and the acknowledgment for the
data segments in the probe.

P2. (Acknowledging one data segment) Each probe
packet acknowledges only one data segment from
the server, although both have been received by the
time of sending the first probe packet.

P3. (Controlling the send window size) The probe pack-
ets advertise a TCP receive window of two segments
in an attempt to constrain the server’s TCP send
window size to two segments.

Figure 2 depicts two successive probe rounds (the first
round denoted by dotted lines and the second by solid
lines). According to P1, OneProbe sends a new probe of
{C3'|1,C4|2} (for a new probe round) after receiving
S1|1" and 52|2'. Therefore, the packet transmissions in
the first round do not overlap with that in the next. More-
over, if the server’s congestion window size (cwnd) is at
least two segments, P3 will ensure that its send window
size is set to two segments. Finally, based on P2 and P3,
the server can send only one new data segment after re-
ceiving a probe packet if the probe packets are received
in the original order.

S S1I1' S212" S313' S414"
erver /4\\ 4.\ >
OneProbe ————% —t
Cl'C2' C3'11 C4'12 Time

Figure 2: Two successive probe rounds in OneProbe.

Although OneProbe manipulates the TCP packet
transmissions according to P1-P3, there are no apparent
anomalies existing in the probe packets. It only appears
to the server that the client has a low receive buffer, and
its send window is always full. Moreover, according to
our measurement experience, the OneProbe transmission
pattern was not construed for an anomalous TCP flow.
We received only a couple of complaints about our mea-
surement activities for the past two years; one of them
came from a website that normally received very few ex-
ternal requests.

3.3 Measuring RTT

OneProbe measures the RTT based on a probe packet
and its induced new data packet (e.g., C3’|1 and S3|3’ in
Figure 2). Therefore, in the absence of packet loss, One-
Probe normally obtains two RTT observations in a probe
round. However, OneProbe uses only the first-probe-
packet-RTT for measurement, because the second probe
packet’s RTT may be biased by the first packet [10].

3.4 Detecting packet loss and reordering events

There are five possible path events regarding the two
probe packets on the forward path:

FO. Both probe packets arrive at the server with the
same order.

FR. Both probe packets arrive at the server with a re-
verse order.

F1. The first probe packet is lost, but the second arrives
at the server.

F2. The first probe packet arrives at the server, but the
second is lost.

F3. Both probe packets are lost.

There are also five similar events for the two new re-
sponse packets on the reverse path: RO, RR, R1, R2,
and R3 (by replacing “probe” with “response” and “the
server” with “OneProbe” in the list above). As a result,
there are 18 possible loss-reordering events, as shown in
Table 1: the 17 events indicated / and one event for F3
(there is no 1/, because this is a forward-path-only event).
Others indicated by — are obviously not possible.

Table 1: The 18 possible loss-reordering events for the two probe pack-
ets and two response packets.

RO RR R1 R2 R3

o v v v Vv Vv
FR v v Vv v V
FlL. v Vv v Vv V
Ry - J - -
B - - - - -

OneProbe can detect almost all the 18 path events
based on the response packets. Considering the
{C3'|1,C4'|2} probe in Figure 2, Table 2 summarizes
the response packets induced for the 18 cases based on
RFC 793 [20]. In addition to the new data segments 3
and 4, the server may retransmit old data segments 1,
2, and 3, and we use Sm|n to refer to a data retrans-
mission. Since the server responses are based on TCP’s
two basic mechanisms: acknowledgment-clocked trans-
missions and timeout-based retransmissions, all operat-
ing systems are expected to produce the same responses.

Figure 2 has already illustrated the event FOxRO; Fig-
ure 3 (C'1’ and C2' are omitted) illustrates four other
cases: FRxRO0, F1 xR0, F2xRO0, and F3. The rest can
be easily constructed from the illustrations for these five
events. Note that, because of P1, the server retransmits
old data segments in all four cases. The main purpose for
withholding a new probe, even after receiving two new
data segments (e.g., in the events FR xR0 and F1 xRO0), is
to induce retransmissions for path event differentiation.

46

2009 USENIX Annual Technical Conference

USENIX Association

<Timeout> <Timeout=> <Timeout=> <Timeout=>
Server S1I1' S212' S312' S4l2' S314' _ SI1I1' 8212 S312' S412! 312! _S1I1'S212" S313' S213' S11' S22 S
Y . A \ \
OneProbe C3'11 C4'12 Time C3'11C4'2 C3'1 C4'12 C3'11 C4'12
(a) FRXRO (b) FIXRO (c) F2XR0O (d)F3

Figure 3: OneProbe’s packet transmissions for the path events FR xR0, F1 xR0, F2 xR0, and F3 xRO.

Table 2: The response packets induced by the {C3’|1, C4’|2} probe
for the 18 path events according to RFC 793.

Path events Istresponse 2nd response 3rd response

packets packets packets
1.FOXRO S3|3 S4l4! -
2.FOXRR S4[4/ 533/ -
3.FOXRI S4|4' 534/ -
4.FOxR2 S3|3 534! -
5.FOxR3 S3J4/ - -
6.FRXRO S3|2/ S4)2/ 53|4’
7.FRxRR S4[2/ S3[2’ S3ja’
8. FRxR1 54[2/ 534/ -
9.FRxR2 S3|2/ 534/ -
10. FRXR3 534/ - -
11.FIxRO S3|2 S4|2/ S3|2/
12.FIXRR S4[2/ 832’ 53|12/
13.FIxRl S4]2 532! -
14.FIxR2 $3|2' 532/ -
15.F1xR3 §3|2/ - -
16. F2xR0 3|3’ 523! -
17.F2xR1 §2|3 - -
18. F3 S1)2/ - -

3.4.1 Distinguishability of the path events

The different combinations of the SN and AN in the re-

sponse packets enable OneProbe to distinguish almost all

the 18 path events. It is not difficult to see, by sorting Ta-
ble 2 according to the three response packets, that each

sequence of the response packets matches uniquely to a

path event, except for the following three cases:

Al. F1xR2 and F1xR3: These two events cannot be
distinguished based on the response packets, be-
cause S3|2" and S3|2’ are identical, and the server
may retransmit more than once.

A2. F1xRR and F1 xR1: The reasons for their indistin-
guishability are similar to that for Al.

A3. FOxR3 and FRxR3: Both events have the same re-
sponse packet S3|4’.

The ambiguities in A1l and A2 make the delivery sta-
tus of S3|2' uncertain. The ambiguity in A3, on the
other hand, makes the probe’s order of arrival uncertain.
Our current implementation disambiguates Al and A2
by measuring the time required for S3|2" (or S3|2’) to
arrive. It usually takes a much longer time to receive

532, the retransmission of 53|2'.
3.5 Assistance from TCP ACKs

Recall that an important design choice for OneProbe is
not to rely on TCP ACKs. However, some ACKs, if
received by OneProbe, can assist in detecting the path
events. There are two such ACKs: out-of-ordered-packet
ACK (OOP-ACK) and filling-a-hole ACK (FAH-ACK).
Referring to Figure 3(a), the early arrival of C'4’|2 could
immediately trigger an OOP-ACK, whereas the late ar-
rival of C3’|1 could immediately trigger an FAH-ACK.
According to our measurement, some systems did not
return the OOP-ACK, but all the systems tested returned
the FAH-ACK.

Even though the system responses regarding the FAH-
ACK are uniform, OneProbe still does not rely on it for
measurement, because it could be lost. Instead, One-
Probe exploits these ACKSs, if received, to enhance its
measurement. The first is using the FAH-ACK to accel-
erate the detection of the forward-path reordering events
(i.e., FR x*) without waiting for the data retransmissions.
The second is using the FAH-ACK to disambiguate A3
that is the only unresolved case. An arrival of FAH-ACK,
in addition to S3|4’, clearly signals an FRxR3 event.

3.6 Starting a new probe round

Out of the 18 path events, only the path events 1-2 ful-
fill the conditions for dispatching a new probe in P1 im-
mediately after receiving two response packets. More-
over, path events 3 and 6-8 fulfill the conditions imme-
diately after receiving a data retransmission. However,
the condition is not met for the rest (i.e., events 4-5 and
9-18). Another related problem is that the server’s cwnd
is dropped to one segment for all the path events that
involve timeout-based retransmissions (i.e., path events
3-18).

To address the two problems that prevent OneProbe
from starting a new probe round, OneProbe will first
send one or more new TCP ACKs to increase the server’s
cwnd back to two for path events 3-18. After re-
ceiving two new data segments, OneProbe dispatches a
new probe: {C5’, C6'} for events 3-10, {C4', C5'} for
events 16-17, and {C3’,C4’} for event 18. Handling
events 11-15 is more complicated. If a new probe of

USENIX Association

2009 USENIX Annual Technical Conference

47

{C3',C4"} were used, the server will drop C4’, because
it has already been received. The current implementa-
tion restarts the connection when encountering these path
events. A better approach is to retransmit C'3’ with the
respective AN’ and to use a new probe of {C5’, C'6'}.

3.7 Sampling the packet loss and reordering rates

OneProbe samples the packet loss and reordering rates
from consecutive probe rounds. Similar to the RTT mea-
surement, OneProbe uses only the first packet for the loss
measurement. After conducting a number of consecutive
probe rounds, say 120, over one minute, OneProbe com-
putes the forward-path (and reverse-path) loss rate by di-
viding the number of the first-probe-packet-loss events
(and the first-response-packet-loss events) by 120. One-
Probe computes the packet reordering rates in a similar
manner.

4 HTTP/OneProbe

We have implemented HTTP/OP as a user-level tool
(around 8000 lines of C' code) on unmodified Linux 2.6
kernel. As shown in Figure 1, HTTP/OP consists of two
main components: HTTP helper and OneProbe. HTTP
helper handles the issues concerning the HTTP 1.1 pro-
tocol, whereas OneProbe implements OneProbe. This
section considers a basic HTTP/OP that utilizes a persis-
tent HTTP/1.1 connection.

4.1 The HTTP helper

The HTTP helper’s main tasks include finding one or
more qualified http URLs for the user-specified packet
sizes and preparing the HTTP GET requests for them.
Figure 4 shows that HTTP/OP sends an initial HTTP
GET request for a qualified url-1 in C0’. The server
replies with an HTTP response message sent in S1, S2,
---. HTTP/OP also sends the same request in all subse-
quent probe packets. Note that before sending the first
probe {C1’, C2'}, HTTP/OP sends an ACK to ramp up
the server’s cwnd to two segments. Therefore, C0’ and
S51-53 are not used for OneProbe measurement.

HTTP response message for url-1 .e

Web S1
server

S2 S3 S4 S5

g
G
&/
&~
z

HTTP/
op Co' ACK c1r c2 C3' Cc4
«€—Preparation phase————Probing phase—»

Figure 4: HTTP/OP sends HTTP GET requests for url-1 for OneProbe
measurement.

4.1.1 Finding qualified http URLs

An http URL is considered qualified if its HTTP GET
request can be retrofitted into a probe packet, and the
GET request can induce at least five response packets
from the server. A minimum of five response packets is
required because of the three additional response pack-
ets for the cwnd ramp-up. Let Z,, and Z, be the user-
specified probe packet size and response packet size,
respectively. Therefore, the length of the HTTP GET
request for a qualified URL will not exceed Z, — 40
bytes (assuming a 40-byte TCP/IP header). Moreover,
the length of corresponding HTTP response message, in-
cluding the response header and message body, must be
at least 5 x (Z, — 40) bytes.

Checking the length of the GET request is simple. Ver-
ifying whether a user-specified URL meets the size re-
quirement for the response packets, however, requires
some work. If the Content-Length header field is
present in the HTTP response message, the length is just
a sum of the field value and the response header’s length.
Otherwise, the helper will download the entire HTTP re-
sponse message to determine the length. If no qualified
URL can be obtained, the helper will perform web crawl-
ing to retrieve all the available URLs, starting at the root
of the web server and down to a certain depth level (five
for our case). Our implementation for the web crawling
process is based on the recursive retrieval technique im-
plemented in Wget [17].

Besides, the HTTP GET request for a qualified URL
must induce a 200 (OK) response. We purposely do not
use those with 404 (Not Found) responses in order
not to cause security alerts on the site. We also avoid us-
ing HTTP response messages that do not have a message
body (e.g., 304 (Not Modified)).

4.1.2 Preparing the HTTP GET requests

To craft a Z,-byte probe packet for an HTTP request,
the helper expands the packet size through the Referer
field. Since some web servers only accept requests re-
ferred from their own web pages, the helper first appends
the requested URL to the Referer field to avoid block-
ing. If the packet size still falls short, the helper further
appends a customized string consisting of a probe ID and
an email address for our project (for lodging a complaint
[18]) repeatedly until reaching the packet size. More-
over, to reduce the delay in dispatching the probes due
to possible context switching, the HTTP helper has pre-
pared the HTTP GET requests for the qualified http URLs
before starting the OneProbe measurement.

HTTP/OP exploits HTTP/1.1’s request pipelining to
include a GET message in each probe packet for path
measurement. The pipelined HTTP GET requests could
be for a single or multiple URLs. There are also other al-
ternatives, such as sending a large GET message in sev-

48

2009 USENIX Annual Technical Conference

USENIX Association

eral probe packets or including multiple GET messages
in a probe packet. But we did not adopt them, because
they are either delaying the return of the response packets
or introducing too many request messages.

Moreover, an HTTP response message usually will not
fully occupy the last response packet. Therefore, a full-
sized response packet may contain data from two HTTP
response messages. However, we have also observed
that some response packets are not full-sized packets, be-
cause they contain only the last chunks of the response
messages. Our current implementation will close the
connection whenever detecting a small segment and ig-
nore the probe rounds involving small segments. A bet-
ter approach is perhaps to continue the next probe round
using the next HTTP response message in the same con-
nection.

4.2 Animplementation of OneProbe

OneProbe manages the measurement in two levels:
session and TCP connection. An OneProbe session
could involve concurrent TCP connections (see section
5.3 for this enhancement). Figure 5 shows OneProbe’s
main tasks for a TCP connection in two consecutive
phases: preparation and probing. The preparation phase
is for performing the ground works for the probing phase.
In the probing phase, OneProbe dispatches the probes
containing the HTTP GET requests that have been pre-
pared by the HTTP helper, analyzes the response pack-
ets, and terminates the connection when the session ends
or encounters exceptions. OneProbe also includes a di-
agnosis module to detect self-induced packet losses.

Start

- N
Sending the Exception or Done
probe and l

analyzing the l

results) Preparing for Terminating
OKT the next probe the TCP

I
Configuring I
the probe and | |
response I
I

I

packet sizes

Ramping up Getting the | task) {_connection
[the server's next probe (€ No|exception
e I fask J No probe task
Preparation phase ! Probing phase

Figure 5: OneProbe’s major tasks in the preparation and probing
phases for a TCP connection.

4.2.1 Session management

There are two mains tasks in the session management.
The first task is that OneProbe establishes and main-
tains a system-configurable number of TCP connections
for a measurement session (one connection for the ba-
sic HTTP/OP). As a second task, OneProbe prepares a
probe schedule according to the user-specified sampling
pattern and rate before starting the measurement. The

schedule contains a list of probe tasks, each of which in-
cludes a dispatch time and a probe number. The probe
tasks are enqueued to a probe-schedule queue as soon as
they are generated. OneProbe currently supports peri-
odic and Poisson sampling, and it is not difficult to admit
others. For the Poisson sampling, our implementation is
based on the method 3 in RFC 2330 [31] which elimi-
nates possible timing errors in dispatching the probes.

4.2.2 The preparation phase

OneProbe configures the probe and response packet
sizes during the TCP three-way handshake. OneProbe
advertises its MSS (say M SS.) in the TCP SYN seg-
ment to control the size of the server’s response pack-
ets. From the TCP SYN/ACK segment returned by
the server, OneProbe learns the server’s advertised
MSS (say MSS;). As a result, Z, must be less than
MSS; + 40 bytes, and Z, = min{ M SS., M SS;} +40
bytes. Therefore, OneProbe can dictate the server’s re-
sponse packet size by advertising an M S.S. < MSS;.

Another purpose of this phase, as already shown in
Figure 4, is to ramp up the server’s cwnd to two seg-
ments for starting the first probe round. If the server’s
initial cwnd is at least two segments (detected by receiv-
ing two response packets after the initial HTTP GET re-
quest), then the first probe round can be started without
sending the ACK.

4.2.3 The probing phase

Preparing for the probes The probing phase starts as
soon as receiving two response packets from the server
(see Figure 4). To dispatch a probe, OneProbe first
retrieves a probe task from the probe-schedule queue.
Moreover, any slipped probe task, for which its dispatch
time has already passed the current time, will be removed
from the queue and discarded. When the probe schedule
is empty, OneProbe closes the TCP connection.

After obtaining a probe task, OneProbe uses
clocknanosleep() in time.h to perform a high-
resolution sleep until reaching the dispatch time. Upon
waking up, OneProbe draws a pair of HTTP GET re-
quests randomly from the list of the GET requests already
prepared by the HTTP helper and sends each in a probe
packet. To ensure a successful delivery of the probe to
the network, OneProbe captures each dispatched probe
packet using 1ibpcap.

Dispatching the probes Similar to other measuring sys-
tems, such as Scriptroute [37], we have used Linux
raw socket to craft and send the probe packets, and the
libpcap 1.0.0 library to capture the probe and response
packets. As a result of bypassing Linux’s normal TCP/IP
processing, the kernel is unaware of OneProbe’s TCP
connections and will therefore respond with a TCP RST
for each response packet received. Our implementation

USENIX Association

2009 USENIX Annual Technical Conference

49

blocks the RST traffic using Linux’s iptables.

Another important issue is to timestamp each probe

and response packet accurately for the RTT measure-
ment. Since we have already used 1ibpcap to capture
packets, we use the timestamp from the pcap_pkthdr
structure of each probe and response packet to measure
the RTT with microsecond resolution. An alternative is
to use the recently proposed TSC clock [14] that provides
a highly accurate timing information through the kernel
timestamping, but accessing it requires a kernel patch.
The user-level timestamp from gettimeofday(), on
the other hand, is unreliable, because its accuracy can be
affected by system’s context switching.
Analyzing the response packets OneProbe cap-
tures the response packets (and probe packets) using
libpcap and writes all the captured packets to a dump
file (which can be opened by pcap dump offline()
available in the libpcap library) for analysis.
OneProbe determines the path event based on the se-
quence of response packets in Table 2 and the assistance
of TCP ACKs discussed in section 3.5. It also measures
the first-probe-packet-RTT from the packet timestamps.
In processing the response packets, OneProbe also fil-
ters packets irrelevant to the measurement, such as TCP
window updates. Furthermore, OneProbe computes
from a consecutive number of probe rounds the statis-
tical metrics (in terms of, e.g., mean and median) for the
RTT, loss rates, and reordering rates.

OneProbe supports both online and offline process-
ing of the response packets. The online processing is
possible, because OneProbe only needs to identify the
TCP data packet received from the server. However, we
have set the default processing to offline mainly for pre-
venting the processing workload from influencing the
probing process. Another advantage of the offline ap-
proach is to facilitate a more accurate (as compared with
the online approach) disambiguation of A1 and A2 based
on the RTT samples collected in the measurement (as
discussed in section 3.4).

4.2.4 Diagnosing self-induced packet losses

OneProbe performs a self-diagnosis to confirm that the
measurement is free of self-induced packet losses. For
the forward-path measurement, failures of sending out
the probe packets are still possible, despite that the im-
plementation always validates the successful invocation
of the sendto() function. To detect these self-induced
losses, OneProbe uses 1ibpcap to verify the deliv-
ery of each outgoing probe packet to the network. For
the reverse-path measurement, self-induced losses could
also occur to the response packets due to insufficient
buffer space. OneProbe monitors the ps_drop vari-
able returned by the 1ibpcap’s pcap_stats() func-
tion to detect such losses.

5 Enhancements

This section describes three enhancements to the basic
HTTP/OP presented in the last section. The first en-
hancement is to improve the process of inducing suffi-
cient HTTP responses. We have implemented additional
mechanisms to prevent web servers from compressing
the requested objects and to use unqualified URLs for
measurement. The second is to disambiguate A3 using
TCP timestamps option. The third enhancement is using
multiple TCP connections in a measurement session to
satisfy the user-specified sampling rate and pattern. With
a single TCP connection, the sampling rate is constrained
to at most one per RTT, and the RTT variations also make
it difficult to realize the user-specified sampling pattern.

5.1 Improving the HTTP response solicitation

Avoiding message compression The first improvement
is to prevent web servers from compressing HTTP re-
sponses which, for example, is performed by Apache
server’s mod.-deflate module [1]. The compressed
responses could affect OneProbe measurement, be-
cause the expected number of response packets for
a qualified URL may be reduced. Therefore, each
HTTP GET request specifies Accept-Encoding:
identity;g=1, *;g=0, where identity;g=1
indicates that the identity encoding (i.e., no trans-
formation) should be performed on the entity of the
response, and *;g=0 means avoiding other encoding
methods.

Using unqualified URLSs for measurement As a sec-
ond improvement, HTTP/OP exploits the range request
feature in HTTP/1.1 to use unqualified URLs for path
measurement. A range request can be used to request
multiple overlapped ranges of the same web object from
a web server that accepts range requests. Therefore, even
an unqualified URL can be “expanded” to fulfill the min-
imum size requirement for the response packet.

We have implemented this enhancement in the HTTP
helper which can verify whether the server supports the
range request via the Accept -Ranges header field in
the HTTP response message. If the HTTP helper cannot
find any qualified URL but discover that the server sup-
ports the range request feature, it will craft a range re-
quest as discussed above to induce HTTP response mes-
sages for OneProbe measurement.

5.2 Using TCP timestamps to disambiguate A3

In addition to the FAH-ACK, we have proposed and im-
plemented a method to disambiguate A3 using the TCP
timestamps option [21]. In this enhancement, each probe
packet contains a distinct timestamp in the TCP option
field. If the server also supports the TCP timestamps op-
tion, it will retain the timestamp received from the most
recent probe packet that advances its receive window and

50

2009 USENIX Annual Technical Conference

USENIX Association

echo it in its next response packet. Therefore, the server
retains C'4"’s timestamp for the case of FOxR3 and C'3'’s
timestamp for the case of FRxR3. As a result, the two
path events can be distinguished based on the different
timestamps in S3[4’.

5.3 Using multiple TCP connections

To extend the basic HTTP/OP to using N TCP connec-
tions, we have used the POSIX Threads (pthreads)
library to create and manage multiple threads. A sin-
gle thread is used for managing the measurement ses-
sion, and N worker threads are created for managing the
TCP connections separately. OneProbe also monitors
the health of the connections to ensure that there are al-
ways [N TCP connections available throughout the mea-
surement session.

Since some web servers may limit the number of con-
current TCP connections initiated from an IP address,
OneProbe assigns randomly selected source IP ad-
dresses from an address pool to the N connections. Our
experience shows that N = 10 is sufficient for support-
ing periodic sampling with a rate of two probes per sec-
ond. A higher IV, however, is expected for Poisson sam-
pling because of the high inter-probe delay variability.

6 Evaluation

This section presents three sets of evaluation results. The
first one evaluates whether different systems and web
servers respond to OneProbe’s probes correctly. The sec-
ond evaluates how the latency induced by web servers
will affect the accuracy of the HTTP/OP measurement.
The final set evaluates the effect of the HTTP/OP mea-
surement on the system resource consumption in the
measuring system and web servers.

6.1 Validation of OneProbe

We have designed a small, but just sufficient, suite of val-
idation tests (called Validator) for OneProbe. A system
or web server that passes all the tests can be used by One-
Probe for path measurement. Table 3 describes the four
validation tests VO-V2 that “simulate” the forward-path
events FO-F2, respectively. Same as OneProbe, Validator
constrains the server’s cwnd to two segments. Moreover,
Validator does not acknowledge the response data pack-
ets in order to simulate reverse-path losses. Therefore,
the data retransmissions are expected to be the same as
in Table 2. Note that these tests for reverse-path losses
have already covered the test for F3, because withholding
the next probe is the same as losing it.

6.1.1 Results for operating systems and web servers

We applied Validator to test the major operating systems
and web server software listed in Table 4. Three tri-
als were performed for each system and server. A test
was considered successful if all four validation tests were

Table 3: A suite of four validation tests performed by Validator.

Tests Testing Expected packets Expected data
probes induced from server retransmissions

V0. {C3,C4'} {S3]3",54]4'} S3|4/

VR. {C4,C3} {S3]2/,54)2'} 534/

VI. C4 only {32/, 54/2'} 532/

V2. C3 only 53|3/ S2|3’

passed in at least one trial. The validation results were all
successful.

Table 4: The 39 systems and 35 web server software that passed the
OneProbe validation tests.

Systems tested FreeBSD v4.5/4.11/5.5/6.0/6.2, Linux kernel

in our lab.: v2.4.20/2.6.5/2.6.11/2.6.15/2.6.18/2.6.20, MacOSX
10.4 server, NetBSD 3.1, OpenBSD 4.1, Solaris
10.1, Windows 2000/XP/Vista

Systems tested
in the Internet:

AIX, AS/400, BSD/OS, Compaq Tru64, F5 Big-
1P, HP-UX, IRIX, MacOS, NetApp NetCache, Net-
Ware, OpenVMS, OS/2, SCO Unix, Solaris 8/9,
SunOS 4, VM, Microsoft Windows NT4/98/Server
2003/2008

Servers tested
in our lab.:

Abyss, Apache, Lighttpd, Microsoft IIS, Nginx

Servers tested
in the Internet:

AOLserver, Araneida, Apache Tomcat, GFE, GWS-
GRFE, IBM HTTP Server, Jetty, Jigsaw, LiteSpeed,
Lotus-Domino, Mongrel, Netscape-Enterprise, Om-
niSecure, Oracle HTTP Server, Orion, Red Hat Se-
cure, Redfoot, Roxen, Slinger, Stronghold, Sun Java
System, thttpd, Twisted Web, Virtuoso, WebLogic,
WebSiphon, Yaws, Zeus, Zope

6.1.2 Results for web servers in the Internet

In spite of the successful results above, OneProbe may
still not be supported on some Internet paths because
of middleboxes and customized TCP/IP stacks. We
therefore extended the validation tests to websites in
the Internet. We ran the Larbin web crawler [6] with
slashdot . org as the starting URL (the same method
used in [35]) to obtain 241,906 domain names and then
randomly selected 38,069 websites from them. Based on
the Netcraft database [29], the web servers came from 87
geographical locations, covering the 39 systems in Table
4 and 117 web server software. After excluding 195 of
them that reset the TCP connections, we report the re-
sults from the remaining 37,874 websites below.
Successful (93.00%) These servers passed all tests.
Failures in the preparation phase (1.03%) These web-
sites failed to return the expected {S1,.52}. Therefore,
OneProbe could not start the probing phase.

Failures in test VO (0.26%) Most websites in this
set replied with {53|4’, S4|4'}, instead of the expected
{53]3’,54|4’}. That is, they sent response packets after
receiving both probe packets.

Failures in test VR (5.71%) Some websites appeared

USENIX Association

2009 USENIX Annual Technical Conference

51

to have received an order-intact probe because of
two kinds of response packets received from them:
{53]3",54|4'} and {S3|4’,54]|4’}. Another set replied
with {53]3’, 54|3'}; such behavior is similar to the prob-
lem of “failure to retain above sequence data” reported in
[30]. The final set replied with {53|2, 54|2'}, showing
that they did not receive the reordered C'3’, possibly due
to packet drop by firewalls and intrusion detection sys-
tems. For example, Cisco I0S firewall drops reordered
packets before release 12.4(11)T [13].

Since all the websites that failed test V1 also failed test
VR, these failures are classified only under test VR.

6.2 Latency introduced by web servers

A common problem for non-cooperative measurement
tools is that their delay measurement could be affected by
the remote endpoint’s loading. In particular, a busy web
server can introduce substantial latency during HTTP
transaction processing [8].

6.2.1 Testbed and experiment setup

We setup a testbed to evaluate the impact of server-
induced latency on the HTTP/OP measurement. The
testbed consisted of a web server running Apache v2.2.3
and a probe sender where HTTP/OP and other measure-
ment tools resided. Both machines were connected to
each other through a router, which ran Click v1.6 [22]
in kernel mode to emulate a fixed RTT of 25 millisec-
onds between them. Each machine, including the router,
was equipped with a 1.7GHz Pentium 4 processor with
256MB memory running Linux v2.6.18 and connected
to a 100Mbits/s LAN.

By adopting the approach described in [8], we set up
two Surge web load generators [7] in separate machines
that were directly connected to the web server. We ex-
perimented with a light load (20 Surge users from each
generator) and a heavy load (260 Surge users from each
generator). Each generator generated requests for objects
selected from a set of 2000 distinct static files with size
ranging from 78 bytes to 3.2MB. We conducted the same
set of experiments for HTTP/OP and httping [19]. We
included httping, because it is a common HTTP-based
ping tool which uses HTTP HEAD and GET requests as
probes to induce HTTP responses for RTT and round-trip
loss measurement.

We restricted both HTTP/OP and httping to request-
ing five static text files of 20KB, 200KB, 2MB, 10MB,
and 100MB available in the web server. We launched
HTTP/OP using 30 TCP connections and periodic sam-
pling with a rate of 20Hz (one probe every 50 millisec-
onds). All probe and response packets were 240 bytes in
length. For httping, we used the default sampling rate of
1Hz and HEAD requests and responses for measurement.
The httping’s probe and response packet sizes depended

on the URL specified in the HTTP request and the corre-
sponding response.

For each load environment, we obtained the server-
induced latency by measuring the difference between the
arrival time of a probe packet at the server and the time of
sending out the response packet that it has induced. Be-
sides for HTTP/OP and httping, we measured the server-
induced latency also for the initial HTTP request sent
out in the HTTP/OP’s preparation phase. As discussed
in section 4.1, this request is used for ramping up the
server’s cwnd, therefore not used for measurement. We
installed tcpdump at the server to capture all network
traffic to and from the probe sender until we had obtained
150 latency samples for each experiment.

6.2.2 Server-induced latency

Figure 6 plots the cumulative distribution function (CDF)
of the server-induced latency for HTTP/OP, httping, and
HTTP/OP’s initial HTTP GET request under the light and
heavy loads. The figure shows a significant latency oc-
curred to both httping and the initial HTTP GET request.
This start-up latency was reported for the Apache 1.3.0
architecture [8]. A similar delay of several milliseconds
was also observed for a Google server to send out the
first response packet for a request [12].

For the httping and initial HTTP GET request measure-
ment, the server is required to invoke several expensive
system calls (such as, read() and stat()) for process-
ing the first request. Using the strace utility [4], we
confirmed that the system calls invoked in the user space
before sending out the response message was responsi-
ble for the start-up latency [2]. Besides, the start-up la-
tency could last even longer because of additional back-
end server operations (e.g., the query delay of a Google
search [12]).

HTTP/OP, on the other hand, avoids the substantial
start-up latency, because it does not use the initial HTTP
GET request for measurement. Moreover, when the
first probe round starts, the response packets can be in-
duced immediately after receiving a new TCP acknowl-
edgment in a probe packet. Therefore, the overhead for
the HTTP/OP measurement mainly comes from the data
copying between the kernel space and devices. Accord-
ing to the strace results, the overhead of the data copy
operations was low, because it was performed by invok-
ing sendfile() to copy data from the file descriptor for
the response message directly to a socket interface within
the kernel.

Figure 6 also shows a much higher server-induced la-
tency under heavy load for the httping and initial HTTP
GET request measurement. The reason is that the server
has less system resources for the start-up processing of
httping’s HEAD request and the initial HTTP GET re-
quest. By avoiding the start-up latency, the HTTP/OP

52

2009 USENIX Annual Technical Conference

USENIX Association

HTTP/OP (light) ‘ HTTP/OP (heavy)

P AT RN

1w e s g e
&

0.8
& 0.6
©o04

0.2

%

HTTP/OP’s initial GET (heavy)
HTTP/OP’s initial GET (light)

0. 1 15 2 25
Server-induced latency (milliseconds)

Figure 6: Server-induced latency experienced by HTTP/OP, httping,
and HTTP/OP’s initial HTTP GET request under light and heavy loads.

1

B
0.8 0.8 _’._\-‘ B
&
w06 w06 o
[=} [=] -~
© o4 Co4
-+ 10MB| ==10MB
0.2] ---2MB 0.2 ---2MB
o —20KB N —20KB
0 10 20 30 40 50 0 10 20 30 40 50
Ser d d latency (i d: Ser i latency (mi

(a) Light server load (b) Heavy server load

Figure 7:
HTTP/OP.

CDFs of the server-induced latency experienced by

measurement is also much less susceptible to the server
load, as shown in Figure 6.

6.2.3 Effect of object size on server-induced latency

To evaluate the effect of the object size on the server-
induced latency, we plot in Figure 7(a) (for light load)
and Figure 7(b) (for heavy load) the CDFs of the server-
induced latencies for the HTTP/OP measurement based
on 4500 samples. For the sake of clarity, we show the re-
sults only for 20KB, 2MB, and 10MB. The observations
obtained from them also hold for 200KB and 100MB.

Both figures show that the server-induced latency dur-
ing the HTTP/OP measurement was very small: 80% of
the samples were less than 30 microseconds. Therefore,
the server-induced latency had negligible effect on the
RTT measurement accuracy. Moreover, under a heavy
server load, the latency was higher for a smaller object
size, because HTTP/OP requested the server to load the
requested objects more often. Under a light server load,
however, the latency differences for the three object sizes
were not significant. As a result, the server loading had
more impact on the HTTP/OP measurement for small ob-
jects. Similar observations were reported in [8].

6.3 Resource consumptions of HTTP/OneProbe
6.3.1 System resources

Another important evaluation concerns the amount of
system resources consumed by the HTTP/OP measure-
ment in the probe sender and web server. We employed
the same testbed but with different parameter settings.
The web server hosted ten 61MB tarballs for retrieval.
We ran HTTP/OP on the probe sender to randomly re-
quest the ten tarballs for 240 seconds using 1, 10, and 100

TCP connections and periodic sampling with five differ-
ent rates: {1,5,10,50,100,150}Hz. The probe and re-
sponse packets had the same packet size of 1500 bytes.

We used vmstat [3] to measure the CPU and mem-
ory utilizations consumed by all Apache processes in
the web server every second. At the same time, we
measured the utilizations consumed by HTTP/OP in the
probe sender. During the measurement, we ensured that
no other routine processes were executed on both ma-
chines. Table 5 shows that the CPU utilizations were
very low in all cases. Even when HTTP/OP used 100
concurrent TCP connections with a fine sampling rate of
150Hz, the average CPU utilizations of the probe sender
and web server were still below 0.9% and 1.2%, respec-
tively. The average memory utilizations (not shown here)
of the probe sender and web server were also less than
2% and 6.3%, respectively, in all cases.

Table 5: The CPU utilizations consumed in the probe sender and web
server during the HTTP/OP measurement.

Number of TCP ~ Sampling Average CPU utilizations (%)
connections rates (Hz) Probe sender Web server

1 1 <0.01 0.03

1 5 0.07 0.07

10 10 <0.01 0.27

10 50 0.07 0.70

100 100 0.17 0.77

100 150 0.87 1.17

We also performed similar experiments for three op-
erating systems used by the web server: FreeBSD 6.2-
RELEASE, Linux v2.6.18, and Microsoft Windows XP
(SP2), and for three popular web server software with
default settings: Lighttpd 1.4.18, Microsoft IIS 5.1,
and Nginx 0.5.34. The CPU utilizations consumed by
them during the HTTP/OP measurement ranged between
0.08% and 1.05%.

HTTP/OP incurs a small overhead to the probe sender,
because it inspects only the TCP headers of the probe and
response packets, and does not require saving the entire
packet’s payload to the disk. Moreover, HTTP/OP ap-
plies 1ibpcap’s packet filters to capture packets rele-
vant to the path measurement and limits the amount of
data captured from a packet.

6.3.2 Network I/0

To measure the network I/O for the HTTP/OP mea-
surement, we conducted the measurement on the same
testbed using five TCP connections and periodic sam-
pling with a rate of SHz. HTTP/OP requested files of
2MB, 10MB, and 100MB for 240 seconds. The probe
and response packet sizes were 1500 bytes. We used the
sar utility [5] to measure the network I/O from the web
server side in terms of the number of packets per second
(pkts/s) and bytes per second.

USENIX Association

2009 USENIX Annual Technical Conference

53

The results in Table 6 are very close to the expected
results of 10 pkts/s (SHzx2 packets) and 15000 bytes/s
(10 pkts/sx 1500 bytes/pkt) for both reception (Rcv) and
transmission (Tmt). The results are slightly higher than
the expected results, because of the additional packets
for the TCP connection establishment and termination.
Table 6 also shows that the network I/O stays almost the
same for different object sizes, because it depends only
on the probe and response packet sizes.

Table 6: Network I/O for the HTTP/OP measurement.

Object Rev Tmt Rev Tmt
sizes (MB) (pkts/s) (pkts/s) (bytes/s) (bytes/s)
2 11.36 11.52 15598 16508
10 11.35 11.52 15598 16511
100 11.34 11.48 15590 16485

7 Measurement experiences

This section reports our recent experience of deploying
HTTP/OP for Internet path measurement. All the mea-
surement results reported here were obtained from an
HTTP/OP deployment at a Hong Kong data center. The
full set of results and the measurement setup are available
from [11].

7.1 Diurnal RTT and loss patterns

This set of measurement results was obtained from a set
of web servers hosting the last Summer Olympic Games.
HTTP/OP sent a probe every 500 milliseconds, contin-
uously for one minute, and the same probing pattern re-
peated after idling for four minutes. The entire measure-
ment was smoothly conducted for over a month.

Figure 8 shows the RTT and round-trip loss rate mea-
surement for one of the paths. The HTTP/OP mea-
surement captured clear diurnal RTT and round-trip loss
patterns. The peak loss rates also coincided with the
daily high RTT periods. A positive correlation between
RTT and loss rate was also reported by observing packet
losses at bottleneck queues in a ns-2 simulation study
[9]. For temporal correlation, the high RTT periods were
longer and the intensity of the peak loss rates were higher
on weekends.

Studying the correlation of RTT and packet loss rate
is important for predicting network congestion from end
hosts [9]. HTTP/OP provides a more accurate measure-
ment of their correlation, because it can sample an Inter-
net path with more fine-grained and uniform sampling,
and over a long duration. HTTP/OP’s intrusion to the
path is also minimal, thus minimizing the self-induced
bias. For the purpose of comparison, the measurement in
[27] was conducted for five days and for each day each
run was executed every two hours, and it introduced be-
tween 6 and 20 MB in each run.

7.2 Discrepancy between Ping and OneProbe RTTs

This set of results is also part of the Olympic Games
measurement. Besides HTTP/OP, we also deployed
ICMP Ping and other tools for path measurement. To
compare their results accurately, the tools were config-
ured to measure the same path at the same time. Figure 9
shows the RTT measurement obtained by HTTP/OP and
Ping for one of the paths. The figure shows that for the
first few days their RTTs consistently differed by around
100 milliseconds on the peaks, but they were similar on
the valleys. As a result, the Ping measurement under-
estimated the actual RTT experienced by TCP data pack-
ets by as much as 70%! Moreover, due to an (possi-
bly network configuration) event unseen to Traceroute,
their RTTs “converged” at 12 Aug. 2008 16:39 UTC. At
the same time, the forward-path loss rate dropped signif-
icantly after this convergence point. Therefore, non-data
probes may not measure the actual path quality experi-
enced by data packets.

B
o

OneProbe RTT
Ping RTT

W
(=]
o

12 Aug 16:39 UTC

w
o

RTT (milliseconds)
- N
o [=}
o o
RN
=
o

N
o
Forward—path loss rate (%)

10Aug 11Aug 12Aug 13Aug 14Aug 15Agg

Figure 9: Discrepancy in the RTT measurement obtained by HTTP/OP
and Ping for a Summer Olympics web server.

9Aug

7.3 Asymmetric loss rates and loss-pair RTTs

This set of results is also part of the Olympic Games
measurement. For all the paths in this set of measure-
ment, the reverse-path losses dominated the round-trip
loss rates, and in some cases the packet losses occurred
only on the reverse paths. These results are consistent
with web’s highly asymmetric traffic profile. Moreover,
we conducted a parallel measurement to the same servers
but with different reverse paths, but we did not observe
packet losses from this set of measurement. Therefore,
the packet losses were believed to occur on the reverse
paths close to the web servers but not in the web servers.

Moreover, HTTP/OP can measure the loss-pair RTT.
A probe packet-pair or a response packet-pair is con-
sidered a loss pair if only one packet is lost to the pair
[23]. Loss-pair analysis has been shown useful in es-
timating bottleneck buffer sizes of droptail routers and
characterizing packet dropping behavior [23]. However,
in the absence of a suitable measurement tool, the loss-
pair analysis has so far been analyzed using simulations
and restricted to round-trip loss pairs.

Figure 10 shows the forward-path and reverse-path

54

2009 USENIX Annual Technical Conference

USENIX Association

140 Q
\ <
. 300 Olympic Games R | ®
3 j30 ¢
S @
8 200 22 Aug 4
8 20:37 UTC -120 -Q'_
7 E
= 100]
E 10 8
1 rate 3
LI AL AN M. ull ML 0 «

8Augi2nn 15Aug12nn 22Augi2nn

Figure 8: Time series of RTT and round-trip loss rates

loss-pair RTTs for one of the paths, and the RTT was
measured for the first packet in the pair (and the second
was lost). The loss-pair RTTs are superimposed with the
corresponding RTT time series to identify which parts
of the RTT time series the loss pairs were located. The
figure shows that almost all the loss-pair RTTs on the
forward path were clustered on the RTT peaks, suggest-
ing that the packets were dropped in a drop-tail router
on the forward path. However, the reverse-path loss-pair
RTTs behaved very differently. While many loss pairs
saw the highest RTT, there were also many others seeing
other RTT values, including the lowest RTT. Therefore,
the packet dropping behavior is more similar to that ex-
hibited by a random-early-drop router.

7.4 Effect of packet size on reordering rates

This set of measurement results was obtained from a
PlanetLab node [32]. The HTTP/OP measurement re-
vealed that this path experienced persistent, high re-
ordering rates on both forward and reverse paths over
one week. We experimented with three combinations of
packet sizes: {280,280}, {280, 1420}, and {1420, 280},
where the first is the probe packet size in bytes and the
second response packet size in bytes. Note that the cur-
rent non-cooperative tools cannot measure the reverse-
path reordering rate for different packet sizes.

Figure 11(a) depicts how the packet size affected the
reordering rate for the forward path. The reordering pat-
tern for {280,280}, which is not included in the fig-
ure, is similar to that for {280,1420}. A comparison of
the three results therefore concludes that a smaller probe
packet is more prone to packet reordering. This finding
is consistent with the results obtained from a cooperative
measurement study [16] and TBIT measurement [28].

Figure 11(b) shows the distinctive reordering rates on
the reverse path for the three packet size combinations.
Same as the forward-path reordering, a smaller response
packet size is more prone to packet reordering. Thus, the
case of {280,1420} suffered from the least reordering.
Surprisingly though, the reordering rate for {280,280}
was distinctively higher than that of {1420, 280}, al-
though they had the same response packet size. A pos-

obtained by HTTP/OP for a Summer Olympics web server.

sible explanation is that smaller probe packets will reach
the server with a smaller inter-packet interval. They will
therefore induce two response packets also with a smaller
interval, and the occurrence of packet reordering gener-
ally increases with a shorter inter-packet interval.

20f ‘ o ‘ 501 |
{280,1420) . {1420,280}
g \) O@O
“1s1 ¢, ;
s
o
10
Q
3
g s

O
21Sep 22Sep 23Sep 24Sep 25Sep 26Sep

(a) Forward-path reordering

20f {280,1420}]
—_ {1420,280}
o\o
o 15 H
8
o
£10r
o
B
§ 5r

0 (@ —) s ;

20Sep 21Sep 22Sep 23Sep 24Sep 25Sep 26Sep

(b) Reverse-path reordering

Figure 11: Time series of forward-path and reverse-path packet re-
ordering rates obtained by HTTP/OP for a PlanetLab node.

8 Conclusions

In this paper, we presented OneProbe, a new TCP prob-
ing method, and HTTP/OneProbe, an implementation of
OneProbe for HTTP/1.1 to induce sufficient HTTP data
for continuous measurement. HTTP/OneProbe’s path
measurement is reliable, because the probes and induced
response packets are legitimate HTTP/TCP data pack-
ets, and the probes are based on TCP’s basic fundamen-
tal transmission mechanisms. OneProbe can also sample
RTT, packet loss rates on the forward and reverse paths,
and packet reordering rates on the forward and reverse
paths at the same time using the same probe. We per-

USENIX Association

2009 USENIX Annual Technical Conference

55

W
(=3
o

-
(=]
o

RTT(milliseconds)
N
o
o

‘*RTT + Loss—pair RTﬂ

W
(=]
o

n
o
o

-
o
o

RTT(milliseconds)

‘*RTT + Loss—pair RTﬂ

| |
&gug12nn 15Aug12nn 22Augi2nn

(a) Forward path

| |
&gug12nn 15Aug12nn 22Augi2nn

(b) Reverse path

Figure 10: Time series for the loss-pair RTTs obtained by HTTP/OP for a Summer Olympics web server.

formed extensive experiments to validate the correctness
of the probe responses, to evaluate the performance and
accuracy of HTTP/OneProbe, and to monitor network
paths for over a month. We are currently introducing new
path metrics, such as capacity and available bandwidth,
to OneProbe.

Acknowledgments

We thank the five anonymous reviewers for their criti-
cal reviews and suggestions and Mike Freedman, in par-
ticular, for shepherding our paper. We also thank Wait-
ing Fok for preparing the colorful Internet measurement
plots. This work is partially supported by a grant (ref.
no. ITS/152/08) from the Innovation Technology Fund
in Hong Kong.

References

[1] Apache: HTTP server project. http://httpd.apache.org/.

[2] Apache Performance Tuning. http:/httpd.apache.org/docs/2.2/
misc/perf-tuning.html.

[3] procps. http://procps.sourceforge.net/.
[4] strace. http://sourceforge.net/projects/strace.

[S] SYSSTAT. http://pagesperso-orange.fr/sebastien.godard/
features.html.

[6] S. Ailleret. Larbin:
http://larbin.sourceforge.net/.

Multi-purpose web crawler.

[7] P. Barford and M. Crovella. Generating representative workloads
for network and server performance evaluation. In Proc. ACM
SIGMETRICS, 1998.

[8] P. Barford and M. Crovella. Critical path analysis of TCP trans-
actions. IEEE/ACM Trans. Networking, 9(3), 2001.

[9] S.Bhandarkar, A. Reddy, Y. Zhang, and D. Loguinov. Emulating
AQM from end hosts. In Proc. ACM SIGCOMM, 2007.

J. Bolot. End-to-end packet delay and loss behavior in the Inter-
net. In Proc. ACM SIGCOMM, 1993.

R. Chang, E. Chan, W. Fok, and X. Luo. Sampling TCP data-path
quality with TCP data probes. In Proc. PFLDNeT, 20009.

Y. Cheng, U. Holzle, N. Cardwell, S. Savage, and G. Voelker.
Monkey see, monkey do: A tool for TCP tracing and replaying.
In Proc. USENIX Annual Technical Conference, 2004.

Cisco Systems. TCP out-of-order packet support for Cisco 10S
firewall and Cisco IOS IPS. http://www.cisco.com/, 2006.

E. Corell, P. Saxholm, and D. Veitch. A user friendly TSC clock.
In Proc. PAM, 2006.

S. Floyd and E. Kohler. Tools for the evaluation of simulation and
testbed scenarios. Internet-draft draft-irtf-tmrg-tools-05, Febru-
ary 2008.

[10]

[11]

[12]

[13]

[14]

[15]

[16] L. Gharai, C. Perkins, and T. Lehman. Packet reordering, high
speed networks and transport protocol performance. In Proc.

IEEE ICCCN, 2004.
[17] GNU Wget. http://www.gnu.org/software/wget/.
[18] A. Haeberlen, M. Dischinger, K. Gummadi, and S. Saroiu.
Monarch: A tool to emulate transport protocol flows over the In-

ternet at large. In Proc. ACM/USENIX IMC, 2006.
F. Heusden. httping. http://www.vanheusden.com/httping/.

J. Postel (editor). Transmission control protocol. RFC 793, IETF,
September 1981.

V. Jacobson, R. Braden, and D. Borman. TCP extensions for high
performance. RFC 1323, IETF, May 1992.

E. Kohler. The Click Modular Router
http://read.cs.ucla.edu/click/.

J. Liu and M. Crovella. Using loss pairs to discover network
properties. In Proc. ACM IMW, 2001.

M. Luckie, Y. Hyun, and B. Huffaker. Traceroute probe method
and forward IP path inference. In Proc. ACM/USENIX IMC,
2008.

X. Luo and R. Chang. Novel approaches to end-to-end packet
reordering measurement. In Proc. ACM/USENIX IMC, 2005.

R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level
Internet path diagnosis. In Proc. ACM SOSP, 2003.

J. Martin, A. Nilsson, and I. Rhee. Delay-based congestion avoid-
ance for TCP. IEEE/ACM Trans. Networking, 11(3), 2003.

A. Medina, M. Allman, and S. Floyd. Measuring the evolution of
transport protocols in the Internet. ACM CCR, April 2005.

Netcraft Services. http://uptime.netcraft.com/up/accuracy.html.

[19]
[20]

[21]

[22] Project.

[23]

[24]

[25]
[26]
[27]
[28]

[29]
[30] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heav-
ens, K. Lahey, J. Semke, and B. Volz. Known TCP implementa-

tion problems. RFC 2525, IETF, March 1999.

V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework for
IP performance metrics. RFC 2330, IETF, May 1998.

PlanetLab. http://www.planet-lab.org/.

R. Fielding et al. Hypertext Transfer Protocol —- HTTP/1.1. RFC
2616, IETF, June 1999.

S. Savage. Sting: a TCP-based network measurement tool. In
Proc. USENIX Symp. Internet Tech. and Sys., 1999.

R. Sherwood and N. Spring. A platform for unobtrusive measure-
ments on PlanetLab. In Proc. USENIX Workshop on Real, Large
Distributed Systems (WORLDS), 2006.

R. Sherwood and N. Spring. Touring the Internet in a TCP side-
car. In Proc. ACM/USENIX IMC, 2006.

N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public
Internet measurement facility. In Proc. USENIX Symp. Internet
Tech. and Sys., 2003.

L. Wenwei, Z. Dafang, Y. Jinmin, and X. Gaogang. On evaluat-

ing the differences of TCP and ICMP in network measurement.
Computer Communications, January 2007.

[31]

[32]
(33]

[34]

(351

[36]

[37]

(38]

56

2009 USENIX Annual Technical Conference

USENIX Association

StrobeLight: Lightweight Availability Mapping and Anomaly Detection

James W. Mickens, John R. Douceur, William J. Bolosky

Microsoft Research

mickens,johndo,bolosky @microsoft.com

Abstract

Large-scale distributed systems span thousands of inde-
pendent hosts which come online and go offline at their
users’ whim. Such availability flux is ostensibly a key
concern when systems are designed, but this flux is rarely
measured in a rich way post-deployment, either by the
distributed system itself or by a standalone piece of in-
frastructure. In this paper we introduce StrobeLight, a
tool for monitoring per-host availability trends in enter-
prise settings. Every 30 seconds, StrobeLight probes Mi-
crosoft’s entire corporate network, archiving the ping re-
sults for use by other networked services. We describe
two such services, one offline and the other online. The
first service uses longitudinal data collected by our Stro-
beLight deployment to analyze large-scale trends in our
wired and wireless networks. The second service draws
live StrobeLight measurements to detect network anoma-
lies like IP hijacking in real time. StrobeLight is easy
to deploy, requiring neither modification to end hosts nor
changes to the core routing infrastructure. Furthermore,
it requires minimal network and CPU resources to probe
our network of over 200,000 hosts.

1 Introduction

As distributed systems are built at increasingly larger
scales, it becomes more difficult to understand the re-
lationship between host availability and distributed sys-
tem performance. Loosely coordinated, independently
administered hosts display a wide variety of availabil-
ity patterns [8, 10, 25]. Providing robust services atop
this churning substrate requires substantial effort during
the design and implementation of the distributed system.
Thus, all distributed systems are guided by at least a crude
characterization of host availability in the deployment en-
vironment.

Unfortunately, once these systems are deployed, they
rarely include a component for collecting and analyz-
ing system-wide, fine-grained availability data. Histori-
cal availability traces exist (e.g., [8, 10]), but they were
collected by one-shot tools that were not intended to be
permanent, stable pieces of the distributed infrastructure.

Brian D. Noble
University of Michigan
bnoble @umich.edu

The permanent monitoring tools in existence often fo-
cus on monitoring path characteristics, not individual host
availability, so they issue measurements to and from a
small set of vantage points. For example, RON [4] and
iPlane [24] track latency and loss rates between a set of
topologically diverse end points, but these machines are
assumed to be highly available and small in number; no
mechanism is provided for testing individual host avail-
ability inside a stub network. CoMon [29] provides up-
time monitoring for individual PlanetLab hosts, but it
does not scale to hundreds of thousands of machines. Fur-
thermore, it requires modifications to end hosts, which
may be difficult in non-academic settings where people
are leery of installing new software.

In overlays like Pastry [32] and storage systems like To-
talRecall [9], hosts probe the availability of select peers,
but this data is not archived in a public directory, prevent-
ing global analysis. Schemes to distribute such data ex-
ist [20, 26], but large-scale data mining is difficult due to
the number of wide-area data fetches required, as well as
the need to perform cryptographic calculations to verify
measurements submitted by untrusted peers.

The lack of a persistent infrastructure for availability
monitoring is unfortunate because it could benefit a wide
variety of systems. For example, distributed job alloca-
tors [5] could use historical uptime data in concert with
availability prediction [25] to assign high priority tasks to
machines that are likely to be online for the expected du-
ration of the job. Distributed storage systems could also
use a live feed of availability measurements to guide ob-
ject placement and increase data availability [1].

To address such needs, we introduce StrobeLight, a tool
for measuring availability in an enterprise setting contain-
ing hundreds of thousands of hosts. StrobeLight issues
active probing sweeps at 30 second intervals, archiving
ping results for the benefit of other distributed services
that might find them useful. We describe two examples of
such services. The first is an offline data-miner for lon-
gitudinal availability traces; such an application might be
useful for distributed storage systems trying to make de-
cisions about replica allocation. The second StrobeLight
service monitors network-wide availability in real time,

USENIX Association

2009 USENIX Annual Technical Conference

57

raising alarms for anomalies such as network partitions
and IP hijacks. StrobeLight detects such problems us-
ing a new abstraction called an availability fingerprint.
Under normal conditions, a subnet’s fingerprint changes
very slowly. Thus, StrobeLight raises an alert when the
similarity between consecutive fingerprints falls below a
threshold. Using Planetlab experiments, simulations, and
a real enterprise deployment, we show that our detection
system is accurate and fast.

By using standard ICMP probes to test availability,
StrobeLight avoids the need to install new software on end
hosts or deploy new infrastructure within the routing core.
By collecting data from a few centrally controlled vantage
points, StrobeLight avoids the trust and complexity issues
involved with distributed solutions while making it easy
for other systems to access availability data.

This paper provides three primary contributions. From
the technical perspective, it demonstrates that frequent,
active probing of a large host set is cheap and practical.
From an analytical perspective, it introduces new tech-
niques for analyzing availability traces that contain tem-
poral gaps (see Section 3.3). Finally, the paper introduces
a new, fine-grained trace of wired and wireless availabil-
ity in a large corporate environment. Using this trace,
we can validate results from previous studies that used
coarser-grained data [10, 25]. We also discover an inter-
esting property about the stability of subnet availability.
From the qualitative perspective, subnet uptime is consis-
tent across weeks—for example, the relative proportion
of diurnal hosts is unlikely to change. However, from the
quantitative perspective, subnet availability may fluctuate
by more than 25% across a month (see Section 3.4.2).

2 Design and Implementation

The design of our availability measurement system was
guided by three principles. First, keep the system simple.
Second, make the system unobtrusive. Third, collect fine-
grained data.

Keep it simple. Our primary design principle was to
keep everything simple, a philosophy reflected in many
different ways. We wanted to avoid solutions which re-
quired new software to be installed on end hosts, an ar-
duous task that is difficult to justify on a corporate-wide
basis. Similarly, we hoped to avoid major modifications
to our internal routing infrastructure. Large-scale decen-
tralization of the probing infrastructure was not a pri-
mary concern. Although coordinated distributed monitor-
ing has certain benefits, previous experience had taught us
that the road to a bug-free distributed protocol is fraught
with peril [11]. Thus, we thought hard about the costs
and benefits of a coordinated peer-to-peer design, and ul-
timately rejected it. One motivating factor was our de-
velopment of analysis techniques which tolerate temporal

gaps in availability data (see Section 3.3). These tech-
niques shifted the payoff curve between the better cover-
age and robustness of a distributed, coordinated solution
and the reduced complexity of a centralized one.

Don’t annoy the natives. We wanted a system that
was unobtrusive—we did not want our measurement ac-
tivity to disrupt normal network traffic or add significant
load. We also required a straightforward mechanism to
turn off measurement activity in specific parts of the net-
work. The latter was important because previous experi-
ence had taught us that at some point, our new network in-
frastructure would break someone else’s experiment or in-
teract with other components in unexpected ways. When
such scenarios arose, we wanted the capability to quickly
remove the friction point.

Collect high-resolution data. We wanted our tool to
collect per-host availability statistics at a fine temporal
granularity. This would allow us to validate previous em-
pirical studies which used coarser data sets [10, 25]. It
would also make the service more useful for anomaly de-
tection, since disruptions like IP hijacking may only last
for a few minutes [31].

These design considerations led to several “non-goals”
for our system.

Infinite scalability is overkill. Our solution only
needed to scale to the size of an enterprise network con-
taining hundreds of thousands of hosts. Building a mea-
surement system to cover an arbitrary number of hosts
in an arbitrary number of administrative domains would
have been extremely challenging. For example, active
availability probing from foreign domains might trigger
intrusion detection systems. Organizations might also be
reluctant to provide outside access to DNS servers and
other infrastructure useful for identifying “live” end hosts.

Complete address disambiguation is difficult. An-
other barrier to performing arbitrary-scale, cross-domain
host monitoring is the widespread use of NATs, firewalls,
and DHCP. These technologies can create arbitrary bind-
ings between hosts and IP addresses, and prevent some
machines from being seen by external parties. Devising a
comprehensive monitoring system that can pierce this het-
erogeneous cloud of addressing policies is an important
research topic. However, this goal was beyond the scope
of our project. By focusing on enterprise-level solutions,
we hoped to avoid many of the issues mentioned above;
NATSs were relatively rare in our corporate environment,
and we could configure our firewalls to trust packets gen-
erated by our new monitoring system.

2.1 The Winning Design: StrobeLight

As shown in Figure 1, we eventually chose a centralized
architecture in which a single server measured availabil-
ity throughout our entire network. To determine which IP
addresses to test, the server would download hostname/IP

58

2009 USENIX Annual Technical Conference

USENIX Association

DNS Servers

I8

Transfer
data for
analysis
Corporate
Data
Storage

alerts

Figure 1: StrobeLight Architecture

mappings from corporate DNS servers. It would then
test host availability using standard ping probes issued
at intervals of 30 seconds. Recent probe results would
be transferred to an analysis server for real-time anomaly
detection, and longitudinal data would be archived in the
corporation’s standard distributed data store.

This design, which we named StrobeLight, was very
attractive from the implementation and deployment per-
spectives. No new code would have to be pushed to end
hosts or internal routers, and the only additional hardware
required would be the probing server and the analysis en-
gine. We also expected the probing process to have a
light footprint. The total volume of request/response traf-
fic would be trivial compared to the overall traffic level in
the corporate network. Furthermore, we would not have
to deal with control or synchronization issues that might
arise in a more decentralized design. Our main concerns
involved performance and fault tolerance. We feared that
a single server might be overloaded by sending probes for
hundreds of thousands of machines every 30 seconds. A
centralized probing design also had obvious ramifications
for fault robustness. Despite these weaknesses, we com-
mitted to the single-server design due to its relative ease
of implementation, and we pledged to revisit the design if
we encountered undue difficulties after deployment.

2.2 Implementation and Deployment

The core probing infrastructure was deployed first. The
pinging daemon, consisting of 2,200 lines of C++ code,
runs on a standard desktop PC with a 3.2 GHz CPU, 2 GB
of RAM, and a gigabit Ethernet card; this machine resides
within a corporate subnet in Redmond, WA. At boot time,
the daemon reads an exclusion file which specifies the set
of IP prefixes that should never be pinged. This file al-
lows us to selectively exclude parts of the network from
our probing sweeps. To determine which IP addresses to
ping, the daemon downloads zone files from Microsoft’s
DNS servers at 2:10 AM each day. At any given mo-
ment, these zone files contain entries for over 150,000 IP

addresses scattered throughout the world. This set of ad-
dresses evolves over time due to the introduction of new
hosts and the decommissioning of old ones.

Due to these factors, an address may not appear in ev-
ery DNS snapshot. Since StrobeLight only probes the ad-
dresses mentioned in the zone data, an IP may have gaps
in its availability history. To deal with these gaps, Stro-
beLight describes the availability of an address as online,
offline, or unknown. The first two categories result from
the outcome of a ping probe, whereas the third is assigned
to an IP which was not probed at a particular time.

Once the probing daemon had produced a sizable
archive of availability data, we were able to test the of-
fline analysis engine. This engine, totaling about 5,000
lines of C++ code, provides a set of low-level classes to
represent per-host availability. It also defines a high-level
query interface for use by data mining programs. We used
this interface to generate the results in Section 3. Impor-
tantly, the interface defines a subnet of size N as a set
of N consecutive and allocated 1P addresses; the queryer
chooses the starting address, IV, and the time period over
which “allocated” is defined. An address is considered al-
located during a given time period if it appeared in a zone
file at least once during that period. In practice, we of-
ten set IV to a small number like 256 and investigate the
subnets contained within a Class A or B prefix.

2.3 Operational Experiences

The probing server has run with few interruptions for al-
most three years, and it has not struggled with the network
load generated by the ping sweeps. We currently spread
each sweep across 25 seconds to avoid load spikes on our
shared network infrastructure, but brief “full throttle” ex-
periments show that our current prober can scan 270,000
hosts in 7.9 seconds (roughly 35,000 hosts a second).

In general, our ping traffic has not bothered the other
members of our network. We occasionally receive emails
from the network support staff when they unveil a new
intrusion detection system and they conclude that our
probing machine is infected with an IP-scanning virus;
these incidents became rarer after we explained that Stro-
beLight was a piece of permanent infrastructure. We also
received a complaint from another research group who
claimed that our pings were causing problems for their
wireless devices. After generating the appropriate exclu-
sion file and restarting the daemon, we received no more
complaints.

3 Application 1: Offline Analytics

In this section, we describe one application of Stro-
beLight, using it to gather long-term availability data
for offline analysis. Such data could be used in several

USENIX Association

2009 USENIX Annual Technical Conference

59

100%

— Wired Hosts
— Wireless Hosts

80%

60%

Fraction of All Hosts Online

Time

Figure 2: Global availability (10/21/2005 to 11/21/2005)

ways, e.g., to guide replication policy in a distributed data
store [1, 9, 25]. In this section, we use the data in a more
exploratory fashion, looking for interesting patterns in our
wired and wireless networks. We restrict our analysis to
IP addresses which appeared in at least 95% of the daily
DNS snapshots. During the time period examined below,
this included 138,801 wired IPs and 11,670 wireless IPs.
In our corporate environment, the DHCP lease time is 20
days for wired machines and 3 hours for wireless ones.
Thus, a wireless address is likely to be bound to multiple
machines over the course of the day. Although we often
refer to “hosts” and “IP addresses” interchangeably, the
true unit of uniqueness is an address, not a host.

3.1 Global Trends

Figure 2 depicts aggregate availability fluctuations from
October 21 to November 21 of 2005. The bulk of Mi-
crosoft’s machines reside in the American west coast, so
both the wired and wireless networks show large-scale di-
urnal trends aligned with the work day in this time zone.
However, during these large-scale surges and declines
in availability, there are regular, smaller-scale peaks and
valleys. These additional periodic cycles are driven by
phase-shifted diurnal behavior amongst Microsoft hosts
in Europe and the Middle East.

Comparing the two curves in Figure 2, we see that wire-
less IP addresses are much less likely to be associated with
online hosts. However, the wireless network demonstrates
stronger diurnal trends than the wired network. We inves-
tigate this issue further in Section 3.3.

3.2 Subnet-level Trends

We define the mean availability of a subnet as its average
fraction of online hosts. Figure 3 shows the distribution of
mean subnet availability in the wired network for subnets
of size 256 and 2048. In both cases, mean subnet avail-
ability is always higher than 40%. Increasing the subnet
size causes probability mass to coalesce around several re-
gions of mean availability. This is a discretization artifact,
since increasing the subnet size without increasing the to-
tal number of hosts results in fewer subnets to examine
and less smoothness in the resultant distribution.

18%
12%
" M/\/\/J\/\/\JA/\
0% ,/\\
0% 20% 40% 60% 80%
Mean availability

Likelihood

100%

(a) 256 hosts per subnet

18%

12%

Likelihood

6%

1]

0% 20% 40% 60% 80%
Mean availability

(b) 2048 hosts per subnet

100%

Figure 3: PDF for mean subnet availability (wired)
60%

B 40%

£

% 20%

0%

0% 20% 40% 60% 80%
Mean availability

100%

Figure 4: PDF for mean subnet availability (wireless)

As expected, Figure 4 shows that wireless subnets have
much lower mean availability. Figure 4 shows results for
a subnet size of 256, but increasing the subnet size to 2048
results in an almost identical availability distribution. The
relative lack of discretization artifacts is due to the greater
homogeneity of wireless host availability. Figure 5 shows
the distribution of per-host uptime fractions within each
subnet. Each wired subnet has a skewed bimodal distri-
bution, with a plurality of hosts having very high uptime
and a smaller fraction having very low uptime. How-
ever, in every wired subnet, roughly 50% of the proba-
bility mass is spread across the “plateau” between the two
modes. In contrast, the wireless subnets look more uni-
modal, with the majority of hosts having very low avail-
ability and much less probability mass sheared away from
the mode.

3.3 The Availability of Individual Hosts

To understand the lower-level dynamics driving aggregate
availability, we modified our previous taxonomy for clas-
sifying the uptime behavior of individual hosts [25]. In
the unmodified scheme, a host is declared always-on if its
uptime is greater than 90% and always-off if its uptime
is less than 10%. If a host fails these tests, its availabil-
ity signal is converted into the frequency domain using

60

2009 USENIX Annual Technical Conference

USENIX Association

Fraction of Subnet Hosts

Subnet Number

(a) Wired subnets (2048 hosts per subnet)

Fraction of Subnet Hosts

Subnet Number

(b) Wireless subnets (2048 hosts per subnet)

Each curve on the “availability level” axis is a pdf for per-
host uptime fractions in a particular subnet. In each fig-
ure, the pdfs are sorted by standard deviation, with higher
subnet numbers indicating larger standard deviations. The
trends depicted in each graph are insensitive to subnet
size.

Figure 5: Per-host availability within a subnet

a Fourier transform. If the resultant profile demonstrates
harmonic peaks in the daily and weekly spectra, the host is
labeled diurnal. If the spectral curve resembles the curve
1/f, i.e., it contains large amounts of low frequency en-
ergy, the host is labeled as long stretch, meaning that it
has long, uninterrupted periods of uptime and downtime.
Nodes failing all four tests are labeled as unstable. Such
a designation usually implies that the host’s availability is
difficult to predict.

The standard algorithms for Fourier decomposition as-
sume that signals are sampled at a uniform rate and that
no samples are missing. In our data set, the assumption
of a uniform sampling rate was almost always true, since
the vast majority of probe sweeps were separated by 30
second intervals. However, missing samples were fairly
common for two reasons. First, our network used DHCP

to assign IP addresses to physical machines. When an ad-
dress was dormant (i.e., unassigned), it did not show up in
our zone files, meaning that we did not collect availability
data for it during the dormant period. Second, the DNS
servers occasionally failed, or misbehaved and returned
extremely small zone files. Both of these phenomena in-
troduce brief probing gaps for many hosts.

To deal with missing samples, we replaced the Fourier
analyses with two entropy-based techniques. To deter-
mine whether an availability signal contained diurnal pat-
terns, we adapted Cincotta’s method for period detection
in irregularly sampled time series [14]. Let a; € {0,1} be
the value of an availability signal at time ¢. Given a hy-
pothetical period 7, we calculate the phase of each a; as
¢y = L —nearestInteger(L); note that ¢; € [—0.5,0.5].
We can interpret each (¢, a;) pair as a coordinate in ¢ x a
space. If the hypothesized period 7 is close to the signal’s
actual period (or a harmonic of it), the (¢¢, a;) points will
cluster in the coordinate space. This means that if we di-
vide the coordinate space into bins, the resultant bin dis-
tribution will have low entropy. If the hypothesized pe-
riod is not the signal’s true period, points will be scattered
throughout the ¢; X a; space and the bin distribution will
have high entropy.

To determine whether an availability signal contains di-
urnal patterns, we check whether the entropy for a 7 of 24
hours is less than the entropy for a 7 of 23 hours. Avail-
ability signals with complex diurnal patterns may have en-
tropy dips in other places, but finding one for a 7 of 24 is
sufficient for our purposes.

To determine whether an availability signal contains
long-stretch behavior, we use an approximate entropy
test [30]. Suppose that we have an arbitrary window
of k consecutive samples from the signal. We define
ApEn (k) as the additional information conveyed by the
last sample in the window, given that we already know
that previous £ — 1 samples. Low values of ApEn (k)
indicate regularity in the underlying signal. In particular,
if we know that a host is not always-on, always-off, or di-
urnal, but it still has a low ApEn (k) , it is likely that the
uptime regularity is driven by long-stretch behavior.

The choice of window size k is driven by the time scale
over which “long stretch” is defined; k should be small
enough that a stretch contains several windows, but not
so small that ApEn (k) measures the incidence of small
k-grams that are actually pieces of larger, more complex
availability patterns. In the results presented below, we
used a k of 8 and sampled our availability trace in steps
of 15 minutes. This meant that we looked for long-stretch
behavior at a time scale of roughly two hours. We de-
fined hosts as long-stretch if their availability signal had
an ApEn (8) of less than 0.16. This cutoff was deter-
mined by hand, but our results were not very sensitive to
the exact value.

USENIX Association

2009 USENIX Annual Technical Conference

61

W Wired
O Wireless

Fraction of all Hosts

n B

DIURNAL LONG STRETCH

60%

40%

20%

0%
ON OFF

Figure 6: Availability taxonomy

UNSTABLE

Figure 6 depicts the availability taxonomy for the wired
and wireless networks. We found that roughly half of the
wired hosts were always online. This result is congru-
ent with smaller-scale observations of the Microsoft net-
work which used an hourly sampling period [10, 25]. In-
deed, the fact that the always-on fraction is the same at
a finer sampling granularity implies that the natural time
scale for availability fluctuation in wired corporate en-
vironments is hours, not minutes. This claim is further
validated by the fact that almost none of the wired hosts
had unstable availability. In other words, if a host was
not always-on, always-off, or diurnal, then it at least had
availability that was stable across one or two hours.

The wireless network was dominated by always-off
machines, which comprised 61% of all hosts. The wire-
less network had almost twice as many diurnal machines
as the wired network (25% versus 13% respectively) but
almost half as many long-stretch hosts (12% versus 23%).
These trends were unsurprising. In contrast to desktop
machines that were always “plugged in,” wireless devices
with limited battery lives were more likely to have shorter
sessions. Also, users often took these devices home at the
end of the day, removing them from the physical proxim-
ity of a corporate access point. Thus, wireless connec-
tivity exhibited stronger diurnal patterns and less long-
stretch behavior than wired uptime.

3.4 Availability Fingerprints

Up to this point, we have investigated aggregate availabil-
ity trends over a five week window. However, many net-
work anomalies occur over a much smaller time scale. For
example, an IP hijacking attack might only last for several
minutes [31], and BGP misconfigurations can be just as
transient [13].

Both types of anomaly change the mapping between IP
addresses and physical hosts. In a hijacking attack, an en-
tire range of IPs is bound to a different set of physical ma-
chines; similarly, a misconfigured router can cause arbi-
trary desynchronizations. Active availability probing can
detect such problems if three conditions are true. First,
the probing interval must be less than the duration of the
desynchronization episode, lest the anomaly escape un-
detected between probing sweeps. Second, in the absence

100%

80%

60%

40%

Likelihood

20%

0%
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Self-similarity

Subnet self-similarity between successive probing sweeps
is very high. The graph depicts results for wired subnets
of size 256, but the outcome is insensitive to subnet size.
The results are extremely similar for wireless subnets.

Figure 7: PDF for self-similarity of delta fingerprints (15
minute probe interval)

of anomalies, a subnet’s availability “fingerprint” must be
stable across multiple consecutive probing periods. This
gives us confidence that when the fingerprint changes, an
actual problem has arisen. Third, at any given moment,
the availability fingerprint for each subnet should be glob-
ally unique. This allows us to detect routing problems in
which two subnets have their IP bindings swapped.

With these desired characteristics in mind, we can pro-
vide a formal definition of a fingerprinting system. Given
a specific subnet and a time window of interest, a finger-
printing algorithm examines per-host availability trends
during that window and produces a bit-string that is a
function of those trends. A fingerprinting system also
defines a distance metric which determines the similar-
ity of two fingerprints. To detect an anomaly in a subnet,
we maintain a time series of its fingerprints and raise an
alarm if the most recent fingerprint is too dissimilar from
the previous one.

In the remainder of this section, we provide a concrete
description of a fingerprinting system and evaluate its per-
formance on trace data collected by StrobeLight. We fo-
cus on basic issues such as how a subnet’s fingerprint
evolves over time, and the accuracy with which we can
distinguish two subnets based solely on their fingerprints.
We present more applied results in Section 4, where we
show how fingerprints can be used to detect anomalies
within the enterprise and across the wide area.

3.4.1 Delta Fingerprints

During a single probe sweep, we test the availability of
each known host in our network. Given a subnet of size
s, we represent its probe results as an s-bit vector where
a particular bit is 1 if the corresponding host was online
and 0 if the host was offline or unknown (remember that
a host is not probed if it is not mentioned in the current
DNS mapping). We call such a vector an instantaneous or
delta fingerprint because it represents a snapshot of subnet
availability at a specific time.

62

2009 USENIX Annual Technical Conference

USENIX Association

'"Il — A Subnet size

Delta Similarity

Figure 8: PDF for instantaneous cross-subnet similarity
(15 minute probe interval)

A natural distance metric for two delta fingerprints is
the number of bit positions with equivalent values. Thus,
we define the similarity of two fingerprints as the number
of equivalent bit positions divided by s and normalized to
the range [—1, 1]. For example, if two fingerprints match
in half of their bit positions, they will have a similarity of
0. If they match in all positions or no positions, they will
have a similarity of 1 or -1 respectively.

Given the availability probing period p, we define a
subnet’s self-similarity as the expected similarity of its
fingerprints at time ¢ and time ¢ + p. Figure 7 depicts the
pdf for self-similarity in the wired network with a p of 15
minutes. As shown in Section 3.3, the natural time scale
of availability fluctuation in the wired network is hours,
not minutes. Thus, with a 15 minute sampling granular-
ity, delta fingerprints are very stable across two consecu-
tive snapshots, with 95% of all fingerprint pairs exhibiting
similarities of 0.96 or greater. Decreasing p results in even
greater stability, which is possible since StrobeLight has
a 30 second probing granularity.

The delta similarity of two different subnets at time ¢
is simply the similarity of their fingerprints at ¢. Figure 8
depicts the pdf for cross-subnet similarity as a function of
subnet size. As the subnet size grows, probability mass
shifts towards the center of the similarity spectrum. How-
ever, even for subnets as small as 32 hosts, less than 2%
of all subnet pairs have similarities greater than 0.8. The
reason is that the various availability patterns described in
Section 3.3 are randomly scattered throughout each sub-
net. For example, even though most subnets have a large
set of always-on hosts, these hosts are randomly posi-
tioned throughout each subnet’s fingerprint vector. Thus,
two vectors are unlikely to have high correlations in all
bit positions, and each fingerprint is likely to be globally
unique.

The tiny peaks along the right side of Figure 8 indicate
a small probability that at any given moment, two subnets
have completely equivalent fingerprints. To understand

Figure 9: Temporal evolution of cross-subnet delta simi-
larity (15 minute probe interval)

100%

P
k]
2 80%
] 5
8o 60%
o]
5O 40%
c
o
g 20%
I
w
0%
Time
(a) Host availability in 157.55.%.*

100%
2
3 eo% |
2 ~ 1T
-
b %
Lgoeo%
TE
B0 Lo
29 a0%
8
8 20%
w

Time

(b) Host availability in 10.%*.*.*

Network anomalies during November 3 and 4 of 2005
caused the spike in fingerprint similarity seen in Figure 9.

Figure 10: Punctuated availability disruptions

the origin of these peaks, we plotted cross-subnet simi-
larity as a function of time. Figure 9 indicates a large
spike in fingerprint similarity during the middle of the
trace period. As Figure 10 shows, this spike was syn-
chronous with a dramatic availability drop in several IP
blocks during November 3 and 4 of 2005. When these
blocks went offline, their fingerprint vectors transitioned
to an “all-zeros” state, leading to an immediate increase
in cross-subnet similarity.

Once the anomaly terminated, the similarity distribu-
tion returned to a steady state in which all fingerprints
were distinguishable. Thus, during the whole trace pe-
riod, the global uniqueness property was only violated
during the severe network disturbance. We return to the
issue of anomaly detection in Section 4.

USENIX Association

2009 USENIX Annual Technical Conference

63

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Similarity

(a) 256 hosts per subnet, 24 hour window, 32-bit float per
host

Similarity

(b) 256 hosts per subnet, 24 hour window, 1-bit float per host

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

14

Day
277 4

., Wi

2 04 05 (2,

(c) 32 hosts per subnet, 24 hour window, 1-bit float per host

Figure 11: Cross-subnet similarity for wired and wireless
subnets (24 hour window)

3.4.2 Fingerprinting Over Larger Windows

As currently described, a fingerprint is a bit vector repre-
senting the instantaneous availability of a set of hosts. In
this section, we briefly describe how to extend our finger-
prints to cover longer observation periods.

Cross-subnet Similarity: To create a fingerprint
which covers a longer time window, we can associate each
host with a floating point number instead of a single bit.
Each float represents the mean availability of a host dur-
ing the time period of interest. To compute the similar-
ity between two floating point fingerprints, we examine

each pair of corresponding floats and calculate the abso-
lute magnitude of their difference. We sum these absolute
magnitudes, divide by the subnet size, and then normalize
the result to the range [—1, 1].

Figure 11(a) shows the temporal evolution of cross-
subnet similarity using a day-long window; the subnet
size was 256 hosts and each host was associated with a
32-bit floating point number. Comparing Figure 11(a) to
Figure 8, we see that lengthening the fingerprint window
does not change the fundamental distribution of subnet
similarity. Most subnets are weakly similar or weakly
dissimilar, but almost none are very similar or very dis-
similar.

Figure 11(b) depicts cross-subnet similarity using a 24
hour window and “1-bit floats.” In this scenario, a finger-
print contained a single bit for each host; the bit was 1 if
the host was majority-online during the window and 0 if
it was majority-offline. Comparing Figure 11(a) to 11(b),
we see that using these truncated floats has little impact on
the similarity distribution. Even if we decrease the subnet
size to 32 hosts, Figure 11(c) shows that 1-bit floats pro-
vide enough resolution to keep the likelihood of perfect
cross-subnet similarity well below 1%.

Using 1-bit floats, very little storage space is needed to
maintain longitudinal fingerprint databases. For example,
suppose that one needs to store fingerprints for a network
containing 250,000 hosts. Using 1-bit floats, an individual
snapshot would consume 250,000 bits (roughly 30 KB).
Assuming a 24 hour window, a full year of data will only
require 11 MB of storage space.

Self-similarity: Most subnets exhibit diurnal uptime.
However, the true period of their availability is a week, not
a day, since availability during the weekend lacks diurnal
fluctuation and is depressed relative to that of the work
week. Thus, if we examine subnet self-similarity using
a day-long window, there are discontinuities during the
transitions into and out of the weekend. However, one
might expect self-similarity to be high using a week-long
window, since this window size would precisely capture a
full cycle of the seven day availability pattern.

Figure 12(a) shows the distribution of wired subnet
self-similarity between the first and fourth weeks of our
observation period. Although self-similarity was almost
always positive, the correlation was unexpectedly weak,
with the bulk of the probability mass residing between
0.0 and 0.5. This surprised us, since we had predicted
that a host’s availability fraction would not change much
across weeks. Confronted with these results, we gener-
ated a new hypothesis, predicting that a host’s availability
class would vary less than its availability fraction. For
example, the uptime fraction of a long-stretch host might
vary between weeks, but its availability would be unlikely
to transition from long-stretch behavior to (say) diurnal
behavior.

64

2009 USENIX Annual Technical Conference

USENIX Association

Self-similarity: Week 1 vs Week 4
(Delta Fingerprints)

Probability
o
8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Similarity
(a) If we represent host uptime as a 32-bit floating point avail-
ability fraction, subnet self-correlation across weeks is mildly
positive. However, raw subnet availability often varied by
more than 25%.
Self-similarity: Week 1 vs Week 4

(FeatureVec Fingerprints)
0.12

0.09

Probability
°
8

-1 -0.8 -0.6 -0.4 -0.2 [0.2 0.4 0.6 0.8 1
Similarity

(b) Self-correlation is higher if we represent host availability
using a 2-bit enumeration type {ALWAYS-ON, ALWAYS-
OFF, DIURNAL, OTHER} and check for behavioral equiva-
lence amongst corresponding fingerprint entries.

Figure 12: Wired subnet self-similarity using week-long
windows

To test this hypothesis, we devised a new type of finger-
print called a feature vector fingerprint. Instead of associ-
ating each host with a floating point availability fraction,
we gave each host a 2-bit identifier representing whether
it was always-on, always-off, diurnal, or “other” (either
long-stretch or unstable). We defined the similarity be-
tween two feature vectors as the number of corresponding
positions with equivalent feature identifiers. As before,
we divided this number by the vector size and normalized
it to the range [—1, 1].

Figure 12(b) confirmed our hypothesis that, at the gran-
ularity of individual hosts, availability classes are more
stable than availability fractions. However, subnet self-
similarity was still lower than expected given the observed
stability of weekly availability cycles at the subnet level.
This topic remains an important area for future research.

4 Application 2: Detecting IP Hijacking

The Internet is composed of individual administrative
domains called autonomous systems (ASes). The Bor-
der Gateway Protocol (BGP) stitches these independent
domains together to form a global routing system [16].
Packets follow intra-domain routing rules until they hit an
inter-AS border, at which point BGP data determines the
next AS that will be traversed.

As currently described, StrobeLight detects intra-AS
anomalies. For example, in Section 3.4.1, we showed
how StrobeLight discovered the unreachability of several
large subnets from within our corporate network. In this
section, we describe how to detect BGP anomalies which
affect subnet visibility from the perspective of external
ASes. To detect such anomalies, we must deploy Stro-
beLight servers outside of the local domain. We describe
the architecture for such a system and evaluate it using
Planetlab experiments and simulations driven by our cor-
porate availability trace.

4.1 Overview of IP Hijacking

An AS declares ownership of an IP prefix through a BGP
announcement. This announcement is recursively propa-
gated to neighboring ASes, allowing each domain to de-
termine the AS chain which must be traversed to reach a
particular Internet address. BGP updates are also gener-
ated when parts of a route fail or are restored. Since BGP
does not authenticate routing updates, an adversary can
fraudulently declare ownership of someone else’s IP pre-
fix and convince routers to deliver that prefix’s packets to
attacker-controlled machines. An attacker can also hijack
a prefix by claiming to have an attractively short route to
that prefix.

Zheng et al describe three basic types of hijacking at-
tack [38]. In a blackhole attack, the hijacker simply drops
every packet that he illegitimately receives. In an impos-
ture attack, the hijacker responds to incoming traffic, try-
ing to imitate the behavior of the real subnet. In an inter-
ception attack, the hijacker forwards packets to their real
destination, but he may inspect or manipulate the packets
before forwarding them.

Due to vagaries in the BGP update process, the at-
tacker’s fraudulent advertisement may not be visible to
the entire Internet. This means that during the hijack,
some ASes may route traffic to the legitimate prefix al-
though others will not [6]. If the hijack causes divergence
in external views of the prefix’s availability, we can de-
tect the attack by deploying multiple StrobeLight servers
at topologically diverse locations.

For all but the least available subnets, a blackhole attack
will create a dramatic instantaneous change in externally
measured fingerprints. Fingerprint deviations may be less
dramatic during an imposture attack; however, as we show
in Section 4.3, two arbitrary subnets are still dissimilar
enough to make imposture detection easy. Interception
attacks cannot be detected through fingerprint deviations
since the attacker will forward StrobeLight’s probes to the
real hosts in the target prefix. However, we describe a pre-
liminary scheme in Section 4.4 that uses carefully chosen
probe TTLs to detect such interceptions.

USENIX Association

2009 USENIX Annual Technical Conference

65

100% QS
E X * < Local view
10% E OExternal view 1
i A External view 2

1% 4 X External view 3

7000 7500
Measurement Interval

OExternal view 4

Measured Availability
(log-scale)

0%

6500 8000

Figure 13: Availability of live IPs from different views

In our distributed StrobeLight system, the individual
StrobeLight servers do not need to reside within the core
routing infrastructure—they merely need to be deployed
outside of the AS that they monitor. Furthermore, since
anomalies are defined with respect to local measurements,
there is little need for communication between the indi-
vidual servers. Thus, a distributed StrobeLight system
should be easy to deploy and maintain.

4.2 Does the Wide-Area Distort Probing?

As shown in Figure 7, a subnet’s fingerprint changes
very slowly under normal network conditions. However,
that conclusion was derived from the perspectives of van-
tage points inside the enterprise. To detect BGP anoma-
lies, StrobeLight servers must be deployed at external
locations. This exposes probes to the vagaries of wide-
area traversal, possibly increasing delay or loss in a way
that destroys fingerprint stability during non-anomalous
regimes.

To determine whether fingerprints could provide di-
agnostic power across the wide area, we deployed Stro-
beLight servers on 10 topologically diverse Planetlab
hosts. From April to July of 2008, these servers probed
45 Class C subnets belonging to the computer science
department at the University of Michigan. We also de-
ployed a StrobeLight server inside the local campus do-
main. Each server launched a probe sweep every 30 sec-
onds, similar to our deployment inside the Microsoft cor-
porate network. The campus network contained roughly
11,000 live IP addresses. Figure 13 shows the measured
availability of these addresses from the local perspective
and those of four representative Planetlab hosts. Avail-
ability was always greater than 90% from the local van-
tage point. This was also true for the first two external
views. The third and fourth views were measured from
servers that were heavily loaded with other Planetlab ex-
periments. Processor and network utilization were con-
sistently high on these hosts; particularly severe spikes
caused the StrobeLight servers to miss incoming probe re-
sponses and underestimate true domain availability by up
to 80%. However, these incidents were rare, and would
not arise in a real StrobeLight deployment that used dedi-
cated probing machines.

Near time step 7100, external views 2, 3, and 4 were
almost completely partitioned from the campus domain.
This partition was caused by a switchgear failure at a
Detroit Edison power plant that caused punctuated router
failures throughout southeast Michigan. Interestingly, this
event simulated a selective blackhole attack—although
views 2, 3, and 4 were cut off from the local domain, view
1 enjoyed continuous connectivity. Thus, the Planetlab
deployment showed two things. First, wide-area network
effects do not destroy the diagnostic utility of availabil-
ity fingerprints. Second, StrobeLight can detect blackhole
attacks if probe servers are deployed at topologically di-
verse locations.

4.3 Imposture Attacks

Blackhole attacks are not subtle. In such an attack, the
adversary drops all traffic destined for the target network,
creating dramatic decreases in subnet availability and thus
dramatic changes in subnet fingerprints. Imposture at-
tacks are potentially more difficult to detect, since the ad-
versary seeks to mimic the behavior of hosts in the tar-
get domain. In particular, we are interested in detecting
spectrum agility attacks, first described by Ramachandran
and Feamster [31]. The goal of a spectrum attack is to
elude IP-based blacklists using short-lived manipulations
of BGP state. Spammers hijack a large network, e.g., a
/ 8 prefix, send a few pieces of spam from random IP ad-
dresses within the prefix, and then withdraw the fraud-
ulent BGP advertisement a few minutes later. By using
short-lived routing advertisements, spammers increase the
likelihood that their hosts will be unreachable by the time
that white hat forensics begin. By sending a small amount
of traffic from each host, and by randomly scattering the
traffic throughout a large address space, spammers avoid
filtering by DNS-based blacklists [21].

To determine whether StrobeLight can detect spectrum
attacks, we used simulations driven by availability data
from the Microsoft network. We used this trace data in-
stead of the Michigan data because it contained many
more [P addresses, and spectrum attacks require large ad-
dress spaces for maximum effectiveness. Our simulations
used a trace gathered between July 29, 2006 and Septem-
ber 1, 2006. To include the largest possible host set in
our evaluation, we did not filter hosts based on their un-
known fraction. During this observation period, we saw
238,951 unique IP addresses. Our simulations examined
the largest subnets demarcated by standard Class A/B/C
rules. We also examined a “mega” subnet consisting of
all IP addresses in the trace.

During each simulation run, we iterated through our
availability data in strides of 15 minutes; during each iter-
ation, we compared each subnet’s fingerprint to that of a
similarly sized attacker subnet in which a random fraction
of hosts responded to StrobeLight’s pings. StrobeLight

66

2009 USENIX Annual Technical Conference

USENIX Association

Accuracy:
True Pos /(True Pos + False Neg)

All subnets 100" 65.".." 157.56.%.* 157.55.%.* 157.60.".*
(238951 hosts) (38507 hosts) (29030 hosts) (28262 hosts) (23670 hosts) (21366 hosts)

Figure 14: Detecting spectrum agility attacks

detected the spectrum attack if the similarity of the two
fingerprints was beneath a threshold c. More specifically,
let frcql,+ represent the fingerprint of a real subnet at time
t and ffqke,: be the fingerprint of the attacker subnet. Let
sim() compute the similarity of two fingerprints. Given a
similarity cutoff ¢, we define StrobeLight’s detection ac-
curacy at time ¢ as follows:

e True positive: sim(freait—1, fraker) < C.
The attacker’s fake subnet at time ¢ is too dissimi-
lar to the real subnet’s fingerprint from the previous
timestep. StrobeLight raises an alarm in this case.

e False negative: sim(freat,i—1, fraket) > C.
The fake subnet is sufficiently similar to the real sub-
net that StrobeLight does not raise an alarm.

Every simulated comparison should raise an alarm, so
there are no true negatives or false positives.

Figure 14 shows StrobeLight’s detection accuracy in
the five largest subnets. We also show results for an at-
tack against the “mega-subnet” containing all hosts, since
this is the best that we can approximate a large /8 pre-
fix. Each cluster of bars represents detection accuracy for
a specific subnet. Within a cluster, the ¢-th bar is our de-
tection accuracy when a random 7 * 10% of hosts in the
attacker subnet respond to probes. For all of the results,
we used a similarity cutoff c of 0.78; this value minimized
the false negative rate.

In the mega-subnet containing 238,951 hosts, Stro-
beLight had perfect detection accuracy across all time
steps. StrobeLight also had perfect accuracy for two
of the five classful subnets. In the other three, detec-
tion accuracy for low response fractions dipped as low as
90%. These subnets were affected by a DNS failure which
caused their hosts to spend part of the observation period
in an unknown state. StrobeLight assumes that unknown
hosts are offline, so an attacker could hijack these sub-
nets during the DNS failure and evade detection by rarely
responding to StrobeLight pings. However, StrobeLight
would raise alarms at the beginning of the DNS anomaly,
since a large number of hosts would appear to go offline
suddenly. Thus, human operators would be more vigilant
for additional problems during this time period. In Sec-
tion 4.6, we return to the issue of StrobeLight’s reliance
on DNS infrastructure.

If an attacker could measure availability trends in our
subnets, he could mimic the legitimate distribution of
probe responses during the spectrum attack and avoid de-
tection by StrobeLight. However, many organizations al-
ready perform ingress filtering of ping probes destined for
internal hosts, eliminating the most obvious way for an
adversary to collect availability data.

The attacker could try to spoof the IP address of a real
StrobeLight server, and use the spoofed address to launch
surveillance probes. There are several ways to deal with
such an attack. One simple solution is to have the legiti-
mate StrobeLight servers periodically audit each other us-
ing a shared-secret challenge/response protocol. If an at-
tacker spoofs server Sp’s address, and the spoof is visible
by another server Sy, the fake Sy will fail S1’s challenge,
and S7 can raise an alarm.

4.4 Interception Attacks

In an interception attack, the adversary convinces routers
to send other people’s traffic through attacker-controlled
machines. These machines may inspect or tamper with
the packets before forwarding them to their real destina-
tion. The current version of StrobeLight cannot detect
such interceptions, since the interceptor does not drop le-
gitimate probe packets or generate false probe responses.
We have preliminary thoughts about how to modify Stro-
beLight to detect interceptions, and we briefly sketch
some ideas below. However, a full exploration is left to
future work.

Since two arbitrary prefixes are likely to be topolog-
ically distant [38], an interception attack that affects a
StrobeLight probing path should lengthen the route be-
tween the StrobeLight server and the monitored prefix. In
theory, this will increase the latency from the server to the
monitored prefix. So, the server can raise an alarm if it
detects a correlated spike in response latencies across all
prefix hosts. Unfortunately, latency may display signif-
icant jitter during non-anomalous conditions, so a naive
implementation of this scheme will generate excessive
false alarms.

Instead of looking for latency changes, StrobeLight
could look for hop count changes. Previous research has
shown that the hop count between two arbitrary prefixes
is stable in the short to medium term [36, 38]. We ver-
ified this result with our StrobeLight deployment at the
University of Michigan. Figure 15 shows the stability of
hop counts from the internal Michigan server and from
several external vantage points. Both internal and ex-
ternal servers recalculated their hop count to Michigan
hosts once an hour; these recalculations were staggered
across each hour. Recalculations typically resulted in
TTL changes for less than 1% of all nodes, and we believe
that most changes were due to lost tracing packets instead
of actual host movement within the target domain.

USENIX Association

2009 USENIX Annual Technical Conference

67

© Local view
O External view 1

- 100.00% 5
Eﬂ E A External view 2
8 10.00% 4 X External view 3
o __ E| ° O External view 4
=
e X S
X

s § Q, o A
+ B e
£ 0
2= =3 m
I
=
° 0.01%
ES

0 10 20 30 40 50 60

Stub networks rarely change their location with respect to
the network core. Thus, the hop counts between hosts in
that stub and an external vantage point are stable.

Figure 15: Hop count stability

L

0 16384 32768 49152 65536 81920 98304 114688 131072
Network Size (# of Hosts Probed)

5 3
a 8
g 8

CPU + disk overhead
w
&
8

Anomaly Detection Time:
(Units of Milliseconds)
@

g
8

o

Each data point represents the average of 100 trials. Stan-
dard deviations were very small.

Figure 16: Scalability of Analysis Engine

Since interception attacks are likely to lengthen the
route between a StrobeLight server and its target prefix,
they are detectable by monitoring the hop count between
the target prefix and the distributed measurement sites.
This idea was first proposed by Zheng et al [38], and a
variant could be integrated into StrobeLight. Each server
would carefully set the TTLs of its probes to the expected
hop count to the target prefix. A sudden increase in this
path length will cause the probes to be dropped before
they reach their destination; the StrobeLight server will
perceive this as a sudden decrease in prefix availability
and raise an alarm. This solution is more attractive than
the latency-based scheme since hop counts are much more
stable than latency. However, the hop count technique
assumes that the attacker has limited topological knowl-
edge. In particular, if the interceptor knows the routes
connecting the target prefix, the StrobeLight servers, and
the interceptor’s routers, he can rewrite TTLs in a straight-
forward way to elude detection.

4.5 Performance

Anomaly detection consists of three steps: issuing the
ping sweep from the probe machine, transferring the
probe results to the analysis machine, and performing fin-
gerprint calculations on the analysis machine. The first
step is the slowest one, since we spread the probing sweep
over several seconds to avoid noticeable network spikes.
The second step should be fast even if the probing ma-

chine is different than the analysis machine, since probe
results are just small bit vectors. As shown in Figure 16,
the final calculation step is also fast. Figure 16 shows that
once the analyzer has pulled the ping results onto local
storage, the time needed to calculate new fingerprints and
perform threshold calculations is less than half a second,
even for networks with 130,000 hosts.

4.6 Discussion

StrobeLight queries DNS servers to determine which IP
addresses to probe. Depending on one’s perspective, this
is a vice or a virtue. StrobeLight’s sensitivity to DNS state
means that it can detect some anomalies in DNS opera-
tion. However, this opens StrobeLight to DNS-mediated
attacks in which adversaries try to disrupt StrobeLight’s
DNS fetches before tampering with BGP state. The IP
prefixes owned by an enterprise are fairly stable, so we
could manually configure StrobeLight with these prefixes
and probe every address without regard to whether it was
assigned internally (in fact, this is what we did for the
StrobeLight deployment at the University of Michigan,
since we lacked access to the DNS zone files). The
penalty would be an increase in the prober’s network load;
also, if there are many unassigned addresses, cross-subnet
similarity will naturally be higher, leading to more false
alarms.

5 Related Work

Several commercial products provide enterprise-scale net-
work monitoring without requiring end-host modification.
For example, in the SiteScope system [17], a centralized
server remotely logs into client systems and reads local
performance counters. Tools like this collect a wider vari-
ety of data than StrobeLight, which only measures avail-
ability. However, StrobeLight can scan more machines
per second, since it uses simple ping probes instead of
comparatively heavyweight remote logins. StrobeLight is
also easier to deploy in heterogenous end-host environ-
ments, since ICMP probes work “out-of-the-box™ across
all commodity operating systems, but remote login proce-
dures can differ substantially across OSes.

Passive introspection of preexisting traffic can be used
to infer path characteristics or host availability. For ex-
ample, Padmanabhan et al record the end-to-end loss rate
inside a client-server flow and use Bayesian statistics to
extrapolate loss rates for interior IP links [28]. Passive
detection of host availability is attractive for two reasons.
First, it does not generate new traffic. Second, explicit
probing may trigger intrusion detection systems on leaf
networks, a problem occasionally encountered with ac-
tive probing systems deployed on PlanetLab [34]. Despite
these advantages, passive probing was ill-suited for our

68

2009 USENIX Annual Technical Conference

USENIX Association

goal of tracking per-host availability in a large network.
The time that a host is online is a superset of the time that
it is generating network traffic, so passive observations of
per-host packet flows may underestimate true availability.
Also, a key design goal was to minimize the new infras-
tructure that had to be pushed to end hosts or the corporate
routing infrastructure. Installing custom network intro-
spection code on every end host was infeasible. Placing
such code inside the core network infrastructure was also
infeasible due to the complex web of proxies, firewalls,
and routers that would have to be instrumented to get a
full view of each host’s network activity.

Most prior work on IP hijack detection has required
modification to core Internet routers. Some systems re-
quire routers to perform cryptographic operations to val-
idate BGP updates [2, 12, 19], whereas others require
changes to router software to make BGP updates more
robust to tampering [35, 37]. We eschewed such designs
due to the associated deployment problems.

Several systems use passive monitoring of BGP dy-
namics to detect inconsistencies in global state [22, 23,
33]. These systems typically search for anomalies in
one or more publicly accessible databases such as Route-
Views [27], which archives BGP state from multiple van-
tage points, or the Internet Routing Registry [3], which
contains routing policies and peering information for each
autonomous system. Passive monitoring eases deploya-
bility concerns. However, data freshness becomes a con-
cern when dealing with “eventually updated” repositories
such as the IRR, and even RouteViews data is only up-
dated once every two hours. Legitimate changes to rout-
ing policy may also be indistinguishable from hijacking
attacks in terms of BGP semantics, making disambigua-
tion difficult in some cases. In contrast, if our availability
fingerprints indicate that a large chunk of hosts have sud-
denly gone offline or changed their availability profile, it
is extremely unlikely that this is a natural phenomenon.

Hu and Mao were the first to use data plane fingerprints
in the context of hijack detection [18]. In their system, a
live BGP feed is monitored for suspicious updates. If an
IP prefix is involved in a questionable update, its hosts
are scanned from multiple vantage points using nmap OS
fingerprinting [15], IP ID probing [7], and ICMP times-
tamp probing [18]. The results are presented to a human
operator who determines if they are inconsistent. Our sys-
tem differs in three ways. First, we do not require privi-
leged access to a live BGP feed, easing deployability. Sec-
ond, we continually calculate subnet fingerprints, whereas
Hu’s system only calculates fingerprints upon detecting
suspicious BGP behavior, behavior which may take sev-
eral minutes to propagate to a particular vantage point.
Third, we can finish a probing sweep in less than 30 sec-
onds, whereas several of Hu’s scans may take several min-
utes to complete. Given the short-lived nature of spectrum

agility attacks [31], we believe that quick, frequent scan-
ning is preferable, if only to serve as a tripwire to trigger
slower, “deeper” scans.

Zheng et al detect hijacking attacks by measuring the
hop count from monitor hosts to the IP prefixes of inter-
est [38]. For each prefix, the monitor selects a reference
point that is topologically close to the prefix and lies along
the path from the monitor to the prefix. In normal situ-
ations, the hop count along the monitor-reference point
path should be close to that of the monitor-prefix path.
When the prefix is hijacked, the hop count along the two
paths should diverge. Zheng’s system avoids the deploya-
bility problems mentioned above, since hop counts can be
determined by any host that can run traceroute. However,
the system assumes that a reference point can be found
which is immediately connected to the target prefix and
responds to ICMP messages; if the reference point is fur-
ther out, the hijacker can hide within the extra hops. Our
system only requires that end hosts respond to pings. Fur-
thermore, our system tracks the availability of individual
hosts, whereas Zheng’s system only tracks the availability
of a few representative hosts in each target prefix.

6 Conclusion

Many distributed systems would benefit from an infras-
tructure that collected high resolution availability mea-
surements for individual hosts. Unfortunately, existing
frameworks either do not scale, do not track every host in
the network, or store data in such a way that makes global
analysis difficult. In this paper we describe StrobeLight,
an enterprise-level tool for collecting fine-grained avail-
ability data. Our current prototype has measured the up-
time of hundreds of thousands of hosts in our corporate
network for almost two years. Using the longitudinal data
generated by this tool, we performed extensive analyses
of availability in our wired and wireless networks. Us-
ing external Planetlab deployments and simulations, we
also demonstrated how StrobeLight’s real-time analysis
engine can detect wide-area network anomalies. Our op-
erational experiences indicate that StrobeLight’s anomaly
detection is fast and accurate.

References

[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer.
FARSITE: Federated, Available, and Reliable Storage for an In-
completely Trusted Environment. In Proceedings of OSDI, pages
1-14, Boston, MA, December 2002.

[2] W. Aiello, J. Ioannidis, and P. McDaniel. Origin Authentication
in Interdomain Routing. In Proceedings of CCS, pages 165-178,
Washington, DC, October 2003.

[3] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer,
T. Bates, D. Karrenberg, and M. Terpstra. Routing Policy Specifi-
cation Language (RPSL). RFC 2622, June 1999.

USENIX Association

2009 USENIX Annual Technical Conference

69

(4]

[5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In Proceedings of SOSP, pages 131—
145, Banff, Canada, October 2001.

D. Anderson. BOINC: A System for Public-Resource Comput-
ing and Storage. In Proceedings of the IEEE/ACM International
Workshop on Grid Computing, pages 4—10, Pittsburgh, November
2004.

H. Ballani, P. Francis, and X. Zhang. A Study of Prefix Hijacking
and Interception in the Internet. In Proceedings of SIGCOMM,
pages 265-276, Kyoto, Japan, August 2007.

S. Bellovin. A Technique for Counting NATted Hosts. In Proceed-
ings of the SIGCOMM Internet Measurement Workshop, pages
267-272, Marseille, France, November 2002.

R. Bhagwan, S. Savage, and G. Voelker. Understanding availabil-
ity. In Proceedings of the 2nd IPTPS, Berkeley, CA, February
2003.

R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total
Recall: system support for automated availability management. In
Proceedings of NSDI, pages 337-350, March 2004.

W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of
a serverless distributed file system deployed on an existing set of
desktop PCs. In Proceedings of ACM SIGMETRICS, pages 34—43,
Santa Clara, CA, June 2000.

W. Bolosky, J. Douceur, and J. Howell. The Farsite Project: A Ret-
rospective. ACM SIGOPS Operating Systems Review, 41(2):17—
26, April 2007.

K. Butler, P. McDaniel, and W. Aiello. Optimizing BGP Security
by Eploiting Path Stability. In Proceedings of CCS, pages 298—
310, Alexandria, VA, November 2006.

D.-F. Chang, R. Govindan, and J. Heidemann. Locating BGP
Missing Routes Using Multiple Perspectives. In Proceedings of the
SIGCOMM Workshop on Network Troubleshooting, pages 301—
306, Portland, OR, September 2004.

P. Cincotta, M. Mendez, and J. Nunez. Astronomical Time Series
Analysis I: A Search for Periodicity Using Information Entropy.
The Astrophysical Journal, 449:231-235, August 1995.

Fyodor. nmap security scanner. http://insecure.org/nmap/.

IETF IDR Working Group. A Border Gateway Protocol 4 (BGP-
4). RFC 1771, March 1995.

Hewlett-Packard Development Company. HP SiteScope software:
Data sheet. White paper, August 2008.

X. Hu and Z. Morley Mao. Accurate Real-time Identification of
IP Prefix Hijacking. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 3—17, Oakland, California, May 2007.

Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: Secure Path Vector Rout-
ing for Securing BGP. In Proceedings of SIGCOMM, pages 179—
192, Portland, OR, September 2004.

R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, and
I. Stoica. Querying the Internet with PIER. In Proceedings of
VLDB, pages 321-332, Berlin, Germany, September 2003.

J. Jung and E. Sit. An Empirical Study of Spam Traffic and the
Use of DNS Black Lists. In Proceedings of IMC, pages 370-375,
Taormina, Sicily, Italy, October 2004.

C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Topology-based
Detection of anomalous BGP messages. In Proceedings of RAID,
pages 17-35, Pittsburgh, PA, September 2003.

M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang. Phas:
A Prefix Hijack Alert System. In Proceedings of USENIX Security,
pages 153-166, Vancouver, Canada, August 2006.

H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani. iplane: An Information Plane
for Distributed Services. In Proceedings of OSDI, pages 367-380,
Seattle, WA, November 2006.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

(35]

(36]

(37]

(38]

J. Mickens and B. Noble. Exploiting Availability Prediction in
Distributed Systems. In Proceedings of NSDI, pages 73-86, San
Jose, CA, May 2006.

J. Mickens and B. Noble. Concilium: Collaborative Diagnosis of
Broken Overlay Routes. In Proceedings of DSN, pages 225-234,
Edinburgh, UK, June 2007.

University of Oregon. Route Views

http://www.routeviews.org.

Project.

V. Padmanabhan, L. Qiu, and H. Wang. Passive Network Tomog-
raphy Using Bayesian Inference. In Proceedings of SIGCOMM
Internet Measurement Workshop, pages 93-94, Marseille, France,
November 2002.

K. Park and V. Pai. CoMon: A mostly-scalable monitoring system
for PlanetLab. Operating Systems Review, 40(1):65-74, January
2006.

S. Pincus. Approximate entropy as a measure of system complex-
ity. In Proceedings of the National Academy of Science, pages
2297-2301, USA, March 1991.

A. Ramachandran and N. Feamster. Understanding the Network-
Level Behavior of Spammers. In Proceedings of SIGCOMM,
pages 291-302, Pisa, Italy, September 2006.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
Proceedings of the IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), pages 329-350, Heidel-
berg, Germany, November 2001.

G. Siganos and M. Faloutsos. Neighborhood Watch for Internet
Routing: Can We Improve the Robustness of Internet Routing To-
day? In Proceedings of INFOCOM, pages 1271-1279, Anchor-
age, AK, May 2007.

N. Spring, L. Peterson, A. Bavier, and V. Pai. Using Planetlab
for Network Research: Myths, Realities, and Best Practices. In
Proceedings of WORLDS, pages 67-72, San Francisco, CA, De-
cember 2005.

L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz.
Listen and Whisper: Security Mechanisms for BGP. In Proceed-
ings of NSDI, pages 127-140, San Francisco, CA, March 2004.

R. Teixeira, S. Agarwal, and J. Rexford. BGP Routing Changes:
Merging Views from Two ISPs. In SIGCOMM Computer Com-
munications Review, pages 79-82, October 2005.

X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and
L. Zhang. Detection of Invalid Routing Announcement in the In-
ternet. In Proceedings of DSN, pages 59-68, Bethesda, MD, June
2002.

C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis. A Light-Weight
Distributed Scheme for Detecting IP Prefix Hijacks in Real-Time.
In Proceedings of SIGCOMM, pages 277-288, Kyoto, Japan, Au-
gust 2007.

70

2009 USENIX Annual Technical Conference

USENIX Association

Hashing Round-down Prefixes for Rapid Packet Classification

Fong Pong

Broadcom Corp.
2451 Mission College Blvd., Santa Clara, CA 95054
fpong@broadcom.com

Abstract — Packet classification is complex due to
multiple fields present in each filter rule, easily manifesting
itself as a router performance bottleneck. Most known
classification approaches involve either hardware support or
optimization steps (to add precomputed markers and insert
rules in the search data structures). Unfortunately, an
approach with hardware support is expensive and has
limited scalability, whereas one with optimization fails to
handle incremental rule updates effectively. This work
treats a rapid packet classification mechanism, realized by
hashing round-down prefixes (HaRP) in a way that the
source and the destination IP prefixes specified in a rule are
rounded down to “designated prefix lengths” (DPL) for
indexing into hash sets. Utilizing the first { bits of an IP
prefix with / bits (for { < /, {e DPL) as the key to the hash
function (instead of using the original IP prefix), HaRP
exhibits superb hash storage utilization, able to not only
outperform those earlier software-oriented classification
techniques but also well accommodate dynamic creation
and deletion of rules. HaRP makes it possible to hold all its
search data structures in the local cache of each core within
a contemporary processor, dramatically elevating its
classification performance. Empirical results measured on
our Broadcom BCM-1480 multicore platform under nine
filter datasets obtained from a public source unveil that
HaRP enjoys up to some 5x (or 10x) throughput
improvement when compared with well-known HyperCuts
(or Tuple Space Search).

1 Introduction

Packet classification is basic to a wide array of Internet
applications and services, performed at routers by applying
“rules” to incoming packets for categorizing them into flows. It
employs multiple fields in the header of an arrival packet as the
search key for identifying the best suitable rule to apply. Rules
are created to differentiate packets based on the values of their
corresponding header fields, constituting a filter set. Header
fields may contain network addresses, port numbers, the
protocol type, TCP flags, ICMP message type and code
number, VLAN tags, DSCP and 802.1p codes, etc. A field
value in a filter can be an IP prefix (e.g., source or destination
sub-network), a range (e.g., source or destination port numbers),
or an exact number (e.g., protocol type or TCP flag). A real
filter dataset often contains multiple rules for a pair of
communicating networks, one for each application. Similarly,

Nian-Feng Tzeng

Center for Advanced Computer Studies
University of Louisiana at Lafayette, LA 70504
tzeng(@cacs.louisiana.edu

an application is likely to appear in multiple filters, one for each
pair of communicating networks using the application.
Therefore, lookups over a filter set with respect to multiple
header fields are complex [9] and often become router
performance bottlenecks.

Various classification mechanisms have been considered,
and they aim to quicken packet classification through hardware
support or the use of specific data structures to hold filter
datasets (often in SRAM and likely with optimization) for fast
search [25]. Hardware support frequently employs FPGAs
(field programmable gate arrays) or ASIC logics [4, 21], plus
TCAM (ternary content addressable memory) to hold filters or
registers for rule caching [8]. Key design goals with hardware
support lie in simple data structures and search algorithms to
facilitate ASIC or FPGA implementation and low storage
requirements to reduce the TCAM costs. They tend to prevent a
mechanism with hardware support from handling incremental
rule updates efficiently, and any change to the mechanism (in its
search algorithm or data structures) is usually expensive.
Additionally, such a mechanism exhibits limited scalability, as
TCAM employed to hold a filter set dictates the maximal set
size allowable. Likewise, search algorithms dependent on
optimization via preprocessing (used by recursive flow
classification [9]) or added markers and inserted rules (stated in
rectangle tuple space search (TSS) [24], binary TSS on columns
[28], diagonal-based TSS [15], etc.) for speedy lookups often
cannot deal with incremental rule updates effectively. A tuple
under TSS specifies the involved bits of those fields employed
for classification, and probes to tuple space for appropriate rules
are conducted via fast exact-match search methods like hashing.

Many TSS-based classifiers employ extra SRAM (in
addition to processor caches). Unlike TCAM, SRAM costs far
less and consumes much lower energy. Further, if the required
SRAM size is made small to fit in an on-chip module, the cost
incurred for the on-chip SRAM can be very low, since it shares
the same fabrication processes as those for on-chip caches.
However, the inherent limitation of a TSS classifier in dealing
with incremental rule updates (deemed increasingly common
due to such popular applications as voice-over-IP, gaming, and
video conferencing, which all involve dynamically triggered
insertion and removal of rules in order for the firewall to handle
packets properly) will soon become a major concern [30].

This article treats hashing round-down prefixes (HaRP)
for rapid packet classification, where an IP prefix with / bits
is rounded down to include its first { bits only (for { < /, {

USENIX Association

2009 USENIX Annual Technical Conference 71

e DPL, “designated prefix lengths” [17]). With two-staged
search, HaRP achieves high classification throughput and
superior memory efficiency by means of (1) rounding down
prefixes to a small number of DPL (denoted by m, i.e., m
possible designated prefix lengths), each corresponding to
one hash unit, for fewer (than 32 under IPv4, when every
prefix length is permitted without rounding down) hash
accesses per packet classification, and (2) collapsing those
hash units to one lumped hash (LuHa) table for better
utilization of table entries, which are set-associative. Based
on a LuHa table keyed by the source and destination IP
prefixes rounded down to designated lengths, HaRP not
only enjoys fast classification (due to a small number of
hash accesses) but also handles incremental rule updates
efficiently (without precomputing markers or inserting rules
often required by typical TSS). While basic HaRP
identifies up to two candidate sets in the LuHa table to hold
a given filter rule, generalized HaRP (denoted by HaRP*)
may store the rule in any one of up to 2m candidate sets,
considerably elevating table utilization to lower the
probability of set overflow and achieving good scalability
even for a small set-associative degree (say, 4). Each packet
classification under HaRP~ requires to examine all the
possible 2m candidate sets (in parallel for those without
conflicts, i.e., those in different memory modules which
constitute the LuHa Table), where those sets are identified
by the hash function keyed with the packet’s source and
destination IP addresses, plus their respective round-down
prefixes. HaRP is thus to exhibit fast classification, due to
its potential of parallel search over candidate sets. With
SRAM for the LuHa table and the application-specific
information table (for holding filter fields other than source
and destination IP prefixes), HaRP exhibits a lower cost and
better scalability than its hardware counterpart. With its
required SRAM size dropped considerably (to some 200KB
at most for all nine filter datasets examined), HaRP makes it
possible to hold all its search data structures in the local
cache of a core within a contemporary processor, further
boosting its classification performance.

Our LuHa table yields high storage utilization via
identifying multiple candidate sets for each rule (instead of
just a single one under a typical hash mechanism), like the
earlier scheme of d-left hashing [1]. However, the LuHa
table differs from d-left hashing in three major aspects: (1)
the LuHa table requires just one hash function, as opposed
to d functions needed by d-left hashing (which divides
storage into d fragments), one for each fragment, (2) the
hash function of the LuHa table under HaRP' is keyed by
2m different prefixes produced from each pair of the source
and the destination IP addresses, and (3) a single LuHa table
obtained by collapsing separate hash units is employed to
attain superior storage utilization, instead of one hash unit
per prefix length to which d-left hashing is applied.

Extensive evaluation on HaRP has been conducted on our
platform comprising a Broadcom’s BCM-1480 SoC (System on
Chip) [18], which has four 700MHz SB-1"" MIPS cores [12],
under nine filter datasets obtained from a public source [29].
The proposed HaRP was made multithreaded so that up to 4
threads could be launched to take advantage of the 4 SB-1™
cores for gathering real elapsed times via the BCM-1480 ZBus
counter, which ticks at every system clock. Measured
throughput results of HaRP are compared with those of its
various counterparts (whose source codes were downloaded
from a public source [29] and then made multithreaded for)
executing on the same platform to classify millions of packets
generated from the traces packaged with the filter datasets. Our
measured results reveal that HaRP boosts classification
throughput by some 5% (or 10x) over well-known HyperCuts
[20] (or Tuple Space Search [24]), when its LuHa table has a
total number of entries equal to 1.5# and there are 4 designated
prefix lengths, for a filter dataset sized n. HaRP attains superior
performance, on top of its efficient support for incremental rule
updates lacked by previous techniques, making it a highly
preferable software-based packet classification technique.

2 Pertinent Work and Tuple Space Search

Packet classification is challenging and its cost-effective
solution is still in pursuit actively. Known classification lookup
mechanisms may be categorized, in accordance with their
implementation approaches, as being hardware-centric and
software-oriented, depending upon if dedicated hardware logics
or specific storage components (like TCAM or registers) are
used. Different hardware-centric classification mechanisms
exist. In particular, a mechanism with additional registers to
cache evolving rules and dedicated logics to match incoming
packets with the cached rules was pursued [8]. Meanwhile,
packet classification using FPGA was considered [21] by using
the BV (Bit Vector) algorithm [13] to look up the source and
destination ports and employing a TCAM to hold other header
fields, with search functionality realized by FPGA logic gates.
Recently, packet classification hardware accelerator design
based on the HiCuts and HyperCuts algorithms [3, 20] (briefly
reviewed in Section 2.1), has been presented [11]. Separately,
effective methods for dynamic pattern search were introduced
[4], realized by reusing redundant logics for optimization and by
fitting the whole filter device in a single Xilinx FPGA unit,
taking advantage of built-in memory and XOR-based
comparators in FPGA.

Hardware approaches based on TCAM are considered
attractive due to the ability for TCAM to hold the don’t care
state and to search the header fields of an incoming packet
against all TCAM entries in a rule set simultaneously [16, 27].
While deemed as most widely employed storage components in
support of fast lookups, TCAM has such noticeable
shortcomings (listed in [25]) as lower density, higher power
consumption, and being pricier and unsuitable for dynamic

72 2009 USENIX Annual Technical Conference

USENIX Association

rules, since incremental updates usually require many TCAM
entries to be shifted (unless provision like those given earlier
[19,27] is made). As a result, software-oriented classification is
more attractive, provided that its lookup speed can be quickened
by storing rules in on-chip SRAM.

2.1 Software-Oriented Classification

Software-oriented mechanisms are less expensive and
more flexible (better adaptive to rule updates), albeit to slower
filter lookups when compared with their hardware-centric
counterparts. Such mechanisms are abundant, commonly
involving efficient algorithms for quick packet classification
with an aid of caching or hashing (via incorporated SRAM).
Their classification speeds rely on efficiency in search over the
rule set (stored in SRAM) using the keys constituted by
corresponding header fields. Several representative software
classification techniques are reviewed in sequence.

Recursive flow classification (RFC) carries out multistage
reduction from a lookup key (composed of packet header fields)
to a final classID, which specifies the classification rule to apply
[9]. Given a rule set, preprocessing is required to decide
memory contents so that the sequence of RFC lookups
according to a lookup key yields the appropriate classID [9].
Preprocessing results can be put in SRAM for fast accesses,
important for RFC as it involves multiple stages of lookups.
Any change to the rule set, however, calls for memory content
recomputation, rendering it unsuitable for frequent rule updates.

Based on a precomputed decision tree, HiCuts
(Hierarchical Intelligent Cuts) [10] holds classification rules
merely in leaf nodes and each classification operation needs to
traverse the tree to a leaf node, where multiple rules are stored
and searched sequentially. During tree search, HiCuts relies
on local optimization decisions at each node to choose the next
field to test. Like HiCuts, HyperCuts is also a decision tree-
based classification mechanism, but each of its tree nodes splits
associated rules possibly based on multiple fields [20]. It builds
a decision tree, aiming to involve the minimal amount of total
storage and to let each leaf node hold no more than a
predetermined number of rules. HyperCuts is shown to enjoy
substantial memory reduction while considerably quickening
the worst-case search time under core router rule sets [20], when
compared with HiCuts and other earlier classification solutions.

An efficient packet classification algorithm was introduced
[2] by hashing flow IDs held in digest caches (instead of the
whole classification key comprising multiple header fields) for
reduced memory requirements at the expense of a small amount
of packet misclassification. Recently, fast and memory-efficient
(2-dimensional) packet classification using Bloom filters was
studied [7], by dividing a rule set into multiple subsets before
building a crossproduct table [23] for each subset individually.
Each classification search probes only those subsets that contain
matching rules (and skips the rest) by means of Bloom filters,
for sustained high throughput. The mean memory requirement
is claimed to be some 32 ~ 45 bytes per rule. As will be

demonstrated later, our mechanism achieves faster lookups
(involving 8~16 hash probes plus 4 more SRAM accesses,
which may all take place in parallel, per packet) and consumes
fewer bytes per rule (taking 15 ~ 25 bytes per rule).

A fast dynamic packet filter, dubbed Swift [30], comprises
a fixed set of instructions executed by an in-kernel interpreter.
Unlike packet classifiers, it optimizes filtering performance by
means of powerful instructions and a simplified computational
model, involving a kernel implementation.

2.2 Tuple Space Search (TSS)

Having rapid classification potentially (with an aid of
optimization) without additional expensive hardware, TSS has
received extensive studies. It embraces versatile software-
oriented classification and involves various search algorithms.
Under TSS, a tuple comprises a vector of k integer elements,
with each element specifying the length or number of bits of a
header field of interest used for the classification purpose. As
the possible numbers of bits for interested fields present in the
classification rules of a filter dataset tend to be small, all length
combinations of the & fields constituting tuple space are rather
contained [24]. In other words, while the tuple space T in
theory comprises totally 77-; , prefix.length(field;) tuples, it only
needs to search existing tuples rather than the entire space 7.

A search key can be obtained for each incoming packet by
concatenating those involved bits in the packet header.
Consider a classic 5-dimensional classification problem, with
packets classified by their source IP address (sip), source port
number (spn), destination IP address (dip), destination port
number (dpn), and protocol type (pt). An example tuple of (sip,
dip, spn, dpn, pt) = (16, 24, 6, 4, 6) means that the source and
the destination IP addresses are respectively a 16-bit prefix and
a 24-bit prefix. The number of prefix bits used to define the
tuple elements of sip and dip is thus clear. On the other hand,
the port numbers and the protocol type are usually specified in
ranges; for example, [1024, 2112] referring to the port number
from 1024 to 2112. For TSS, those range files are (1) handled
separately (like what was stated in [3]), (2) encoded by nested
level and range IDs [24], or (3) transformed into collections of
sub-ranges each corresponding to a prefix (namely, a range with
an exact power of two), resulting in rule dataset expansion.

TSS Implementation Consideration

TSS intends to achieve high memory efficiency and fast
lookups by exploiting a well sanctioned fact of rule construction
resulting from optimization. Its optimization methods include:

1. Tuple Pruning and Rectangle Search, using markers and
pre-computed best-matched rules to achieve the worst-
case lookup time of 2W-1 for two-dimensional
classification, with W being the length of source and
destination IP prefixes [24],

2. Binary Search on Columns, considered later [28] to
reduce the worst-case lookup time down to O(log’#),
while involving O(Nxlog? /) memory for N rules, and

USENIX Association

2009 USENIX Annual Technical Conference 73

hash table for prefixes P/,

Application-Specific Information

(ASI) table
hash table for prefixes P|/; IE_]liml?le;l tH_];lls h Source Port | Dest. Port Proto. Type
ura) table
hash table for prefixes P/ preriPair [Pointer /'{ (SPNiow, SPNni) |(dpniow, dpnni) | (Pliow, Ptai)
(sip, dip) index
"""" / (SPNiow, SPNni) |(dpniow, dpni) | (Pliows Ptai)
(Slp dlp) AR o (Spn]ow7 spnhi) (dpnlr)W7 dpnhi) (ptlowa Pthi)
(SPNiow, SP1ni) |(dpniow, dpnii) | (Pliows Pthi)

Figure 1. HaRP classification mechanism comprising one set-associative hash table (obtained by lumping multiple hash
tables together) and an application-specific information table.

3. Diagonal-based Search to exhibit the search time of
O(logh) for two-dimensional filters, with a large
memory requirement of O(N) [15].

While TSS (with optimization) is generally promising, it
suffers from the following limitations.
Expensive Incremental Updates. Dynamic creation and
removal of classification rules may prove to be challenging to
those known TSS methods. However, dynamic changes to rule
datasets take place more frequently going forward, due to many
growing popular applications, such as voice-over-IP, gaming,
and video conferencing, which all require dynamically triggered
insertion and removal of rules in order for the firewall to handle
packets properly. This inability in dealing with frequent rule
updates is common to TSS-based packet classification, because
its high search rate and efficient memory (usually SRAM)
utilization result from storing contents in a way specific to
contents themselves, and any change to the rule dataset requires
whole memory content recomputed and markers/rules
reinserted. With its nature of complex and prohibitively
expensive memory management in response to rule changes,
TSS is unlikely to arrive at high performance.

Limited Parallelism. TSS with search optimization lends itself
to sequential search, as the next tuple to be probed depends on
the search result of the current tuple. Its potential in parallelism
is rather limited as the number of speculative states involved
grows exponentially when the degree increases.

Extensibility to Additional Fields. Results for two-dimensional
TSS have been widely reported. However, it is unclear about
TSS performance when the number of fields rises (to
accommodate many other fields, including TCP flags, ICMP
message type and code number, VLAN tags, DSCP and 802.1p
codes, besides commonly mentioned five fields), in particular, if
markers and precomputation for best rules are to be applied.

3 Proposed HaRP Architecture

3.1 Fundamentals and Pertinent Data Structures

As eloquently explained earlier [25, 26], a classification
rule is often specified with a pair of communicating networks,
followed by the application-specific constraints (e.g., port

numbers and the protocol type). Our HaRP exploits this
situation by considering the fields on communicating networks
and on application-specific constraints separately, comprising
two search stages. Its first stage narrows the search range via
communicating network prefix fields, and its second stage
checks other fields on only entries chosen in the first stage.

Basic HaRP

As depicted in Figure 1, the first stage of HaRP comprises
a single set-associative hash table, referred to as the LuHa
(lumped hash) table. Unlike typical hash table creation using
the object key to determine one single set for an object, our
LuHa table aims to achieve extremely efficient table utilization
by permitting multiple candidate sets to accommodate a given
filter rule and yet maintaining fast search over those possible
sets in parallel during the classification process. It is made
possible by (1) adopting designated prefix length, DPL: {I, b,

.. &y ... I}, where [; denotes a prefix length, such that for any
prefix P of length w (expressed by Pjw) with [; <w < [, P is
rounded down to PJ/; before used to hash the LuHa table, and (2)
storing a filter rule in the LuHa table hashed by either its source
IP prefix (sip, if not wild carded) or destination IP prefix (dip, if
not wild carded), after they are rounded down. Each prefix
length {, with e DPL, is referred to as a tread. Given P, it is
hashed by treating P|/; as an input to a hash function to get a d-
bit integer, where d is dictated by the number of sets in the
LuHa table. Since treads in DPL are determined in advance, the
numbers of bits in an IP address of a packet used for hash
calculation during classification are clear and their hashed
values can be obtained in parallel for concurrent search over the
LuHa table. Our classification mechanism results from hashing
round-down prefixes (HaRP) during both filter rule installation
and packet classification search, thereby so named.

The LuHa table comprises collapsed individual hash tables
(each of which is assigned originally to hold all prefixes Plw (/;
< w < [y) under chosen DPL, as shown in Figure 1 by the
leftmost component before collapsing) to yield high table
utilization and is made set-associative to alleviate the overflow
problem. Each entry in the LuHa table keeps a prefix pair for
the two communicating networks, namely, sip (the source IP
prefix) and dip (the destination IP prefix). While different (sip,

74 2009 USENIX Annual Technical Conference

USENIX Association

dip) pairs after being rounded down may become identical and
distinct prefixes possibly yield the same hashed index, the set-
associative degree of the LuHa table can be held low in practice.
Given the LuHa table composed of 24 sets, each with « entries,
it experiences overflow if the number of rules hashed into the
same set exceeds «. However, this overflow problem is
alleviated, since a filter rule can be stored in either one of the
two sets indexed by its sip and dip. With the LuHa table, our
HaRP arrives at (1) rapid packet classification due to a reduced
number of hash probes through a provision of parallel accesses
to all entries in a LuHa set and also to a restricted scope of
search (pointed to by the matched LuHa entry) in the second
stage, and (2) a low SRAM requirement due to one single set-
associated hash table (for better storage utilization).

Generalized HaRP

Given a filter rule with its sip or dip being Pjw and under
DPL = {l;, b, ... I, ... I,}, HaRP can be generalized by
rounding down Pjw, with [; <w < [y, to P|,, for all 1 <b <4,
before hashing P|/, to identify more candidate sets for keeping
the filter rule. In other words, this generalization in rounding
down prefixes lets a filter rule be stored in any one of those 2xi
sets hashed by P|/, in the LuHa table, referred to as HaRP .
This is possible because HaRP takes advantage of the
“transitive property” of prefixes — for a prefix Pjw, P|¢ is a prefix
of Pjw for all £ < w, considerably boosting its pseudo set-
associative degree. A classification lookup for an arrived packet
under DPL with m treads involves m hash probes via its source
IP address and m probes via its destination IP address, therefore
allowing the prefix pair of a filter rule (say, (Pyw; , Pgw,), with
IF <wy <18 and I <w, < I¢,)) to be stored in any one of the /*
sets indexed by round-down P (i.e., Py {/, b, ... i'}, if Py is not
a wildcard), or any one of the i sets indexed by round-down P,
(ie., Pg{ly, b, ... lid}, if P4 is not a wildcard). HaRPsk balances
the prefix pairs among many candidate sets (each with o
entries), making the LuHa table behave like an (7' + i*)xa set-
associative design under ideal conditions to enjoy high storage
efficiency. Given DPL with 5 treads: {28, 24, 16, 12, 1}, for
example, HaRP' rounds down the prefix of 010010001111001x
(w=15)t0 010010001111 ({=12) and 0 ({ = 1) for hashing.

This potentially high pseudo set-associativity makes it
possible for HaRP' to choose a small number of treads (m). A
small m lowers the number of hash probes per lookup
accordingly, thus improving lookup performance. Adversely, as
m drops, more rules can be mapped to a given set in the LuHa
table, requiring m to be moderate practically, say 6 or so. Note
that a shorter prefix (either Py or Py) leads to fewer candidate
sets for storing a filter rule, but the number of filter rules with
shorter prefixes is smaller, naturally curbing the likelihood of set
overflow. Furthermore, HaRP’ enjoys virtually no overflow, as
long as * is greater than 2, to be seen in the following analys1s

Our basic HaRP stated earlier is denoted by HaRP' (where
Plw, with [; <w <[44, is rounded down to P|/;). Rounding down

Plw to both P[}; and P[/.;, dubbed HaRP’,
LuHa table sets for the filter rule. Clearly, HaRP" experiences
overflow only when 2 %i sets in the LuHa table are all full. The
following analyzes the LuHa table in terms of its effectiveness
and scalability, revealing that for a fixed, small « (say, 4), its
overflow probability is negligible, provided that the ratio of the
number of LuHa table entries to the number of filter rules is a
constant, say p.

specifies up to four

Effectiveness and Scalability of LuHa Table

From a theoretic analysis perspective, the probability
distribution could be approximated by a Bernoulli process,
assuming a uniform hash distribution for round-down
prefixes. (As round-down prefixes for real filter datasets
may not be hashed uniformly, we performed extensive
evaluation of HaRP under publicly available 9 real-world
datasets, with the results provided in Section 4.2.) The
probability of hashing a round-down prefix P|/; randomly to
a table with r sets equals 1/r. Thus, the probability for k&
round-down prefixes, out of n samples (i.e., the filter dataset

r)n—k . As

size), hashing to a given set is (Zj(l/,)k (117

each set has « entries, we get prob.(overflow | £ round-
down prefixes mapped to a set, for all £k > @) =
a
1- X
k=0

The above expression can be shown to give rise to
almost identical results over any practical range of n, for
given p and . When p = 1.5 and o = 4, for example, the
overflow probability equals 0.1316 under n = 500, and it
becomes 0.1322 under » = 100,000. Consequently, under a
uniform hashing distribution of round-down prefixes, the set
overflow probability of HaRP' holds virtually unchanged as
the filter dataset size grows, indicating good scalability of
HaRP with respect to its LuHa table. We therefore provide
in Figure 2, the probability of overflowing a set with o = 4
entries versus p (called the dilation factor) for one filter
dataset size (i.e., » = 100,000) only. As expected, the
overflow probability dwindles as p rises (reflecting a larger
table). For p = 1.5 (or 2), the probability of overflowing a
typical 4- -way set- associative table is 0.13 (or 0.05).

HaRP' achieves better LuHa table utilization, since it
permits the use of either sip or dip for hashing, effectively
yielding “pseudo 8-way” if sip and dip are not wildcards. It
selects the less occupied set in the LuHa table from the two
candidate sets hashed on the non-wild carded sip and dip.
The overflowing probability of HaRP'can thus be
approximated by the likelihood of both candidate LuHa
table sets (indexed by sip and dip) being fully taken (i.e.,
each with 4 active entries). In practice, the probability
results have to be conditioned by the percentage of filter
rules with wild carded IP addresses. With a wild carded sip

(Z](l / r)k a-1/rn"- k ,with r= (nxp)/a

USENIX Association

2009 USENIX Annual Technical Conference 75

(or dip), a filter rule cannot benefit from using either sip or
dip for hashing (since a wild carded IP address is never used
for hashlng) The set overflowing probability results of
HaRP' with wild carded IP address rates of 60% and 0% are
depicted in Figure 2. They are interesting due to their
representative characteristics of real filter datasets used in
this study (as detailed in Section 4.1; the rates of filter rules
with wild carded IP addresses for 9 datasets are listed with
the right box). With a dllat10n factor p= 1.5, the
overflowing probability of HaRP' drops to 1.7% (or 8.6%),
for the wildcard rate of 0% (or 60%).

. FW1: 67%
‘ﬁ o4 hash on one IP ;;CCTBOS?ZZD
> 0354
5 hash on both sip and dip, with prob. of FW1-5K: 61%
< 03 1 one of them being a wildcard = 60%. ACLA-5K: 0.2%
; 0.25 1 Ehash on both sip and dip, with prob. of IPC1-5K: 7.5%
£ ione of them being a wildeard = 0%.
3 024 [FW1-10K: 61%
2 > [y ACL1-10K: 0.1%
L 015 JdtiLe IPC1-10K: 6%
> . .
e My (Prob. of one of
g 05| A . - - sip and dip being
e - o R I a wildeard is
o 0 = 37 QI L L D given; see
1 1.25 1.5 1.75 2 |Section 4 for
o details of these
Dilation Factor (p) filter datasets.)

Figure 2. Overflow probability versus p for a 4-way set.

Meanwhile, HaRP and HaRP’ are seen in the ﬁgure to
outperform HaRP' smartly. In particular, HaRP’ (or
HaRP’) achieves the overflowing probablhty3 of 0.15% (or
1.4 E-07 %) for p= 1.5, whereas HaRP" exhibits the
overflowing probability less than 4.8 E-05 % even under =
1.0 (without any dilation for the LuHa table). These results
confirm that HaRP' indeed leads to virtually no overflow
with & =4 under * > 2, thanks to its exploiting the high set-
associative potential for effective table storage utilization.
As will be shown in Section 4, HaRP also achieves great
storage efficiency under real filter datasets, making it
possible to hold a whole dataset in local cache practically
for superior lookup performance.

Application-Specific Information (ASI) Table

The second stage of HaRP involves a table, each of
whose entry keeps the values of application-specific filter
fields (e.g., port numbers, protocol type) of one rule, dubbed
the application-specific information (ASI) table (see Figure
1). If rules share the same IP prefix pair, their application-
specific fields are stored in contiguous ASI entries packed
as one chunk pointed by its corresponding entry in the LuHa
table. For fast lookups and easy management, ASI entries
are fragmented into chunks of a fixed size (say 8 contiguous
entries). Upon creating a LuHa entry for one pair of sip and
dip, a free ASI chunk is allocated and pointed to by the
created LuHa entry. Any subsequent rule with an identical
pair of sip and dip puts its application-specific fields in a

free entry insider the ASI chunk, if available; otherwise,
another free ASI chunk is allocated for use, with a pointer
established from the earlier chunk to this newly allocated
chunk. In essence, the ASI table comprises linked chunks
(of a fixed size), with one link for each (sip, dip) pair.

The number of entries in a chunk is made small
practically (say, 8), so that all the entries in a chunk can be
accessed simultaneously in one cycle, if they are put in one
word line (of 1024 bits, which can physically comprise
several SRAM modules). This is commonly achievable with
current on-chip SRAM technologies. The ASI table requires
a comparable number of entries as the filter dataset to attain
desirable performance, with the longest ASI list containing
36 entries, according to our evaluation results based on real
filter datasets outlined in Sections 4.3 and 4.4.

As demonstrated in Figure 1, each LuHa table entry is
assumed to have 96 bits for accommodating a pair of sip
and dip together with their 5-bit length indicators, a 16-bit
pointer to an ASI list, and a 6-bit field specifying the ASI
list length. Given the word line of 1024 bits and all entries
of a set put within the same word line with on-chip SRAM
technology for their simultaneous access in one cycle, the
set-associative degree () of the LuHa table can easily reach
10 (despite that o = 4 is found to be adequate in practice).

3.2 Installing Filter Rules

Given a set of filter rules, HaRP installs them by putting
their corresponding field contents to the LuHa and the ASI
tables sequentially. When adding a rule, one uses its source (or
destination) IP prefix for finding a LuHa entry to hold its prefix
pair after rounded down according to chosen DPL, if its
destination (or source) IP field is a don’t care (). Under
HaRP the number of round-down prefixes for a given non-
wildcard IP prefix is up to * (dependent upon the given IP
prefix and chosen DPL). When both source and destination IP
fields are specified, they are hashed separately (after rounded
down) to locate an appropriate set for accommodation. The set
is selected as follows: (1) if a hashed set contains the (sip, dip)
prefix pair of the rule in one of its entry, the set is selected (and
thus no new LuHa table entry is created to keep its (sip, dip)
pair), (2) if none hashed set has an entry keeping such a prefix
pair, a new entry is created to hold its (sip, dip) pair in the set
with least occupancy; if all candidate sets are with the same
occupancy, the last candidate set (i.e., the one indexed by the
longest round-down dip) is chosen to accommodate the new
entry created for keeping the rule. Note that a default table
entry exists to hold the special pair of (%, x), and that entry has
the lowest priority since every packet meets its rule.

The remaining fields of the rule are then put into an entry
in the ASI table, indexed by the pointer stored in the selected
LuHa entry. As ASI entries are grouped into chunks (with all
entries inside a chunk accessed at the same time, in the way like
accesses to those set entries in the LuHa table), the rule will find

76 2009 USENIX Annual Technical Conference

USENIX Association

any available entry in the indexed chunk for keeping the
contents of its remaining fields, in addition to its full source and
destination IP prefixes (without being rounded down). Should
no entry be available in the indexed chunk, a new chunk is
allocated for use (and this newly allocated chunk is linked to the
earlier chunk, as described in Section 3.1).

Input: Received packet, with dip (destination IP address), sip, sport
(source port), dport (destination port), proto (protocol type)

#define mask(L) ~((0x01 <<L)-1)
int match rule id =n_rules;

Hash_Probe (key_select) ::
key = (key_select == USE_DIP) ? dip : sip;
for each tread t in DPL {
h =hash_func(key&mask(t), t); /* round down prefix & hash */
for each entry s in hash set LuHa[h] {
if (PfxMatch((s.dip_prefix, dip), s.dip_prefix_length) &&
PfxMatch((s.sip_prefix, sip), s.sip_prefix_length) {
/* a prefix-pair matched, continue on checking ASI */
for each asi entry e in the chunk pointed by s.asi_pointer {
if (e.sport_low <= sport <= e.sport_high &&
e.dport_low <= dport <= e.dport_high &&
e.proto_low <= proto <= e.proto_high) {
/* Match! Choose rule with lower rule number */
if (match_rule id >= e.ruleno)
match_rule_id = e.ruleno;

iR

/* Pass 1: hash via dip */
Hash Probe(USE_DIP);

/* Pass 2: hash via sip */
Hash_Probe(USE_SIP);

Figure 3. Pseudo code for prefix-pair lookups.

33 Classification Lookups

Given the header of an incoming packet, a two-staged
classification lookup takes place. During the LuHa table
lookup, two types of hash probes are performed, one keyed with
the source IP address (specified in the packet header) and the
other with the destination IP address. Since rules are indexed to
the LuHa table using the round-down prefixes during
installation, the type of probes keyed by the source IP address
involves m hash accesses, one associated with a length listed in
DPL={l, b, ... I, ... I,}. Likewise, the type of probes keyed
by the destination IP address also contains m hash accesses.
This way ensures that no packet will be misclassified regardless
of how a rule was installed, as illustrated by the pseudo code
given in Figure 3.

Lookups in the ASI table are guided by the selected LuHa
entries, which have pointers to the corresponding ASI chunks.
The given source and destination IP addresses could match
multiple entries (of different prefix lengths) in the LuHa table.
Each matched entry points to one chunk in the ASI table, and
the pointed chunks are all examined to find the best matched

rule. As all entries in one pointed chunk are fetched in a clock,
they are compared concurrently with the contents of all relevant
fields in the header of the arrival packet. If a match occurs to
any entry, the rule associated with the entry is a candidate for
application; otherwise, the next linked chunk is accessed for
examination, until a match is found or the linked list is
exhausted. When multiple candidate rules are identified, one
with the longest matched (sip, dip) pair, or equivalently the
lowest rule number, if rules are sorted accordingly, is adopted.
On the other hand, if no match occurs, the default rule is chosen.

Prefix Source IP Prefix Source IP
length{o|1[2(3[4|5|6] .. 32 length|o|1(2[3]45] 6| .. 32
0 0
1| € X 1 » X
2| €Ix 2 x| <5 N
g3] € X g3 X
HEHRS X HE
% N Q N
30| KX s [H
31| € X 31 i I X
32| €1 X 32 X
X: Tuple

Rounding down prefixes to
nearest treads when dip is used
for hashing.

—> : Marker (Trail)
< Best matched rules

Figure 4. Comparison between TSS and proposed HaRP'.

34 Lookup Time Complexity

Time complexity consists of search over both the LuHa
table and the ASI table. Search over the LuHa table is indexed
by keys composed of round-down prefix pairs (following the
algorithm of Figure 3), taking exactly 2m hash probes under
DPL with m treads (ranging from 4 to 8). On the other hand,
search over the ASI table is directed by matched prefix pairs
held in the LuHa table, and the mean number of such pairs is
found to be smaller than 4 (for all nine filter datasets of sizes up
to 10K rules adopted for our study, as listed in Table 1).
Therefore, our HaRP requires 8-16 hash probes plus 4 ASI
accesses per lookup, in comparison to 63 (2/7-1) and 25 (log’ W,
with W being the IP prefix length) probes respectively for
Rectangle Search and Binary Tuple Search stated earlier. As a
smaller m leads to fewer hash probes but more rules mapped to
a given set in the LuHa table, selecting an appropriate m is
important.

As explained in Section 2.2, TSS with optimization uses
markers and pre-computed results to guide its search. However,
the praised property (that any filter dataset usually comprises
only a few unique prefix pair lengths) fails to take a role in
optimization (which relies instead on each rule to leave
markers), as depicted in Figure 4. Proliferating markers may
heighten the storage requirement by an order of O(Nxw). In
contrast, HaRP based on DPL treads actually cuts the tuple
space into segments along each dimension. When dip is used
for hashing, as an example, all destination prefixes are rounded

USENIX Association

2009 USENIX Annual Technical Conference 77

down to designated length speciﬁeld by the DPL set, as
demonstrated in Figure 4 for HaRP with designated prefix
lengths equal to 30 and 1 shown. The selection of DPL can be
made to match the distribution of unique prefix lengths for the
best hashing results. Based on the fact that there are not many
unique prefix pair length combinations [24, 25], HaRP design
makes very efficient use of the LuHa table, in a way better than
TSS over the tuple space. The storage requirement is a constant
O(N), linear to the number of rules.

35 Handling Incremental Rule Updates and Additional Fields

HaRP admits dynamic filter datasets very well. Adding
one rule to the dataset may or may not cause any addition to the
LuHa table, depending upon if its (sip, dip) pair has been
present therein. An entry from the ASI table will be needed to
hold the remaining fields of the rule. Conversely, a rule
removal requires only to make its corresponding ASI entry
available. If entries in the affected ASI chunk all become free
after this removal, its associated entry in the LuHa table is
released as well.

Packet classification often involves many fields, subject to
large dimensionality. As the dimension increases, the search
performance of a TSS-based approach tends to degrade quickly
while needed storage may grow exponentially due to the
combinatorial specification of many fields. By contrast, adding
fields under HaRP does not affect the LuHa table at all, and they
only need longer ASI entries to accommodate them, without
increasing the number of ASI entries. Search performance
hence holds unchanged in the presence of additional fields.

4 Evaluation and Results

This section evaluates HaRP using the publicly available
filter databases, focusing on the distribution results of prefix
pairs in the LuHa table. Because the LuHa table is consulted
2m times for DPL with m treads, the distribution of prefix pairs
plays a critical role in hashing performance. Our evaluation
assumes a 4-way set-associative LuHa table design, with default
DPL comprising 8 treads: {32, 28, 24, 20, 16, 12, 8, 1}, chosen
conveniently, not necessary to yield the best results. It will
show that our use of a single set-associative table obtained by
collapsing individual hash tables (see Figure 1) is effective.

This work assumes overflows to be handled by linked lists,
and each element in the linked list contains 4 entries able to hold
4 additional prefix pairs. HaRP is compared with other
algorithms, including the Tuple Space Search, BV, and
HyperCuts in terms of the storage requirement and measured
execution time on a multi-core SoC.

4.1 Filter Datasets

Our evaluation employed the filter database suite from the
open source of ClassBench [26]. The suite contains three seed
filter sets: covering Access Control List (ACLI1), Firewall
(FW1), and IP Chain (IPCl), made available by service

providers and network equipment vendors. By their different
characteristics, various synthetic filter datasets with large
numbers of rules are generated in order to study the scalability
of classification mechanisms. For assistance in, and validation
on, implementation of different classification approaches, the
filter suite is accompanied with traces, which can also be used
for performance evaluation as well [29]. The filter datasets
utilized by our study are listed in the following table.

Table 1. Filter datasets

Seed Filters
(#filters, trace length)

Synthetic Filters
(#filters, trace length)

ACLI1(752,8140) |ACL-5K(4415,45600) |ACL-10K(9603, 97000)

FW1(269, 2830) FW-5K (4653, 46700) | FW-10K(9311, 93250)

IPC1(1550, 17020) | IPC-5K(4460, 44790) | IPC-10K (9037, 90640)

42 Prefix Pair Distribution in LuHa Table

The hash function is basic to HaRP. In this article, a
simple hash function is developed for use. First, a prefix key
is rounded down to the nearest tread in DPL. Next, simple
XOR operations are performed on the prefix key and the
found tread length, as follows:

tread = find tread in DPL(length of the prefix key);

pfx = prefix_key & (Oxffttfftf << (32-tread)); // round down

h = (pfx) " (pfx>>7) " (pfx>>15) * tread " (tread<<S) *
(tread<<12)" ~(tread<<18) ~(tread<<25);

set num=(h" (h>>5)" (h<<13)) % num_of set;

While better results may be achieved by using more
sophisticated hash functions (such as cyclic redundancy codes,
for example), it is beyond the scope of this article. Instead, we
show that a single lumped LuHa table can be effective, and
most importantly, HaRP" works satisfactorily under a simple
hash function.

The results of hashing prefix pairs into the LuHa table are
shown in Figure 5, where the LuHa tables are properly sized.
Specifically, the LuHa table is provisioned with p = 2 (dilated
by a factor of 2 relative to the number of filter rules) for HaRP',
whereas its size is then reduced by 25% (i.e., p = 1.5) to show
how the single set-associative LuHa table performs with respect
to fewler treads in DPL under HaRP". Figure 5(a) illustrates that
HaRP exhibits no more than 4% of overflowing sets in a 4-way
set-associative LuHa table. Note that those results for 5K filter
datasets (i.e., ACL-5K, FW-5K, and IPC-5K) were omitted in
Figure 5 so that the remaining 6 curves can be read more easily,
given that those omitted results lying between the set of results
for 1K filter datasets and that for 10K datasets. Only the IPC1
dataset happens to have 20 prefix pairs mapped into one set.
This congested set is caused partly by the non-ideal hash
function and partly by the round-down mechanism of HaRP.
Nevertheless, the single 4-way LuHa table exhibits good
resilience in accommodating hash collisions for the vast
majority (96%) cases.

When the number of DPL treads is reduced to 6 under
HaRP’, improved and well-balanced results can be observed in

78 2009 USENIX Annual Technical Conference

USENIX Association

HaRP', with dilation factor = 2 and DPL of 8 treads

e
,,,,,,,,,,,,,,,,,,,,,,,, —=—AcLt
¢ k- IPCt
0% Il 77777777777777777777777 — - FW-10K]
) —8— ACL-I0K
IPC-10K

Percentage(/Total Sets)

&2 —Ah A A A -—Ah bk A
9 10 11 12 13 14 15 16 17 18 19 20

01 2 3 4 5 6 7 8
Number of Prefix Pairs in a Set
@
HaRP*, with dilation factor = 1.5 and DPL of 6 treads
100%
e WA
S B0%f—— e m——m - —=—ACL1
3 ~ & -IPC1
K] -~ - FW-10K
2
3 —8—ACL-10K
g IPC-10K
c
53
o
3]
o 20% 4 — LN - o
; GRS CLLL SIS |
0 1 2 3 4 5 6 7 8 9 10 1" 12 13

Number of Prefix Pairs in a Set
©

Figure 5. Results of hashing round-down prefixes into LuHa table.

Figure 5(b), where p equal 2. All datasets now experience less
than 1% overflowing sets, except for ACL1 and IPC1 (which
have some 4% and 8% overflows, respectively). Noticeably,
even the most punishing case of IPC1 encountered in Figure
5(a) is reassured. These desirable results hold true when the
LuHa table size is reduced by 25% and DPL contains fewer
thread, as shown in Figures 5(c) and 5(d). Although a few
congested sets emerge, they are still manageable. With 6 treads
in DPL, fewer congested sets, albeit marginal, occur, as
demonstrated in Figure 5(c), than with 4 threads depicted in
Figure 5(d). This is expected, since the hash values are
calculated over round-down prefixes, and a less number of
treads leads to wider strides between consecutive treads, likely
to make more prefixes identical in hash calculation after being
rounded down. Furthermore, fewer treads in DPL implies a
smaller number of LuHa table candidate sets among which
prefix pairs can be stored. These results indicate that a single
lumped set-associative table for HaRP® is promising in
accommodating prefix pairs of filter rules in a classification
dataset effectively.

43 Search over ASI Table

The second stage of HaRP probes the ASI (application-
specific information) table, each of whose entry holds values of
all remaining fields, as illustrated in Figure 1. As LuHa table

HaRP*, with dilation factor = 2 and DPL of 6 treads

—8—ACL-10K
IPC-10K

Percentage(/Total Sets)
°
g

Number of Prefix Pairs in a Set

(b)

HaRP*, with dilation factor = 1.5 and DPL of 4 treads

-4 FW1
—&—ACL1 -
A--IPC1
-~ - FW-10K -
—8—ACL-10K
IPC-10K -

Percentage(/Total Sets)
-
~

Number of Prefix Pairs in a Set

(@)

search has eliminated all rules whose source and destination IP
prefixes do not match, pointing solely to those candidate ASI
entries for further examination. It is important to find out how
many candidate ASI entries exist for a given incoming packet,
as they govern search complexity involved in the second stage.

As described in Section 3.1, we adopt a very simple design
which puts rules with the same prefix pairs in an ASI chunk.
While a more optimized design with smaller storage and higher
lookup performance may be achieved by advanced techniques
and data structures, we study the effectiveness of HaRP by
using basic linear lists because of its simplicity.

The ASI lists are generally short, as shown in Figure 6,
where the results for 5K filter datasets were omitted again
for clarity. Over 95% of them have less than 5 ASI entries
each, and hence, linear search is adequate. The ACLI1
dataset is an exception, experiencing a long ASI list with 36
entries. By scrutinizing the outcome, we found that this
case is caused by a large number of rules specified for a
specific host pair, leading to a poor case since those rules
for such host pairs fall in the same list. Furthermore, those
rules have the form of (0:max_destination_port, X, tcp), that
is, a range is specified for the destination port, with the
source port being wild carded and the protocol being TCP.
Importantly, the destination port range (0, dp;) for Rule i is a
sub-range of (0, dp;+;) for Rule i+1. This is believed to

USENIX Association

2009 USENIX Annual Technical Conference 79

represent a situation where a number of applications at the
target host rein accesses from a designated host.
Nevertheless, fetching all ASI entries within one chunk at a
time (achievable by placing them in the same word line)
helps to address long ASI lists, if present (since one ASI
chunk may easily accommodate 8 entries, each with 80 bits,
as stated in the next subsection).

Note that the ASI distribution is orthogonal to the
selection of DPL and to the LuHa table size. Filter rules are
put in the same ASI list only if they have the same prefix
pair combination.

100%
90% Tt - FW1
T s
£ 0% s
5 70%
2 4 IPC1
< 60% i\
s R
3 0% \ FW-10K
g 0% \k 8- ACL-10K
g
g ey IPC-10K
o A
5 20%
SOl = S
0% M S S MY b e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
Num. of ASI Entries per List

Figure 6. Length distribution of ASI link lists.

44 Storage Requirements

Table 2 shows memory storage measured for the rule
datasets. Each LuHa entry is 12-byte long, comprising two
32b IP address prefixes, two 5b prefix length indicators, a
16b pointer to the ASI table, and a 6b integer indicating the
length of its associated linked list. Each ASI entry needs 10
bytes to keep the port ranges and the protocol type, plus two
bytes for the rule number (i.e., the priority).

Table 2. Memory size

Total Storage (in KB, or Per Rule Storage(Byte, or

otherwise MB as specified) otherwise KB as specified)

HaRP Tuple BV Hyper- HaRP Tuple BV Hype

Space Cuts Space -Cuts

Fw1 4.64 |22.72| 10.50 | 10.19 | 17.66 | 86.49 | 40 [36.79
ACL1 | 13.79 | 44.19| 52.14 | 20.24 | 18.78 | 60.18 | 71 |[25.56
IPC1 | 29.17|56.26 | 92.33 | 91.19 | 19.27|37.17| 61 |58.25
FW-5K [101.0 | 629.5 | 3.07M | 4.10M | 22.23 | 138.5 | 691 [922.3
ACL-5K || 76.54 | 157.7 | 1.08M | 136.8 | 17.75|36.57 | 257 |29.73
IPC-5K | 90.56 | 199.4 | 1.52M | 332.6 |[20.79 | 45.79 | 358 |74.34
FW-10K | 217.3 | 1.68M[14.05M | 25.05M | 23.9 | 189.2 |1.54K[2.75K
ACL-10K | 192.5 | 403.4 | 7.31M | 279.4 | 20.52|43.02 | 798 |27.79
IPC-10K | 187.5|449.8 | 6.79M | 649.5 | 21.24|50.97 | 788 |71.60

As listed in Table 2, HaRP enjoys clear superiority
when compared with its previous counterparts, whose
implemented source codes were available publicly [29] and

employed to gather their respective results included here.
HaRP dramatically reduces memory storage needed and
demonstrates consistent levels of storage requirement across
all datasets examined. Previous techniques, especially those
using decision-tree- or trie-based algorithms, exhibit rather
unpredictable outcomes because the size of a trie largely
depends on if datasets have comparable prefixes to enable
trie contraction; otherwise, a trie can grow quickly toward
full expansion. Among prior techniques, tuple space search
(TSS) [24] and HyperCuts [20] show better results,
although they still require more memory than HaRP. Those
listed outcomes generally indicate what can be best
achieved by the cited techniques. For TSS, as an instance,
Tuple Pruning is implemented, but not pre-computed
markers which increase storage requirement (see Section
2.2 and Figure 4 for details). For HyperCuts, its refinement
options are all turned on, including rule overlapping and
rule pushing for the most optimization results [20].

The results of memory efficiency, defined as the ratio
between the total storage of constituent data structures (which
include the provisioned but not occupied entries for the LuHa
table in HaRP) and the minimal storage required to keep all
filter rules (as in a linear array of rules), for various algorithms
are listed in Table 3.

Table 3. Memory efficiency

HaRP HaRP Tuple BV Hyper-
P=2) (p=1.5) Space Cuts
FW1 1.62 1.35 3.60 1.67 1.93
ACL1 1.58 1.31 2.51 2.96 1.38
IPC1 1.58 1.31 1.55 2.54 3.01
FW-5K 1.59 1.32 5.77 28.83 46.21
ACL-5K 1.58 1.31 1.52 10.69 1.59
IPC-5K 1.58 1.31 1.91 14.89 3.82
FW-10K 1.58 1.31 7.88 65.93 141.0
ACL-10K 1.58 1.31 1.79 33.26 1.49
IPC-10K 1.59 1.37 2.12 32.83 3.68

There are a number of interesting findings. First of all,
HaRP consistently delivers greater efficiency than all other
algorithms. When the LuHa table is dilated by a factor p =2, all
memory data structures allocated are no more than 50% of the
amount required to keep the rules. If the LuHa table size is
reduced to p= 1.5, total storage drops by 25%. In general, a
smaller LuHa table yields lower performance because of more
hash collisions. However, the next section will show measured
results on multi-core systems under a small LuHa table (with p
= 1.5) and small DPL to deliver satisfactory performance
comparable to that under larger tables.

Contrary to HaRP enjoying consistent efficiency always, all
other methods exhibit unsteady results. When the number of
filter rules is small, those methods may achieve reasonable
memory efficiency. As the dataset size grows, their efficiency
results vary dramatically. For HyperCuts [20] (which uses a
multi-way branch trie), its size largely depends on if datasets

80 2009 USENIX Annual Technical Conference

USENIX Association

have comparable prefixes that enable trie contraction;
otherwise, the trie can grow exponentially toward full
expansion. A decision tree-based method suffers from the fact
that its number of kept rules may blow up quickly under a filter
dataset with plentiful wild-carded rules. The less specific filter
rules are, the lower memory efficiency it becomes, because a
wild-carded rule holds true for all children at a node irrespective
of the number of branches (cuts) made therein. (We have seen
consistent trends for large datasets comprising 20K and 30K
rules generated using the tool included in the ClassBench [26].)
As analyzed in Section 3.1 and shown in Figure 2, the FW
applications have over 60% wild-carded IP addresses (versus
some 0.1% to 8% for ACL and IPC), yielding the worst
memory efficiency consistently in Table 3. To a large degree,
TSS [24] and BV [13] also leverage tries to narrow the search
scope and hence are subject to the same problem. Furthermore,
TSS employs one hash table per tuple in the space, likely to
bloat the memory size because of underutilized hash tables. For
BV, the n-bit vector stored at each leaf node of a trie is the main
culprit for being memory guzzler.

Section 5.2 will demonstrate the measured performance
results of HaRP, revealing that it not only achieves the best
memory efficiency among all known methods but also
classifies packet at four times faster than HyperCuts, and an
order of magnitude higher than TSS and BV, under our
multi-core evaluation platform.

5 Scalability and Lookup Performance on Multi-Cores

As each packet can be handled independently, packet
classification suits a multi-core system well [6]. Given a multi-
core processor with np cores, a simple implementation may
assign a packet to any available core at a time so that np packets
can be handled in parallel by np cores.

In this section, we present and discuss performance and
scalability of HaRP in comparison with those of its counterparts
BV [13], TSS [24], and HyperCuts [20]. Two HaRP
configurations are considered: (1) basic HaRP with the LuHa
table under a dilation factor p =2 and with 8 treads in DPL, and
) m with the LuHa table under p = 1.5 and with only 4
treads in DPL. By comparing results obtained for basic HaRP
and HaRP*, we can gain insight into how the LuHa table size
and the number of treads affect lookup performance.

For gathering measures of interest on our multi-core
platform, our HaRP code was made multithreaded for
execution. With those source codes for BV, TSS and HC
implementations taken from the public source [29], we closely
examined and polished them by removing unneeded data
structures and also replacing some poor code segments with in
order to get best performance levels of those referenced
techniques. All those program codes were also made
multithreaded to execute on the same multi-core platform, with
their results presented in next sections.

5.1 Data Footprint Size

Because search is performed on each hashed set sequentially
by a core, it is important to keep the footprint small so that the
working data structure can fit into its caches, preferably the L1
(level-one) cache dedicated to a core. According to Table 3,
HaRP requires the least amount of memory provisioned; Table
2 shows the actual data sizes to be much smaller. By our
measurement, the FW-10K dataset has the largest size of some
200 KB. As a result, it is quite possible to hold the entire data
structure in the L1 cache of a today’s core, even under large
dataset sizes. This advantage in containing the growth of its
data footprint size as the number of rules increases is unique to
HaRP (and not shared by any prior technique), rendering it
particularly suitable for multi-core implementation to attain high
performance.

1,600

| Basic HaRP
O HaRP*

1,400 A

1,200 1 B Tuple Space|

1,000 A BBV

800 4 B HyperCuts

Bytes

600
400
200

0 i
ACL-
10K

FW1 ACLI IPC1 FW-5K ACL-5K IPC-5K FW-10K IPC-10K

Figure 7. Average number of bytes fetched per lookup.

7,000

6,000 A | Basic HaRP

5,000 1 & HaRP
B Tuple Space

4,000 q BBV

Bytes

3,000 B HyperCuts

2,000 q

1,000 4

04 JE5
FW-5K ACL-5K IPC-5K FW-10K ACL-
10K

Figure 8. Worst case number of bytes accessed.

FW1 ACL1 IPC1

IPC-10K

The behavior of HaRP driven by the traces provided with
filter datasets [29] was evaluated to obtain the first order of
measurement on the data footprint for lookups. Figure 7
depicts the mean number of bytes fetched per packet lookup, a
conventionally adopted metric for comparing classification
methods [20]. In general, HaRP enjoys lower average footprint
per lookup, except when it is compared to BV under small filter
datasets. Because HaRP always probes 2m LuHa sets
(irrespective of the dataset size), it could incur more overhead
than other techniques which use guided searches. However,
when m is kept small and as the dataset size rises, our HaRP
starts to prevail. Most importantly, as demonstrated in Figure 8,
the deterministic procedure to probe 2m LuHa sets under m
DPL treads yields more stable worst-case results across various
rule datasets (which might possess different characteristics).

In the case of TSS, the data footprint is proportional to the

USENIX Association

2009 USENIX Annual Technical Conference 81

number of hash probes performed for a packet. In the firewall
(FW) applications, TSS fetches 8 to 10 times more tuples (i.e.,
hash table accesses) than ACL and IPC applications, as depicted
in the following table. As a result, the mean and the worst-case
data footprints for FW are all far larger than those for ACL and
IPC. In the next subsection, FW will be observed to deliver
much lower classification rates due to its excessive hash probes.

Table 4. Mean number of accessed tuples per lookup (TSS)

ACL- FW- | ACL- | IPC-
FW1| ACL1 | IPC1 [FW-5K| sk IPC-5K| 10K 10k | 10K
72.95| 6.30 11.45 | 68.2 | 10.68 | 9.24 | 67.76 | 6.73 | 8.69

For HyperCuts, the results also fluctuate, depending on the
depth of the decision tree and the number of rules that are
pushed up from the leaves and stored at the intermediate nodes.
Pushing common rule subsets upward, the trie structure is an
important technique for saving storage in HC [20]. The idea is
to keep a common set of rules at the parent node if the rules
hold true for all of its child nodes. In this way, rules can be
associated with non-leaf nodes to save storage by avoiding
replicas at the leaves. Adversely, this optimization heuristic
requires inspection of rules kept at the non-leaf nodes while
traversing the trie during lookups. Hence, it can lead to a large
data footprint, as shown in Figure 7.

For BV, the worst case happens when it needs to check
every single bit of the n-bit vector obtained by matching each
individual field (for # rules). As a result, the worst-case number
of BV grows consistently with the number of rules, and it is also
the biggest worst-case footprint among all techniques examined.

Table 5. Search performance (in terms of mean number
of entries) per lookup under basic HaRP and HaRP”

LuHa Search ASI Search
p=2,HaRP |p=1.5,HaRP |p =2, HaRP [p= 1.5, HaRP"
Mean number of prefix pair Mean number of entries
a z a z aQ a
3 2 3 2 3 @
(<] (e} (e} (e} (] (e}
= = = = = =
a (] [¢] (] (] (¢}
a a a a a a
FW1 1432 (1.28 | 1042 |[1.20 2.22 2.20
ACLI 25.67|1.52 | 21.81 |1.53 1.85 1.88
IPC1 39.4712.03 |34.50 |[1.98 1.73 1.73
FW-5K | 16.69 [1.01 | 11.71 |1.01 1.20 1.20
ACL-5K || 1831 |1.17 | 12.88 [1.22 3.38 3.25
IPC-5K | 21.13 |1.39 | 19.03 |1.58 1.66 1.74
FW-10K | 19.37 | 1.00 | 14.76 |[1.01 1.00 1.00
ACL-10K || 17.57 |1.14 | 13.53 |1.13 1.64 1.65
IPC-10K | 21.64 [1.36 | 17.94 |1.53 1.64 1.69

As can be observed in Figures 7 and 8§, HaRP™ often
exhibits smaller footprints than basic HaRP. Although the
LuHa table under HaRP* (with p = 1.5) is 25% smaller than that
under basic HaRP (with p = 2) and consequently the former has

a lot more well populated hash sets (see Figure 5(d)) than the
latter (see Figure 5(a)), the use of 4 DPL treads in HaRP saves
8 hash probes per classification lookup, in comparison to basic
HaRP (namely, 8 probes to more occupied sets versus 16 probes
to less occupied sets). The mean numbers of matched entries
under two HaRP configurations differ only a little, as depicted
in Table 5, where the first and the third result columns list the
average numbers of prefix pairs inspected per packet
classification under basic HaRP and HaRP*, respectively.
Clearly, HaRP touches and inspects fewer prefix pairs than
basic HaRP, due to fewer hash probes. The second and the
fourth column contain the average numbers of prefix pairs
matched. On average, less than two prefix pairs match in the
LuHa table per classification lookup, signifying that the two-
stage lookup procedure of HaRP is effective. Finally, the last
two columns list the mean numbers of ASI tuples inspected
with respect to each matched prefix pair. The mean numbers
are small, suggesting that linear search as being performed in
this work may suffice. Obviously, a more sophisticated scheme
(such as a trie) could be employed, if ASI lists are long and
sequential search becomes inefficient.

The next subsection presents measured execution time
results when basic HaRP and HaRP are executed on our multi-
core platform, uncovered that HaRP' outperforms its basic
counterpart, because it incurs few hashing probes and accesses
to more populated sets for better caching behavior.

52 Measured Performance on BCM-1480 MultiCore SoC

While data footprint results presented in the last subsection
might reveal relative performance of different classification
techniques (given the memory system is generally deemed as
the bottleneck), computation steps or the mechanisms involved
in dealing with the data structures are equally important and
have to be taken into consideration. To arrive at more accurate
evaluation, we executed all classification programs on a
platform comprising a Broadcom’s BCM-1480 4-core SoC
[18]. BCM 1480 has four 700MHz SB-1™ MIPS cores [12],
with each SB-1"™ core a four-way in-order issue, superscalar
design with separate 32K four-way set-associative instruction
and data caches. The non-blocking data cache supports 8
outstanding misses. The cores are connected by a high-speed
ZBbus and a unified IMB, L2 cache keeps the active data
structures to back up the smaller L1 caches. The memory
system supports at most two x64 400MHz DDR channels, but
our evaluation platform is equipped with only one channel
clocked at 280MHz, giving rise to theoretical memory
bandwidth of 35 Gbps.

Performance for HaRP, BV, TSS, and HC (HyperCuts) is
measured. TSS generally holds its promise on a reduced
number of hash probes it requires. In this implementation, two
tries (one for source IP and another for destination IP) were
constructed. During lookups, LPM (longest prefix matching)
to the two tries produced two lists of candidate tuples, each
realized by one hash table. Corresponding hash tables in the

82 2009 USENIX Annual Technical Conference

USENIX Association

—
mBV(1) D BV(2) @BV(@) | R
® HyperCuts(1) & Tuple(1) @HaRP(1) | T T
O HaRP*(1) HyperCuts(2) ® Tuple(2) | 77777 T
0 HaRP(2) B HaRP*(2) B HyperCuts(4) |77 Tl T
@ Tuple(4) B HaRP(4) QHaRPx(4) | T2 A
"" 20 %
-- F18 @
—— 16
""""""""""""""""""""""""""""""""""""" ﬁ 14 %
"""""""""""""""""""""""" ? R O A O 12)
24 =l F10 3
—- = . ol
z ~ _ = = ® . i r8 g
£ 3 - _ < < pal . i] -6]
Q M s _— = f y X il >
<EW%M ~— — S T ni 4 g
sl o B2 =1 -3
i—ggﬁgz. ‘ —— T —T— T ——T—T——T——10
2 42 c 8 §g ¢ £ ¢ g 8§ &8 § &8 ¢ ¢ ¢ ¢§
g & 8 & § ¥ € & 3§08 & % 0%E &
F £ s F £ s P £ =
g g g
T £ £

Figure 9. Measured throughput results on Broadcom BCM-1480 4-core SoC (in relative scale).

intersection of the two lists (namely, intersected tuples) are then
probed. All executed programs were made multithreaded such
that up to 4 threads could be launched to take advantage of the 4
SB-1"" cores. Millions of packets were generated from the
traces packaged together with the rule datasets to measure the
real elapsed times via the BCM-1480 ZBus counter, which ticks
at every system clock.

Results depicted in Figure 9 are all relatively scaled to one
thread HyperCuts performance, which is shown as a consistent
scale of one across the graph for clear and system configuration-
independent comparison. Labels on the x-axis of Figure 9
denote different techniques (i.e., BV, HyperCuts, TSS, and
HaRP) executed on varying numbers of BCM-1480 cores (i.e.,
1,2, and 4). For example, BV(2) (or Tuple(4)) refers to BV (or
TSS) run on 2 (or 4) cores. When the number of threads rises
from 1 to 2 and then 4, HC shows a nearly linear scalability (in
terms of raw classification rates) with respect to the number of
cores. This scalability trend indeed exists for all techniques
because packet classification is inherently parallel, as expected.

Overall, HaRP demonstrates the highest throughput among
all techniques. On a per core basis, HaRP consistently delivers
2.4 to 3.5 times improvement over HC under the nine filter
datasets. When compared with TSS, basic HaRP performs 2 to
3 times better than TSS under ACL and IPC filter datasets, and
8 times under the firewall applications (FWs). This is because
HaRP requires fewer hash probes than TSS under firewall
datasets. Our HaRP always performs 2m lookups, equal to 16
for m = 8. Contrary to HaRP, TSS performs as many as four
times more hash probes under Firewall (see Table 4). For ACL
and IPC datasets, TSS may require slightly fewer hash table
lookups, but that advantage is more than negated by its two
LPM search passes over the tries, with respect to the source and
the destination IP prefixes. Furthermore, the smaller data
footprint enjoyed by HaRP (demonstrated in Figure 7) leads to
better cache performance.

Relative performance exhibited by HaRP' is even greater
than that by basic HaRP, stemming from the fact it employs
DPL with 4 treads, as opposed to 8 treads for HaRP. This
brings the number of hash probes per lookup from 16 down to
8, incurring less hashing overhead. Most importantly, HaRP' is
expected to be more caching-friendly, because accessing prefix
pairs located in 8 sets should enjoy better caching locality than
prefix pairs spread across 16 sets. Even though HaRP' uses a
LuHa table which is 25% smaller than that of HaRP, HaRP’
outperforms HC (or TSS) by 4 to 5 times (or 3 to 10 times), on
an average, under the nine datasets, as demonstrated in Figure 9.

When compared to HC, BV shows poor performance with
O(10) degradation, especially for large filter datasets. Because
it starts with five LPM search processes across separate tries for
individual header fields to produce a list of candidate rules in
order to get a 5-field cross product, BV is inefficient for
software implementation run on a multi-core platform, since its
processor caches are expected to be trashed due to the large
footprint incurred, as revealed in Figures 7 and 8. Thus, BV is
better suitable for custom hardware with parallelism supported
by high memory bandwidth, suffering from poor scalability.

Table 4 lists the average number of tuples (i.e., hash tables)
fetched per packet lookup under TSS, with respect to different
filter datasets examined. Hash probes for firewall applications
(FWs) are far more than those for ACL and IPC datasets. This
is consistent with the results of Figures 7 and 8, where FWs
exhibit large footprints. Under FWs, TSS delivers 50% to 70%
less performance than HC on a per-core basis. However, TSS
outperforms HC under ACL and IPC datasets by as much as
nearly 100%.

According to the average footprint results given in Figure 7,
it does not seem that TSS can outperform HC in such a wide
margin. For ACL-5K and ACL-10K datasets, HC reads
roughly the same amount (but no more than 10%) of data bytes
as TSS. However, TSS delivers almost 100% higher

USENIX Association

2009 USENIX Annual Technical Conference 83

throughputs per core. Under IPC-5K and IPC-10K, TSS
fetches about 50% less data than HC and shows 47% higher
throughput. It confirms that the data footprint can indeed give
first-order estimation on how well a technique could perform,
but the code path during execution is nevertheless critical. By
inspecting the disassembled HC code, we found that the code
path for HC could be long. For example, at each step
traversing the decision tree, the number of bits to be extracted
from a field needs to be determined, and next the extracted bits
are used to calculate the location of the next child in the decision
tree. In brief, the total number of splits (i.e., children) of a node
is specified by NC = IT; nc(i), where nc(i) is the number of cuts
performed on the /" header field. During search, log,(nc(i)) bits
are extracted from the appropriate positions in the i field;
assuming the decimal value represented by the extracted bits is
v;, the number of child positions in the linear array covering the
NC space is then expressed by Dzlvi x 'l?l Inc(j) +vp for D
=1 =it

dimensions. These operations seem simple, but in fact, they can
take hundreds of cycles to complete, causing a significant
performance loss, as observed above.

6 Concluding Remarks

Packet classification is essential for most network system
functionality and services, but it is complex since it involves
comparing multiple fields in a packet header against entries in
the filter dataset to decide the proper rule to apply for handling
the packet [9]. This article has considered a rapid packet
classification mechanism realized by hashing round-down
prefixes (HaRP) able to not only exhibit high scalability in
terms of both the classification time and the SRAM size
involved, but also effectively handle incremental updates to the
filter datasets. Based on a single set-associative LuHa hash
table (obtained by lumping a set of hash table units together) to
support two-staged search, HaRP promises to enjoy better
classification performance than its known software-oriented
counterpart, because the LuHa table narrows the search scope
effectively based on the source and the destination IP addresses
of an arrival packet during the first stage, leading to fast search
in the second stage. With its required SRAM size lowered
considerably, HaRP makes it possible to hold entire search data
structures in the local cache of each core within a contemporary
processor, further elevating its classification performance.

The LuHa table admits each filter rule in a set with lightest
occupancy among all those indexed by hash(round-down sip)
and hash(round-down dip), under HaRP. This lowers
substantially the likelihood of set overflow, which occurs only
when all indexed sets are full, attaining high SRAM storage
utilization. It also leads to great scalability, even for small LuHa
table set-associativity (of 4), as long as the table is dilated by a
small factor (say, p = 1.5 or 2). Our evaluation results have
shown that HaRP" with the set associative degree of 4, generally
experiences very rare set overflow instances (i.e., no more than

1% of those sets in the LuHa table with p = 2 under all studied
filter datasets other than ACL1 and IPC1, if DPL has 6 treads).

Empirical assessment of HaRP has been conducted on our
platform comprising a Broadcom’s BCM-1480 SoC [18], which
has four 700MHz SB-1""" MIPS cores [12]. A simple hashing
function was employed for our HaRP implementation.
Extensive measured results demonstrate that HaRP'
outperforms HC [20] (or TSS [24]) by 4 to 5 times (or 3 to 10
times), on an average, under the nine databases examined, when
its LuHa table is with p = 1.5 and there are 4 DPL treads.
Besides its efficient support for incremental rule updates, our
proposed HaRP also enjoys far better classification performance
than previous software-based techniques.

Note that theoretically pathological cases may occur
despite encouraging pragmatic results by HaRP*, as we have
witnessed in this study. For example, a large number of (hosts
on the same subnet with) prefixes Pjw can differ only in a few
bits. Hence, those prefixes can be hashed into the same set after
being rounded down, say Pjw to P|;, for /; < w < [;;;, under
HaRP'. There are possible ways to deal with such cases and to
avoid overwhelming the indexed set. A possible means is to
use one and only one entry to keep the round-down prefix P|/,
as opposed to holding all Pjw’s in individual entries following
the current design. Subsequently, the (w - ;) round-down bits
can form a secondary indexing structure to provide the
differentiation (among rules specific to each host) and/or the
round-down bits can be mingled with the remaining fields of the
filter rules. Thus, each stage narrows the range of search by
small and manageable structures. These possible options will
be explored in the future.

References

[11 A. Broder and M. Mitzenmacher, “Using Multiple Hash
Functions to Improve IP Lookups,” Proceedings of 20" Annual
Joint Conf. of IEEE Computer and Communications Societies
(INFOCOM 2001), pp. 1454-1463, Apr. 2001.

[2] F. Chang et al., “Efficient Packet Classification with Digest
Caches,” Proceedings of Workshop on Network Processors and
Applications (NP-3, in conjunction with 10" Int’l Conference on
High-Performance Computer Architecture), Feb. 2004.

[3]1 W.T. Chen, S. B. Shih, and J. L. Chiang, “A Two-Stage Packet
Classification Algorithm,” Proceedings of 17" International
Conference on Advanced Information —Networking and
Applications (AINA "03), pp. 762-767, Mar. 2003.

[4] Y. H. Cho and W. H. Magione-Smith, “Deep Packet Filter with
Dedicated Logic and Read Only Memories,” Proceedings of 12"
IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 125-134, Apr. 2004.

[5] Y.-T. Chen and S.-S. Lee, “An Efficient Packet Classification
Algorithm for Network Processors,” Proc. of IEEE Int’l Conf. on
Communications (ICC 2003), pp. 1596-1600, May 2003.

[6] H. Cheng et al., “Scalable Packet Classification Using Interpreting
a Cross-Platform Multi-Core Solution,” Proceedings 13" ACM
SIGPLAN Symposium on Principles and Practice of Parallel

84 2009 USENIX Annual Technical Conference

USENIX Association

Programming (PPoPP "08), pp. 33-42, Feb. 2008.

[7] S. Dharmapurikar ef al., “Fast Packet Classification Using Bloom
Filters,” Proc. ACM/IEEE Symp. Architectures for Networking
and Communications Systems (ANCS ’06), pp. 61-70, Dec. 2006.

[8] Q. Dong et al., “Wire Speed Packet Classification without
TCAMs: A Few More Registers (and a Bit of Logic) Are
Enough,” Proceedings of ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS
’07), pp. 253-264, June 2007.

[9] P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proceedings of ACM Annual Conference of Special
Interest Group on Data Communication (SIGCOMM °99), pp.
147-160, Aug./Sept. 1999.

[10] P. Gupta and N. McKeown, “Classifying Packets with
Hierarchical Intelligent Cuttings,” /EEE Micro, vol. 20, pp. 34-41,
Jan. 2000.

[11] A. Kennedy, X. Wang, and B. Liu, “Energy Efficient Packet
Classification Hardware Accelerator,” Proceedings of IEEE
International Symposium on Parallel and Distributed Processing
(IPDPS 2008), pp. 1-8, Apr. 2008.

[12] D. Kruckemyer, “The SB-1™ Core: A High Performance, Low
Power MIPS ™ 64 Implementation,” Proceedings of IEEE Symp.
on High Performance Chips (Hot Chips 12), Aug. 2000.

[13] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-Based
Packet Forwarding Using Efficient Multi-Dimensional Range
Matching,” Proc. of ACM Annual Conference of Special Interest
Group on Data Communication (SIGCOMM °98), pp. 191-202,
Aug./Sept. 1998.

[14] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for Advanced Packet Classification with Ternary
CAMs,” Proceedings of ACM Annual Conference of Special
Interest Group on Data Communication (SIGCOMM 2005), pp.
193-204, Aug. 2005.

[15] F.-Y. Lee and S. Shieh, “Packet Classification Using Diagonal-
Based Tuple Space Search,” Computer Networks, vol. 50, pp.
1406-1423, 2006.

[16] J. van Lunteren and T. Engbersen, “Fast and Scalable Packet
Classification,” [EEE Journal on Selected Areas in
Communications, vol. 21, no. 4, pp. 560-571, May 2003.

[17] F. Pong and N.-F. Tzeng, “Storage-Efficient Architecture for
Routing Tables via Prefix Transformation,” Proc. 32 IEEE Conf:
on Local Computer Networks (LCN 2007), pp. 55-62, Oct. 2007.

[18] S. Santhanam et al, “A 1GHz Power Efficient Single Chip
Multiprocessor System for Broadband Networking Applications,”
Proc. of 1 5t Symp. on VLSI Circuits, June 2001, pp. 107-110.

[19] D. Shah and P. Gupta, “Fast Incremental Updates on Ternary-
CAMs for Routing Lookups and Packet Classification,” Proc. of
8" Annual IEEE Symposium on High-Performance Interconnects
(Hot Interconnects 8), pp. 145-153, Aug. 2000.

[20] S. Singh et al., “Packet Classification using Multidimensional
Cutting,” Proceedings of ACM Annual Conference of Special
Interest Group on Data Communication (SIGCOMM 2003), pp.
213-114, Aug. 2003.

[21] H. Song and J. W. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA,” Proceedings of
ACM/SIGDA 13" International ~ Symposium on Field
Programmable Gate Arrays (FPGA "05), pp. 238-245, Feb. 2005.

[22] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMSs,” Proceedings of 11" IEEE Int’l Conf.
on Network Protocols (ICNP '03), pp. 120-131, Nov. 2003.

[23] V. Srinivasan et al., “Fast and Scalable Layer Four Switching,”
Proc. of ACM Annual Conference of Special Interest Group on
Data Communication (SIGCOMM *98), pp. 191-202, Sept. 1998.

[24] V. Srinivasan, S. Suri, and G. Varghese, ‘“Packet Classification
Using Tuple Space Search,” Proceedings of ACM Annual
Conference of Special Interest Group on Data Communication
(SIGCOMM *99), pp. 135-146, Aug./Sept. 1999.

[25] D. E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” ACM Computing Surveys, vol. 37, no. 3, pp. 238-
275, Sept. 2005.

[26] D. E. Taylor and J. S. Tumer, “ClassBench: A packet
Classification Benchmark,” Proc. 24" IEEE Int'l Conference on
Computer Communications (INFOCOM 2005), March 2005.

[27] G. Wang and N.-F. Tzeng, “TCAM-Based Forwarding engine
with Minimum Independent Prefix Set (MIPS) for Fast
Updating,” Proceedings of IEEE International Conference on
Communications (ICC ’06), June 2006.

[28] P. Warkhede, S. Suri, and G. Varghese, “Fast Packet
Classification for Two-Dimensional Conflict-Free Filters,” Proc.
20" Annual Joint Conf: of IEEE Computer and Communications
Societies INFOCOM 2001), pp. 1434-1443, Apr. 2001.

[29] Washington University, “Evaluation of Packet Classification
Algorithms,” at http://www.arl.wustl.edu/~hs1/PClassEval.html.

[30] Z. Wu, M. Xie, and H. Wang, “Swift: A Fast Dynamic Packet
Filter,” Proceedings of 5" USENIX Networked Systems Design
and Implementation (NSDI "08), pp. 279-292, Apr. 2008.

USENIX Association

2009 USENIX Annual Technical Conference 85

Tolerating File-System Mistakes with EnvyFS

Lakshmi N. Bairavasundaram’, Swaminathan Sundararaman,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
Computer Sciences Department, University of Wisconsin-Madison

Abstract

We introduce EnvyFS, an N-version local file system designed
to improve reliability in the face of file-system bugs. EnvyFS,
implemented as a thin VFS-like layer near the top of the stor-
age stack, replicates file-system metadata and data across exist-
ing and diverse commodity file systems (e.g., ext3, ReiserFS,
JES). It uses majority-consensus to operate correctly despite the
sometimes faulty behavior of an underlying commodity child
file system. Through experimentation, we show EnvyFS is ro-
bust to a wide range of failure scenarios, thus delivering on its
promise of increased fault tolerance; however, performance and
capacity overheads can be significant. To remedy this issue,
we introduce SubSIST, a novel single-instance store designed
to operate in an N-version environment. In the common case
where all child file systems are working properly, SubSIST co-
alesces most blocks and thus greatly reduces time and space
overheads. In the rare case where a child makes a mistake,
SubSIST does not propagate the error to other children, and
thus preserves the ability of EnvyFS to detect and recover from
bugs that affect data reliability. Overall, EnvyFS and SubSIST
combine to significantly improve reliability with only modest
space and time overheads.

1 Introduction

File systems make mistakes. A modern file system con-
sists of many tens of thousands of lines of complex code;
such a system must handle memory-allocation failure,
disk faults, and system crashes, and in all cases pre-
serve the integrity of both user data and its own meta-
data. Thus, it is perhaps no surprise that many recent
studies have uncovered hundreds of bugs in file sys-
tems [14, 18, 34, 49, 51].

Bugs manifest in numerous ways. In the best case, a
system immediately crashes; recent research has shown
how to cope with such “fail-stop” behavior by both iso-
lating said file system from the rest of the kernel and
transparently restarting it [16, 44]. However, in more

insidious scenarios, file-system bugs have been shown
to accidentally corrupt the on-disk state of one or more
blocks [34, 49, 51]; such “fail-silent” behavior is much
more challenging to detect and recover from, and thus
can lead to both data loss (due to a corrupt directory) or
bad data passed back to the user.

One method to improve file systems and reduce fail-
silent mistakes is thorough testing and other bug-finding
techniques. For example, recent research has introduced
a number of increasingly sophisticated and promising
bug-finding tools [18, 29, 49, 51]. However, until such
approaches are able to identify all file-system bugs, prob-
lems are likely to persist. Hence, file-system mistakes are
here to stay; the challenge is how to cope with them.

In this paper, we advocate an approach based on the
classic idea of N-version programming [1]. Specifically,
we present the design and implementation of EnvyFS,
a software layer that multiplexes file-system operations
across multiple child file systems. EnvyFS issues all user
operations to each child, determines the majority result,
and delivers it to the user. By design, we thus elimi-
nate the reliance on a single complex file system, instead
placing it on a much simpler and smaller software layer.

A significant challenge in N-version systems is to for-
mulate the common specification and to create the differ-
ent versions. EnvyFS overcomes this challenge by using
the Virtual File System (VES) layer as the common spec-
ification and by leveraging existing Linux file systems
already written by different open-source development
groups (e.g., ext3 [46], JFS [8], ReiserFS [36]). In this
manner, we build on work that leverages existing soft-
ware bases to build N-version services, including NFS
servers [37] and transaction-processing systems [47].

An important design goal in building EnvyFS is to
keep it simple, thereby reducing the likelihood of bugs
that arise from the sheer complexity of file-system code.
At the same time, EnvyFS should leverage the VFS layer
and existing file systems to the extent possible. We find
that EnvyFS is indeed simple, being only a fraction of the

USENIX Association

2009 USENIX Annual Technical Conference

87

size as its child file systems, and can leverage much of
the common specification. However, limitations do arise
from the nature of the specification in combination with
our goal of simplicity. For example, because child file
systems issue different inode numbers for files, EnvyFS
is tasked with issuing inode numbers as well; in the inter-
est of simplicity, EnvyFS does not maintain these inode
numbers persistently (i.e., the inode number for a file is
the same within, but not across, mounts).

A second challenge for EnvyFS is to minimize the
performance and disk-space overheads of storing and
retrieving data from its underlying child file systems.
Our solution is to develop a variant of a single-instance
store (an SIS) [11, 17, 35]. By utilizing content hashes
to detect duplicate data, an SIS can significantly re-
duce the space and performance overheads introduced
by EnvyFS. However, using an SIS underneath EnvyFS
mandates a different approach, as we wish to reduce
overhead without sacrificing the ability to tolerate mis-
takes in a child file system. We achieve this by imple-
menting a novel SIS (which we call SubSIST) that en-
sures that a mistake in one file system (e.g., filling a
block with the wrong contents) does not propagate to
other children, and thus preserves the ability of EnvyFS
to detect faults in an underlying file system through vot-
ing. Thus, in the common case where all file systems
work properly, SubSIST coalesces most blocks and can
greatly reduce time and space overheads; in the rare case
where a single child makes a mistake, SubSIST does not
do so, enabling EnvyFS to detect and recover from the
problem.

We have implemented EnvyFS and SubSIST for
Linux; currently, EnvyFS employs any combination of
ext3, JFS, and ReiserFS as child file systems. Through
fault injection, we have analyzed the reliability of
EnvyFS and have found that it can recover from a range
of faults in nearly all scenarios; many of these faults
cause irreparable data loss or unmountable file systems
in the affected child. We have also analyzed the per-
formance and space overheads of EnvyFS both with and
without SubSIST. We have found across a range of work-
loads that, in tandem, they usually incur modest perfor-
mance overheads. However, since our current implemen-
tation of SubSIST does not persist its data structures, the
performance improvements achieved through SubSIST
represent the best case. We find that SubSIST also re-
duces the space overheads of EnvyFS significantly by
coalescing all data blocks. Finally, we have discovered
that EnvyFS may also be a useful diagnostic tool for file-
system developers; in particular, it helped us to readily
identify and fix a bug in a child file system.

The rest of the paper is organized as follows. In Sec-
tion 2, we present extended motivation. We present the
design and implementation of EnvyFS and SubSIST in

Sections 3 and 4 respectively. We evaluate our system
for reliability in Section 5 and performance in Section 6.
We then discuss related work in Section 7 and conclude
in Section 8.

2 Do File Systems Make Mistakes?

Before describing EnvyFS, we first briefly explain why
we believe file systems do indeed make mistakes, and
why those mistakes lead file systems to deliver corrupt
data to users or corrupt metadata to themselves. Such
failures are silent, and thus challenging to detect.

Recent work in analyzing file systems has uncov-
ered numerous file system bugs, many of which lead
to silent data corruption. For example, Prabhakaran et
al. found that a single transient disk error could cause
a file system to return corrupt data to the calling appli-
cation [33, 34]. Further, a single transient write failure
could corrupt an arbitrary block of the file system, due
to weaknesses in the failure-handling machinery of the
journaling layer [34]. Similar bugs have been discovered
by others [50, 51].

Another piece of evidence that file systems corrupt
their own data structures is the continued presence of
file system check-and-repair tools such as fsck [30]. De-
spite the fact that modern file systems either use journal-
ing [21] or copy-on-write [12, 19, 25, 38] to ensure con-
sistent update of on-disk structures, virtually all modern
file systems ship with a tool to find and correct inconsis-
tencies in on-disk data structures [20]. One might think
inconsistencies arise solely from faulty disks [6, 7]; how-
ever, even systems that contain sophisticated machinery
to detect and recover from disk faults ship with repair
tools [24]. Thus, even if one engineers a reliable storage
system, on-disk structures can still become corrupt.

In addition to bugs, file systems may accidentally
corrupt their on-disk structures due to faulty memory
chips [31, 39]. For example, if a bit is flipped while a
block is waiting to be written out, either metadata or data
will become silently corrupted when the block is finally
written to disk.

Thus, both due to poor implementations as well as bad
memory, file systems can corrupt their on-disk state. The
type of protection an N-version system provides is thus
complementary to the machinery of checksums and par-
ity and mirroring that could be provided in the storage
system [28, 41], because these problems occur before
such protection can be enacted. These problems cannot
be handled via file-system backups either; backups po-
tentially provide a way to recover data, but they do not
help detect that currently-available data is corrupt. To
detect (and perhaps recover) from these problems, some-
thing more is required.

88

2009 USENIX Annual Technical Conference

USENIX Association

3 EnvyFS: An N-Version File System

N-version programming [1, 2, 4, 5, 13, 15, 48] is used to
build reliable systems that can tolerate software bugs. A
system based on N-version programming uses N differ-
ent versions of the same software and determines a ma-
jority result. The different versions of the software are
created by N different developers or development teams
for the same software specification. It is assumed (and
encouraged using the specification) that different devel-
opers will design and implement the specification differ-
ently, lowering the chances that the versions will contain
the same bugs or will fail in a similar fashion.

Developing N-version systems has three important
steps (a) producing the specification for the software, (b)
implementing the N different versions of the software,
and (c) creating the environment that executes the differ-
ent versions and determines a consensus result [1].

We believe the use of N-version programming is par-
ticularly attractive for building reliable file systems since
the design and development effort required for the first
two steps (i.e., specification and version development)
can be much lower than for the typical case.

First, many existing commodity file systems adhere
to a common interface. All Linux file systems adhere
to the POSIX interface, which internally translates to
the Virtual File System (VFS) interface. Thus, if an N-
version file system is able to leverage the POSIX/VFES
interface, then no additional effort will be needed to
develop a new common specification. However, be-
cause the POSIX/VEFS interface was not designed with
N-versioning in mind, we do find that EnvyFS must ac-
count for differences between file systems.

Second, many diverse file systems are available for
Linux today. For example, in Linux 2.6, there are at
least 30 different file systems (depending upon how one
counts), such as ext2, ext3, JFS, ReiserFS, XFS, FAT,
and HFS; new ones are being implemented as well, such
as btrfs. All have been built for the POSIX/VES inter-
face. These different file systems have drastically differ-
ent data structures, both on disk and in memory, which
reduces the chances of common file-system bugs. Fur-
thermore, previous research has shown that file systems
behave differently when they encounter partial-disk fail-
ures; for example, Prabhakaran et al. show that when di-
rectory data is corrupted, ReiserFS and JFS detect the
problem while ext3 does not [34].

3.1 Design Goals and Assumptions

The design of EnvyFS is influenced by the following
goals and assumptions:

Simplicity: As systems have shown time and again,
complexity is the source of many bugs. Therefore, an
N-version file system should be as simple as possible. In

EnvyFS, this goal primarily translates to avoiding persis-
tent metadata; this simplification allows us to not allo-
cate disk blocks and to not worry about failures affecting
EnvyFS metadata.

No application modifications: Applications should not
need to be modified to use EnvyFS instead of a single lo-
cal file system. This goal supports our decision to lever-
age the POSIX specification as our specification.

Single disk: The N-version file system is intended to
improve the reliability of desktop systems in the face of
file-system mistakes. Therefore, it replicates data across
multiple local file systems that use the same disk drive.
This goal translates to a need for reducing disk-space
overheads; thus, we develop a new single-instance store
(Section 4) for our environment.

Non-malicious file systems: We assume that child file
systems are not malicious. Thus, we must only guard
against accidents and not intentional attempts to corrupt
user data or file-system metadata.

Bug isolation: We also assume that the bugs do not prop-
agate to the rest of the kernel. If such corruption were in-
deed a major issue, one could apply isolation techniques
as found in previous work to contain them [16, 44].

3.2 Basic Architecture

EnvyFS receives application file operations, issues the
operations to multiple child file systems, compares the
results of the operation on all file systems, and returns
the majority result to the application. Each child stores
its data and metadata in its own disk partition.

We have built EnvyFS within Linux 2.6, and Figure 1
shows the basic architecture. EnvyFS consists of a soft-
ware layer that operates underneath the virtual file sys-
tem (VES) layer. This layer executes file operations
that it receives on multiple children. We use ext3 [46],
JES [9], and ReiserFS [36] for this purpose. We chose
these file systems due to their popularity and their dif-
ferences in how they handle failures [34]. However, the
EnvyFS design does not preclude the use of other file
systems that use the VFS interface.

Similar to stackable file systems [22], EnvyFS inter-
poses transparently on file operations; it acts as a normal
file system to the VFS layer and as the VFS layer to the
children. It thus presents file-system data structures and
interfaces that the VFS layer operates with and in turn
manages the data structures of the child file systems. We
have implemented wrappers for nearly all file and direc-
tory operations. These wrappers verify the status of nec-
essary objects in the children before issuing the operation
to them. For example, for an unlink operation, EnvyFS
first verifies that both the file and its parent directory are
consistent with majority opinion.

Each operation is issued in series to the child file sys-
tems; issuing an operation in parallel to all file systems

USENIX Association

2009 USENIX Annual Technical Conference

89

I I I
2
© = (9]
% 3 w
) kS =
[
— —
| SUbSIST |
T
| Driver |

_

Figure 1: N-version file system in Linux. The figure
presents the architecture of a 3-version file system with ext3,
ReiserF'S and JFS as the children. The core layer is EnvyFS;
it is responsible for issuing file operations to all three file sys-
tems, determining a majority result from the ones returned by
the file systems, and returning it to the VFS layer. The optional
layer beneath the file systems (SubSIST) is a single-instance
store built to work in an N-version setting; it coalesces user
data stored by the different file systems in order to reduce per-
formance and space overheads.

increases complexity and is unlikely to realize much,
if any, performance benefit when the children share the
same disk drive. When the operations complete, the re-
sults are semantically compared to determine the major-
ity result; this result is then returned to the user. When
no majority result is obtained, an I/O error is returned.

Our current implementation does not support the
mmap operation. While supporting mmap is not funda-
mentally difficult, it does present a case where child file
systems cannot be trivially leveraged. Specifically, an
implementation of mmap in EnvyFS would likely involve
the use of file read and write operations of children,
rather than their mmap operations.

We now discuss how our implementation addresses
each of the three steps of N-version programming. In
particular, we discuss how EnvyFS deals with the com-
plexities of leveraging the existing POSIX specifica-
tion/VFS layer and of using existing Linux file systems
while keeping EnvyFS simple.

3.3 Leveraging the POSIX Specification
EnvyFS leverages the existing POSIX specification and
operates underneath VFS as it provides core functional-
ity (like ordering of file operations) that is challenging to
replicate without modifying applications. Thus, EnvyFS
relies upon the correct operation of the VFS layer. We
believe the VFS layer has been heavily tested over the
years and is likely to have fewer bugs that the file sys-
tems themselves; this optimism is partially validated by
Yang et al., who find two bugs in the VFS layer and
nearly thirty in ext3, ReiserFS, and JFS [51].

One issue that EnvyFS must handle is that the POSIX
specification is imprecise for use in an N-version setting;
that is, the child file systems we leverage differ in vari-
ous user-visible aspects that are not a part of the POSIX
interface. For example, POSIX does not specify the or-
der in which directory entries are to be returned when a
directory is read; thus, different children may return di-
rectory entries in a different order. As another example,
the inode number of a file is available to users and appli-
cations through the stat system call; yet, different file
systems issue different inode numbers for the same file.

One approach to addressing this problem would be
to make the specification more precise and change the
file systems to adhere to the new specification. This ap-
proach has a number of problems. First, refining the
specification discourages diversity across the different
file systems. For example, if the specification details
how inode numbers should be assigned to files, then all
file systems will be forced to use the same algorithm
to allocate inode numbers, perhaps causing them to also
use the same data structures and inviting common bugs.
Second, even given a more precise specification, non-
determinism and differences in operation ordering can
easily cause different results. Finally, changing the spec-
ification would greatly increase the amount of develop-
ment effort to produce an N-version file system, since
each existing Linux file system would need to be changed
to use it as a child file system.

3.3.1 Semantic Result Comparison

Our solution is to have EnvyFS deal with the imprecise
POSIX specification: when EnvyFS compares and re-
turns results from the child file systems, it does so using
semantic knowledge of how the POSIX/VFS interface
operates. In other words, EnvyFS examines the VFS data
structures returned by each child file system and does a
semantic comparison of individual fields.

For example, for a file read operation, EnvyFS com-
pares (a) the size of data read (or the error code re-
turned), (b) the actual content read, and (c) the file po-
sition at the end of the read. For all file operations where
inodes may be updated, EnvyFS compares (and copies
to its VFS inode) the contents of the individual inodes.
We have developed comparators for different file-system
data types like superblocks, inodes, and directories. For
example, an inode comparator checks whether the fields
inlink, i_mode, i_uid, and so forth in the child in-
odes are the same. While EnvyFS compares results re-
turned to it, it does not verify that the operation com-
pleted correctly in each file system; for example, it does
not re-read data written to a file to verify that all file sys-
tems actually wrote the correct data.

As mentioned above, directory entries and inodes
are especially interesting cases. We now describe how

90

2009 USENIX Annual Technical Conference

USENIX Association

EnvyFS handles these structures in more detail and we
also describe how EnvyFS optimizes its comparison of
data blocks across file systems.

Directory Entries: POSIX does not specify the order in
which directory entries are to be returned. Thus, EnvyFS
reads all directory entries from all file systems; it then
returns individual entries that occur in a majority of file
systems. The disadvantage of this approach is that it in-
creases the overhead for the getdirentries system
call for very large directories. We note that we could
optimize the performance of this case (at the expense of
code simplicity), by reading from child file systems only
until EnvyFS finds matches for exactly as many entries
as the user provides space for.

Inode Numbers: POSIX does not specify how inode
numbers should be assigned to files, yet inode numbers
are visible to user applications. Since EnvyFS cannot
always use the inode number produced by any one child
file system (because it may fail), it assigns a virtual inode
number when a new object is encountered and tracks this
mapping. Keeping with our simplicity goal, inode num-
bers so assigned are not persistent; that is, an object has
a specific virtual inode number only between a mount
and the corresponding unmount. This decision impacts
only a few applications that depend on the persistence of
file-system inode numbers. If applications using EnvyFS
do require persistent inode numbers, one simple solution
that could be explored is to store the inode mapping in a
hidden file in the root directory of each file system and
load the mapping at mount time. A specific example in
this context is an NFS server using protocol versions 2 or
3; the server uses persistent inode numbers to create file
handles for clients that can be used across server crashes.
Even so, in protocol version 4, a “volatile file handle”
option was introduced, thereby eliminating the need for
persistent inode numbers. Interestingly, some local file
systems, like the High Sierra file system for CD-ROMs,
do not have persistent inode numbers [32].

Reads of Data Blocks: In performing read operations,
we would like to avoid the performance overhead of al-
locating memory to store the results returned by all of the
file systems (especially when the data read is already in
cache). Therefore, EnvyFS reuses the memory provided
by the application for the read system call. Reusing the
memory influences two subsequent decisions. First, to
determine whether the child file systems return the same
data from the read, EnvyFS computes checksums on
the data returned by the child file systems and compares
them; a more thorough byte-by-byte comparison would
require memory for all copies of data. Second, EnvyFS
issues the read operation in series to child file systems
only until a majority opinion is reached (i.e., usually to
two children); this choice eliminates the problem of is-
suing reads again in case the last file system returns in-

correct data; in addition, in the common case, when file
systems agree, the third read is avoided. It is important
to note that we choose not to take the same issue-only-
until-majority approach with other VFES operations such
as lookup since the limited performance gain for such
operations is not worth the complexity involved, say in
tracking and issuing a sequence of lookups for the en-
tire path when a lookup returns erroneous results in one
file system. A future implementation could include a
“verify-all” option that causes EnvyFS to issue the read
to all file systems ignoring the performance cost.

In choosing the checksum algorithm for comparing
data, one must remember that the cost of checksumming
can be significant for reads that are satisfied from the
page cache. We have measured that this cost is espe-
cially high for cryptographic checksums such as MD5
and SHA-1; therefore, in keeping with our goal of pro-
tecting against bugs but not maliciousness, we use a sim-
ple TCP-like checksum (sum of bytes) for comparisons.

3.3.2 Operation Ordering
Our placement of EnvyFS beneath VES simplifies the is-
sue of ordering file operations. As in many replication-
based fault tolerance schemes, determining an order-
ing of operations is extremely important; in fact, recent
work in managing heterogeneous database replicas fo-
cuses primarily on operation ordering [47]. In the context
of a file system, consider the scenario where multiple file
operations are issued for the same object: if an ordering
is not predetermined for these operations, their execu-
tion may be interleaved such that the different children
perform the operations in a different order and therefore
produce different results even in the absence of bugs.
Unlike databases, the dependence between operations
can be predetermined for file systems. In EnvyFS, we
rely on the locking provided by the Linux VES layer to
order metadata operations. As explained earlier, this re-
liance cannot be avoided without modifying applications
(to issue operations to multiple replicas of VFS that ex-
ecute an agreement algorithm). In addition to the VFS-
level locking, we perform file locking within EnvyFS for
reads and writes to the same file. This locking is neces-
sary since the VFS layer does not (and has no need to)
order file reads and writes.

3.4 Using Existing File Systems

Our decision to leverage existing Linux file systems
for child file systems greatly simplifies the development
costs of the system. However, it does restrict our behav-
ior in some cases.

One problem with using multiple local file systems is
that the different file systems execute within the same ad-
dress space. This exposes EnvyFS to two problems: (a)
a kernel panic induced by a child file system, and (b) a
memory bug in a child file system that corrupts the rest

USENIX Association

2009 USENIX Annual Technical Conference

91

of the kernel. A solution to both problems would be to
completely isolate the children using a technique such as
Nooks [43]. However, due to the numerous interactions
between the VFS layer and the file systems, such isola-
tion comes at a high performance cost.

Therefore, we explore a more limited solution to han-
dle kernel panics. We find the current practice of file sys-
tems issuing a call to panic whenever they encounter
errors to be too drastic, and developers seem to agree.
For example, ext3 code had the following comment:
“Given ourselves just enough room to cope with inodes
in which i_blocks is corrupt: we’ve seen disk corruptions
in the past which resulted in random data in an inode
which looked enough like a regular file for ext3 to try to
delete it. Things will go a bit crazy if that happens, but at
least we should try not to panic the whole kernel”. In the
case of ext3 and JFS, a mount option (errors) can spec-
ify the action to take when a problem is encountered;
one could specify errors=continue to ensure that panic
is not called by the file systems. However, this option
is not available on all file systems. Our solution is to
replace calls to panic, BUG, and BUG_ON by child file
systems with a call to a nvfs_child panic routine
in EnvyFS. This simple replacement is performed in file-
system source code. The nvfs_child_panic routine
disables issuing of further file operations to the failed file
system.

Another limitation of using existing file systems is
that different file systems use different error codes for
the same underlying problems (e.g., “Input/output error”,
“Permission denied”, or “Read-only file system™). A
consistent error code representing each scenario would
enable EnvyFS to take further action. In our current im-
plementation EnvyFS simply reports the majority error
code or reports an I/O error if there is no majority.

3.5 Keeping EnvyFS Simple

EnvyFS has its own data structures (e.g., in-memory in-
odes and dentry structures), which are required for inter-
acting with the VFS layer. In turn, EnvyFS manages the
allocation and deallocation of such structures for child
file systems; this management includes tracking the sta-
tus of each object: whether it matches with the majority
and whether it needs to be deallocated.

In keeping with our simplicity goal, we have designed
EnvyFS so that it does not maintain any persistent data
structures of its own. This decision affects various parts
of the design; we previously discussed how this impacts
the management of inode numbers (Section 3.3.1); we
now discuss how it impacts the handling of faulty file
systems and system crashes.

3.5.1 Handling Disagreement
An important part of EnvyFS is the handling of cases
where a child file system disagrees with the majority re-

sult. This part is specifically important for local file sys-
tems since the ability to perform successive operations
may depend on the result of the current operation (e.g., a
file read cannot be issued when open fails).

When an error is detected, in order to restore EnvyFS
to full replication, the erroneous child file system should
be repaired. The repair functionality within EnvyFS fixes
incorrect data blocks and inodes in child file systems.
Specifically, if EnvyFS observes that the file contents in
one file system differs from the other file systems dur-
ing a file read, it issues a write of the correct data to the
corrupt file system before returning the data to the user.
With respect to inodes, EnvyFS repairs a subset of var-
ious possible corruptions; it fixes inconsistencies in the
permission flags (which are i_mode, i_uid, i_gid) with the
majority result from other file systems. It also fixes size
mismatches where the correct size is larger than the cor-
rupt one by copying the data from correct file systems.
On the other hand, issuing a file truncate for the case
where the correct size is smaller may result in more cor-
ruption in an already corrupt file system (e.g., the blocks
being freed by truncate may actually be in use by a dif-
ferent file as a result of a prior corruption).

As the above example demonstrates, efficient repair
for all inconsistencies is challenging. If EnvyFS can-
not repair the erroneous object in a child file system, it
operates in degraded-mode for the associated object. In
degraded mode, future operations are not performed for
that object in the file system with the error, but EnvyFS
continues to perform operations on other objects for that
file system. For example, if a child’s file inode is de-
clared faulty, then read operations for that file are not is-
sued to that file system. As another example, if a lookup
operation completes successfully for only one file sys-
tem, its corresponding in-memory dentry data structure
is deallocated, and any future file create operation for that
dentry is not issued to that file system.

For simplicity, the validity information for objects is
not maintained persistently. With this approach, after a
reboot, the child file system will try to operate on the
faulty objects again. If the object is faulty due to a perma-
nent failure, then the error is likely to be detected again,
as desired. Alternately, if the problem was due to a tran-
sient error, the child will return to normal operation as
long as the object has not been modified in the interim.
Our current approach to fully repair inconsistencies that
cannot be repaired in-flight requires that the entire erro-
neous child file system be re-created from the other (cor-
rect) children, an expensive process.

Some further challenges with efficient repair may arise
from limitations of the VFS layer. Consider the fol-
lowing scenario. A file with two hard links to it may
have incorrect contents. If EnvyFS detects the corrup-
tion through one of the links, it may create a new file in

92

2009 USENIX Annual Technical Conference

USENIX Association

the file system to replace the erroneous one. However,
there is no simple way to identify the directory where the
other link is located, so that it can be fixed as well (ex-
cept through an expensive scan of the entire file system).
In the future, we plan to investigate how one can provide
hooks into the file system to enable fast repair.

3.5.2 System Crashes

When a system crash occurs, EnvyFS file-system recov-
ery consists of performing file-system recovery for all
child file systems before EnvyFS is mounted again. In
our current approach, EnvyFS simply leverages the re-
covery methods inherent to each individual file system,
such as replaying the journal. This approach leads to
a consistent state within each of the children, but it is
possible for different file systems to recover to different
states. Specifically, when a crash occurs in the middle
of a file operation, EnvyFS could have issued (and com-
pleted) the operation for only a subset of the file systems,
thereby causing children to recover to different states. In
addition, file systems like ext3 maintain their journal in
memory, flushing the blocks to disk periodically; jour-
naling thus provides consistency and not durability.

An alternative approach for solving this problem
would be for EnvyFS itself to journal operations and re-
play them during recovery. However, this would require
EnvyFS to maintain persistent state.

In EnvyFS, the state modifications that occur durably
for a majority of file systems before the crash are consid-
ered to have completed. The differences in the minority
set can be detected when the corresponding objects are
read, either during user file operations or during a proac-
tive file-system scan. There are corner cases where a ma-
jority result will not be obtained when a system crash oc-
curs. In these cases, choosing the result of any one file
system will not affect file-system semantics. At the same
time, these cases cannot be distinguished from other real
file-system errors. Therefore, EnvyFS returns an error
code when these differences are detected; future imple-
mentations could choose to use the result from a desig-
nated “primary” child.

4 SubSIST: A Single-Instance Store

Two issues that arise in using an N-version file system are
the disk-space and performance overheads. Since data
is stored in NNV file systems, there is an N-fold increase
(approximately) in disk space used. Since each file op-
eration is performed on all file systems (except for file
reads), the likely disk traffic is /V times that for a sin-
gle file system. For those environments where the user
is willing to trade-off some data reliability for disk space
and performance, we develop a variant of single-instance
storage [11, 17, 35]. Note that SubSIST is not manda-

tory; if the performance and space overheads of EnvyFS
are acceptable, there is no reason to make use of Sub-
SIST (indeed, the less code relied upon the better).

With SubSIST, the disk operations of the multiple chil-
dren pass through SubSIST, which is implemented as
a block-level layer. As is common in single-instance
stores, SubSIST computes a content hash (MD5) for all
disk blocks being written and uses the content hash to
detect duplicate data.

Using an SIS greatly reduces disk usage underneath
an N-version file system. At the same time, despite co-
alescing data blocks, an SIS retains much of the bene-
fit of EnvyFS for two reasons. First, the reliability of
file-system metadata is not affected by the use of an
SIS. Since metadata forms the access path to multiple
units of data, its reliability may be considered more im-
portant than that of data blocks. Because the format of
file-system metadata is different across different file sys-
tems, metadata blocks of different file systems have dif-
ferent hash values and are stored separately; thus, the SIS
layer can distinguish between data and metadata blocks
without any knowledge of file-system data structures.
Second, since file systems maintain different in-memory
copies of data, file-system bugs that corrupt data blocks
in-memory cause the data in different file systems to have
different content hashes; therefore, individual file sys-
tems are still protected against each other’s in-memory
file-data corruptions.

4.1 Requirements and Implications

The design of SubSIST for an N-version file system
should satisfy slightly different requirements than a con-
ventional SIS. We discuss four important observations
and their impact on the design of SubSIST.

First, child file systems often replicate important meta-
data blocks so that they can recover from failures. For ex-
ample, JFS replicates its superblock and uses the replica
to recover from a latent sector error to the primary. Thus,
SubSIST does not coalesce disk blocks with the same
content if they belong to the same file system.

Second, an SIS coalesces common data written at
approximately the same time by different file systems.
Therefore, in SubSIST, the content hash information for
each disk block is not stored persistently; the content
hashes are maintained in memory and deleted after some
time has elapsed (or after IV file systems have written the
same content). This ephemeral nature of content hashes
also reduces the probability of data loss or corruption due
hash collisions [10, 23].

Third, in an N-version file system, reads of the same
data blocks occur at nearly the same time. Thus, Sub-
SIST services reads from different file systems by main-
taining a small read cache. This read cache holds only
those disk blocks whose reference count (number of file

USENIX Association

2009 USENIX Annual Technical Conference

93

systems that use the block) is more than one. It also
tracks the number of file systems that have read a block
and removes a block from cache as soon as this number
reaches the reference count for the block.

Finally, the child file systems using SubSIST are un-
modified and therefore have no knowledge of content ad-
dressing; therefore, SubSIST virtualizes the disk address
space; it exports a virtual disk to the file system, and
maintains a mapping from each file system’s virtual disk
address to the corresponding physical disk address, along
with a reference count for each physical disk block. Sub-
SIST uses file-system virtual addresses as well as previ-
ously mapped physical addresses as hints when assign-
ing physical disk blocks to maintain as much sequential-
ity and spatial locality as possible. When these hints do
not provide a free disk block, SubSIST selects the closest
free block to the previously mapped physical block.

4.2 Implementation

SubSIST has numerous important data structures, includ-
ing: (i) a table of virtual-to-physical mappings, (ii) al-
location information for each physical disk block in the
form of reference count maps, (iii) a content-hash cache
of recent writes and the identities of the file systems that
performed the write, and (iv) a small read cache.

We have built SubSIST as a pseudo-device driver in
Linux. It exports virtual disks that are used by the file
systems. Our current implementation does not store
virtual-to-physical mappings and reference-count maps
persistently; in the future, we plan to explore reliably
writing this information to disk.

5 Reliability Evaluation

We evaluate the reliability improvements of a 3-version
EnvyFS (EnvyFS3) that uses ext3, JFS, and Reis-
erFS (v3) as children. All our experiments use the ver-
sions of these file systems that are available as part of the
Linux 2.6.12 kernel.

We evaluate the reliability of EnvyFS3 in two ways:
First, we examine whether it recovers from scenarios
where file-system content is different in one of the three
children. Second, we examine whether it can recover
from corruption to on-disk data structures of one child.

5.1 Differing File System Content

The first set of experiments is intended to mimic the sce-
nario where one of the file systems has an incorrect disk
image. Such a scenario might occur either when (i) a
system crash occurs and one of the children has written
more or less to disk than the others, (ii) a bug causes one
of the file systems to corrupt file data, say by perform-
ing a misdirected write of data belonging to one file to
another file, or (iii) soft memory errors cause corruption.

Difference in content Num | Correct | Correct
Tests | success error
code
None 28 17/17 11/11
Dir contents differ in one 13 6/6 7/17
Dir present in only two 13 6/6 7117
Dir present in only one 9 4/4 5/5
File contents differ in one 15 11/11 4/4
File metadata differ in one 45 33/33 12/12
File present in only two 15 11/11 4/4
File present in only one 9 3/3 6/6
Total | 147 | 91/91 | 56/56

Table 1: File-system Content Experiments. This table
presents the results of issuing file operations to EnvyFSs ob-
Jects that differ in data or metadata content across the different
children. The first column describes the difference in file-system
content. The second column presents the total number of exper-
iments performed for this content difference; this is the number
of applicable file operations for the file or directory object. For
metadata differences, 15 operations each are performed for dif-
ferences in mode, nlink, and size fields of the inode. The third
column is the fraction of operations that return correct data
and/or successfully complete. The fourth column is the frac-
tion of operations that correctly return an error code (and it is
the expected error code) (e.g., ENOENT when an unlink oper-
ation is performed for a non-existent file). We see that EnvyFSs
successfully uses the majority result in all 147 experiments.

We first experiment by creating different file-system
images as the children and executing a set of file oper-
ations on EnvyFS3 that uses the children. We have ex-
plored various file-system content differences, including
extra or missing files or directories, and differences in
file or directory content. The different file operations per-
formed include all possible file operations for the object
(irrespective of whether the operation causes the differ-
ent content to be read). Our file operations include those
that are expected to succeed as well as those that are ex-
pected to fail with a specific error code.

Table 1 shows that EnvyFS3 correctly detects all dif-
ferences and always returns the majority result to the user
(whether the expected data or error code). EnvyFS3 can
also be successfully mounted and unmounted in all cases.
We find that the results are the same irrespective of which
child (ext3, JFS, ReiserFS) has incorrect contents.

We then explore whether EnvyFS3 continues to detect
and recover from differences caused by in-memory cor-
ruption when SubSIST is added. We experiment by mod-
ifying data (or metadata) as it being written to a child file
system and then causing the data (or metadata) to be read
back. Table 2 presents the results of the experiments.
We find that EnvyFS3 used along with SubSIST returns
the correct results in all scenarios. Also, in most sce-

94

2009 USENIX Annual Technical Conference

USENIX Association

Corruption Type Num | Correct Fix
Tests | success

File contents differ in one 3 3/3 3/3

Dir contents differ in one 3 3/3 0/3

Inode contents differ in one 15 15/15 9/15

Total |21 | 21/21 [12/21

Table 2: File-system Corruption Experiments. This
table presents the results of corrupting one of the file objects
in EnvyFSs that results in different data or metadata content
across the different children with SubSIST underneath it. The
first column describes the type of corruption. The second col-
umn presents the total number of experiments performed; The
third column is the fraction of operations that return correct
data and/or successfully complete (which also include identifi-
cation of mismatch in file system contents). The fourth column
is the fraction of operations that EnvyFS was able to repair
after detecting corruption.

narios when file contents or inode contents are different,
EnvyFS3 successfully repairs the corrupt child during
file-system operation (Section 3.5.1 describes scenarios
in which EnvyFS repairs a child during file-system op-
eration). The use of SubSIST does not affect protection
against in-memory corruption; a data block corrupted in
memory will cause SubSIST to generate a different con-
tent hash for the bad block when it is written out, thereby
avoiding the usual coalescing step.

5.2 Disk Corruption

The second set of experiments analyzes whether
EnvyFS; recovers when a child’s on-disk data structures
are corrupt. Such corruption may be due to a bug in the
file system or the rest of the storage stack. We inject cor-
ruption into JFS and ext3 data structures by interposing
a pseudo-device driver that has knowledge of the data
structures of each file system. This driver zeroes the en-
tire buffer being filled in response to a disk request by
the file system, but does not return an error code (i.e.,
the corruption is silent). All results, except that for data
blocks, are applicable to using EnvyFS3 with SubSIST.

5.2.1 Corruption in JFS

Figures 2a and 2b compare the user-visible results of in-
jecting corruptions into JFS data structures when JFS is
used stand-alone and when EnvyFSs; is used (that is com-
posed of JES, ext3, and ReiserFS).

Each row in the figures corresponds to the JFS data
structure for which the fault is injected. Each column in
the figures corresponds to different file operations. The
different symbols represent the user-visible results of the
fault; examples of user-visible results include data loss,
and a non-mountable file system. For example, in Fig-
ure 2a, when an inode block is corrupted during path
traversal (column 1), the symbol indicates that (i) the

operation fails and (ii) the file system is remounted in
read-only mode. In addition to the symbols for each
column, the symbol next to the data-structure name for
all the rows indicates whether or not the loss of the disk
block causes irreparable data or metadata loss.

As shown in Figure 2a, JFS is rarely able to recover
from corruptions: JFS can continue normal operation
when the read to the block-allocation bitmap fails during
truncate and unlink. Often, the operation fails and JFS
remounts the file system in read-only mode. The corrup-
tion of some data structures also results in a file system
that cannot be mounted. In one interesting case, JFS de-
tects the corruption to an internal (indirect) block of a file
and remounts the file system in read-only mode, but still
returns corrupt data to the user. Data loss is indicated for
many of the JFS rows.

In comparison to stand-alone JFS, EnvyFS3 recovers
from all but one of the corruptions (Figure 2b). EnvyFS3
detects errors reported by JFS and also detects corrupt
data returned by JFS when the internal block or data
block is corrupted during file read. In all these cases,
EnvyFSs3 uses the two other file systems to continue nor-
mal operation. Therefore, no data loss occurs when any
of the data structures is corrupted.

In one interesting fault-injection experiment, a system
crash occurs both when using JFS stand-alone and when
using it in EnvyFS3. In this experiment, the first aggre-
gate inode block (AGGR-INODE-1) is corrupted, and
the actions of JFS lead to a kernel panic during paging.
Since this call to panic is not in JFS code, it cannot
been replaced as described in Section 3.4. Therefore,
the kernel panic occurs both when using JES stand-alone
and when using EnvyFS3. Thus, we find a case where
EnvyFS3; is not completely resilient to underlying child
failure; faults that lead to subsequent panics in the main
kernel cannot be handled with N-version techniques.

5.2.2 Corruption in Ext3

Figures 2c and 2d show the results of injecting corrup-
tion into ext3 data structures. As in the case of JFS, the
figures compare ext3 against EnvyFSs.

Overall, we find that ext3 does not handle corruption
well. Figure 2c¢ shows that no corruption error leads to
normal operation without data loss for ext3. In most
cases, there is unrecoverable data loss and either the op-
eration fails (ext3 reports an error) or the file system is
remounted in read-only mode or both. In some cases,
the file system cannot even be mounted. In other cases,
ext3 fails to detect corruption (e.g., IMAP, INDIRECT),
thereby either causing data loss (IMAP) or returning cor-
rupt data to the user (INDIRECT). Finally, in one sce-
nario (corrupt INODE during unlink), the failure to
handle corruption leads to a system crash upon unmount.

In comparison, Figure 2d shows that EnvyFS3 contin-

USENIX Association

2009 USENIX Annual Technical Conference

95

(a) JFS (b) EnvyFS;

Elolal B2l |<|BIE| IRl l<lelelE (E]=|o] |E]E].| |<|B2]. (5] |<]e]e|E
11213141516 (7 [8 |9 [10/11[12]13[14]|15[16[17[18 11213141516 |7 [8 [9 [10/11|12[13]14[15]|16[17(18
B tvooe B B __E N EE
R Ol T T T Iolololololl T ool T 1] T T T I T N 1
[evae TTTT TlakMaWMaloll WA T1 CTT 1T T T 1
" FRVINS CITTTTIo[Jol Tol TToloFH 11 ECTT 1T I I I T N T
B rnrERNAL EEEOEEEEEEECEECEEENEEE EEEEEEE B EEE
Coara [(TTTeI TTTTTTTe[TTTITT] (ITTMMTTTTTTMTITTITT]
[super OTTTTITITTITIITTIT7TTHEHT] OITTITITITITTITTI e T
[osuper OTTTTTITTITITTIT7TTHE®E IITITITITITITTITI M.
U opata EEEEEEEEEEEEEEE EEREEEEEEEEEEEEEEE BN
[Jacer-mvope-1 [IIT T T TITTITTITTITTIOMT] ITTTITTTITTITITITIeT]
[vappEsc OTTTTITITTITIITIT7TTHET] OITTITITTITTITTITI T e T]
[rvapent (IITTITTTITTITITTITTH T COITITTIITTIITTITIT T
(c) EXT3 (d) EnvyFSs
g g 3 3
g b= g =
Elolal B2l |<|BIE| IRl l<lelelE (E]=|o] |E]E].| |<|B2]. (5] |<|e]e|E
11213141516 (7 [8 |9 [10/11[12]13][14]|15[16[17[18 11213141516 |7 [8 [9 [10|11|12[13]14[15]|16[17(18
B rvope B B _E N _HN
oir O TTT MSIOooll TTolol T1T] MCTTT N T 11
[evar [(TTTT T TeleleleleleMEET T T1 [T T 111 M 1]
RV (I T TR R R TIT T T] CTT T T T T Tl
B rwp1rECT O TTeI TTTTITTeITIITT] MMM TTTTTIT T
Cloara (TT T TTTTTTTeITTITTT] (TT MM TITTITTMTITITTI]
[super OTTTTITITTITIITIT7TTHET] OITTITITTITTITTITI T e T]
[super (IITTITTTITTITITTITTH T COITITTIITTIITTITIT T
[epesc OTTTTITITTITIITTIT7TTHEHT] OITTITITITITTITTI e T
LEGEND
B Non-mountable file system
Bl Normal operation @ System crash
B Data or metadata loss O Read-only file system (ROFS)
[*] Data corrupted or corrupt data returned [al Data loss <or> operation fails and ROFS
[Operation fails [e] Data loss <or> Data corruption
A Later operations fail O Not applicable

Figure 2: Disk corruption experiments. The figures show the results of injecting corruption for JES and ext3 on-disk data
structures. JFS is used stand-alone in (a) and is one of the children in EnvyFSs in (b). ext3 is used stand-alone in (c) and is one
of the children in EnvyFSs in (d). Each row in the figures corresponds to the data structure for which the fault is injected; each
column corresponds to a file operation; each symbol represents the user-visible result of the fault injection. Note that (i) the column
SET-1 denotes file operations access, chdir, chroot, stat, statfs, Istat, and open; SET-2 denotes chmod, chown, and utimes; SET-3
denotes fsync and sync, (ii) some symbols are a combination of two symbols, one of which is the light-gray square for “read-only
file system.”

96

2009 USENIX Annual Technical Conference USENIX Association

ues normal operation in every single experiment, includ-
ing in the system-crash case. EnvyFS3 again shows great
resilience to faults in a single child file system.

We also found EnvyFSs to be surprisingly helpful
in isolating a non-trivial bug in ext3. As reported
above, when an ext3 inode block is corrupted before
an unlink, the system crashes when the file system is
later unmounted. The system crash does not occur in
EnvyFS3; one might suspect that EnvyFS3 is robust be-
cause ext3 was modified to call nvfs child panic.
However, this is not the case; instead, EnvyFSs com-
pletely avoids the code paths that cause the panic; in
particular, EnvyFS3 detects that the inode returned by
ext3 in response to a lookup (that is performed by VFS
prior to the actual unlink) is faulty (i.e., semantically dif-
fers from the inodes returned by the other file systems).
Therefore, it does not issue the subsequent unlink opera-
tion to ext3, hence avoiding actions that cause the panic.
Interestingly, the bug that causes the crash is actually in
the lookup operation, the first point where EnvyFS3 de-
tects a problem. Note that in the absence of an N-version
file system, one would find that the system crashed on an
unmount, but will not have information linking the crash
to the unlink system call or the bug in ext3_lookup.
Checking the ext3 source code, we found that this bug in
Linux 2.6.12 was subsequently fixed in 2.6.23. This ex-
perience highlights the potential for using N-versioning
to localize bugs in file systems.

5.3 Discussion

Our experiments show that EnvyFS3 can recover from
various kinds of corruptions in a child file system. Since
this improvement in reliability is achieved through addi-
tional layers of code, any bugs in these layers could off-
set the reliability improvements. Therefore, an important
goal in our design is to keep EnvyFS simple. We now
compare the amount of code used to construct EnvyFS
and SubSIST against other file systems in order to es-
timate the complexity (and therefore, the likelihood of
bugs) in such a system.

The EnvyFS layer is about 3,900 lines of code, while
SubSIST is about 2,500 lines of code. In comparison,
ext3 contains 10,423 lines, JFS has 15,520 lines, Reis-
erFS has 18,537 lines, and XFS, a complex file system,
has 44,153 lines.

6 Time and Space Overheads

Although reliable file-system operation is our major goal,
we are also concerned with the overheads innate to an N-
version approach. In this section, we quantify the perfor-
mance costs of EnvyFS and the reduction in disk-space
overheads due to SubSIST.

ext3 JFS Reiser | Envys +SIS
Cached read 21 21 2.2 57 57
Cached write 37 25 2.2 8.8 838
Seq. read-4K 17.8 17.7 182 | 424.1 33.7
Seq. read-1M 17.8 17.7 182 75.4 33.7
Seq. write 260 18.7 244 74.9 29.7
Rand. read 163.6 163.5 165.1 434.2 164.2
Rand. write 204 189 204 614 7.0
OpenSSH 25.3 25.7 25.6 26.4 26.0
Postmark-10K 14.7 39.0 9.6 128.8 264
Postmark-100K 29.0 107.2 33.6 | 851.4 430.0
Postmark-100K* | 128.3 242.5 78.3 | 405.5 271.1

Table 3: Performance. This table compares the execution
time (in seconds) for various benchmarks for EnvyFSs (with-
out and with SubSIST) against the child file systems, ext3, JF'S,
and ReiserFS. All our experiments use Linux 2.6.12 installed
on a machine with an AMD Opteron 2.2 GHz processor, 2 GB
RAM, Hitachi Deskstar 7200-rpm SATA disks, and 4-GB disk
partitions for each file system. Cached reads and writes in-
volve 1 million reads/writes to 1 file data block. Sequential
read-4K/writes are 4 KB at a time to a 1-GB file. Sequential
read-1M is IMB at a time to a 1-GB file. Random reads/writes
are 4 KB at a time to 100 MB of a 1-GB file. OpenSSH is a
copy, untar, and make of OpenSSH-4.5. Postmark was config-
ured to create 2500 files of sizes between 4KB and 40KB. We
ran it with 10K and 100K transactions. All workloads except
ones named “Cached” use a cold file-system cache.

We now quantify the performance overheads of
EnvyFS3 both with and without SubSIST, in contrast to
each of the child file systems (ext3, JFS, and ReiserFS)
running alone. Table 3 presents the results.

We now highlight the interesting points from the table:

e When reads hit in the cache (cached reads),
EnvyFS3 pays a little more than twice the cost (as it
accesses data from only two children and performs
a checksum comparison to find a majority).

o EnvyFS; performance under cached writes is
roughly the sum across the children; such writes go
to all three child file systems, and thus are repli-
cated in the buffer cache three times. This aspect
of EnvyFS3 is bad for performance (and increases
cache pressure), but at the same time increases fault
resilience; a corruption to one copy of the data while
in memory will not corrupt the other two copies.

e SubSIST does not help with either cached workload
as it only interposes on disk traffic.

e EnvyFS;3 has terrible performance under sequen-
tial disk reads, as it induces seeks (and loses disk
track prefetches) between two separate sequential
streams especially with small block sizes; much
of this cost could be alleviated with additional
prefetching or with larger block sizes. Increasing

USENIX Association

2009 USENIX Annual Technical Conference

97

the read size from 4KB to IMB significantly im-
proves the performance of EnvyFSs;.

o Sequential writes perform much better on EnvyFS;
compared to sequential reads, due to batching of op-
erations (and hence fewer seeks).

e In many cases where EnvyFS3 performance suffers
(sequential reads and writes, random reads), Sub-
SIST greatly improves performance through coa-
lescing of I/0O. Indeed, in one case (random writes),
SubSIST improves performance of EnvyFSj3 as
compared to any other single file system, as for this
specific case its layout policy transforms random
writes into a more sequential pattern to disk (see
Section 4.1). These performance improvements
likely represent the best case since the numbers do
not show the costs that would be incurred in a Sub-
SIST implementation that maintains data structures
persistently.

e Application performance, as measured on the
OpenSSH benchmark, is quite acceptable, even
without SubSIST.

e In the case of Postmark benchmark, both workload
size and dirty page writeout intervals affect the per-
formance of EnvyFS3. For smaller workloads (i.e.,
Postmark-10K), performance of EnvyFS3 with Sub-
SIST is comparable with other file systems. But
with increase in workload size (Postmark-100K),
performance of EnvyFSs worsens as it is forced to
write back more data due to increase in cache pres-
sure along with shorter dirty page writeout inter-
nals. If we provide EnvyFS3 with thrice the amount
of memory and change the writeback intervals ac-
cordingly, we see that EnvyFS3 performance (with
SubSIST) is comparable to the slowest of the three
children (JES).

We also tracked the storage requirement across these
benchmarks. For those workloads that generated writes
to disk, we found that SubSIST reduced the storage re-
quirement of EnvyFS by roughly a factor of three.

7 Related Work

Over the years, N-version programming has been used
in various real systems and research prototypes to reduce
the impact of software bugs on system reliability. As
noted by AviZienis [1], N-version computing has very old
roots (going back to Babbage and others in the 1800s).

The concept was (re)introduced in computer systems
by AviZienis and Chen in 1977 [2]. Since then, various
other efforts, many from the same research group, have
explored the process as well as the efficacy of N-version
programming [3, 5, 4, 13, 27].

AviZzienis and Kelly [4] study the results of using dif-
ferent specification languages; they use 3 different spec-
ification languages to develop 18 different versions of an
airport scheduler program. They perform 100 demand-
ing transactions with different sets of 3-version units and
determined that while at least one version failed in 55.1%
of the tests, a collective failure occurred only in 19.9% of
the cases. This demonstrates that the N-version approach
reduces the chances of failure. AviZienis et al.also deter-
mine the usefulness of developing the different software
versions in different languages like Pascal, C etc. [5]. As
in the earlier study, the different versions developed had
faults, but only very few of these faults were common
and the source of the common faults were traced to am-
biguities in the initial specification.

N-version computing has been employed in many sys-
tems. For many years, such uses have primarily been in
mission-critical or safety-critical systems [48, 52]. More
recently, with the increasing cost of system failures and
the rising impact of software bugs, many research ef-
forts have focused on solutions that use N-version pro-
gramming for improving system security and for han-
dling failures [15, 26, 37, 47]. Joukov et al. [26] store
data across different local file systems with different op-
tions for storing the data redundantly. However, un-
like our approach, they do not protect against file-system
bugs, and inherently rely on each individual file system
to report any errors, so that data recovery may be ini-
tiated in RAID-like fashion. Rodrigues et al. [37] de-
velop a framework to allow the use heterogeneous net-
work file systems as replicas for Byzantine-fault toler-
ance. Vandiver et al. [47] explore the use of hetero-
geneous database systems for Byzantine-fault tolerance.
They specifically address the issue of ordering of op-
erations using commit barriers. In EnvyFS, this issue
is made simpler due to two reasons: (i) in the absence
of transactions, file systems are not expected to provide
atomicity across multiple operations on the same file, and
(ii) the VFS layer can easily identify conflicts through
locking of file-system data structures.

8 Conclusion

“A three-ply cord is not easily severed.”
King Solomon [Ecclesiastes 4:12]

We have proposed EnvyFS, an approach that harnesses
the N-version approach to tolerate file-system bugs. Cen-
tral to our approach is building a reliable whole out
of existing and potentially unreliable parts, thereby sig-
nificantly reducing the cost of development. We have
also proposed the use of a single-instance store to re-
duce the performance and disk-space overheads of an
N-version approach. SubSIST, the single-instance store,

98

2009 USENIX Annual Technical Conference

USENIX Association

is designed to retain much of the reliability improve-
ments obtained from EnvyFS. We have built and eval-
uated EnvyFS for Linux file systems and shown that it
is significantly more reliable than file systems of which
it is composed; with SubSIST, performance and capacity
overheads are brought into the acceptable range. As a
fringe benefit, we also show that the N-version approach
can be used to locate bugs in file systems.

Modern file systems are becoming more complex by
the day; mechanisms to achieve data-structure consis-
tency [45], scalability and flexible allocation of disk
blocks [9, 42], and the capability to snapshot the file sys-
tem [25, 40] significantly increase the amount of code
and complexity in a file system. Such complexity could
lead to bugs in the file system that render any data protec-
tion further down the storage stack useless. N-versioning
can help; by building reliability on top of existing pieces,
EnvyFS takes an end-to-end approach and thus delivers
reliability in spite of the unreliability of the underlying
components.

Of course, our approach is not a panacea. Each file
system may have features that N-versioning hides or
makes difficult to realize. For example, some file sys-
tems are tailored for specific workloads (e.g., LFS[38]).
In the future, it would be interesting if one could enable
the N-version layer to be cognizant of such differences;
for example, if one file system is optimized for write per-
formance, all writes could initially be directed to it, and
only later (in the background) would other file systems
be updated. In such a manner, we could truly achieve
the best of both worlds: reliability of the N-version ap-
proach but without the loss of characteristics that makes
each file system unique.

Acknowledgments

We thank the anonymous reviewers and Sean Rhea (our shep-
herd) for their tremendous feedback and comments, which have
substantially improved the content and presentation of this pa-
per. We also thank the members of the ADSL research group
for their insightful comments.

This material is based upon work supported by the National
Science Foundation under the following grants: CCF-0621487,
CNS-0509474, CCR-0133456, as well as by generous dona-
tions from NetApp, Inc and Sun Microsystems.

T Author is currently an employee of NetApp, Inc.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do
not necessarily reflect the views of NSF or other institutions.

References

[1] A. A. AviZienis. The Methodology of N-Version Programming.
In M. R. Lyu, editor, Software Fault Tolerance, chapter 2. John
Wiley & Sons Ltd., 1995.

[2] A. A. Avizienis and L. Chen. On the Implementation of N-
Version Programming for Software Fault Tolerance During Ex-

[3]

[4]

[3]

[6]

(7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

ecution. In Proceedings of Ist Annual International Com-
puter Software and Applications Conference (COMPSAC’77),
Chicago, USA, 1977.

A. A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J.
Traverse, K. S. Tso, and U. Voges. The UCLA DEDIX system:
A Distributed Testbed for Multiple-version Software. In Digest
of 15th International Symposium on Fault-Tolerant Computing
(FTCS’85), pages 126134, Ann Arbor, MI, June 1985.

A. A. Avizienis and J. P. J. Kelly. Fault Tolerance by Design
Diversity: Concepts and Experiments. [EEE Computer, 17(8),
August 1984.

A. A. Avizienis, M. R. Lyu, and W. Schiitz. In Search of Ef-
fective Diversity: A Six-Language Study of Fault-Tolerant Flight
Control Software. In Digest of 18th International Symposium on
Fault-Tolerant Computing (FTCS ’88), Tokyo, Japan, June 1988.

L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An Analysis of Latent Sector Errors in Disk Drives.
In Proceedings of the 2007 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS
’07), San Diego, California, June 2007.

L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. An Analysis of
Data Corruption in the Storage Stack. In Proceedings of the
6th USENIX Symposium on File and Storage Technologies (FAST
’08), pages 223-238, San Jose, California, February 2008.

S. Best. JES Overview. www.ibm.com/developerworks/library/1-
jfs.html, 2000.

S. Best. JFS Overview. http://jfs.sourceforge.net/project/pub/jfs.pdf,
2000.

J. Black. Compare-by-hash: a reasoned analysis. In Proceed-
ings of the USENIX Annual Technical Conference (USENIX ’06),
pages 7-12, Boston, Massachusetts, June 2006.

W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Sin-
gle Instance Storage in Windows 2000. In Proceedings of the
4th USENIX Windows Systems Symposium, Seattle, Washington,
August 2000.

J. Bonwick and B. Moore. ZFS: The Last Word in File Systems.
http://opensolaris.org/os/community/zfs/docs/zfs _last.pdf, 2007.

L. Chen and A. A. Avizienis. N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation. In Di-
gest of 8th International Symposium on Fault-Tolerant Comput-
ing (FTCS’78), Toulouse, France, 1978.

A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An Em-
pirical Study of Operating System Errors. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
’01), pages 73-88, Banff, Canada, October 2001.

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davdison,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-Variant Systems -
A Secretless Framework for Security through Diversity. In Pro-
ceedings of the 15th USENIX Security Symposium (Sec "06), Van-
couver, British Columbia, Aug. 2006.

F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell.
CuriOS: Improving Reliability through Operating System Struc-
ture. In Proceedings of the S8th Symposium on Operating Systems
Design and Implementation (OSDI ’08), San Diego, California,
December 2008.

EMC. Centera Family. http://www.emc.com/products/family/emc-
centera-family.htm, 2009.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as Deviant Behavior: A General Approach to Inferring Errors in
Systems Code. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), pages 57-72, Banff,
Canada, October 2001.

USENIX Association

2009 USENIX Annual Technical Conference 99

[19]

(20]

[21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

H. S. Gunawi, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. SQCK: A Declarative File System Checker. In
Proceedings of the 8th Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, California, Decem-
ber 2008.

R. Hagmann. Reimplementing the Cedar File System Using Log-
ging and Group Commit. In Proceedings of the 11th ACM Sympo-
sium on Operating Systems Principles (SOSP ’87), Austin, Texas,
November 1987.

J. S. Heidemann and G. J. Popek. File-system development
with stackable layers. ACM Transactions on Computer Systems,
12(1):58-89, 1994.

V. Henson. An Analysis of Compare-by-hash. In Proceedings
of the 9th Workshop on Hot Topics in Operating Systems (Ho-
t0S’03), Lihue, Hawaii, May 2003.

V. Henson. The Many Faces of
http://lwn.net/Articles/248180/, September 2007.

D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NES File Server Appliance. In Proceedings of the USENIX Win-
ter Technical Conference (USENIX Winter ’94), San Francisco,
California, January 1994.

fsck.

N. Joukov, A. Rai, and E. Zadok. Increasing Distributed Storage
Survivability with a Stackable RAID-like File System. In Pro-
ceedings of the Ist International Workshop on Cluster Security
(Cluster-Sec’05), Cardiff, UK, 2005.

J.P.J. Kelly and A. A. AviZienis. A Specification-Oriented Multi-
version Software Experiment. In Digest of 13th International
Symposium on Fault-Tolerant Computing (FTCS ’83), Milano,
Italy, June 1983.

A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srini-
vasan, R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Parity Lost and Parity Regained. In Proceedings of the
6th USENIX Symposium on File and Storage Technologies (FAST
"08), pages 127-141, San Jose, California, February 2008.

Z. Li, Z. Chen, S. M. Srivivasan, and Y. Zhou. C-miner: Min-
ing block correlations in storage systems. In Proceedings of the
3rd USENIX Symposium on File and Storage Technologies (FAST
’04), pages 173—186, San Francisco, California, April 2004.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Fsck -
The UNIX File System Check Program. Unix System Manager’s
Manual - 4.3 BSD Virtual VAX-11 Version, April 1986.

D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. Increas-
ing Relevance of Memory Hardware Errors: A Case for Recover-
able Programming Models. In 9th ACM SIGOPS European Work-
shop ’Beyond the PC: New Challenges for the Operating System’,
Kolding, Denmark, September 2000.

B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler,
D. Noveck, D. Robinson, and R. Thurlow. The NFS Version 4
Protocol. In Proceedings of the 2nd International System Admin-
istration and Networking Conference (SANE 2000), May 2000.

V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Model-Based Failure Analysis of Journaling File Sys-
tems. In Proceedings of the International Conference on Depend-
able Systems and Networks (DSN ’05), pages 802-811, Yoko-
hama, Japan, June 2005.

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gu-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON
File Systems. In Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP ’05), pages 206-220, Brighton,
United Kingdom, October 2005.

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

S. Quinlan and S. Dorward. Venti: A New Approach to Archival
Storage. In Proceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST ’02), Monterey, California, Jan-
uary 2002.

H. Reiser. ReiserFS. www.namesys.com, 2004.

R. Rodrigues, M. Castro, and B. Liskov. BASE: Using Abstrac-
tion to Improve Fault Tolerance. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP '01), Banff,
Canada, October 2001.

M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System. ACM Transactions on
Computer Systems, 10(1):26-52, February 1992.

B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in
the wild: A Large-Scale Field Study. In Proceedings of the 2009
Joint International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS/Performance ’09), Seattle,
Washington, June 2007.

Sun Microsystems. ~ ZFS: The last word in file systems.
www.sun.com/2004-0914/feature/, 2006.

R. Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206tot_resiliency.html, February 2006.

A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,
and G. Peck. Scalability in the XFS File System. In Proceedings
of the USENIX Annual Technical Conference (USENIX ’96), San
Diego, California, January 1996.

M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles
(SOSP ’03), Bolton Landing (Lake George), New York, October
2003.

M. M. Swift, B. N. Bershad, and H. M. Levy. Recovering device
drivers. In Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI '04), pages 1-16, San
Francisco, California, December 2004.

T. Ts’0 and S. Tweedie. Future Directions for the Ext2/3 Filesys-
tem. In Proceedings of the USENIX Annual Technical Conference
(FREENIX Track), Monterey, California, June 2002.

S. C. Tweedie. Journaling the Linux ext2fs File System. In The
Fourth Annual Linux Expo, Durham, North Carolina, May 1998.

B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tol-
erating Byzantine Faults in Transaction Processing Systems us-
ing Commit Barrier Scheduling. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP ’07), Steven-
son, Washington, October 2007.

U. Voges, editor. Software Diversity in Computerized Control
Systems. Springer, Wien, New York, Dec. 1988.

J. Yang, C. Sar, and D. Engler. EXPLODE: A Lightweight,
General System for Finding Serious Storage System Errors. In
Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, Washington, November
2006.

J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automati-
cally Generating Malicious Disks using Symbolic Execution. In
IEEFE Security and Privacy (SP "06), Berkeley, California, May
2006.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. In Proceedings of
the 6th Symposium on Operating Systems Design and Implemen-
tation (OSDI ’04), San Francisco, California, December 2004.

Y. C. Yeh. Triple-Triple Redundant 777 Primary Flight Com-
puter. In Proceedings of the 1996 IEEE Aerospace Applications
Conference, 1996.

100

2009 USENIX Annual Technical Conference

USENIX Association

Decentralized Deduplication in SAN Cluster File Systems

Irfan Ahmad
VMware, Inc.

Austin T. Clements*

Abstract

File systems hosting virtual machines typically con-
tain many duplicated blocks of data resulting in wasted
storage space and increased storage array cache footprint.
Deduplication addresses these problems by storing a sin-
gle instance of each unique data block and sharing it be-
tween all original sources of that data. While deduplica-
tion is well understood for file systems with a centralized
component, we investigate it in a decentralized cluster
file system, specifically in the context of VM storage.

We propose DEDE, a block-level deduplication sys-
tem for live cluster file systems that does not require any
central coordination, tolerates host failures, and takes ad-
vantage of the block layout policies of an existing cluster
file system. In DEDE, hosts keep summaries of their
own writes to the cluster file system in shared on-disk
logs. Each host periodically and independently processes
the summaries of its locked files, merges them with a
shared index of blocks, and reclaims any duplicate blocks.
DEDE manipulates metadata using general file system in-
terfaces without knowledge of the file system implemen-
tation. We present the design, implementation, and eval-
uation of our techniques in the context of VMware ESX
Server. Our results show an 80% reduction in space with
minor performance overhead for realistic workloads.

1 Introduction

Deployments of consolidated storage using Storage Area
Networks (SANs) are increasing, motivated by universal
access to data from anywhere, ease of backup, flexibil-
ity in provisioning, and centralized administration. SAN
arrays already form the backbone of modern data cen-
ters by providing consolidated data access for multiple
hosts simultaneously. This trend is further fueled by the
proliferation of virtualization technologies, which rely on
shared storage to support features such as live migration
of virtual machines (VMs) across hosts.

Murali Vilayannur
*MIT CSAIL

Jinyuan Li

SANSs provide multiple hosts with direct SCSI access
to shared storage volumes. Regular file systems assume
exclusive access to the disk and would quickly corrupt a
shared disk. To tackle this, numerous shared disk clus-
ter file systems have been developed, including VMware
VMES [21], RedHat GFS [15], and IBM GPFS [18],
which use distributed locking to coordinate concurrent
access between multiple hosts.

Cluster file systems play an important role in virtual-
ized data centers, where multiple physical hosts each run
potentially hundreds of virtual machines whose virtual
disks are stored as regular files in the shared file sys-
tem. SANs provide hosts access to shared storage for
VM disks with near native SCSI performance while also
enabling advanced features like live migration, load bal-
ancing, and failover of VMs across hosts.

These shared file systems represent an excellent oppor-
tunity for detecting and coalescing duplicate data. Since
they store data from multiple hosts, not only do they con-
tain more data, but data redundancy is also more likely.
Shared storage for VMs is a ripe application for dedupli-
cation because common system and application files are
repeated across VM disk images and hosts can automat-
ically and transparently share data between and within
VMs. This is especially true of virtual desktop infras-
tructures (VDI) [24], where desktop machines are virtual-
ized, consolidated into data centers, and accessed via thin
clients. Our experiments show that a real enterprise VDI
deployment can expend as much as 80% of its overall
storage footprint on duplicate data from VM disk images.
Given the desire to lower costs, such waste provides mo-
tivation to reduce the storage needs of virtual machines
both in general and for VDI in particular.

Existing deduplication techniques [1,3-5,8, 14,16, 17,
26] rely on centralized file systems, require cross-host
communication for critical file system operations, per-
form deduplication in-band, or use content-addressable
storage. All of these approaches have limitations in our
domain. Centralized techniques would be difficult to ex-

USENIX Association

2009 USENIX Annual Technical Conference

101

tend to a setting with no centralized component other
than the disk itself. Existing decentralized techniques
require cross-host communication for most operations,
often including reads. Performing deduplication in-band
with writes to a live file system can degrade overall sys-
tem bandwidth and increase IO latency. Finally, content-
addressable storage, where data is addressed by its con-
tent hash, also suffers from performance issues related
to expensive metadata lookups as well as loss of spatial
locality [10].

Our work addresses deduplication in the decentralized
setting of VMware’s VMFS cluster file system. Unlike
existing solutions, DEDE coordinates a cluster of hosts
to cooperatively perform block-level deduplication of the
live, shared file system. It takes advantage of the shared
disk as the only centralized point in the system and does
not require cross-host communication for regular file sys-
tem operations, retaining the direct-access advantage of
SAN file systems. As a result, the only failure that can
stop deduplication is a failure of the SAN itself, without
which there is no file system to deduplicate. Because
DEDE is an online system for primary storage, all dedu-
plication is best-effort and performed as a background
process, out-of-band from writes, in order to minimize
impact on system performance. Finally, unlike other sys-
tems, DEDE builds block-level deduplication atop an ex-
isting file system and takes advantage of regular file sys-
tem abstractions, layout policy, and block addressing. As
a result, deduplication introduces no additional metadata
IO when reading blocks and permits in-place writes to
blocks that have no duplicates.

This paper presents the design of DEDE. We have im-
plemented a functional prototype of DEDE for VMware
ESX Server [23] atop VMware VMFS. Using a variety
of synthetic and realistic workloads, including data from
an active corporate VDI installation, we demonstrate that
DEDE can reduce VM storage requirements by upwards
of 80% at a modest performance overhead.

Section 2 provides an overview of the architecture of
our system and our goals. Section 3 details the system’s
design and implementation. We provide a quantitative
evaluation of our system in Section 4, followed by a dis-
cussion of related work in Section 5. Finally, we conclude
in Section 6.

2 System Overview

DEDE operates in a cluster setting, as shown in Figure 1,
in which multiple hosts are directly connected to a sin-
gle, shared SCSI volume and use a file system designed
to permit symmetric and cooperative access to the data
stored on the shared disk. DEDE itself runs on each host
as a layer on top of the file system, taking advantage of
file system block layout policies and native support for

Figure 1: Cluster configuration in which multiple hosts
concurrently access the same storage volume. Each host
runs the VMFS file system driver (vmfs3), the dedupli-
cation driver (dedup), and other processes such as VMs.

copy-on-write (COW) blocks. In this section, we provide
a brief overview of our approach to deduplication and the
file system support it depends on.

DEDE uses content hashes to identify potential dupli-
cates, the same basic premise shared by all deduplication
systems. An index stored on the shared file system and
designed for concurrent access permits efficient duplicate
detection by tracking all known blocks in the file system
by their content hashes.

In order to minimize impact on critical file system oper-
ations such as reading and writing to files, DEDE updates
this index out of band, buffering updates and applying
them in large, periodic batches. As part of this process,
DEDE detects and eliminates duplicates introduced since
the last index update. This can be done as an infrequent,
low priority background task or even scheduled during
times of low activity. Unlike approaches to deduplication
such as content-addressable storage that integrate content
indexes directly into the file system storage management,
DEDE’s index serves solely to identify duplicate blocks
and plays no role in general file system operations.

DEDE divides this index update process between hosts.
Each host monitors its own changes to files in the cluster
file system and stores summaries of recent modifications
in on-disk write logs. These logs include content hashes
computed in-band, as blocks are written to disk. Each
host periodically consumes the write logs of files it has
(or can gain) exclusive access to and updates the shared
index to reflect these recorded modifications. In the pro-
cess, it discovers and reclaims any block whose content is
identical to the content of some previously indexed block.
Having each host participate in the index update process
allows the hosts to divide and distribute the burden of
deduplication, while sharing the index allows hosts to
detect duplicates even if they are introduced by separate
hosts.

102

2009 USENIX Annual Technical Conference

USENIX Association

Out-of-band index updates mean DEDE must be re-
silient to stale index entries that do not reflect the lat-
est content of recently updated blocks. Indeed, this
is essentially unavoidable in a decentralized setting be-
cause of communication delays alone. While this means
DEDE generally must verify block contents when updat-
ing the index, this resilience has an important implica-
tion: DEDE’s correctness does not depend on its ability
to monitor every write to the file system. This has im-
portant performance benefits. First, updates to write logs
do not have to be crash-consistent with updates to file
contents, which both simplifies fault tolerance and allows
hosts to buffer updates to write logs to minimize addi-
tional IO. Second, this allows users to trade off the CPU
and memory overhead of write monitoring for peak file
system performance on a per-file basis. For example, a
user could simply disable deduplication for VMs that are
performance-critical or unlikely to contain much dupli-
cate data. Finally, this allows the write monitor to shed
work if the system is overloaded.

Because DEDE operates on a live file system, it specif-
ically optimizes for unique blocks (blocks with no known
duplicates). Unlike shared blocks, these blocks remain
mutable after deduplication. The mutability of unique
blocks combined with DEDE’s resilience to stale index
information means these blocks can be updated in place
without the need to allocate space for a copy or to syn-
chronously update the index. As a result, deduplication
has no impact on the performance of writing to unique
blocks, a highly desirable property because these are pre-
cisely the blocks that do not benefit from deduplication.

Similar to some other deduplication work related to
virtual disks [10, 13], DEDE uses fixed-size blocks. Un-
like stream-oriented workloads such as backup, where
variable-sized chunks typically achieve better deduplica-
tion [26], our input data is expected to be block-structured
because guest file systems (e.g., ext3, NTES) typically
divide the disk into fixed-size 4 KB or 8 KB blocks them-
selves. Consistent with this expectation, earlier work [12]
and our own test results (see Section 4.1), we use a block
size of 4 KB.

2.1 Required File System Abstractions

Most approaches to deduplication unify duplicate elimi-
nation and storage management, supplanting the file sys-
tem entirely. DEDE, in contrast, runs as a layer on top
of VMFS, an existing file system. This layer finds poten-
tially identical blocks and identifies them to the file sys-
tem, which is then responsible for merging these blocks
into shared, copy-on-write blocks.

DEDE requires the file system to be block oriented
and to support file-level locking. The file system block
size must also align with the deduplication block size, a

requirement VMFS’s default 1 MB block size, unfortu-
nately, does not satisfy. Our only non-trivial change to
VMES was to add support for typical file system block
sizes (i.e., 4 KB), as detailed later in Section 2.2.

Finally, DEDE requires block-level copy-on-write sup-
port, a well understood, but nevertheless uncommon fea-
ture supported by VMFS. Specifically, it requires an un-
usual compare-and-share operation, which replaces two
blocks with one copy-on-write block after verifying that
the blocks are, in fact, identical (using either bit-wise
comparison or a content hash witness). Despite the speci-
ficity of this operation, it fits naturally into the structure
of block-level copy-on-write and was easy to add to the
VMES interface. DEDE manipulates file system blocks
solely through this interface and has no knowledge of the
underlying file system representation.

There are two noteworthy capabilities that DEDE does
not require of the file system. First, hosts running DEDE
never modify the metadata of files they do not have ex-
clusive locks on, as doing so would require cross-host
synchronization and would complicate per-host metadata
caching. As a result, a host that discovers a duplicate
block between two files cannot simply modify both files
to point to the same block if one of the files is locked by
another host. Instead, when DEDE detects a duplicate
between files locked by different hosts, it uses a third
file containing a merge request as an intermediary. One
host creates a merge request containing a COW reference
to the deduplicated block, then passes ownership of the
merge request file’s lock to the other host, which in turn
replaces the block in its file with a reference to the block
carried by the merge request.

Second, DEDE does not require the file system to ex-
pose a representation of block addresses. Much like any
regular application, it only refers to blocks indirectly, by
their offset in some locked file, which the file system can
resolve into a block address. This restricts the design of
our index, since it cannot simply refer to indexed blocks
directly. However, this limitation simplifies our overall
design, since requiring the file system to expose block
addresses outside the file system’s own data structures
would interfere with its ability to free and migrate blocks
and could result in dangling pointers. Worse, any op-
erations introduced to manipulate blocks directly would
conflict with file-level locking and host metadata caching.

In lieu of referring to blocks by block addresses, DEDE
introduces a virtual arena file. This is a regular file in the
file system, but it consists solely of COW references to
shared blocks that are present in at least one other file.
This file acts as an alternate view of all shared blocks
in the system: DEDE identifies shared blocks simply by
their offsets in the virtual arena file, which the file system
can internally resolve to block addresses using regular
address resolution.

USENIX Association

2009 USENIX Annual Technical Conference

103

Because DEDE builds on the underlying file system,
it inherits the file system’s block placement policy and
heuristics. If the underlying file system keeps file blocks
sequential, blocks will generally remain sequential after
deduplication. Shared blocks are likely to be sequen-
tial with respect to other blocks in at least one file, and
common sequences of shared blocks are likely to remain
sequential with respect to each other. Furthermore, the
placement and thus sequentiality of unique blocks is com-
pletely unaffected by the deduplication process; as a re-
sult, deduplication does not affect IO performance to indi-
vidual unique blocks because they do not require copying,
and it maintains sequential IO performance across spans
of unique blocks.

2.2 VMFS

Many of the design decisions in DEDE were influenced
by the design of its substrate file system, VMFS. VMFS
is a coordinator-less cluster file system [21] designed to
allow hosts to cooperatively maintain a file system stored
on a shared disk. In this section, we provide a quick
overview of how VMEFS addresses and manages concur-
rent access to its resources in order to provide better con-
text for the design of DEDE.

VMES organizes the shared disk into four different re-
source pools: inodes, pointer blocks, file blocks, and sub-
blocks. Inodes and pointer blocks play much the same
role as in traditional UNIX file systems, storing per-file
metadata and pointers to the blocks containing actual file
content. File blocks and sub-blocks both store file con-
tent, but are different sizes, as discussed below. The di-
visions between these pools are currently fixed at format
time and can only be expanded by adding more storage,
though this is not a fundamental limitation. In each pool,
resources are grouped into clusters. The header for each
cluster maintains metadata about all of its contained re-
sources; most importantly, this includes a reference count
for each individual resource and tracks which resources
are free and which are allocated.

In order to support concurrent access by multiple hosts
to file and resource data, VMFS uses a distributed lock
manager. Unlike most cluster file systems, which use an
IP network for synchronization, VMFS synchronizes all
file system accesses entirely through the shared disk itself
using on-disk locks. VMFS ensures atomic access to on-
disk lock structures themselves using SCSI-2-based LUN
reservations to guard read-modify-write critical sections.
In addition to taking advantage of the reliability of stor-
age area networks, using the same means to access both
file system state and synchronization state prevents “split
brain” problems typical of IP-based lock managers in
which multiple hosts can access the file system state but
cannot communicate locking decisions with each other.

inode

inode

Figure 2: Mixed block sizes allow any 1 MB file block to
be divided into 256 separate 4 KB sub-blocks.

VMES protects file data from concurrent access by as-
sociating a coarse-grain lock with each file that covers all
of a file’s metadata (its inode and pointer blocks) as well
as all of the file blocks and sub-blocks comprising the
file’s content. Files in VMFS tend to be locked for long
durations (e.g., a VM’s disk files are locked as long as
the VM is powered on). DEDE respects file system lock-
ing by partitioning the deduplication process according
to which hosts hold which file locks.

VMES protects resource metadata using per-cluster
locks. Thus, allocation and deallocation of resources
must lock all clusters containing any of the resources
involved. The number of resources packed per cluster
reflects a trade-off between locking overhead and cross-
host cluster lock contention. Higher cluster density al-
lows hosts to manipulate more resources with fewer locks,
but at the cost of increased lock contention. Since DEDE
stresses the sub-block resource pool more than typical
VMES usage, we increase the sub-block cluster density
from 16 to 128 resources per cluster, but otherwise use
the default VMFS densities.

VMFS maintains two separate resource types for stor-
ing file content: file blocks and sub-blocks. File sizes in
VMES typically fit a bimodal distribution. Virtual ma-
chine disks and swap files are usually several gigabytes,
while configuration and log files tend to be a few kilo-
bytes. Because of this, VMFS uses 1 MB file blocks
to reduce metadata overhead and external fragmentation
for large files, while for small files, VMFS uses smaller
sub-blocks to minimize internal fragmentation. DEDE
must be able to address individual 4 KB blocks in order
to COW share them, so we configure VMFS with 4 KB
sub-blocks. Furthermore, rather than simply eschewing
the efficiency of 1 MB blocks and storing all file content
in 4 KB blocks, we extend VMFS to support mixed block
sizes, depicted in Figure 2, so that DEDE can address
individual 4 KB blocks of a file when it needs to share
a duplicate block, but when possible still store unique
regions of files in efficient 1 MB blocks. This change
introduces an optional additional pointer block level and

104

2009 USENIX Annual Technical Conference

USENIX Association

allows any file block-sized region to be broken into 256
separate 4 KB blocks, which, in turn, add up to the origi-
nal file block. This can be done dynamically to any 1 MB
block based on deduplication decisions, and leaves ad-
dress resolution for other data intact and efficient.

Beyond these unusual block sizes, VMFS supports a
number of other uncommon features. Most important to
DEDE is support for block-level copy-on-write (COW).
Each file or sub-block resource can be referenced from
multiple pointer blocks, allowing the same data to be
shared between multiple places in multiple files. Each
reference to a shared resource is marked with a COW bit,
indicating that any attempts to write to the resource must
make a private copy in a freshly allocated resource and
write to that copy instead. Notably, this COW bit is as-
sociated with each pointer to the resource, not with the
resource itself. Otherwise, every write operation would
need to take a cluster lock to check the COW bit of the
destination block, even if the block was not COW. How-
ever, as a result, sharing a block between two files re-
quires file locks on both files, even though only one of
the references will change. Thus, DEDE must use merge
requests for all cross-host merging operations.

VMES forms the underlying substrate of DEDE and
handles critical correctness requirements such as special-
izing COW blocks and verifying potential duplicates, al-
lowing DEDE to focus on duplicate detection. Virtual
arenas and merge requests allow DEDE to achieve com-
plex, decentralized manipulations of the file system struc-
ture without knowledge of the file system representation,
instead using only a few general-purpose interfaces.

3 Design and Implementation

In this section, we provide details of the design and im-
plementation of DEDE’s best-effort write monitoring sub-
system and the out-of-band indexing and duplicate elimi-
nation process.

3.1 Write Monitoring

Each host runs a write monitor, as shown in Figure 3,
which consists of a lightweight kernel module (dedup)
that monitors all writes by that host to files in the file
system and a userspace daemon (dedupd) that records
this information to logs stored in the shared file system.
The write monitor is the only part of the system that lies
in the IO critical path of the file system, so the write
monitor itself must incur as little additional disk IO and
CPU overhead as possible.

The kernel module provides the userspace daemon
with a modification stream indicating, for each write done
by the host: the file modified, the offset of the write, and

File Block# SHA-1

D.VITITOK™ 87 U&735U0..

a.vmdk 32 6cd412..

a.vmdk 33 12067c..

dedupds |5 ymdk 34 c277d6..

]] b.vmdk 87 ab8849..

[dedup] b.vmdk 19 373dc2..

a.vmdk write log l
)32:6cd412.)33:12067c¢..)34:c277d6..
- N
— 2 b.vmdk write log

)14:1aa2a3.)87:ab8849.)19:373dc2.)

Figure 3: Only a lightweight kernel module lies in the
IO critical path, opportunistically calculating hashes of
blocks while they are still in memory. A userspace dae-
mon (dedupd) flushes write logs to disk periodically. Du-
plicate detection and elimination occur out of band.

the SHA-1 hashes of all modified blocks. While the in-
band CPU overhead of the monitor could have been virtu-
ally eliminated by computing these hashes lazily (e.g., at
indexing time), this would have required reading the mod-
ified blocks back from disk, resulting in a large amount
of additional random IO. We opted instead to eliminate
the extra IO by computing these hashes while the blocks
were in memory, though the trade-off between run-time
CPU overhead and deduplication-time IO overhead could
be set dynamically by user-defined policy.

The userspace daemon divides the modification stream
by file, aggregates repeated writes to the same block, and
buffers this information in memory, periodically flushing
it to individual write log files associated with each regular
file. These write logs are stored on the shared file system
itself, so even if a host fails or transfers ownership of a
file’s lock, any other host in the system is capable of read-
ing logs produced by that host and merging information
about modified blocks into the index.

The daemon can safely buffer the modification stream
in memory because the index update process is designed
to deal with stale information. Without this, write logs
would have to be consistent with on-disk file state, and
each logical write to the file system would result in at
least two writes to the disk. Instead, buffering allows our
system to absorb writes to over 150 MB of file blocks
into a single infrequent 1 MB sequential write to a log
file. This is the only additional IO introduced by the write
monitor.

Similarly, we rely on the best-effort property of write
monitoring to minimize IO in the case of partial block
writes. If a write to the file system does not cover an
entire block, the monitor simply ignores that write, rather
than reading the remainder of the block from disk simply
to compute its hash. In practice, this is rarely a problem
when writes originate from a virtual machine, because

USENIX Association

2009 USENIX Annual Technical Conference

105

guest operating systems typically write whole guest file
system blocks, which are generally at least 4 KB.!

Write monitoring can be enabled or disabled per file.
If the performance of some VM is too critical to incur the
overhead of write monitoring or if the system administra-
tor has a priori knowledge that a VM’s duplication ratio
is small, such VMs can be opted out of deduplication.

3.2 The Index

The shared on-disk index tracks all known blocks in the
file system by their content hashes. As discussed in Sec-
tion 2, each host updates this index independently, in-
corporating information about recent block modifications
from the write logs in large batches on a schedule set by
user-defined policy (e.g., only during off-peak hours). A
match between a content hash in the index and that of
a recently modified block indicates a potential duplicate
that must be verified and replaced with a copy-on-write
reference to the shared block.

The index acts as an efficient map from hashes to
block locations. Because DEDE treats unique blocks
(those with only a single reference) differently from
shared blocks (those with multiple references), each in-
dex entry can likewise be in one of two states, denoted
Unique(H, f,0) and Shared(H,a). An index entry iden-
tifies a unique block with hash H by the inumber f of
its containing file and its offset o within that file. Be-
cause index updates are out-of-band and unique blocks
are mutable, these entries are only hints about a block’s
hash. Thus, because a mutable block’s contents may have
changed since it was last indexed, its contents must be ver-
ified prior to deduplicating it with another block. Shared
blocks, on the other hand, are marked COW and thus their
content is guaranteed to be stable. The index identifies
each shared block by its offset @ in the index’s virtual
arena, discussed in the next section.

3.2.1 Virtual Arena

When duplicate content is found, DEDE reclaims all but
one of the duplicates and shares that block copy-on-write
between files. Because hosts can make per-file, mutable
copies of shared blocks at any time without updating the
index, we cannot simply identify shared blocks by their
locations in deduplicated files, like we could for unique
blocks. The index needs a way to refer to these shared
blocks that is stable despite shifting references from dedu-
plicated files. As discussed earlier, DEDE cannot simply
store raw block addresses in the index because exposing
these from the file system presents numerous problems.

!'Unfortunately, owing to an ancient design flaw in IBM PC parti-
tion tables, guest writes are not necessarily aligned with DEDE blocks.
Section 4.1 has a more detailed analysis of this.

Instead, we introduce a virtual arena file as an additional
layer of indirection that provides stable identifiers for
shared blocks without violating file system abstractions.

The virtual arena is a regular file, but unlike typical
files, it doesn’t have any data blocks allocated specifi-
cally for it (hence, it is virtual). Rather, it serves as an
alternate view of all shared blocks in the file system. In
this way, it is very different from the arenas used in other
deduplication systems such as Venti [16], which store
actual data blocks addressed by content addresses.

In order to make a block shared, a host introduces an
additional COW reference to that block from the virtual
arena file, using the same interface that allows blocks
to be shared between any two files. Apart from uncol-
lected garbage blocks, the virtual arena consumes only
the space of its inode and any necessary pointer blocks.
Furthermore, this approach takes advantage of the file
system’s block placement policies: adding a block to the
virtual arena does not move it on disk, so it is likely to
remain sequential with the original file.

The index can then refer to any shared block by its
offset in the virtual arena file, which the file system can
internally resolve to a block address, just as it would for
any other file. The virtual arena file’s inode and pointer
block structure exactly form the necessary map from the
abstract, stable block identifiers required by the index to
the block addresses required by the file system.

3.2.2 On-disk Index Representation

DEDE stores the index on disk as a packed list of entries,
sorted by hash. Because DEDE always updates the index
in large batches and since the hashes of updates exhibit
no spatial locality, our update process simply scans the
entire index file linearly in tandem with a sorted list of
updates, merging the two lists to produce a new index
file. Despite the simplicity of this approach, it outper-
forms common index structures optimized for individual
random accesses (e.g., hash tables and B-trees) even if the
update batch size is small. Given an average index entry
size of b bytes, a sequential IO rate of s bytes per second,
and an average seek time of k seconds, the time required
to apply U updates using random access is Uk, whereas
the time to scan and rewrite an index of / entries sequen-
tially is 2/b/s. If the ratio of the batch size to the index size
exceeds U/1 = 2b/sk, sequentially rewriting the entire in-
dex is faster than applying each update individually. For
example, given an entry size of 23 bytes and assuming
a respectable SAN array capable of 150 MB/s and 8 ms
seeks, the batch size only needs to exceed 0.004% of the
index size. Furthermore, hosts defer index updates until
the batch size exceeds some fixed fraction of the index
size (at least 0.004%), so the amortized update cost re-
mains constant regardless of index size.

106

2009 USENIX Annual Technical Conference

USENIX Association

In order to allow access to the index to scale with the
number of hosts sharing the file system, while still re-
lying on file locking to prevent conflicting index access,
hosts shard the index into multiple files, each represent-
ing some subdivision of the hash space. Once the time a
host takes to update a shard exceeds some threshold, the
next host to update that shard will split the hash range
covered by the shard in half and write out the two result-
ing sub-shards in separate files. This technique mirrors
that of extensible hashing [6], but instead of bounding the
size of hash buckets, we bound the time required to up-
date them. Combined with file locking, this dynamically
adjusts the concurrency of the index to match demand.

3.3 Indexing and Duplicate Elimination

As the index update process incorporates information
about recently modified blocks recorded in the write logs,
in addition to detecting hash matches that indicate poten-
tial duplicates, it also performs the actual COW sharing
operations to eliminate these duplicates. The duplicate
elimination process must be interleaved with the index
scanning process because the results of block content ver-
ification can affect the resulting index entries.

In order to update the index, a host sorts the recent
write records by hash and traverses this sorted list of
write records in tandem with the sorted entries in the
index. A matching hash between the two indicates a po-
tential duplicate, which is handled differently depending
on the state of the matching index entry. Figure 4 gives
an overview of all possible transitions a matching index
entry can undergo, given it current state.

When DEDE detects a potential duplicate, it depends
on the file system’s compare-and-share operation, de-
scribed in Section 2.1, to atomically verify that the
block’s content has not changed and replace it with a
COW reference to another block. Based on user-specified
policy, this verification can either be done by reading the
contents of the potential duplicate block and ensuring that
it matches the expected hash (i.e., compare-by-hash), or
by reading the contents of both blocks and performing
a bit-wise comparison (i.e., compare-by-value). If the
latter policy is in effect, hash collisions reduce DEDE’s
effectiveness, but do not affect its correctness. Further-
more, because hashes are used solely for finding poten-
tial duplicates, if SHA-1 is ever broken, DEDE has the
unique capability of gracefully switching to a different
hash function by simply rebuilding its index. The con-
tent verification step can be skipped altogether if a host
can prove that a block has not changed; for example, if
it has held the lock on the file containing the block for
the entire duration since the write record was generated
and no write records have been dropped. While this is a
fairly specific condition, it is often met in DEDE’s target

Unique(H,f,0)

(a) When the hash H of the block at offset o in file f is not in the
index, a new unique entry is added.

Unique(H,f,0) Verify Shared(H,a)

(b) When a second occurrence of hash H is found and the block’s
content passes verification, we place it in the virtual arena and
upgrade the index entry to shared.

(c) When a duplicate of a shared block is found, we verify its con-
tents and replace the block with a reference to the existing shared
block.

Unique(H,f,0)

Shared(H,a)

(d) Unique entries are garbage collected when the indexing process
finds a write record to that block with a different hash. Shared
entries are garbage collected when only the reference from the
virtual arena remains.

Figure 4: All possible updates to an index entry.

setting because locks on VM disks are usually held for
very long durations.

3.3.1 Single Host Indexing

We begin with an explanation of the index update process
assuming only a single host with exclusive access to the
file system. In a single host design, the host can mod-
ify the metadata of any file. We lift this assumption in
the next section, where we extend the process to support
multiple hosts.

Any write record without a corresponding hash in
the index indicates a new, unique block. Even though
this write record may be stale, because index entries for
unique blocks are only hints, it is safe to simply add
the new unique block to the index without verifying the
block’s content, performing an absent-to-unique transi-
tion as shown in Figure 4(a). This single sequential,
buffered write to the index is the only IO incurred when
processing a new unique block.

When a write record’s hash corresponds to an index en-
try for a unique block, then the host attempts to share both
blocks (freeing one of them in the process) and upgrade
the index entry to refer to the shared block. This unique-
to-shared transition is shown in Figure 4(b). However, be-
cause the write record and index entry may both be stale,
the host must verify the contents of both blocks before ac-

USENIX Association

2009 USENIX Annual Technical Conference

107

tually sharing them. Assuming this verification succeeds,
the file system replaces both blocks with a shared block
and the host inserts this block into the virtual arena and
upgrades the index entry to refer to the new, shared block.

Finally, if a write record’s hash matches an index entry
for a shared block, then the host attempts to eliminate this
newly detected potential duplicate, performing a shared-
to-shared transition as shown in Figure 4(c). Because
the write record may be stale, it first verifies that the con-
tent of the potential duplicate has not changed. If this
succeeds, then this block is freed and the reference to
the block is replaced with a reference to the shared block
found via the virtual arena.

3.3.2 Multi-Host Indexing

Extending the index update process to multiple hosts, we
can no longer assume that a host will have unfettered
access to every file. In particular, hosts can only ver-
ify blocks and modify block pointers in files they hold
exclusive locks on. As a result, indexing must be dis-
tributed across hosts. At the same time, we must min-
imize communication between hosts, given the cost of
communicating via the shared disk. Thus, sharing of
blocks is done without any blocking communication be-
tween hosts, even if the blocks involved are in use by
different hosts.

In the multi-host setting, the write logs are divided
amongst the hosts according to which files each host has
(or can gain) exclusive access to. While this is necessary
because hosts can only process write records from files
they hold exclusive locks on, it also serves to divide the
deduplication workload between the hosts.

Absent-to-unique transitions and shared-to-shared tran-
sitions are the same in the multi-host setting as in the
single host setting. Adding a new, unique block to the
index requires neither block verification, nor modifying
block pointers. Shared-to-shared transitions only verify
and rewrite blocks in the file referenced by the current
write log, which the host processing the write log must
have an exclusive lock on.

Unique-to-shared transitions, however, are compli-
cated by the possibility that the file containing the unique
block referenced by the index may be locked by some
host other than the host processing the write record.
While this host may not have access to the indexed block,
it does have access to the block referred to by the write
log. The host verifies this block’s content and promotes
it to a shared block by adding it to the virtual arena and
upgrading the index entry accordingly. However, in or-
der to reclaim the originally indexed block, the host must
communicate this deduplication opportunity to the host
holding the exclusive lock on the file containing the orig-
inally indexed block using the associated merge request

file. The host updating the index posts a merge request for
the file containing the originally indexed block. This re-
quest contains not only the offset of the unique block, but
also another COW reference to the shared block. Hosts
periodically check for merge requests to the files they
have exclusive locks on, verifying any requests they find
and merging blocks that pass verification. The COW ref-
erence to the shared block in the merge request allows
hosts to process requests without accessing the arena.

3.3.3 Garbage Collection

As the host scans the index for hash matches, it also
garbage collects unused shared blocks and stale index
entries, as shown in Figure 4(d). For each shared block
in the index, it checks the file system’s reference count
for that block. If the block is no longer in use, it will
have only a single reference (from the virtual arena), in-
dicating that it can be removed from the virtual arena and
freed. In effect, this implements a simple form of weak
references without modifying file system semantics. Fur-
thermore, this approach allows the virtual arena to double
as a victim cache before garbage collection has a chance
to remove unused blocks.

Unique blocks do not need to be freed, but they can
leave behind stale index entries. Hosts garbage collect
these by removing any index entries that refer to any
block in any of the write records being processed by the
host. In the presence of dropped write records, this may
not remove all stale index entries, but it will ensure that
there is at most one index entry per unique block. In this
case, any later write or potential duplicate discovery in-
volving a block with a stale index entry will remove or
replace the stale entry. The garbage collection process
also check for file truncations and deletions and removes
any appropriate index entries.

4 Evaluation

In this section, we present results from the evaluation of
our deduplication techniques using various microbench-
marks and realistic workloads. We begin in Section 4.1
with experiments and analysis that shows the space sav-
ings achievable with deduplication as well as the space
overheads introduced by it, using data from a real corpo-
rate VDI deployment. We also draw a comparison against
linked clones, an alternative way of achieving space sav-
ings.

We have implemented a functional prototype of DEDE
atop VMware VMFS. Although we haven’t spent any sig-
nificant time optimizing it, it is worthwhile examining
its basic performance characteristics. In Section 4.2, we
present the run-time performance impact of write mon-
itoring and other changes to the file system introduced

108

2009 USENIX Annual Technical Conference

USENIX Association

by deduplication, as well as the run-time performance
gained from improved cache locality. Finally, we look
at the performance of the deduplication process itself in
Section 4.3.

4.1 Analysis of Virtual Disks in the Wild

To evaluate the usefulness of deduplication in our target
workload segment of VDI, we analyzed the virtual disks
from a production corporate VDI cluster serving desktop
VMs for approximately 400 users on top of a farm of
32 VMware ESX hosts. Out of these, we selected 113
VMs at random to analyze for duplicate blocks, totaling
1.3 TB of data (excluding blocks consisting entirely of
NULL bytes). Each user VM belonged exclusively to
a single corporate user from a non-technical department
like marketing or accounting. The VMs have been in use
for six to twelve months and all originated from a small
set of standardized Windows XP images. From our expe-
rience, this is typical for most enterprise IT organizations,
which limit the variation of operating systems to control
management and support costs.

Figure 5 shows the reduction in storage space for this
VDI farm using deduplication block sizes between 4 KB
and 1 MB. As expected, VDI VMs have a high degree
of similarity, resulting in an ~80% reduction in storage
footprint for the 4 KB block size, which falls off loga-
rithmically to ~35% for 1 MB blocks. Deduplication
at the 4 KB block size reduces the original 1.3 TB of
data to 235 GB. Given the significant advantage of small
block sizes, we chose to use a default 4 KB block size
for DEDE. However, a reasonable argument can be made
for the smaller metadata storage and caching overhead
afforded by an 8 KB block size. We are exploring this as
well as dynamic block size selection as future work.

Figure 6 shows a CDF of the same data, detailing the
duplication counts of individual blocks in terms of the
number of references to each block in the file system af-
ter deduplication. For example, at the 4 KB block size,
94% of deduplicated blocks are referenced 10 or fewer
times by the file system (equivalently, 6% of deduplicated
blocks are referenced more than 10 times). Thus, in the
original data, most blocks were duplicated a small num-
ber of times, but there was a very long tail where some
blocks were duplicated many times. At the very peak of
the 4 KB distribution, some blocks were duplicated over
100,000 times. Each of these blocks individually repre-
sented over 400 MB of space wasted storing duplicate
data. Overall, this data serves to show the potential for
space savings from deduplication in VDI environments.

90%

= DeDe
80% = Realigned partitions
O Linked clones only
70%
60%

50% 4

30% 4

20% 4

Reduction in storage space

10% 1

0% + r
4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Block size

Figure 5: Duplication available at various block sizes and
for different variations on the approach. Data is from a
production VDI deployment of 113 Windows XP VMs.

100%

95% A
90% ./
85%

80% /)

75%

Fraction of deduplicated blocks

70%

1 10 100 1000

Maximum reference count

Figure 6: CDF of block duplication counts. A few blocks
occur over 100,000 times. Data is from the same deploy-
ment as shown in Figure 5.

4.1.1 Space Overheads

While DEDE reduces the amount of space required by file
data, it requires additional space for both the index and
the additional metadata introduced by mixed block sizes.
For our VDI data set, at a 4 KB block size, this additional
data totaled 2.7 GB, a mere 1.1% overhead beyond the
deduplicated file data.

The index represented 1.5 GB of this overhead,
194 MB of which was file system metadata (pointer
blocks) for the virtual arena. The size of the index scales
linearly with the size of the deduplicated data because
each deduplicated block has one index entry. However,
its relative overhead does vary with the ratio of unique to
shared blocks, because shared blocks require 4 bytes to
locate plus virtual arena metadata, while unique blocks
require 12 bytes beyond the 18 bytes required on average
for each entry’s header and hash. However, even in the
worst case, the index represents only 0.73% overhead.

USENIX Association

2009 USENIX Annual Technical Conference

109

Prior to deduplication, file metadata (inodes and
pointer blocks) represented a mere 0.0004% overhead,
owing to the efficiency of tracking VMFS’s 1 MB file
blocks. After deduplication, each 1 MB block that was
divided into sub-blocks requires a new pointer block at
1 KB apiece. As a result, metadata overhead increased
to 0.49% after deduplication, or 1.1 GB of data in total.
While this is a dramatic increase, metadata is still a very
small fraction of the overall space.

4.1.2 Partition Alignment Issues

Our approach of dividing disks into fixed size blocks is
sensitive to the alignment of data on those disks. Un-
fortunately, for historical reasons, the first partition of
partition tables created by utilities like £disk on com-
modity PC systems has a start address 512 bytes short
of a 4 KB boundary, which can in turn cause all logical
file system blocks to straddle 4 KB disk block boundaries.
This has well-known negative performance effects [22],
particularly for storage array caches, which are forced to
fetch two blocks for each requested file system block. We
were initially concerned that this partition misalignment
could negatively impact deduplication opportunities, so
we “fixed” the alignment of our VDI data by shifting all
of the virtual disks by 512 bytes. Figure 5 compares the
results of deduplication with and without this realignment
and shows that, in practice, partition alignment actually
had very little impact on achieved deduplication. While
this may still prove to be a problem for well-aged guest
file systems, if necessary, it can be solved in a virtual-
ized environment by padding the virtual disk image file
to realign the guest file system blocks with the host file
system blocks.

4.1.3 Deduplication Versus Linked Clones

Linked clones are a simpler space saving alternative to
deduplication where individual user VMs are initially
constructed as block-level COW snapshots of a golden
master VM. This uses the same COW mechanism as
DEDE, but all sharing happens during VM creation and
the user VM images strictly diverge from the base disk
and from each other over time.

In order to compare the efficacy of linked clones versus
full deduplication, we simulated the structured sharing of
linked clones on our VDI data set. This comparison was
necessarily imperfect because we had access to neither
the base disks nor ancestry information for the VDI VMs,
but it did yield a lower bound on the total space required
by linked clones. The analysis used our regular dedupli-
cation algorithm but restricted it to deduplicating blocks
only when they were at the same offset in two files, a
reasonable approximation to user disks that are a mini-

Y- Baseline DEDE

Sequential || T (MB/s) | L (ms) | CPU || T (MB/s) | L (ms) | CPU
100% 233 86 [33% [233 8.6 [220%
0% 84 24 | 16% 84 24 | 92%

Table 1: Overhead of in-band write monitoring on a pure
10 workload. Results are in terms of throughput (7) and
latency (L) for Iometer issuing 32 outstanding 64 KB 10s
to a 5 GB virtual disk. The CPU column denotes the
utilized processor time relative to a single core.

mal delta from the base disk (e.g., no security patches or
software updates have been installed in the user disks).

Figure 5 compares the savings achieved by linked
clones against those achieved by DEDE, again at vari-
ous COW block sizes. Linked clones max out at a 44%
reduction in space, reducing the 1.3 TB of original data
to 740 GB, a storage requirement over three times larger
than full deduplication achieved.

4.2 Run-time Effects of Deduplication

DEDE operates primarily out of band and engenders no
slowdowns for accessing blocks that haven’t benefited
from deduplication. It can also improve file system per-
formance in certain workloads by reducing the working
set size of the storage array cache. For access to dedu-
plicated blocks, however, in-band write monitoring and
the effects of COW blocks and mixed block sizes can im-
pact the regular performance of the file system. Unless
otherwise noted, all of our measurements of the run-time
effects of deduplication were performed using Iometer [9]
in a virtual machine stored on a 400 GB 5-disk RAID-5
volume of an EMC CLARIiiON CX3-40 storage array.

4.2.1 Overhead of In-Band Write Monitoring

Since DEDE’s design is resilient to dropped write log
entries, if the system becomes overloaded, we can shed
or defer the work of in-band hash computation based on
user-specified policy. Still, if write monitoring is enabled,
the hash computation performed by DEDE on every write
10 can represent a non-trivial overhead.

To understand the worst-case effect of this, we ran a
write-intensive workload with minimal computation on a
5 GB virtual disk. Table 1 shows that these worst case
effects can be significant. For example, for a 100% se-
quential, 100% write workload, the CPU overhead was
6.6 that of normal at the same throughput level. How-
ever, because VMware ESX Server offloads the execution
of the IO issuing path code, including the hash computa-
tion, onto idle processor cores, the actual IO throughput
of this workload was unaffected.

110

2009 USENIX Annual Technical Conference

USENIX Association

| Baseline | Error [SHA-1 | Error |

29989 | 1.4% | 29719 | 0.8%
60ms |0.8% | 6lms | 1.4%

Operations/Min
Response Time (ms)

Table 2: Overhead of in-band write monitoring on a SQL
Server database VM running an online e-commerce appli-
cation. The mean transaction rate (operations/min) and
response times for 10 runs are within noise for this work-
load. The reported “error” is standard deviation as a per-
centage of mean.

We don’t expect the effect of the additional compu-
tation to be a severe limitation in realistic workloads,
which, unlike our microbenchmark, perform computa-
tion in addition to 10. To illustrate this, we ran the in-
band SHA-1 computation on a realistic enterprise work-
load. We experimented with a Windows Server 2003 VM
running a Microsoft SQL Server 2005 Enterprise Edi-
tion database configured with 4 virtual CPUs, 6.4 GB of
RAM, a 10 GB system disk, a 250 GB database disk, and
a 50 GB log disk. The database virtual disks were hosted
on an 800 GB RAID-0 volume with 6 disks; log virtual
disks were placed on a 100 GB RAID-0 volume with
10 disks. We used the Dell DVD store (DS2) database
test suite [2], which implements a complete online e-
commerce application, to stress the SQL database and
measure its transactional throughput and latency. The
DVD Store workload issues random 8 KB IOs with a
write/read ratio of 0.25, and a highly variable number of
outstanding write IOs peaking around 28 [7]. Table 2 re-
ports a summary of overall application performance with
and without the in-band SHA-1 computation for writes.
For this workload, we observed no application-visible
performance loss, though extra CPU cycles on other pro-
cessor cores were being used for the hash computations.

4.2.2 Overhead of COW Specialization

Writing to a COW block in VMES is an expensive op-
eration, though the current implementation is not well
optimized for the COW sub-blocks used extensively by
DEDE. In our prototype, it takes ~10 ms to specialize
a COW block, as this requires copying its content into
a newly allocated block in order to update it. As such,
any workload phase shift where a large set of previously
deduplicated data is being specialized will result in signif-
icant performance loss. However, in general, we expect
blocks that are identical between VMs are also less likely
to be written to and, unlike most approaches to dedupli-
cation, we do not suffer this penalty for writes to unique
blocks. Optimizations to delay sharing until candidate
blocks have been “stable” for some length of time may
help further mitigate this overhead, as suggested in [8].

% Sequential | IO Type | Throughput (MB/s) | Overhead
BS=1MB| BS=4 KB
100% Writes 238 150 37%
0% Writes 66 60 9%
100% Reads 245 135 45%
0% Reads 37 32 14%
Table 3: Overhead of mixed block fragmentation.

Throughput achieved for 64 KB sequential and random
workloads with 16 outstanding I0s. The comparison is
between two virtual disks backed by block sizes (BS) of
1 MB and 4 KB, respectively. In the 4 KB case, the vir-
tual disk file consists of 163 disjoint fragments, which
implies a sequential run of 31 MB on average.

4.2.3 Overhead of Mixed Block Sizes

VMEFS’s 1 MB file blocks permit very low overhead trans-
lation from virtual disk IO to operations on the physi-
cal disk. While the mixed block size support we added
to VMES is designed to retain this efficiency whenever
1 MB blocks can be used, it unavoidably introduces
overhead for 4 KB blocks from traversing the additional
pointer block level and increased external fragmentation.

To measure the effects of this, we compared IO to two
5 GB virtual disks, one backed entirely by 1 MB blocks
and one backed entirely by 4 KB blocks. These configu-
rations represent the two extremes of deduplication: all
unique blocks and all shared blocks, respectively. The
first disk required one pointer block level and was broken
into 3 separate extents on the physical disk, while the sec-
ond disk required two pointer block levels and spanned
163 separate extents.

The results of reading from these virtual disks are sum-
marized in Table 3. Unfortunately, sub-blocks introduced
a non-trivial overhead for sequential 1I0O. This is partly
because VMFS’s sub-block placement and IO handling
is not yet well-optimized since sub-blocks have not pre-
viously been used in the VM 1O critical path, whereas
VMES’s file block IO has been heavily optimized. One
possible way to mitigate this overhead is by preventing
the deduplication process from subdividing file blocks
unless they contain some minimum number of 4 KB can-
didates for sharing. This would impact the space savings
of deduplication, but would prevent DEDE from subdi-
viding entire file blocks for the sake of just one or two
sharable blocks. Improvements in sub-block IO perfor-
mance and block subdivision are considered future work.

4.2.4 Disk Array Caching Benefits

For some workloads, deduplication can actually improve
run-time performance by decreasing the storage array
cache footprint of the workload. To demonstrate this, we

USENIX Association

2009 USENIX Annual Technical Conference

111

20

—*— Fully copied
80 - —+— Cold dedup %
~E+ Warm dedup

Average boot time (secs)

VMs booting concurrently

Figure 7: Windows XP VM boot up time comparison
between fully copied VMs and deduplicated VMs. Dedu-
plicated VMs are booted twice in order to measure the
impact of writing to deduplicated blocks.

picked a common, critical, time-limited VDI workload:
booting many VMs concurrently. VDI boot storms can
happen as part of a nightly cycle of shutting down VMs
and their hosts to conserve power, from patching guest
operating systems en masse, from cluster fail-over, or for
a myriad of other reasons.

To test the cache effects of deduplication, we compared
the average time required to boot from one to twenty
VMs simultaneously between two configurations: (1) the
VMs were each full copies of the golden VM (much like
the VDI configuration from Section 4.1) and (2) VMs
were deduplicated copies. The results plotted in Figure 7
show a dramatic improvement of deduplication versus
full copies, owing to the decrease in cache footprint.

To further validate the overhead of COW specializa-
tion for a realistic workload, we also booted the set of
VMs a second time after deduplication. The disk images
were “cold” the first time; they consisted entirely of COW
blocks. The second time, any blocks written to were al-
ready specialized and could be written to directly. The
graph shows virtually no difference between these two
cases, indicating that COW specialization overhead is not
an issue for this workload. This is not unexpected, as
there are only a few write operations during VM boot.

4.3 Deduplication Rate

While our prototype’s implementation of indexing has
not yet been optimized, we measured the overall rate at
which it could process modified blocks, as well as the
performance of the three main operations performed by
it: scanning the index, subdividing 1 MB blocks into
4 KB blocks, and COW sharing duplicates.

The index scanning process operates at nearly the
disk’s sequential access rate, as discussed in Section 3.2.2.

At ~23 bytes per index entry, our prototype can process
entries for 6.6 GB of blocks per second. However, unlike
block subdivision and COW sharing, which require time
proportional to the number of newly shared blocks, the
index scan requires time proportional to the total number
of blocks in the file system, so it is critical that this be
fast. Once new duplicates have been discovered by the in-
dex scan, 1 MB file blocks containing any of these dupli-
cates can be subdivided into 4 KB blocks at 37.5 MB/sec.
Finally, these newly discovered duplicates can be elimi-
nated via COW sharing at 2.6 MB/sec.

The COW sharing step limits our prototype to process-
ing ~9 GB of new shared blocks per hour. Unique blocks
(i.e., recently modified blocks whose hashes do not match
anything in the index) can be processed at the full index
scan rate. Furthermore, provisioning from templates, a
source of large amounts of duplicate data, can be per-
formed directly as a COW copy (at roughly 1 GB/sec),
so our deduplication rate applies only to duplicates that
arise outside of provisioning operations. Still, we feel
that our COW sharing rate can be significantly improved
with more profiling and optimization effort. However,
even at its current rate, the prototype can eliminate du-
plicates at a reasonable rate for a VDI workload given
only a few off-peak hours per day to perform out of band
deduplication.

5 Related Work

Much work has been done towards investigating dedu-
plication for file systems with a centralized compo-
nent. Venti [16] pioneered the application of content-
addressable storage (CAS) to file systems. Venti is a
block storage system in which blocks are identified by
a collision-resistant cryptographic hash of their contents
and stored in an append-only log on disk. An on-disk
index structure maps from content hashes to block loca-
tions. Venti’s append-only structure makes it well suited
to archival, but not to live file systems. Venti also depends
heavily on a central server to maintain the block index.
Various other systems, notably Data Domain’s archival
system [26] and Foundation [17], have extended and en-
hanced the Venti approach, but still follow the same ba-
sic principles. While deduplication for archival is gener-
ally well understood, deduplication in live file systems
presents very different challenges. Because backup sys-
tems are concerned with keeping data for arbitrarily long
periods of time, backup deduplication can rely on rela-
tively simple append-only data stores. Data structures
for live deduplication, however, must be amenable to dy-
namic allocation and garbage collection. Furthermore,
live file systems, unlike backup systems, are latency sen-
sitive for both reading and writing. Thus, live file system
deduplication must have minimal impact on these criti-

112

2009 USENIX Annual Technical Conference

USENIX Association

cal paths. Backup data also tends to be well-structured
and presented to the backup system in sequential streams,
whereas live file systems must cope with random writes.

Many CAS-based storage systems, including [5,16,20],
address data exclusively by its content hash. Write op-
erations return a content hash which is used for subse-
quent read operations. Applying this approach to VM
disk storage implies multi-stage block address resolution,
which can negatively affect performance [10]. Further-
more, since data is stored in hash space, spatial locality
of VM disk data is lost, which can result in significant
loss of performance for some workloads. DEDE avoids
both of these issues by relying on regular file system lay-
out policy and addressing all blocks by (filename, offset)
tuples, rather than content addresses. DEDE uses content
hashes only for identifying duplicates.

Both NetApp’s ASIS [14] and Microsoft’s Single In-
stance Store [1] use out of band deduplication to detect
duplicates in live file systems in the background, similar
to DEDE. SIS builds atop NTFS and applies content-
addressable storage to whole files, using NTFES filters to
implement file-level COW-like semantics.

While SIS depends on a centralized file system and
a single host to perform scanning and indexing, Farsite
builds atop SIS to perform deduplication in a distributed
file system [3]. Farsite assigns responsibility for each file
to a host based on a hash of the file’s content. Each host
stores files in its local file system, relying on SIS to lo-
cally deduplicate them. However, this approach incurs
significant network overheads because most file system
operations, including reads, require cross-host communi-
cation and file modifications require at least updating the
distributed content hash index.

Hong’s Duplicate Data Elimination (DDE) system [8]
avoids much of the cross-host communication overhead
of Farsite by building from IBM’s Storage Tank SAN file
system [11]. DDE hosts have direct access to the shared
disk and can thus read directly from the file system. How-
ever, metadata operations, including updates to dedupli-
cated shared blocks, must be reported to a centralized
metadata server, which is solely responsible for detect-
ing and coalescing duplicates. DEDE is closest in spirit
to DDE. However, because DEDE uses a completely de-
centralized scheme with no metadata server, it doesn’t
suffer from single points of failure or contention. Further-
more, DEDE prevents cross-host concurrency issues by
partitioning work and relying on coarse-grain file locks,
whereas DDE’s approach of deduplicating from a central
host in the midst of a multi-host file system introduces
complex concurrency issues.

Numerous studies have addressed the effectiveness of
content-addressable storage for various workloads. Work
that has focused on VM deployments [12, 17] has con-
cluded that CAS was very effective at reducing storage

space and network bandwidth compared to traditional
data reduction techniques like compression.

Other work has addressed deduplication outside of
file systems. Our work derives inspiration from Wald-
spurger [25] who proposed deduplication of memory con-
tents, now implemented in the VMware ESX Server hy-
pervisor [23]. In this system, identical memory pages
from multiple virtual machine are backed by the same
page and marked copy-on-write. The use of sharing hints
from that work is analogous to our merge requests.

6 Conclusion

In this paper, we studied deduplication in the context of
decentralized cluster file systems. We have described
a novel software system, DEDE, which provides block-
level deduplication of a live, shared file system without
any central coordination. Furthermore, DEDE builds
atop an existing file system without violating the file sys-
tem’s abstractions, allowing it to take advantage of regu-
lar file system block layout policies and in-place updates
to unique data. Using our prototype implementation, we
demonstrated that this approach can achieve up to 80%
space reduction with minor performance overhead on re-
alistic workloads.

We believe our techniques are applicable beyond vir-
tual machine storage and plan to examine DEDE in other
settings in the future. We also plan to explore alternate in-
dexing schemes that allow for greater control of dedupli-
cation policy. For example, high-frequency deduplication
could prevent temporary file system bloat during opera-
tions that produce large amounts of duplicate data (e.g.,
mass software updates), and deferral of merge operations
could help reduce file system fragmentation. Addition-
ally, we plan to further explore the trade-offs mentioned
in this paper, such as block size versus metadata over-
head, in-band versus out-of-band hashing, and sequential
versus random index updates.

DEDE represents just one of the many applications
of deduplication to virtual machine environments. We
believe that the next step for deduplication is to inte-
grate and unify its application to file systems, memory
compression, network bandwidth optimization, etc., to
achieve end-to-end space and performance optimization.

Acknowledgments

We would like to thank Mike Nelson, Abhishek Rai, Man-
junath Rajashekhar, Mayank Rawat, Dan Scales, Dragan
Stancevic, Yuen-Lin Tan, Satyam Vaghani, and Krishna
Yadappanavar, who, along with two of the coauthors, de-
veloped the core of VMFS in unpublished work, which
this paper builds on top of. We are thankful to Orran

USENIX Association

2009 USENIX Annual Technical Conference

113

Krieger, James Cipar, and Saman Amarasinghe for con-
versations that helped clarify requirements of an online
deduplication system. We are indebted to our shepherd
Andrew Warfield, the anonymous reviewers, John Blu-
menthal, Mike Brown, Jim Chow, Peng Dai, Ajay Gulati,
Jacob Henson, Beng-Hong Lim, Dan Ports, Carl Wald-
spurger and Xiaoyun Zhu for providing detailed reviews
of our work and their support and encouragement. Fi-
nally, thanks to everyone who has noticed the duplication
in our project codename and brought it to our attention.
This material is partly based upon work supported under a
National Science Foundation Graduate Research Fellowship.

References

(1]

(2]

[3]

[4]

[3]

(6]

[71

(8]

[9]
[10]

[11]

[12]

[13]

W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single
instance storage in Windows®?2000. In Proceedings of the 4th
USENIX Windows Systems Symposium (WSS ’00), Seattle, WA,
Aug. 2000. USENIX.

Dell, Inc. DVD Store.
page/DVD+store.

J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed
file system. In Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS ’02), Vienna, Austria,
July 2002. IEEE.

C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
Hydrastor: A scalable secondary storage. In Proceedings of the
7th USENIX Conference on File and Storage Technologies (FAST
’09), San Francisco, CA, Feb. 2009. USENIX.

EMC Centera datasheet. http://www.emc.com/
products/detail/hardware/centera.htm.

http://delltechcenter.com/

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Ex-
tendible hashing—a fast access method for dynamic files. ACM
Transactions on Database Systems, 4(3), Sept. 1979.

A. Gulati, C. Kumar, and I. Ahmad. Storage workload charac-
terization and consolidation in virtualized environments. In 2nd
International Workshop on Virtualization Performance: Analysis,
Characterization, and Tools (VPACT), 2009.

B. Hong, D. Plantenberg, D. D. E. Long, and M. Sivan-Zimet.
Duplicate data elimination in a SAN file system. In Proceedings
of the 21st Symposium on Mass Storage Systems (MSS *04), God-
dard, MD, Apr. 2004. IEEE.

Tometer. http://www.iometer.org/.

A. Liguori and E. V. Hensbergen. Experiences with content ad-
dressable storage and virtual disks. In Proceedings of the Work-
shop on I/0 Virtualization (WIOV ’08), San Diego, CA, Dec. 2008.
USENIX.

J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg.
IBM storage tank—a heterogeneous scalable SAN file system.
IBM Systems Journal, 42(2), 2003.

P. Nath, M. A. Kozuch, D. R. O’Hallaron, J. Harkes, M. Satya-
narayanan, N. Tolia, and M. Toups. Design tradeoffs in applying
content addressable storage to enterprise-scale systems based on
virtual machines. In Proceedings of the USENIX Annual Technical
Conference (ATEC ’06), Boston, MA, June 2006. USENIX.

P. Nath, B. Urgaonkar, and A. Sivasubramaniam. Evaluating the
usefulness of content addressable storage for high-performance

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

data intensive applications. In Proceedings of the 17th High Per-
formance Distributed Computing (HPDC ’08), Boston, MA, June
2008. ACM.

Netapp Deduplication (ASIS). http://www.netapp.com/
us/products/platform-os/dedupe.html.

K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson, E. Ny-
gaard, C. J. Sabol, S. R. Soltis, D. C. Teigland, and M. T. O’Keefe.
A 64-bit, shared disk file system for Linux. In Proceedings of the
16th Symposium on Mass Storage Systems (MSS ’99), San Diego,
CA, Mar. 1999. IEEE.

S. Quinlan and S. Dorward. Venti: A new approach to archival
data storage. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies (FAST *02) [19].

S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-
addressed storage in Foundation. In Proceedings of the USENIX
Annual Technical Conference (ATEC '08), Boston, MA, June
2008. USENIX.

F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST *02) [19].

USENIX. The Ist USENIX Conference on File and Storage Tech-
nologies (FAST "02), Monterey, CA, Jan. 2002.

M. Vilayannur, P. Nath, and A. Sivasubramaniam. Providing tun-
able consistency for a parallel file store. In Proceedings of the
4th USENIX Conference on File and Storage Technologies (FAST
’05), San Francisco, CA, Dec. 2005. USENIX.

VMware, Inc. VMFS datasheet. http://www.vmware.com/
pdf/vmfs_datasheet.pdf.

VMware, Inc. Recommendations for aligning VMFES partitions.
Technical report, Aug. 2006.

VMware, Inc. Introduction to VMware Infrastructure. 2007.

http://www.vmware.com/support/pubs/.

VMware, Inc. VMware Virtual Desktop Infrastructure (VDI)
datasheet, 2008. http://www.vmware.com/files/pdf/
vdi_datasheet.pdf.

C. A. Waldspurger. Memory resource management in VMware
ESX Server. In Proceedings of the 5th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’02), Boston,
MA, Dec. 2002. USENIX.

B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in
the Data Domain deduplication file system. In Proceedings of the
6th USENIX Conference on File and Storage Technologies (FAST
’08), San Jose, CA, Feb. 2008. USENIX.

114

2009 USENIX Annual Technical Conference

USENIX Association

FlexFS: A Flexible Flash File System for MLLC NAND Flash Memory

Sungjin Lee', Keonsoo Ha', Kangwon Zhang', Jihong Kim', and Junghwan Kim*

tSeoul National University, Korea
{chamdoo, air21c, kwzhang, jihong} @davinci.snu.ac.kr

*Samsung Electronics, Korea
Jjunghwani.kim@samsung.com

Abstract

The multi-level cell (MLC) NAND flash memory
technology enables multiple bits of information to be
stored on a single cell, thus making it possible to in-
crease the density of the memory without increasing the
die size. For most MLC flash memories, each cell can
be programmed as a single-level cell or a multi-level cell
during runtime. Therefore, it has a potential to achieve
both the high performance of SLC flash memory and the
high capacity of MLC flash memory.

In this paper, we present a flexible flash file system,
called FlexFS, which takes advantage of the dynamic re-
configuration facility of MLC flash memory. FlexFS di-
vides the flash memory medium into SLC and MLC re-
gions, and dynamically changes the size of each region to
meet the changing requirements of applications. We ex-
ploit patterns of storage usage to minimize the overhead
of reorganizing two different regions. We also propose a
novel wear management scheme which mitigates the ef-
fect of the extra writes required by FlexFS on the lifetime
of flash memory. Our implementation of FlexFS in the
Linux 2.6 kernel shows that it can achieve a performance
comparable to SLC flash memory while keeping the ca-
pacity of MLC flash memory for both simulated and real
mobile workloads.

1 Introduction

As flash memory technologies quickly improve, NAND
flash memory is becoming an attractive storage solution
for various IT applications from mobile consumer elec-
tronics to high-end server systems. This rapid growth is
largely driven by the desirable characteristics of NAND
flash memory, which include high performance and low-
power consumption.

There are two types of NAND flash memory in the
market: a single-level cell (SLC) and a multi-level cell
(MLC) flash memory. They are distinctive in terms of

capacity, performance, and endurance. The capacity of
MLC flash memory is larger than that of SLC flash mem-
ory. By storing two (or more) bits on a single memory
cell, MLC flash memory achieves significant density in-
creases while lowering the cost per bit over SLC flash
memory which can only store a single bit on a cell. How-
ever, SLC flash memory has a higher performance and
a longer cell endurance over MLC flash memory. Es-
pecially, the write performance of SLC flash memory is
much higher than that of MLC flash memory.

As the demand for the high capacity storage system is
rapidly increasing, MLC flash memory is being widely
adopted in many mobile embedded devices, such as
smart phones, digital cameras, and PDAs. However, be-
cause of a poor performance characteristic of MLC flash
memory, it is becoming harder to satisfy users’ require-
ments for the high performance storage system while
providing increased storage capacity.

To overcome this poor performance, in this paper, we
propose exploiting the flexible programming feature of
MLC flash memory [1]. Flexible programming is a writ-
ing method which enables each cell to be programmed
as a single-level cell (SLC programming) or a multi-level
cell (MLC programming). If SLC programming is used
to write data into a particular cell, the effective proper-
ties of that cell become similar to those of an SLC flash
memory cell. Conversely, MLC programming allows us
to make use of the high capacity associated with MLC
flash memory.

The most attractive aspect of flexible programming is
that it allows fine-grained storage optimizations, in terms
of both performance and capacity, to meet the require-
ments of applications. For instance, if the current capac-
ity of flash memory is insufficient for some application,
MLC flash memory can change its organization and in-
crease the number of multi-level cells to meet the space
requirement. However, to exploit flexible cell program-
ming effectively, several issues need to be considered.

First, heterogeneous memory cells should be managed

USENIX Association

2009 USENIX Annual Technical Conference

115


~~~~~~~~~~~~ Reference voltage

AR

a) SLC

Distribution of Cells

L

Figure 1: Threshold voltage distributions for SLC (1
bit/cell) and MLC (2 bits/cell)

(b) MLC (2 bits/cell

in a way that is transparent to the application layer, be-
cause flexible programming allows two different types of
a cell to exist in the same flash chip simultaneously.

Second, dynamic cell reconfigurations between the
SLC and MLC must be handled properly. For example, if
too many flash cells are used as single-level cells, the ca-
pacity of flash memory might be critically impaired, even
though the overall I/O performance is improved. There-
fore, it is important to determine the number of SLC cells
and MLC cells so that both the performance and capacity
would be optimally supported.

Third, the cost of dynamic cell reconfigurations should
be kept as low as possible. Changing the type of a cell
requires expensive erase operations. Since an erase op-
eration resets cells to their initial bit value (e.g., 1), the
data stored in the cells must first be moved to elsewhere.
The performance overhead of this data migration impairs
the overall I/O performance.

Finally, write and erase operations required to change
the type of a cell reduce the endurance of each cell, re-
sulting in the decrease of the lifetime of flash memory.
This problem also needs to be addressed properly.

In this paper, we propose a flexible flash file system,
called FlexFS, for MLC flash memory that addresses the
above requirements effectively. FlexFS provides appli-
cations with a homogeneous view of storage, while in-
ternally managing two heterogeneous memory regions,
an SLC region and an MLC region. FlexFS guarantees
the maximum capacity of MLC flash memory to users
while it tries to write as much data as possible to the
SLC region so as to achieve the highest I/O performance.
FlexFS uses a data migration policy to compensate for
the reduced capacity caused by overuse of the SLC re-
gion. In order to prolong the lifespan of flash memory, a
new wear management scheme is also proposed.

In order to evaluate the effectiveness of FlexFS, we
implemented FlexFS in the Linux 2.6.15 kernel on a
development board. Evaluations were performed using
synthetic and real workloads. Experimental results show
that FlexFS achieves 90% of the read and 96% of the
write performance of SLC flash memory, respectively,
while offering the capacity of MLC flash memory.

The rest of this paper is organized as follows. In Sec-

tion 2, we present a brief review of NAND flash memory
and explain MLC flash memory in detail. In Section 3,
we give an overview of FlexFS and introduce the prob-
lems that occur with a naive approach to exploiting flexi-
ble cell programming. In Section 4, we describe SLC and
MLC management techniques. In Section 5, we present
experimental results. Section 6 describes related work on
heterogeneous storage systems. Finally, in Section 7, we
conclude with a summary and future work.

2 Background

2.1 NAND Flash Memory

NAND flash memory consists of multiple blocks, each
of which is composed of several pages. In many NAND
flash memories, the size of a page is between 512 B and 4
KB, and one block consists of between 4 and 128 pages.
NAND flash memory does not support an overwrite op-
eration because of its write-once nature. Therefore, be-
fore writing new data into a block, the previous data must
be erased. Furthermore, the total number of erasures
allowed for each block is typically limited to between
10,000 and 100,000 cycles.

Like SRAM and DRAM, flash memory stores bits in a
memory cell, which consists of a transistor with a float-
ing gate that can store electrons. The number of electrons
stored on the floating gate determines the threshold volt-
age, V4, and this threshold voltage represents the state of
the cell. In case of a single-level cell (SLC) flash mem-
ory, each cell has two states, and therefore only a single
bit can be stored in that cell. Figure 1(a) shows how the
value of a bit is determined by the threshold voltage. If
the threshold voltage is greater than a reference voltage,
it is interpreted as a logical ‘1’; otherwise, it is regarded
as a logical ‘0’. In general, the write operation moves the
state of a cell from ‘1’ to ‘0°, while the erase operation
changes ‘0’ to “1°.

If flash memory is composed of memory cells which
have more than two states, it is called a multi-level cell
(MLC) flash memory, and two or more bits of informa-
tion can be stored on each cell, as shown in Figure 1(b).
Even though the density of MLC flash memory is higher
than that of SLC flash memory, it requires more precise
charge placement and charge sensing (because of nar-
rower voltage ranges for each cell state), which in turn
reduces the performance and endurance of MLC flash
memory in comparison to SLC flash memory.

2.2 MLC NAND Flash Memory Array

In MLC flash memory, it is possible to use SLC pro-
gramming, allowing a multi-level cell to be used as a
single-level cell. To understand the implications of SLC

116

2009 USENIX Annual Technical Conference

USENIX Association



BL(0)

Wwi(n)—H

BL(1) BL(m)

Block

ﬁ HL1 ";:;iﬂ‘ ;

: memory cell i

<8 ; i (2 bits) "
" page : ;
itk - —HE——HE—— - —IT
MSB page : 1 I -

wo H% H% --H%

A

(m+1) bits

Figure 2: An organization of an MLC flash memory ar-
ray (2 bits/cell)

programming, it is necessary to know the overall archi-
tecture of a flash memory array. Figure 2 illustrates the
array of flash memory cells which forms a flash memory
block. We assume that each cell is capable of holding
two bits. For a description purpose, this figure does not
show all the elements, such as source and drain select
gates, which are required in a memory array. (For a more
detailed description, see references [2, 3].)

As shown in Figure 2, the memory cells are arranged
in an array of rows and columns. The cells in each
row are connected to a word line (e.g., W L(0)), while
the cells in each column are coupled to a bit line (e.g.,
BL(0)). These word and bit lines are used for read and
write operations. During a write operation, the data to be
written (‘1° or ‘0’) is provided at the bit line while the
word line is asserted. During a read operation, the word
line is again asserted, and the threshold voltage of each
cell can then be acquired from the bit line.

Figure 2 also shows the conceptual structure of a flash
block corresponding to a flash memory array. The size
of a page is determined by the number of bit lines in the
memory array, while the number of pages in each flash
block is twice the number of word lines, because two
different pages share the memory cells that belong to the
same word line. These two pages are respectively called
the least significant bit (LSB) page and the most signif-
icant bit (MSB) page. As these names imply, each page
only uses its own bit position of a bit pattern stored in a
cell. (This is possible because each memory cell stores
two bits, for example, one bit for the LSB page and the
other for the MSB page.) Thus, if a block has 128 pages,
there are 64 LSB and 64 MSB pages.

Because multiple pages are mapped to the same word
line, read and write operations must distinguish the des-
tination page of each operation. For example, if a cell is
in an erased state (i.e., a logical ‘11°) and a logical ‘0’ is
programmed to the MSB position of the cell, the cell will
then have a bit pattern of ‘01°, which is interpreted as a

Table 1: Performance comparison of different types of
cell programming (us)

| Operation | SLC | MLCusg | MLCsotu |
Read (page) 399 409 403
Write (page) 417 431 994
Erase (block) 860 872 872

logical ‘0’ for the MSB page. If the LSB position is then
programmed as ‘0’, the bit pattern will change to ‘00°.

2.3 SLC Programming in MLC

Since MLC flash memory stores multiple pages in the
same word line, it is possible for it to act as SLC flash
memory by using only the LSB pages (or MSB pages,
depending on the manufacturer’s specification). Thus,
SLC programming is achieved by only writing data to the
LSB pages in a block. In this case, since only two states
of a cell, ‘11” and ‘10’, are used shown in Figure 1(b),
the characteristics of a multi-level cell become very sim-
ilar to those of a single-level cell. The logical offsets of
the LSB and MSB pages in a block are determined by the
flash memory specification, and therefore SLC program-
ming can be managed at the file system level. Naturally,
SLC programming reduces the capacity of a block by
half, because only the LSB pages can be used.

Table 1 compares the performance of the three dif-
ferent types of cell programming method. The SLC
column shows the performance data in a pure SLC
flash memory; the M LCsp column gives the perfor-
mance data when only the LSB pages are used; and the
M LCgorh column gives the data when both the LSB
and MSB pages are used. The access times for page reads
and writes, and for block erase operations were measured
using the Samsung’s KFXXGH6X4M flash memory [4]
at the device driver interface level. As shown in Table 1,
there are no significant performance differences between
page read and block erase operations for the three pro-
gramming methods. However, the write performance is
significantly improved with M LC1sp, and approaches
to that of SLC.

This improvement in the write performance under
M LCysp is the main motivation for FlexFS. Our pri-
mary goal is to improve the write performance of MLC
flash memory using the M LC1,sg method, while main-
taining the capacity of MLC flash memory using the
M LCgoTH method.

3 Overview of the FlexFS File System

We will now describe the overall architecture of the pro-
posed FlexFS system. FlexFS is based on JFFS2 file sys-

USENIX Association

2009 USENIX Annual Technical Conference

117



Write request

e A
MLC write buffer SLC write buffer
(4 KB) (4 KB)

MLC [ sle
programming \ 4 Programming
MLC
SEQ block SLC block | Free block
block _—
(2586 KB) © ) (512 KB) (256 KB) | (unknown) Logging
Invalid data  Valid data Log blocks

Figure 3: The layout of flash blocks in FlexFS

tem [5], and hence the overall architecture is very simi-
lar to JFFS2 except for some features required to manage
heterogeneous cells and to exploit flexible programming.
Therefore, in this section, we focus on how FlexFS deals
with different types of a cell. We also introduce a base-
line approach to exploit flexible cell programming in or-
der to illustrate the need for better policies, which will be
introduced in detail on the following section.

3.1 Design Overview

In order to manage heterogeneous cells efficiently,
FlexFS logically divides the flash memory medium into
an SLC region, composed of SLC blocks, and an MLC
region consisting of MLC blocks. If a block does not
contain any data, it is called a free block. In FlexFS, a
free block is neither an SLC block nor an MLC block; its
type is only determined when data is written into it.

Figure 3 shows the layout of flash memory blocks in
FlexFS. We assume that the number of pages in a block is
128, and the page size is 4 KB. (These values will be used
throughout the rest of this paper.) When a write request
arrives, FlexFS determines the type of region to which
the data is to be written, and then stores the data tem-
porarily in an appropriate write buffer. This temporary
buffering is necessary because the unit of I/O operations
is a single page in flash memory. Therefore, the write
buffer stores the incoming data until there is at least the
page size of data (i.e., 4 KB), which can be transferred
to flash memory. In order to ensure the data reliability,
if there is an explicit flush command from the operating
system, all the pending data is immediately written to
flash memory. In FlexFS, separate write buffers are used
for the SLC and MLC regions.

FlexFS manages flash memory in a similar fashion to
other log-structured file systems [5, 6, 7], except that two
log blocks (one for the SLC and another for the MLC re-
gion) are reserved for writing. When data is evicted from
the write buffer to flash memory, FlexFS writes them se-
quentially from the first page to the last page of the corre-
sponding region’s log block. MLC programming is used
to write data to the MLC block, and SLC programming

Free block |
H (unknown)

[ MLCblock No data MLC block
(512 KB) (512 KB)
o

SLC block Copy ¢ SLC block

(256 KB) valid pages | es6KD) v g

Valid data [ Erase blocks

SLC block SLC block
(256 KB) (256 KB)

(@) Initial state (b) Copying valid pages &
erasing SLC blocks

Free block
(unknown)

Free block
(unknown)

(¢) Final state

Figure 4: Steps in data migration

is used to write to the SLC block. If existing data is up-
dated, the old version of the data is first invalidated, while
the new data is appended to the free space of a log block.
The space used by this invalid data is later reclaimed by
the garbage collector (Section 4.3).

After all the free pages in the current log block have
been exhausted, a new log block is allocated from the
free blocks. However, if there is not enough free space
to store the data, the data migrator triggers a data mi-
gration (Section 4.1.1) to create more free space. This
expands the effective capacity of flash memory by mov-
ing the data from the SLC region to the MLC region.
Figure 4 illustrates the steps in data migration. In this
example, there are initially two SLC blocks and one free
block, as shown in Figure 4(a). We assume that all the
pages in the two SLC blocks contain valid data. Dur-
ing the data migration, the free block is converted into an
MLC block, and the 128 pages in the two SLC blocks are
copied to this MLC block. Then the two SLC blocks are
erased, making them free blocks. This migration frees
up one block, doubling the remaining capacity of flash
memory, as shown in Figure 4(c).

When a read request arrives, FlexFS first checks
whether the write buffers contain the requested data.
If so, the data in the write buffer is transferred to the
page cache. Otherwise, FlexFS searches an inode cache,
which is kept in main memory, to find a physical address
for the requested file data. The inode cache maintains the
inode numbers and physical locations of data that belong
to each inode. If the physical address of the required data
is found, regardless of the type of block in which the data
is stored, FlexFS can read the data from that address.

3.2 Baseline Approach and Its Problems

The major objective of FlexFS is to support both high
performance and high capacity in MLC flash memory. A
simplistic solution, which we call the baseline approach,
is first to write as much data as possible into SLC blocks
to maximize the I/O performance. When there are no
more SLC blocks available, the baseline approach initi-
ates a data migration so that more space becomes avail-

118

2009 USENIX Annual Technical Conference

USENIX Association



able for subsequent write requests, so as to maximize the
capacity of flash memory. This simple approach has two
serious drawbacks.

First, if the amount of data stored on flash memory
approaches to half of its maximum capacity, almost all
the free blocks are exhausted. This is because the ca-
pacity of the SLC block is half that of the MLC block.
At this point, a data migration has to be triggered to free
some blocks before writing the requested data. But, this
reduces the overall I/O performance significantly. To ad-
dress this problem, we introduce techniques to reduce the
migration penalty, or to hide it from users.

Second, the baseline approach degrades the lifetime
of MLC flash memory seriously. Each block of NAND
flash memory has a finite number of erase cycles before
it becomes unusable. The baseline approach tends to in-
crease the number of erase operations because of the ex-
cessive data migration. In the worst case, the number of
erasures could be three times more than in conventional
flash file systems. We solve this problem by controlling
the degree of the migration overhead, with the aim of
meeting a given lifetime requirement.

4 Design and Implementation of FlexFS

4.1 Reducing the Migration Overhead

To reduce or hide the overhead associated with data
migrations, we introduce three techniques: background
migration, dynamic allocation, and locality-aware data
management. The background migration technique ex-
ploits the times when the system is idle to hide the data
migration overhead. This technique is effective for many
mobile embedded systems (e.g., mobile phones) which
have long idle time. The dynamic allocation technique,
on the other hand, is aimed at systems with less idle time.
By redirecting part of the incoming data into the MLC
region depending on the idleness of the system, it re-
duces the amount of data that is written into the SLC
region, which in turn reduces the data migration over-
heads. The third technique, locality-aware data manage-
ment, exploits the locality of I/O accesses to improve the
efficiency of data migration. We will now look at these
three techniques in more detail.

4.1.1 Background Migration Technique

Figure 5 shows the overall process of the background mi-
gration. In this figure, the X-axis shows the time and
the Y-axis gives the type of job being performed by the
file system. A foreground job represents I/O requests is-
sued by applications or the operating system. Tj,, is
a time interval during which the file system is too busy
to process foreground jobs, and T}, is an idle interval.

1/0 request

Tbun" T; dl
) L idle
}4 ................. ,{ ‘
Foreground Tielay
e | ]
Thvig Tuvig Unit of migration

Background (1 page)
migrator

(SLC=>MLQO)

Tvait

[ ]|

=

t 15 Time

Figure 5: Overview of the background migration

During this idle time the background migrator can move
data from the SLC region to the MLC region, thus free-
ing many blocks. These free blocks can then be used as
SLC blocks to store data, and so we can avoid a compul-
sory data migration if there is sufficient idle time.

In designing the background migration technique,
there are two important issues: First, it is important to
minimize the delay in response time T4y inflicted on
foreground tasks by the background migration. For ex-
ample, in Figure 5, an I/O request arrives at ¢;, but it
cannot proceed until ¢; because of interference from the
background migration. So Tgeiqy is t2 - t1. To reduce
this delay, the data migrator monitors the I/O subsystem,
and suspends the background migration process if there
is an I/O request. Since the unit of a data migration is a
single page, the maximum delay in response time will be
less than the time required to move a page from SLC to
MLC (about 1,403 us) theoretically. In addition, we also
design the background migrator so that it does not utilize
all available idle times. Instead, it periodically invokes
a data migration at a predefined triggering interval T,.,,.
If T},;4 is larger than the time required to move a single
page, FlexFS reduces the probability that a foreground
job will be issued while a data migration is running, thus
further reducing Tieiqy -

The second issue is when to initiate a background mi-
gration. Our approach is based on a threshold; if the du-
ration of the idle period is longer than a specific threshold
value T,q:¢, then the background migrator is triggered.
This kind of problem has been extensively studied in dy-
namic power management (DPM) of hard disk drives [8],
which puts a disk into a low-power state after a certain
idle time in order to save energy. However, the transition
to a low-power state has to be made carefully because
it introduces a large performance penalty. Fortunately,
because T4y 1S quite short, more aggressive transition-
ing is possible in our background migration technique,
allowing 77,44 to be set to a small value.

4.1.2 Dynamic Allocation Technique

The background migration technique works well when a
system has sufficient idle time. Otherwise, the migration

USENIX Association

2009 USENIX Annual Technical Conference

119



Idle period Busy period

I:l Current time

4 L

The previous time window
(measured idle time = T”"”S“'“)

The next time window
(predicted idle time = T"ji’[‘:l )

Figure 6: Our approach to idle time prediction

overhead cannot be avoided. But it can be ameliorated
by writing part of the incoming data into the MLC re-
gion, so as to reduce the amount of data to be moved by
the background migrator. Although this approach results
in a lower I/O performance than SLC flash memory, it
can prevent significant performance degradation due to a
compulsory data migration.

The dynamic allocator determines the amount of data
that will be written into the SLC region. Intuitively, it
is clear that this must depend on how much idle time
there is in a given system. Since the amount of idle time
changes dynamically with user activities, we need to pre-
dict it carefully. Figure 6 illustrates the basic idea of our
idle time prediction approach, which is based on previ-
ous work [9]. In this figure, each time window repre-
sents the period during which IV,, pages are written into
flash memory. The dynamic allocator stores measured
idle times for several previous time windows, and uses

them to predict the idle time, Tf;’;zd, for the next time

window. The value of T’Zﬁ:d is a weighted average of

the idle times for the latest 10 time windows; the three
most recent windows are given a higher weight to take
the recency of I/O pattern into account.

If we know the value of T%Zd, we can use it to calcu-
late an allocation ratio, denoted by «, which determines
how many pages will be written to the SLC region in the
next time window. The value of o can be expressed as
follows:

pred
1 if Tzdle > Tm“}

Tpred (1)
Zle T < T,
mig

o=

where Tiig = Np - (Tirig + Tomsse /S5 F9),  (2)
where T5LC is the time required to erase an SLC flash
block which contains SI?LC pages. As mentioned in
Section 4.1.1, T}, is the time interval required for one
page to migrate from the SLC region to the MLC re-
gion. Therefore, T},,;4 is the migration time, which in-
cludes the time taken to move all IV,, pages to the MLC
region and the time for erasing all used SLC blocks. If
Tﬂl:d > Tpnig, there is sufficient idle time for data mi-
grations, and thus o = 1. Otherwise, the value of «
should be reduced so that less data is written into the
SLC region, as expressed by Eq. (1).
Once the value of « has been determined, the dynamic
allocator tries to distribute the incoming data across the

The state of the SLC region at ¢,

Pr Ps P/a
The state of the SLC region at ¢, / (co\d) (cold)

- P, P; * (a) the locality-unaware approach
(C0|d) (cold) (cold) | Invaligated
T -

(b) the Iocallty aware apprcach

Figure 7: A comparison of the locality-unaware and
locality-aware approaches

different flash regions depending on «.. Therefore, the
number of pages to be written into the SLC region,
NEC, and the amount of data destined for the MLC

region, NZ€, can be expressed as follows:

NJFY =Ny -, NP9 =N, -(1-a). A3)
Finally, after writing all N, pages, the dynamic allocator

calculates a new value of « for the next IV, pages.

4.1.3 Locality-aware Data Management Technique

FlexFS is based on a log-structured file system, and
therefore it uses the out-place update policy. Under this
policy, hot data with a high update frequency generates
more outdated versions of itself than cold data, which is
updated infrequently. Our locality-aware data manage-
ment technique exploits this characteristic to increase the
efficiency of data migration.

Figure 7 compares the locality-aware and the locality-
unaware approaches. We assume that, at time ¢, three
cold pages pg, p2, and p3, and one hot page p;, exist in
the SLC region. Between ¢; and to, there are some idle
periods, and new pages p1, p4, P5, and pg are written
into the SLC region. Note that p; is rewritten because
it contains hot data. In the case of the locality-unaware
approach shown in Figure 7(a), we assume that pages
Do, P1, and po are moved to the MLC region during idle
time, but p3 cannot be moved because there is not enough
idle time. Therefore, at time to, there are five pages in
the SLC region. If the value of NN, is 4, the value of «
should decrease so that data will not accumulate in the
SLC region. However, if we consider the locality of the
data, we can move ps instead of p; during idle periods,
as shown in Figure 7(b). Since p; has a high locality,
it is highly likely to be invalidated by ¢5. Therefore, an
unnecessary page migration for p; can be avoided, and
only four pages remain in the SLC region. In this case,
we need not to reduce the value of «, and more data will
be written into the SLC region.

Using this observation, Eq. (2) can be rewritten as
follows:

Tmig = (NP - Nziwt) : (Ttrig + Tesrisce SSLC) 4

120

2009 USENIX Annual Technical Conference

USENIX Association



where Nzﬁ”’t is the number of page writes for hot pages
stored in the SLC region. For instance, in the above ex-
ample, Nz’,wt is 1. Because we only need to move N,
- NZ}‘”" pages into the MLC region, the value of Tj,;,
can be reduced, allowing an increase in « for the same
amount of idle time.

To exploit the locality of I/O references, there are two
questions to answer. The first is to determine the local-
ity of a given data. To know the hotness of data, FlexFS
uses a 2Q-based locality detection technique [10], which
is widely used in the Linux operating system. This tech-
nique maintains a hot and a cold queue, each containing
a number of nodes. Each node contains the inode num-
ber of a file. Nodes corresponding to frequently accessed
files are stored on the hot queue, and the cold queue con-
tains nodes for infrequently accessed files. The locality
of a given file can easily be determined from queue in
which the corresponding node is located.

Second, the data migrator and the dynamic allocator
should be modified so that they take the locality of data
into account. The data migrator tries to select an SLC
block containing cold data as a victim, and an SLC block
containing hot data is not selected as a victim unless very
few free blocks remain. Since a single block can con-
tain multiple files which have different hotness, FlexFS
calculates the average hotness of each block as the cri-
terion, and chooses a block whose hotness is lower than
the middle. It seems better to choose a block containing
only cold pages as a victim block; if there are only a few
bytes of hot data in a victim, this results in useless data
migrations for hot data. However, this approach incurs
the delay in reclaiming free blocks, because even if the
small amount of hot data is stored on a block, the block
will not be chosen as a victim.

The dynamic allocator tries to write as much hot data
to the SLC region as possible in order to increase the
value of N;,wt. The dynamic allocator also calculates a
new value of « after N,, pages have been written and, for
this purpose, the value of N;”’t for the next time window
need to be known. Similar to the approach used in our
idle time prediction, we count how many hot pages were
written into the SLC region during the previous 10 time
windows, and use their average hotness value as N!}Ot
for the next time window. The value of NZ}‘” for each
window can be easily measured using an update variable,
which is incremented whenever a hot page is sent to the
SLC region.

4.2 Improving the Endurance

To enhance the endurance of flash memory, many flash
file systems adopt a special software technique called
wear-leveling. In most existing wear-leveling tech-
niques, the primary aim is to distribute erase cycles

evenly across the flash medium [11, 12]. FlexFS uses
this approach, but also needs to support more specialized
wear management to cope with frequent data migrations.

The use of FlexFS means that each block undergoes
more erase cycles because a lot of data is temporarily
written to the SLC region, waiting to move to the MLC
region during idle time. To improve the endurance and
prolong the lifetime, it would be better to write data to
the MLC region directly, but this reduces the overall per-
formance. Therefore, there is another important trade-off
between the lifetime and performance.

To efficiently deal with this trade-off, we propose a
novel wear management technique which controls the
amount of data to be written into the SLC region depend-
ing on a given storage lifetime.

4.2.1 Explicit Endurance Metric

We start by introducing a new endurance metric which
is designed to express the trade-off between lifetime and
performance. In general, the maximum lifetime, L,,q,,
of flash memory depends on the capacity and the amount
of data written to them, and is expressed as follows:
_ Chotal - Eeyeles

Liaz = — wWr &)
where Ciotq is the size of flash memory, and E¢ycies is
the number of erase cycles allowed for each block. The
writing rate W R indicates the amount of data written in
unit time (e.g., per day). This formulation of L, is
used by many flash memory manufacturers [13] because
it clearly shows the lifetime of a given flash application
under various environments.

Unfortunately, L,,q, is not appropriate to handle the
trade-off between lifetime and performance because it
expresses the expected lifetime, and not the constraints to
be met in order to improve the endurance of flash mem-
ory. Instead, we use an explicit minimum lifespan, L,
which represents the minimum guaranteed lifetime that
would be ensured by a file system. Since FlexFS can con-
trol the writing rate I/ R by adjusting the amount of data
written into the SLC region, this new endurance metric
can be expressed as follows:

Control W R by changing a wear index, §
Subject to
: [ Chotal © Eeyeles ©
min & ———mm

where 4 is called the wear index. In FlexFS § is propor-
tional to W R, and therefore § can be used to control the
value of WR. If ¢ is high, FlexFS writes a lot of data
to the SLC region; and this increases W R due to data
migrations; but if J is low, the writing rate is reduced.
Our wear management algorithm controls ¢ so that the
lifetime specified by L,,,;,, is to be satisfied.

USENIX Association

2009 USENIX Annual Technical Conference

121



SLC block SLC block SLC block
(256 KB) (256 KB) (256 KB)
512 KB has been Free Valid data
written
MLC block MLC block V ¥ MLC block
(512 KB) (512 KB) (512 KB)
Invalid data
stCblock | [SiCblock | | [ sicblockk
(256 KB) (256 KB) (256 KB) copy |
Data migration o T
is complete A 7 V
MLC block MLC block MLC block
(512 KB) (512 KB) (512 KB)
(a) 6=1.0 (b) 6=0.5 (c) 6=0.0

Figure 8: How the number of blocks used depends on ¢

4.2.2 Assigning a Writing Budget

The proposed wear management algorithm divides
the given lifetime L,,;,; into n time windows
(wo, w1, .., Wn_2,wn_1), and the duration of each
window is given as 7s. The writing rate W R(w;)
for each time window w; can also be expressed as
W B(w;)/Ts, where W B(w;) is the amount of data
and represents the writing budget assigned to the time
window w;.

Since T is fixed, the assignment of a writing budget
to each window significantly impacts the overall perfor-
mance as well as the rate at which flash memory wears
out. For example, if too large a writing budget is as-
signed to each window, it markedly increases the number
of erase cycles for each block; on the other hand, if too
small a writing budget is allocated, it lowers the overall
performance. Therefore, we determine a writing budget
for the window w; as follows:

(Ctotal : Ecycles) - W(tl)

B = =y

(@)

where t; is the time at the start of window w;, and W (¢;)
indicates the amount of a writing budget that has actu-
ally been used by ¢;. The remaining writing budget is
(Ctotal - Eecycies) — W (t:), and the number of remain-
ing windows is (n — (t;/Ts)). Therefore, the remaining
writing budget is shared equally between the remaining
windows. The writing budget is calculated at the begin-
ning of every time window, so as to take changes in the
workload pattern into consideration.

4.2.3 Determining the Wear Index

Once the writing budget has been assigned to a time win-
dow, the wear manager adjusts the wear index, d, so that
the amount of a writing budget actually used approxi-
mates the given writing budget. The wear index is used
by a dynamic allocator, similar to Eq. (3), to distribute
the incoming data across the two regions.

Figure 8 shows how the number of blocks used de-
pends on the value of 4. The size of the SLC and MLC

blocks is 256 KB and 512 KB, respectively. Suppose
that 512 KB data is written, and the data migrator moves
this data from the SLC region to the MLC region. If
¢ is 1.0, as shown in Figure 8(a), 512 KB is written to
two SLC blocks, and then the data migrator requires one
MLC block to store the data from two SLC blocks. In
this case, the total amount of a writing budget used is 1.5
MB because three blocks have been used for writing. If §
is 0.5, as shown in Figure 8(b), | MB of a writing budget
is used, requiring one SLC block and one MLC block.
Figure 8(c) shows the case when § is 0.0. Only 512 KB
is used because there is no data to be moved.

This simple example suggests that we can generalize
the relationship between the wear index, the amount of
incoming data, and the amount of a writing budget actu-
ally used, as follows:

IW (w;) - (2-5+1) = OW (w;), ®)

where W (w;) is the amount of data that arrives during
the window w;, and OW (w;) is the amount of a writing
budget to be used depending on J. In the example of
Figure 8(b), IW(t;) is 512 KB and ¢ is 0.5, and thus
OW (t;) is 1 MB. IW (w;) - (2 - ¢) is the amount of a
writing budget used by the SLC region and IW (w;) is
the amount of data to be written to the MLC region.

The wear index should be chosen so that OW (w;) =
W B(t;), and can therefore be calculated as follows:

WB(t;) — IW (w;)

0=""3. IW (w;)

©)]

The value of § is calculated at the beginning of w; when
the exact value of /W (w;) is unknown. IW (w; ) is there-
fore estimated to be the average value of the previous
three time windows. If WB(t;) < IW (w;), then ¢ is
0, and therefore all the data will be written to the MLC
region. If W (w;) is always larger than W B(t;), it may
be hard to guarantee L,,;,. However, by writing all the
data to the MLC region, FlexFS can achieve a lifetime
close to that of a pure MLC flash memory.

A newly determined value of 4 is only used by the dy-
namic allocator if § < «. Therefore, the wear manage-
ment algorithm is only invoked when it seems that the
specified lifetime will not be achieved.

4.3 Garbage Collection

The data migrator can make free blocks by moving data
from the SLC region to the MLC region, but it cannot re-
claim the space used by invalid pages in the MLC region.
The garbage collector, in FlexFS, reclaims these invalid
pages by selecting a victim block in the MLC region, and
then by copying valid pages in the victim into a different
MLC block. The garbage collector selects a block with
many invalid pages as a victim to reduce the requirement

122

2009 USENIX Annual Technical Conference

USENIX Association



T | [

SgPower Switch

Figure 9: A snapshot of the flash development board
used for experiments

for additional I/O operations, and also utilizes idle times
to hide this overhead from users. Note that, it is never
necessary to choose a victim in the SLC region. If cold
data is stored in SLC blocks, it will be moved to the MLC
region by the data migrator; but hot data need not to be
moved because it will soon be invalidated.

5 Experimental Results

In order to evaluate the efficiency of the proposed tech-
niques on a real platform, we implemented FlexFS on
Linux 2.6.25.14 kernel. Our hardware system was the
custom flash development board shown in Figure 9,
which is based on TI’'s OMAP2420 processor (running
at 400 MHz) with a 64 MB SDRAM. The experiments
were performed on Samsung’s KFXXGH6X4M-series
1-GB flash memory [4], which is connected to one of
the NAND sockets shown in Figure 9. The size of each
page was 4 KB and there were 128 pages in a block.

To evaluate the FlexFS file system objectively, we
used two types of workload. In Section 5.1, we present
experimental results from synthetic workloads. In Sec-
tion 5.2, we evaluate FlexFS using actual 1/O traces col-
lected from executions of real mobile applications.

5.1 Experiments with Synthetic Workloads
5.1.1 Overall Throughput

Table 2 summarizes the configurations of the four
schemes that we used for evaluating the throughput of
FlexFS. In the baseline scheme, all the data is first writ-
ten into SLC blocks, and then compulsorily moved to
MLC blocks only when fewer than five free blocks re-
main. Three other schemes, BM, DA, and LA, use tech-

Table 2: Summary of the schemes used in throughput

evaluation
Schemes | Baseline | BM | DA [ LA |
Background migration X O O O
Dynamic allocation X X O O
Locality-aware X X X O

niques to reduce the overhead of data migrations. For
example, the BM scheme uses only the background mi-
gration technique, while the LA scheme uses all three
proposed techniques. In all the experiments, T34 Was
set to 1 second, N, was 1024 pages, and T},;;, was 15
ms. To focus on the performance implications of each
scheme, the wear management scheme was disabled.

All the schemes were evaluated on three synthetic
benchmark programs: Idle, Busy, and Locality. They
were designed to characterize several important proper-
ties, such as the idleness of the system and the locality
of I/O references, which give significant effects on the
performance of FlexFS. The Idle benchmark mimics the
I/O access patterns that occur when sufficient idle time is
available in a system. For this purpose, the Idle bench-
mark writes about 4 MB of data (including metadata) to
flash memory every 25 seconds. The Busy benchmark
generates 4 MB of data to flash memory every 10 sec-
onds, which only allows the I/O subsystem small idle
times. The Locality benchmark is similar to Busy, ex-
cept that about 25% of the data is likely to be rewritten
to the same locations, so as to simulate the locality of
I/O references that occurs in many applications. All the
benchmarks issued write requests until about 95% of the
total MLC capacity has been used. To speed up the eval-
uation, we limited the capacity of flash memory to 64
MB using the MTD partition manager [14].

Figure 10 compares the throughput of Baseline and
BM with the Idle benchmark. The throughput of Base-
line is significantly reduced close to 100 KB/s when the
utilization approaches 50%, because before writing the

b
n

3 & g oo
o
2 25
/m
e 2
E
215
=)
=
E 4
£ -~ Baseline
0.5 & BM
0

34 41 47 54 61 67 74 81 8 94
Flash Memory Utilization (%)

7 14 21 27

Figure 10: Performance comparison of Baseline and BM
with the Idle benchmark

USENIX Association

2009 USENIX Annual Technical Conference

123



3
0
©® 25
/M
S 2
5
215
el
3
£ 11 —xBM
= |
05 —=-DA X
0 VR Mmmmme Y,

7 14 21 27 34 41 47 54 61 67 74 81 8 94

Flash Memory Utilization (%)

Figure 11: Performance comparison of BM and DA with
the Busy benchmark

incoming data, the data migrator should make enough
free space in the SLC region, incurring a noticeable per-
formance degradation. However, BM achieves the same
performance as SLC flash memory until the utilization
exceeds 94%. Since the Idle benchmark allows FlexFS
a lot of idle time (about 93.6% of the total execution
time), it should be possible to reclaim a sufficient num-
ber of free blocks before new write requests arrive and
require them. When the utilization reaches 94%, the per-
formance of BM is significantly reduced because almost
all of the available blocks is occupied by valid data, and
fewer than 5 free blocks remain available.

Figure 11 compares the performance of BM and DA
while running the Busy benchmark. In this evaluation,
BM shows a better throughput than DA when the utiliza-
tion is less than 67%. However, its performance quickly
declines because the idle time is insufficient to allow BM
to generate enough free blocks to write to the SLC re-
gion. DA does exhibit a stable write performance, re-
gardless of the utilization of flash memory. At the be-
ginning of the run, the value of « is initially set to 1.0
so that all the incoming data is written to the SLC re-
gion. However, since insufficient idle time is available,
the dynamic allocator adjusts the value of a to 0.5. DA
then writes some of the arriving data directly to the MLC
region, avoiding a significant drop in performance.

Figure 12 shows the performance benefit of the
locality-aware approach using the Locality benchmark.
Note that Locality has the same amount of idle time com-
pared as the Busy benchmark. LA achieves 7.9% more
write performance than DA by exploiting the locality of
I/O references. The overall write throughput of LA is
2.66 MB/s while DA gives 2.45 MB/s. The LA scheme
also starts with an « value of 1.0, but that is reduced to
0.5 because the idle time is insufficient. However, after
detecting a high degree of locality from I/O references,
« is partially increased to 0.7 by preventing useless data
migrations of hot data, and more data can then be written
into the SLC region.

S}

Throughput (MB/sec)

0.5 —B-LA

34 41 47 54 61 67 74 81 8 94
Flash Memory Utilization (%)

Figure 12: Performance comparison of DA and LA with
the Locality benchmark

5.1.2 Response Time

Although the background migration contributes to im-
proving the write throughput of FlexFS, it could incur
a substantial increase in response time because 1/O re-
quests can be issued while the background migrator is
running. In this subsection, to investigate the impact of
the background migration on the response time, we per-
formed evaluations with a following scenario.

We first wrote 30 MB of bulk data in order to trigger
the background migrator. FlexFS was modified for all
the incoming data to be written into the SLC region, re-
gardless of the amount of idle time. After writing this
data, we made 10 page write requests. The idle time be-
tween two consecutive write requests was generated us-
ing a pseudo-random number generator, but this was ad-
justed at least larger than 7'y, so that all write requests
was randomly issued after the background migrator has
been initiated. To collect accurate and reliable results,
we performed this scenario more than 30 times.

We performed our evaluation for the following four
configurations. In order to know the effect of the idle
time utilization, we measured the response time while
varying the idle time utilization. The configurations,
Ujgo, Usg, and Ujg represent when FlexFS utilizes
100%, 50%, and 10% of the total idle time, respectively.
This idle time utilization can be easily controlled by the
value of T},.;4. For example, the time required to move
a single page from SLC to MLC is about 1.5 ms, and so
the utilization of 10% can be made using T},;4 of 15 ms.
To clearly show the performance penalty from the back-
ground migration, we evaluated the response time when
the background migration is disabled, which is denoted
as OPT. The migration suspension mentioned in Section
4.1.1 was enabled for all the configurations.

Figure 13 shows the cumulative distribution function
of the response time for the four configurations. As ex-
pected, OPT shows the best response time among all the
configurations. However, about 10% of the total I/O re-
quests requires more than 2,000 us. This response time

124

2009 USENIX Annual Technical Conference

USENIX Association



1200

"1 oo

1
0.9
2
= 0.8 4
2 07
=}
S 06
S o5
2 04 |
£ 04 s ——OPT
20371 /7 ~e-U10
g v
3021/ --U50
0.1 |/ —%-U100
0 ; ; ‘ ‘
1 2 4 8 16 32 64 128

Response Time (ms)

Figure 13: A comparison of response time delays on dif-
ferent system configurations

delay is caused by the writing of the metadata informa-
tion. Although we wrote 4 KB of data into flash memory,
the amount of data actually written was slightly larger
than 4 KB because of the metadata overhead. Conse-
quently, this results in additional page writes, incurring
the delay in response time.

Ujp exhibits a longer response time than OPT for
about 10% of the total I/O requests, but it shows a fairly
good response time. On the other hand, the performance
of Usg and Ujqg is significantly deteriorated because
they utilize a lot of idle time for data migrations, increas-
ing the probability of I/O requests being issued while
the background migrator is working. Especially, when
two tasks (the foreground task and the background mi-
gration task) compete for a single CPU resource, the per-
formance penalty caused by the resource contention is
more significant than we expect.

5.1.3 Endurance

We evaluated our wear management scheme using a
workload scenario in which the write patterns change
over a relatively long time. We set the size of flash mem-
ory, Ciotal, to 120 MB, and the number of erase cycles
allowed for each block, E.ycies, was 10, allowing a max-
imum of 1.2 GB to be written to flash memory. We set
the minimum lifetime, L,,;,, to 4,000 seconds, and our
wear management scheme was invoked every 400 sec-
onds. So, there are 10 time windows, wy, ..., Wy, and the
duration of each, T%, is 400 sec