
vNUMA: A Virtual Shared-Memory Multiprocessor

Matthew Chapman∗†

Gernot Heiser∗†‡

∗ The University of New South Wales
† NICTA

‡ Open Kernel Labs

matthewc@cse.unsw.edu.au

http://ertos.nicta.com.au

Abstract

vNUMA, for virtual NUMA, is a virtual machine that

presents a cluster as a virtual shared-memory multipro-

cessor. It is designed to make the computational power

of clusters available to legacy applications and operating

systems.

A characteristic aspect of vNUMA is that it incorpo-

rates distributed shared memory (DSM) inside the hy-

pervisor, in contrast to the more traditional approach

of providing it in middleware. We present the design

of vNUMA, as well as an implementation on Itanium-

based workstations. We discuss in detail the enhance-

ments to standard protocols that were required or en-

abled when implementing DSM inside a hypervisor, and

discuss some of the tradeoffs we encountered. We ex-

amine the scalability of vNUMA on a small cluster, and

analyse some of the design choices.

1 Introduction

Shared-memory multiprocessor (SMM) systems provide

a simple programming model compatible with a large

base of existing applications and operating systems.

They naturally lend themselves to providing a single sys-

tem image (SSI) running a single operating-system (OS)

instance with a single resource name space.

However, for many compute-intensive applications,

a network of commodity workstations presents a more

cost-effective platform. These systems deliver the same

(theoretical) compute power with much less expensive

hardware, and are easily extensible and re-configurable.

Yet their computing power is much more difficult to har-

ness. Most existing OSes were not designed for clus-

ter environments, and applications designed for shared-

memory systems need to be redesigned for clusters by

using explicit communication over the network.

Previous attempts have been made to bridge the gap

between the ease of programming and legacy support

of SMM systems and the economies of cluster hard-

ware. These include distributed shared memory (DSM)

libraries such as Ivy [23] or Treadmarks [19], which

provide a limited illusion of shared memory to applica-

tions, provided that the programmer uses the primitives

supplied by the library. Other projects have attempted

to retrofit support for cluster-wide process scheduling

and migration into OSes [2, 27, 35]. However, these

approaches require extensive and intrusive OS changes,

which are difficult to keep up to date with the fast pace

of OS development.

This paper explores a different approach: the use of

virtualization to bridge the gap between SMM systems

and workstation clusters. We present vNUMA (“virtual

NUMA”), a virtual shared-memory multiprocessor built

from a cluster of commodity workstations. A hypervisor

runs on each node of the cluster and manages the phys-

ical resources. A single virtualized instance of an OS,

such as Linux, is then started on the cluster. This OS

and its applications executes on a virtual ccNUMA ma-

chine with many virtual CPUs. The virtualization layer

transparently maps the virtual CPUs to real CPUs in the

cluster, and provides DSM using software techniques.

In this way, a single OS instance can be scaled “outside

the box”, utilizing the computing resources of more than

one node. Users gain all of the advantages of such an

SSI multiprocessor, such as a single view of resources

and transparent process scheduling.

The core ideas of vNUMA have been presented in an

earlier short paper [7]. Here we focus on the design

and implementation issues that are critical to making

vNUMA work. We address the problem of constructing

a high-performance virtual NUMA system on commod-

ity hardware by:

• an approach to write sharing which individually in-

tercepts sparse write accesses, while falling back to

a page-based write-invalidate protocol when appro-

priate,

• introducing the technique of write-broadcast with

deterministic incremental merge for providing total

store order, and

• demonstrating an efficient approach for avoidance

of page thrashing.

Hypervisor

Node 1

(1 CPU, RAM, disk)

Hypervisor

Node 2

(1 CPU, RAM)

Hypervisor

Node 3

(1 CPU, RAM)

Hypervisor

Node 4

(1 CPU, RAM)

Operating system and applications

Virtual machine (4 CPUs, RAM, disk)

Figure 1: Example vNUMA system

In the next section we present an overview of the

vNUMA hypervisor and its DSM system, which is de-

signed for a small cluster of commodity workstations.

In Section 3 we discuss a number of enhancements to

established DSM protocols that improve their suitability

for use inside a hypervisor. Section 4 takes a detailed

look at implementation issues, including architecture-

specific optimisations. Section 5 presents an evaluation

of our vNUMA prototype. Related work is summarised

in Section 6.

2 vNUMA Overview

2.1 Approach

In order to minimise overheads, vNUMA is designed as

a Type-I hypervisor, executing on bare hardware with no

host OS. Our prototype was built on Itanium worksta-

tions, which are frequently deployed in clusters for high-

performance computing (HPC) use. While the vNUMA

design is independent of a specific ISA, the implemen-

tation does use processor-specific optimisations.

The majority of previous software DSM systems have

been designed as middleware running on top of an OS.

In vNUMA, the DSM system is integrated with the hy-

pervisor. There are two levels of memory address trans-

lation in a virtualized system. The guest OS maps appli-

cations’ virtual addresses onto a guest-physical address

space, which represents the physical memory of the vir-

tual machine. Then, the hypervisor maps guest physical

addresses to real physical addresses on a host computer.

This lower layer, transparent to the guest OS, is where

the vNUMA DSM system operates. It provides oper-

ating systems with the illusion of a single physical ad-

dress space across multiple host computers, as indicated

in Figure 1.

As a result, the shared address space in vNUMA com-

prises not just some subset of data memory that is known

to be shared, but all of the memory of the virtual ma-

chine. Since our aim is to run unmodified application

binaries (and, ideally, unmodified OSes), vNUMA must

faithfully reproduce the hardware SMP programming

model. Doing this efficiently presents challenges. On

the other hand, vNUMA runs in the processor’s privi-

leged mode, which gives it access to certain techniques

that may be difficult or prohibitively inefficient for a

userspace DSM system. Examples include the efficient

emulation of individual instructions, and the use of the

performance-monitoring unit (PMU) to track the execu-

tion of specific instructions.

2.2 Basic DSM protocol

At the heart of the vNUMA DSM system is a sim-

ple single-writer/multiple-reader write-invalidate proto-

col based on the Ivy protocol [23]. For page lo-

cation, vNUMA implements a fixed distributed man-

ager scheme, whereby the global guest-physical address

space is divided into equal-sized portions; each node acts

as a manager for one of these portions.

vNUMA’s transparency requirements imply that the

concept of a manager node is unknown outside the hy-

pervisor. However, efficiency is improved if the guest

OS has a notion of locality. vNUMA uses the concept of

NUMA node-local memory to ensure that the guest will

favour locally-managed memory when making alloca-

tion decisions, and as such works best with a NUMA-

aware guest OS. While for normal DSM systems the

concept of the manager node is a complication required

for efficiency, for the virtual NUMA system it is actually

a good match.

vNUMA’s DSM algorithm is based on the a version

of the Ivy protocol which the Ivy authors describe as

the “improved” protocol. The improvement keeps the

copyset information (where copies of a page are held)

with a changing page owner rather than the manager.

This helps to minimise the number of messages required,

and to avoid deadlock issues that are a problem with the

basic protocol [13].

3 Enhancements to DSM Protocols

Latency of DSM operations is the crucial limiting fac-

tor for the performance of vNUMA. Whenever a fetch

or invalidation message is sent, consistency requires that

execution on the local processor must stall until the re-

sponse is received. Here we discuss protocol improve-

ments that are designed to minimise the number of stalls

and messages required for DSM operation.

3.1 Double faults and ownership

In the original Ivy protocol, a page that has been fetched

on a read fault would have to be re-fetched on a subse-

quent write fault in order to ensure consistency. A later

optimisation avoided the double transfer with the help

of version numbers [20]. We use an optimisation that

seems to have been used in Mirage [11]: an owner can

determine whether the page data needs to be sent simply

by consulting the page’s copyset information. This is be-

cause any intervening writes would have invalidated the

faulting node’s read copy and hence removed it from the

copyset.

Another optimisation also goes back to Mirage but is

simplified in vNUMA: as soon as the manager becomes

a member of the copyset, ownership is automatically

transferred to the manager (Mirage required extra mes-

sages for this).

3.2 Addressing sparse data accesses

Minimising the number of communication events in a

distributed shared memory system depends critically on

caching of remote data. Many commonly used data

structures, such as linked lists and trees, tend to have

poor spatial locality, and may result in a processor ac-

cessing many pages. If locally cached copies of these

pages can be accessed, then overheads are small, but if

each of the pages regularly requires a remote fetch, per-

formance will suffer greatly.

In the absence of writes, pages eventually become

read-shared, allowing each processor to access the

cached copy of those pages without any communication.

This is clearly desirable. Now consider that some pro-

cessor occasionally writes a value to a certain page that

is otherwise read-shared. In the Ivy protocol, first the

writer must stall while all of the read copies are invali-

dated, then all of the active readers eventually stall and

re-fetch the entire page data. Clearly it would be more

efficient, for such sparse updates, to propagate the indi-

vidual write to any readers.

3.2.1 Write detection

In any such protocol, writes must be detected and write

update messages sent to other nodes. Write detection

at sub-page granularity is a challenge to implement effi-

ciently. Page diffing, as implemented in Munin [3] and

many later systems, cannot be used by vNUMA, for sev-

eral reasons.

Firstly, by the time that the diffing is performed, in-

formation has been lost about the size of the writes,

which has implications for the outcome of conflicting

writes. For example, assume that a 4-byte integer vari-

able has an initial value of 0. Consider a case where

processor P1 writes 1 to the variable, P2 writes -1, and

then P3 issues a read. The Itanium architecture dictates

that the outcome will be one of 0, -1 or 1 (depending

on which of the writes have been seen at P3). How-

ever, the diff generated at P1 may contain as little as one

byte, since in binary representation only one byte of the

value has changed. The diff generated at P2 contains

four bytes, since all four bytes of the binary representa-

tion have changed (-1 = 0xffffffff in hexadecimal). After

both diffs are applied, the value at P1 may be 0xffffff01,

which is not one of the valid outcomes. Diffing at a

32-bit granularity would solve this problem for 32-bit

values, but there would still be problems with smaller

and larger types. Systems that employ diffing, such as

TreadMarks [19], rely on the programmer to avoid issu-

ing conflicting writes within an interval, and to take care

when using smaller types than the diff granularity. How-

ever, at the ISA level there is no such requirement; in fact

the example above is completely legal if the programmer

does not require a guarantee as to which change is ap-

plied first. This would present problems for legacy code

on vNUMA.

Secondly, the standard diffing approach involves mak-

ing the page freely writable on the first write access, in

order to avoid further write faults. However, if a page is

both readable and writeable, then atomic read-modify-

write instructions such as compare-and-exchange will

freely execute, thus destroying their semantics. User-

level DSM systems that employ diffing schemes can

avoid this issue by stating that the programmer must

use the synchronisation constructs provided by the DSM

system, and not rely on the behaviour of atomic in-

structions to shared memory. This is not practical for

vNUMA.

An alternate approach, software write detection, as

used in Midway [37], relies on compiler support. This

would prevent transparent distribution of legacy applica-

tions, and is therefore also not suitable for vNUMA.

We therefore attempt to intercept writes individually,

a technique we describe as write trapping. While this

is prohibitively expensive for user-level DSM systems,

the overhead can be kept much smaller in a thin hyper-

visor such as vNUMA. The current C language imple-

mentation results in an overhead of around 250 cycles

per write, but this is largely due to compiler limitations;

in theory under 100 cycles should be achievable.

Even so, writes are frequent operations and trapping

every write in the system would be impractical; in-

deed the majority of pages in the system are not ac-

tively write-shared at all. vNUMA uses an adaptive

scheme which changes a page’s mode between this

write-trapping (write-update) mode and the basic write-

invalidate mode, depending on the access pattern.

The adaptation scheme currently implemented is sim-

ilar to the read-write-broadcast (RWB) protocol [31] de-

veloped for hardware cache coherence. The run-length

P1 //

P2 //

P3 //

fetch

55kkkkkkkkkkkkkkkk

reply

))SSSSSSSSSSSSSSSS >>}}}}}}}}}}}}}}}}

write w1

CC�������

!!CC
CC

CC
CC

C

write w2

$$JJJJJJJJJJJJJJJJJJJJ

A

B

C

w2 w1

w1

w2

Figure 2: Timeline showing a possible ordering problem

of local writes to a page that are uninterrupted by writes

received from other nodes is tracked with a counter.

If the count exceeds a threshold, trapping of individ-

ual writes ceases and the page is transitioned to write-

invalidate mode, in which we use the conventional Ivy-

like write-invalidate protocol described earlier. This can

reflect two types of access patterns — either one node is

accessing the page exclusively, or one node is making a

large number of updates to the page in a short time —

and in both cases invalidation is likely to perform bet-

ter. The decision is made individually by each node, so

even if one node chooses to acquire the page exclusively,

other infrequent writers continue to intercept writes to

the page and report them back to the exclusive owner

(providing there are no reads).

This scheme makes its decision purely on the basis

of tracking write accesses. Its drawback is that it will

not detect producer-consumer sharing with a single in-

termittent writer and multiple readers. This leads to

periodic invalidation of the readers’ copies and subse-

quent re-faulting, even though the write-update mode

may be better in this case. An improved algorithm might

be one similar to the efficient distributed write proto-

col (EDWP) [1], which tracks both read and write ac-

cesses, and prevents a transition to exclusive mode if

more than one processor is accessing the page. How-

ever, this is considerably more complex (since sampling

read accesses is required) and has not been implemented.

3.2.2 Write propagation

For pages in write-update mode, vNUMA broadcasts

writes to all nodes. While this may seem inefficient, it

has some advantages; it greatly reduces the complexity

of the system and naturally results in total store order

(TSO) consistency. Per-packet overheads are amortized

by batching many writes into a single message (see Sec-

tion 4.3). Certainly this design choice would limit scala-

bility, but vNUMA is designed for optimal performance

on a small cluster.

Each node generally applies any write updates that ap-

ply to pages that it has read copies of, and discards any

irrelevant updates. However, care must be taken when

applying write updates to a page that is being migrated.

A node P2 receiving a page from P1 queues the updates

P1 //

P2 //

S=257

))SSSSSSSSSSSSSSSSSS

S=258

55kkkkkkkkkkkkkkkkkk

write X = 1

write X = 2

(X = 2)

(drop: 257 < 258. X = 2)

Figure 3: Coherence problem with write notices, and

its resolution by deterministic merging according to se-

quence numbers.

it receives while the page is in flight. Then, it must apply

the subset of queued writes that have not already been

applied at P1. In other words, P2 must apply exactly

those updates which were received at P1 after P1 sent

the page to P2. An example is shown in Figure 2: write

w1 must be applied, while w2 must be discarded.

Our algorithm for determining which writes to apply

assumes that the network provides causal order deliv-

ery, which is a property of typical Ethernet switches (c.f.

Section 4.5). We provide a brief description here, more

details are available elsewhere [6].

We maintain at each node a counter of writes, and

that counter value is included in a page-fetch reply mes-

sage. As per Figure 2, A denotes the event of P2 send-

ing a fetch message to P1, B the event of P1 receiving

that message and immediately replying to P2, and C the

event of P2 receiving the page. In the figure, the respec-

tive counter values are NA = 0, NB = 1, and NC = 2.

N1 denotes the number of writes from P1 queued at P2

at event C (N1 = 1 in the figure). The algorithm then

becomes:

• discard the N1 messages pending from P1;

• out of the remaining writes, apply the latest NC −
NB (and thus discard the earliest NB − NA − N1

writes).

In the example, the first step will drop w2 and the second

step will apply w1.

3.2.3 Deterministic incremental merge

The write-update algorithm as presented so far is in-

sufficient to guarantee coherence in a strict sense. In

the example shown in Figure 3, where nodes P1 and

P2 simultaneously write to a location X , P1 could ob-

serve X = 1 followed by X = 2 while P2 observes

X = 2 followed by X = 1, in violation of coher-

ence. Two solutions to this problem exist in the litera-

ture [8]: a central sequencer or associating every write

with a globally-unique sequence number. The central

sequencer, while guaranteeing that all nodes converge

on the same value, does not prevent intermediate values

from being observed at a single node, in violation of the

architecture’s specification of memory coherence. It also

presents a bottleneck.

A globally-unique sequence number can be imple-

mented as a local sequence number — synchronised

on communication — with the node number as a tie-

breaker where no causality relationship exists [8, 21].

However, the conventional deterministic merging ap-

proach [8] would involve waiting to receive write mes-

sages from all nodes before deciding on a final value. As

vNUMA only sends write messages as needed, a partic-

ular node may be quiet for a considerable time, which

would necessitate regular empty write messages to en-

sure coherence.

Note, however, that coherence only requires total or-

dering on a per-location basis. Consider the case where

{w1, w2, .., wn} are a set of writes to the same location,

ordered by their global sequence number. From the point

of view of program semantics, it is not essential to guar-

antee that all of {w1..wn} are observed at any particu-

lar node, as long as the observed subset follows the cor-

rect ordering and culminates in the proper final value.

In other words, observing {w2, w1, wn} is not allowed

since w1 must precede w2, but observing {w1, wn} or

even just {wn} is allowable. Omitted intermediate val-

ues could correspond to the case where a processor was

not fast enough to observe the intervening values.

We make use of this fact to implement a technique

we call incremental deterministic merging. Each incom-

ing write notice is applied immediately, but it is only

applied to a certain location if its sequence number is

greater than that of the last write to that location. Since

every node receives all write notices, the value of that

location always ultimately converges on the write with

the maximum sequence number (wn), with any interme-

diate values respecting the required ordering. Figure 3

shows how this resolves the original problem.

3.3 Atomic operations

The protocol described so far is sufficient for correct-

ness, but highly inefficient for hosting an OS (such as

Linux) that uses atomic instructions (xchg, fetchadd

or cmpxchg) to implement kernel locks. Any of those

operations results in a fall-back to write-invalidate mode,

making kernel locks very expensive. We therefore intro-

duce an extension to the protocol, which we call write-

update-plus (WU+).

An important observation is that, in the Itanium archi-

tecture and other typical processor architectures, there

is no requirement for ordering between an atomic read-

and-write instruction and remote reads. A remote read

can safely return either the value before or after the

atomic operation. Thus, there is no need for invalidation

of read-only copies when an atomic operation is encoun-

tered; the write phase of the operation can be propagated

to readers via the write-update mechanism.

However, in order to guarantee atomicity of the read

P1 //

P2 //**VVVVVVVVVVVVVVVVV 44hhhhhhhhhhhhhhhhh

(owner) fetch-and-add X = 1

write X = 5

(X = 1 or X = 5)

(X = 1 or X = 5)

Figure 4: Simultaneous atomic operation and remote

write. P1 is the owner of X and therefore has permission

to execute atomic operations. According to the Itanium

architecture, the correct result is either 5 or 6, depending

on which operation appears first in the total order. Here,

even with deterministic merging, X = 1 may occur.

and write phases, only one processor at any time can be

allowed to perform an atomic operation to a particular

location. In the WU+ protocol, we enforce that only the

owner of a page can execute atomic operations on that

page. Any other node must first acquire ownership.

In addition, simultaneous atomic operations and re-

mote writes can lead to incorrect results, as shown in

Figure 4. The WU+ protocol therefore enforces a single

writer for pages targeted by atomic operations. Thus,

at any point, a page can be in one of three modes:

write-invalidate, write-update/multiple-writer, or write-

update/single-writer. The transition from multiple- to

single-writer mode occurs when atomic operations to a

page are intercepted; nodes are synchronously notified

that they can no longer generate write updates to the

page without acquiring ownership.

4 Implementation

The implementation of vNUMA is around 10,000 lines

of code. Of this around 4,000 lines constitute a

generic Itanium virtual machine monitor, the DSM sys-

tem is around 3,000 lines, and the remainder deals with

machine-specific initialisation and fault handling. In to-

tal the hypervisor code segment is about 450KiB (Ita-

nium is notorious for low code density).

Besides generic protocol optimisations, we used a

number of implementation techniques to optimise per-

formance, which we discuss in this section. Some of

these are processor-independent, others make use of par-

ticular Itanium features (but similar optimisations can be

made for other ISAs).

4.1 Avoiding thrashing

A naı̈ve DSM implementation suffers from a page

thrashing problem, indicated in Figure 5. If two nodes

simultaneously write to a page, the page may be trans-

ferred back and forth with no useful work done. A

frequently-used solution to this problem is to introduce

an artificial delay to break the livelock. However, this

is non-optimal by design, as there is no easy way to de-

termine an appropriate delay, and the approach increases

P1 //

P2 //

fetch

::

reply
$$JJJJJJJJJJ

fetch

$$

reply

::tttttttttt
fetch

::

reply
!!CC

CC
CC

CC
C

fetch

!!
fault

invalidate & send, fault

receive & send, re-fault

receive & send, re-fault

Figure 5: Timeline demonstrating the page thrashing

problem. Solid lines indicate transfers of ownership.

latency. Instead, we use an approach that guarantees that

at least one instruction is executed before a page is trans-

ferred.

One way to implement this is by putting the machine

into single-step mode after receipt of a page, and not

processing any page requests until the trap that is caused

by the execution of the next instruction is processed (at

which time normal execution mode is resumed).

A cheaper alternative (implemented in vNUMA) is

to consult the performance-monitor register that counts

retired instructions to determine whether progress has

been made since the last page transfer. (Note that check-

ing the instruction pointer is not sufficient, as the code

might be executing a tight loop, which could mask

progress.) If lack of progress is detected, then one could

fall back to the single-step approach. Instead we op-

timistically continue and re-check after a short delay.

While this is similar to the timed-backoff scheme im-

plemented in other DSM systems, vNUMA can use a

very short delay to minimise latency, as the hypervisor

can prevent preemption and thus ensure the opportunity

for progress.

A complication of the chosen scheme is that one in-

struction may access several pages, up to four on the Ita-

nium (an instruction page, a data page and two register-

stack engine pages). This introduces the possibility of a

circular wait condition, and thus deadlock.

We prevent deadlock by applying the anti-livelock al-

gorithm only to pages accessed via explicit data refer-

ences, and not instruction or register stack pages. Since

the data reference is always logically the last reference

made by an instruction — occuring after the instruction

reference, and after any register stack accesses — in-

struction completion is guaranteed once the data page is

obtained, and there is no possibility of deadlock. Indeed

it is not necessary to apply the livelock prevention algo-

rithm for instruction and register stack references, since

instruction accesses are always reads, and the Itanium ar-

chitecture specifies that register-stack pages should not

be simultaneously accessed by multiple CPUs (or unde-

fined processor behaviour could result). Even if a ma-

licious application were to invoke this livelock case, it

would not prevent the operating system from taking con-

trol and the process could be killed. Thus, this strat-

egy prevents livelock in a well-behaved operating sys-

P1 P2

Write wd: (S=1)

XX XX XX XX

$$
��3

33
33

33
33

33
33

Write wb: (S=2)

.. YY

zz
����
��
��
��
��
��
�

Observed:

00 00 00 00

XX XX XX XX

XX XX XX YY

Observed:

00 00 00 00

00 00 00 YY

XX XX XX YY

Figure 6: Combining writes of different sizes. On P2,

write wd appears to modify 3 bytes.

tem while also preventing any possibility of deadlock.

On some other architectures such as x86, this ap-

proach might still result in deadlock, since a single in-

struction may access several data pages. One possibility

would be to release pages after a random period of time,

even if no progress is made. In the worst case, this re-

introduces the problems associated with backoff algo-

rithms, but should perform better in the common case,

while ensuring that a permanent deadlock does not oc-

cur.

4.2 Incremental merging

In Section 3.2.3 we somewhat vaguely referred to “loca-

tions” as the destinations of writes. Given that real ar-

chitectures support writes of different sizes, we need to

understand at which granularity conflict resolution must

be applied. Figure 6 demonstrates that it must be ap-

plied at the byte, not the word level: the 4-byte write wd

at P1 with sequence number S(wd) = 1 logically pre-

cedes the byte-sized write wb at P2 with S(wb) = 2. If

the newer byte-sized write happens to be applied first at

some node, then when the older 4-byte write is received,

it must only appear to modify the top 3 bytes. This set of

observed values is consistent with the Itanium memory

consistency model [16].

This makes efficient implementation a challenge, as

keeping separate sequence numbers for each byte of

memory is clearly prohibitive. As the majority of up-

dates do not conflict, tracking overhead must be min-

imised.

Fortunately, sequence-number information only needs

to be kept for short periods. Once updates with a certain

minimum sequence number are received from all nodes,

all information related to lower sequence numbers can

be discarded.

This observation enables an implementation of se-

quence numbers that is simple and has low overheads.

We use a fixed-size buffer that stores information about

a certain number of preceding writes (Figure 7). Each

write is described by the address of the 64-bit machine

word that it targets and a mask of bytes within that word

(note that we assume that writes never cross a machine-

address

mask

link

0 1

0x1008

11111111

<invalid>

2 3

0x1008

11110000

1

4

0x1008

00001111

3

5

hashtable

4

address

0x1008oo
kkaagg

S(w) //

Figure 7: Data structure for coherence algorithm. The example shows an incoming write with sequence number 3,

address 0x1008 and mask 11111111 (entire 8 bytes); the unshaded fields show the “before” state (but note that entry

4 is originally linked to entry 1). The hash chain is traversed as far back as sequence number 4; since that logically

newer write wrote 00001111 (the lower four bytes), the mask is constrained to 11110000 (the top four bytes). The

appropriate slot for the new write is then updated and linked in place.

word boundary). Writes are directly inserted into the

buffer using the least significant bits of their sequence

number as an index; assuming that sequence numbers

are allocated in a unique and relatively dense fashion,

this mapping is quite efficient. For fast lookup, writes

are then indexed using a hash function of their target

address; writes with the same hash value are linked to-

gether in a chain. This chain is always kept in reverse

sequence number order.

The only operation on this data structure is adding a

new write. While traversing the linked list to insert a

write, all logically newer writes to the same address are

encountered, which are used to constrain the mask of

bytes to be written. Once a link field with an older se-

quence number is reached, traversal stops and the new

write is inserted into the chain. The constrained mask is

returned and used to determine the bytes in memory that

are actually modified.

Since a chain is never traversed past the sequence

number of a newly received write, the chains need never

be garbage-collected. It is sufficient to make the buffer

large enough so that it covers the window of sequence

numbers that can be received from other nodes at any

time. Since each node tracks the last sequence number

received from each other node, a violation of this rule

can be detected and a stall induced if necessary; how-

ever such stalls are clearly undesirable and can be elimi-

nated by ensuring that each node does periodically send

updates.

4.3 Write batching

Write update messages are small, and vNUMA batches

many of them into a single Ethernet message in order

to improve performance. Batching can make use of the

processor’s weak memory ordering model. The Itanium

architecture uses release consistency: normal load and

store instructions carry no ordering guarantees, but load

instructions can optionally be given acquire semantics

(guaranteeing that they become visible prior to subse-

quent accesses), while store instructions can optionally

have release semantics (guaranteeing that they become

visible after preceding accesses).

Acquire semantics require no special care, since the

processor guarantees this behaviour on local operations,

and because operations are never visible remotely before

they are visible locally.

Release semantics require special care, however. Con-

sider an access A that is followed by a write with release

semantics Wrel. A must become visible on all nodes be-

fore Wrel. The processor interprets the release annota-

tion and guarantees that A completes before Wrel. How-

ever, in the case that A is a write, local completion does

not imply remote visibility — writes may be queued by

vNUMA before being propagated to remote nodes. It

is up to vNUMA to guarantee that A is observed before

Wrel.

This is trivial if Wrel is to a write-update page: if A

is to an exclusive page, it becomes visible immediately

and thus necessarily before Wrel; if not, then the DSM

system simply needs to ensure that the writes are sent

in order. The interesting case is where Wrel is to an

exclusive page and A is a queued write to a write-update

page. In this case, the DSM system needs to ensure that

Wrel is propagated before a read response to A.

The challenge is to detect when Wrel is to an

exclusively-held page, as this cannot be made to trap

without making all ordinary writes to the same page fault

as well. Fortunately, the Itanium performance monitor-

ing unit (PMU) provides a counter which can be con-

figured to count releases. When a read request arrives

for an exclusive page, the counter is checked to deter-

mine whether a release occurred on the last interval. If

so, the write buffers are flushed before sending the read

response.

As an additional optimisation, the write queue is ea-

gerly flushed at the time that a write is intercepted, if

a release has been seen (either on that instruction or in

the previous interval) and if the network card transmit

queue is empty. This expedites transmission of writes,

since a release is usually used in the context of data that

is intended to be observed by another processor. If the

transmit queue is not empty, then the flush is scheduled

to occur after a delay; this rate-limits the update pack-

ets and allows additional writes to accrue while previous

update packets are being transmitted.

4.4 Memory fences

Itanium also provides a memory fence instruction, mf,

that has both acquire and release semantics: loads and

stores cannot pass it in either direction. The PMU counts

mf as a release (as well as an acquire), so the above de-

tection mechanism can be used to ensure that writes are

ordered correctly across a fence. The one case that is

problematic is the ordering between writes and subse-

quent reads. If a write is separated from a subsequent

read by a fence, as in Figure 8, then the strict semantics

of mf would require preventing the read from returning

a cached copy before the write is visible everywhere. In

practice this means that if both both X and Y are ini-

tially zero, at most one processor is allowed to read that

value.

P1

Y = 1

mf

read X

P2

X = 1

mf

read Y

Figure 8: The memory fences prevent that both proces-

sors’ reads return the initial values of the respective vari-

ables.

A strict implementation of the mf semantics would

have severe performance implications in vNUMA. In-

stead, we decided to compromise our goal of full trans-

parency, and require that mf operations are replaced by

atomic operations (equivalent to a lock-based implemen-

tation of mf). Despite the assortment of synchronisation

algorithms implemented in Linux, only one case was

encountered in testing which required a full fence —

the implementation of the wait on bit lock func-

tion — and this was resolved via a simple modification.

4.5 Inter-node communication

vNUMA performance is highly sensitive to communi-

cation latency. This rules out hosting device drivers in-

side a guest OS as done in many modern virtual-machine

monitors. Instead, vNUMA contains, inside the hyper-

visor, latency-optimised drivers for a number of Gigabit

Ethernet chipsets.

We further minimise communication overhead by

defining a very simple protocol at the Ethernet layer. We

use the coalescing feature of Ethernet cards to separate

the headers and payload into different buffers to enable

zero-copy in the common case (in the special case where

a local write occurs while a page is being sent, a shadow

copy is created). Transfers of 4KiB pages either use a

single ‘jumbo’ frame or are broken into four fragments.

Fragmenting the packet is actually preferable to reduce

latency, since the fragments can be pipelined through the

network (this is also why four fragments are preferable

to three, although above this the overheads outweigh the

benefits).

vNUMA also makes extensive use of known prop-

erties of networking hardware, in order to avoid pro-

tocol overhead where possible. Specifically, vNUMA

relies on the network to be (mostly) reliable, to provide

causally-ordered delivery, and ideally to provide sender-

oblivious total-order broadcast. The last requirement

means that if P1 broadcasts m1, and P2 broadcasts m2,

then either all other observers observe m1 before m2,

or all other observers observe m2 before m1. “Sender-

oblivious” means that P1 and P2 do not need to make

any conclusions about the total order; this is an optimi-

sation geared towards Ethernet, where a sender does not

receive its own broadcast.

Causally-ordered delivery is guaranteed by the design

of typical Ethernet switches. Reliability is not guaran-

teed, but packet loss is very rare. vNUMA is therefore

optimised for lossless transmission. Timeouts and se-

quence numbers, combined with a knowledge that the

number of messages in-flight is bounded, are used to

deal with occasional packet loss.

Total-order broadcast usually holds in small switches

but may be violated by a switch that contains several

switch chips connected by a trunk, as a broadcast will

be queued in a local port on one chip before forwarded

over the trunk. It may also be violated when packets are

lost. In this case, remote store atomicity may not hold in

vNUMA. This could potentially be resolved with a more

complex protocol for store atomicity, similar to our ap-

proach to coherence. We did not design such a protocol.

In practice, this limitation is of little significance; many

other processor architectures including x86 also do not

guarantee store atomicity.

4.6 I/O

vNUMA contains support for three classes of virtual de-

vices: network (Ethernet), disk (SCSI) and console.

The network is presented as a single virtual Ether-

net card. As processes arbitrarily and transparently mi-

grate between nodes, and TCP/IP connections are fixed

to a certain IP address, transparency requires a single IP

address for the cluster. Outgoing messages can be sent

from any node, vNUMA simply substitutes the Ether-

net address of the real local network card into outgoing

packets. Incoming packets are all received by a single

node. This has the advantage that the receiving part of

the driver and network stack always runs on a single

node, but the disadvantage that the actual consumer of

the data may well be running on a different node.

The ideal approach for dealing with disks would be

to connect them to a storage area network (SAN), so

that they can be accessed from any of the nodes. This is

done by Virtual Iron’s VFe hypervisor [34], but is in con-

flict with vNUMA’s objective of employing commodity

hardware. Therefore, the vNUMA virtual machine pro-

vides a single virtual SCSI disk. The present implemen-

tation routes all disk I/O to the bootstrap node, which

contains the physical disk(s). It would be possible to

remove this bottleneck by striping or mirroring across

available disks on other nodes.

The console is only supported for debugging, as users

are expected to access the vNUMA system via the net-

work. All console output is currently sent to the local

console (which changes as processes migrate). Input can

be accepted at any node.

4.7 Other implementation issues

vNUMA virtualizes inter-processor interrupts (IPIs) and

global TLB-purge instructions in the obvious way, by

routing them to the appropriate nodes.

In order to boot up a vNUMA system, all of the nodes

in the cluster must be configured to boot the vNUMA

hypervisor image in place of an operating system kernel.

Then, one of the nodes is selected by the administrator

to be the bootstrap node, by providing it with a guest

kernel image and boot parameters; the other nodes need

no special configuration.

Once the bootstrap node initialises, it uses a discov-

ery protocol to find the other nodes and their resources,

and provides them with information about the rest of the

cluster. It then starts executing the guest kernel. As

part of its normal boot process, the guest OS registers

an SMP startup address and wakes the other nodes by

sending IPIs. The other nodes start executing at the

given address in the globally-shared guest-physical ad-

dress space, thus faulting in the OS image on demand.

4.8 Limitations

Like the ubiquitous x86 architecture, Itanium was orig-

inally not trap-and-emulate virtualizable [24]. While

this has now been mostly remedied by the VT-i exten-

sions [17], a number of challenges [14] remain, partic-

ularly relating to the register stack engine and its inter-

action with the processor’s complex translation modes.

vNUMA utilizes some para-virtualization of the guest

OS, and thus presently only supports Linux guests.

5 Evaluation

We evaluated vNUMA using three types of applications,

which cover some of the most common use scenarios

for large computer systems: computationally-intensive

scientific workloads, software-build workloads, and

database server workloads.

5.1 Test environment

Our test cluster consisted of eight HP rx2600 servers

with 900MHz Itanium 2 processors, connected using a

Gigabit Ethernet via an HP ProCurve 2708 switch. Since

vNUMA does not yet support SMP within a node, only

one CPU was used in each server.

The guest OS was Linux 2.6.16, using default config-

uration settings where possible, including a 16KiB page

size. An exception are the Treadmarks measurements,

which were performed with a 4KiB page size to provide

a fair comparison of DSM performance (since vNUMA

subdivides pages to 4KiB granularity internally).

Pre-virtualization [22] was used to automatically

transform the Linux kernel for execution on vNUMA

(our Itanium machines are not VT-i enabled). Three mi-

nor changes were made manually. Firstly, the Linux

wait on bit lock function was modified as de-

scribed in Section 4.4. Secondly, the clear page

function was replaced with a hypervisor call to al-

low it to be implemented more optimally. Finally,

the kernel linker script was modified to place the

.data.read mostly section on a separate page to

ease read-sharing (the default setup co-allocates this sec-

tion with one which contains locks).

Results presented are a median of the results from at

least ten runs of a benchmark. The median was chosen

as it naturally avoids counting outliers.

5.2 HPC benchmarks

HPC is a main application of compute clusters, and

therefore a natural application domain for vNUMA.

While many HPC applications use an explicit message-

passing paradigm as supported by libraries such as MPI

[26], a significant number rely on hardware-supported

shared memory or DSM, and are therefore well-suited

to execution on vNUMA. We used TreadMarks [19] as

a DSM baseline. While TreadMarks may no longer rep-

resent the state of the art in DSM research, it is one of

the few DSM systems that has been widely used in the

scientific community.

TreadMarks is distributed with an assortment of

benchmark applications, mostly from the Stanford

SPLASH-2 suite [36] and the NAS Parallel Bench-

marks from NASA [10]. To avoid biasing the eval-

uation against TreadMarks, we used the unmodified

TreadMarks-optimised sources, and for vNUMA pro-

vided a stub library that maps TreadMarks APIs to

fork() and shared memory. We also ran the bench-

marks on one of our SMP servers on native Linux to

show best-case scalability (although limited to the two

CPUs available).

Figure 9 shows an overview of results for each bench-

mark. While the ultimate limits of scalability are diffi-

cult to establish without a much larger cluster, vNUMA

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

Barnes

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

CG

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

FFT

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

Gauss

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

IS

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

MG

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

Raytrace

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

SOR

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

TSP

vNUMA
TreadMarks

SMP

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

Water

vNUMA
TreadMarks

SMP

Figure 9: HPC benchmark performance summary. Horizontal axes represent number of nodes, vertical axes represent

speed-up.

was designed for optimal performance on a small clus-

ter. As the graphs show, vNUMA scalability is at least

as good as TreadMarks on all benchmarks, and signifi-

cantly better on Barnes, Water, TSP and IS. In abso-

lute terms MG exhibits the poorest scalability, but it is a

benchmark that poses challenges for all DSM systems,

due to the highly irregular sizes of its three-dimensional

arrays.

5.3 Compile benchmark

Large servers and clusters are frequently used for soft-

ware builds. Figure 10 compares vNUMA’s scalability

with distcc [29] when compiling vNUMA. As com-

pilation throughput tends to be significantly affected by

disk performance, we eliminated this factor by building

on a memory file system (RAM disk).

The figure shows that vNUMA scales almost exactly

as well as distcc. The line labelled “Optimal” is

an extrapolation of SMP results, based on an idealised

model where the parallelisable portion of the workload

(86 %) scales perfectly. On 4 nodes, the ideal speed-up

is 2.8, while both vNUMA and distcc achieve 2.3. On

8 nodes, the ideal speed-up is 4.0, while both vNUMA

and distcc achieve 3.1.

In the case of distcc, the overheads stem from the

centralised pre-processing of source files (which creates

a bottleneck on the first node), as well as the obvious

overheads of transferring source files and results over the

network. In the case of vNUMA, the largest overhead is

naturally the DSM system. Of the 15 % overhead ac-

countable to vNUMA in the four node case, DSM stalls

comprise 7 %, the cost of intercepting writes is around

3 %, network interrupt processing around 2 % and other

virtualization overheads also around 2 % (see also Sec-

tion 5.4).

The majority of the DSM stalls originate from the

guest kernel. This is because the compiler processes

do not themselves communicate through shared mem-

ory. Their code pages are easily replicated throughout

the cluster and their data pages become locally owned.

However, inputs and outputs are read from and written to

the file system, which shifts the burden of communica-

tion onto the kernel. In general, the compile benchmark

can be considered representative of an application that

consists of many processes which do not interact directly

 1

 2

 3

 4

 1 2 4 6 8

S
p

ee
d

-u
p

Number of nodes

vNUMA
distcc

Optimal

Figure 10: Compile benchmark performance summary

��
��
��
��

��
��
��
��

��
��
��

��
��
��

����
����

Other overhead
Network interrupts
DSM stalls
Idle
Computation

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Write−inval Write−update WU+

P
ro

ce
ss

o
r

ti
m

e
(s

)
Processor time breakdown (Compile)

Processor time 97.6s 89.2s 78.0s

Speed-up 1.84 2.02 2.34

DSM stall time 26.0s

(27%)

19.2s

(22%)

5.1s

(7%)

Stalls 420,000 285,000 164,000

Data fetches 276,000 187,000 28,000

Buffered writes 0 435,000 3,284,000

Write notices 0 47,000 496,000

Figure 11: Effect of protocol on compile benchmark

but interact through the filesystem.

Profiling the kernel overheads shows that the largest

communication costs arise from maintaining the page

cache (where cached file data is stored), and acquiring

related locks. Similarly the file system directory en-

try cache (which caches filenames), and related locks,

also feature as major contributors. Nonetheless, consid-

ering that the overall overhead is no greater than that of

distcc— a solution specifically crafted for distributed

compilation — this seems a small price to pay for the

benefits of a single system image.

5.4 Effect of DSM protocol optimisations

To quantify the benefits of the chosen DSM protocols,

we also executed the compile benchmark at three dif-

ferent levels of protocol optimisations: using the ba-

sic Ivy-like write-invalidate protocol, using our write-

update protocol, and using our write-update-plus (WU+)

protocol which intercepts atomic operations as well as

ordinary writes. The results are summarised in Fig-

ure 11.

Performance is improved significantly by the more

advanced protocols, with speed-up on four nodes in-

creasing from 1.84 to 2.02 to 2.34. This is due to

a sharp reduction in the number and latency of stalls.

With the write-invalidate protocol, 420,000 synchronous

stalls are incurred, totalling 26.0 seconds (an average

of 62 µs/stall, which is dominated by the high latency

of fetching page data that is required in 66% of cases).

The write-update protocol reduces the number of syn-

chronous stalls to 285,000, with a proportional decrease

in stall time to 19.2s. However, the write-update-plus

protocol has the most dramatic impact, reducing stall

time to only 5.1s. While the total number of stalls is still

164,000, the majority of these are now ownership trans-

fers, which involve minimum-length packets and there-

fore have low latency (17 µs in the common case). The

number of stalls that must fetch data has decreased to

only 28,000, which shows the effectiveness of this pro-

tocol in enhancing read-caching.

The price of this improved read-caching is that many

more writes must be intercepted and propagated, which

is reflected in higher overheads both for intercepting the

writes (reflected in hypervisor overhead) and at the re-

ceivers of the write notices (reflected in interrupt over-

head). Nonetheless there is still a significant net perfor-

mance improvement.

5.5 Database benchmark

Databases present a third domain where high-end

servers and clusters are used. We benchmarked Post-

greSQL [30], one of the two most popular open source

database servers used on Linux. The open-source na-

ture was important to be able to understand performance

problems. For the same reason — ease of understanding

— simple synthetic benchmarks were employed instead

of a complex hybrid workload such as TPC-C. Two ta-

bles were initialised with 10,000 rows each: one describ-

ing hypothetical users of a system, and the other repre-

senting posts made by those users on a bulletin board. A

pool of client threads then performed continuous queries

on these tables. The total number of queries completed

in 30 seconds (after 5 seconds of warm-up) is recorded.

This is similar in principle to benchmarks like TPC-C,

but utilizes a smaller number of tables and a simpler mix

of transactions.

Four different types of queries were used: SELECT,

which retrieves a row from the users table by matching

on the primary key; SEARCH, which retrieves a row

from the users table by searching a column that is not in-

dexed; AGGREGATE, which sums all entries in a cer-

tain column of the users table, and COMPLEX, which

returns information about the five most prolific posters

(this involves aggregating data in the posts table, and

then performing a ‘join’ with the user table).

The results are summarised in Figure 12. vNUMA

performs well for COMPLEX, which involves a base

throughput of tens of queries a second. However, per-

formance is degraded for the higher-throughput work-

loads, SEARCH and AGGREGATE, and most signif-

icantly so for SELECT, which involves little computa-

tion per query and can thus usually achieve thousands of

queries a second on a single node. SEARCH and AG-

GREGATE barely manage to regain single-node perfor-

mance on 8 nodes, while SELECT does not scale at all.

The cause of this throughput-limiting behaviour is

simple: using multiple distributed nodes suddenly in-

troduces the potential for much larger communication

 0

 2000

 4000

 6000

 1 2 4 8

Q
u

er
ie

s/
se

co
n

d
SELECT

SMP
vNUMA

 0

 100

 200

 300

 1 2 4 8

SEARCH

SMP
vNUMA

 0

 10

 20

 30

 1 2 4 8

COMPLEX

SMP
vNUMA

 0

 100

 200

 300

 1 2 4 8

AGGREGATE

SMP
vNUMA

Figure 12: Database benchmark performance summary. Horizontal axes represent number of nodes.

and synchronisation latencies. If one considers that each

query involves at least a certain number of these high-

latency events, then the maximum query throughput per

node is inversely proportional to the number and cost of

those events.

A breakdown of processor time usage for SELECT

shows that only 14 % of available processor time is used

for user-level computation, which explains why the four

nodes cannot match the performance of a single node.

Another 12 % is spent idle, which occurs when the Post-

greSQL server processes are waiting to acquire locks.

DSM stalls account for 57 % of processor time, with

three-quarters of that being in userspace and specifically

in the PostgreSQL server processes, and the other quar-

ter in the Linux kernel. There is 9 % overhead for log-

ging writes for the write-update protocol, and 2 % vir-

tualization overhead (while SELECT normally experi-

ences high virtualization overheads, the fact that it is

only running 14 % of the time makes the virtualization

overhead insignificant).

Further analysis, using performance counters, con-

firms that the major overheads are related to locking

within PostgreSQL. The system uses multiple layers of

locks: spinlocks, “lightweight” locks built on spinlocks,

and heavyweight locks built on lightweight locks. Im-

portantly, each heavyweight lock does not use its own

lightweight lock, but there are a small number of con-

tiguous lightweight locks which are used for protecting

data about all of the heavyweight locks in the system.

Thus, contention for this small number of lightweight

locks can hamper the scalability of all heavyweight

locks. In addition to this bottleneck, the multi-layer

design substantially increases the potential overheads

when lock contention occurs.

While this result is disappointing for vNUMA, it is

not reasonable to extrapolate from PostgreSQL and as-

sume that all database software will experience such se-

vere locking problems. Since vNUMA can provide high

levels of read replication and caching — and potentially

a large amount of distributed RAM that may be faster

than disk — designs that allow lock-free read accesses

to data, such as via read-copy-update techniques [12,25],

could theoretically provide very good performance. In

this case, kernel performance would again become the

ultimate challenge.

6 Related Work

Ivy [23] is the ancestor of most modern DSM systems.

Ivy introduced the basic write-invalidate DSM protocol

that forms an integral part of vNUMA’s protocol. Mi-

rage [11] moved the DSM system into the OS kernel,

thus improving transparency. It also attempted to ad-

dress the page thrashing problem, which was mentioned

earlier in Section 4.1. Ivy and Mirage were followed by

a large number of similar systems [28].

Munin [5] was the first system to leverage release con-

sistency to allow multiple simultaneous writers. Aside

from release consistency, other systems have also im-

plemented entry consistency (Midway [4]), scope con-

sistency (JIAJIA [9], Brazos [33]) and view-based con-

sistency (VODCA [15]), which further relax the consis-

tency model by associating specific objects with critical

sections. However, all of these systems rely on the pro-

grammer to adhere to a particular memory synchronisa-

tion model, and thus they are not suitable for transparent

execution of unmodified applications.

Recently there has also been much interest in virtual-

ization, with systems such as Xen, VMware ESX Server

and Microsoft Virtual Server making inroads in the en-

terprise. The majority of hypervisors are designed for

the purposes of server consolidation, allowing multi-

ple OS instances to be co-located on a single physical

computer. vNUMA is, in a sense, the opposite, allow-

ing multiple physical computers to host a single OS in-

stance.

Since our initial work [7], three other systems have

emerged which apply similar ideas to vNUMA: Virtual

Iron’s VFe hypervisor [34], ScaleMP’s vSMP [32] and

the University of Tokyo’s Virtual Multiprocessor [18].

While these systems all combine virtualization with dis-

tributed shared memory, they are limited in scope and

performance, and do not address many of the challenges

that this work addresses. In particular, both VFe and

the Tokyo system use simpler virtualization schemes and

distributed shared memory protocols, resulting in severe

performance limitations, especially in the case of Virtual

Multiprocessor. Virtual Iron attempted to address some

of these performance issues by using high-end hardware,

such as InfiniBand rather than Gigabit Ethernet. How-

ever, this greatly increases the cost of such a system,

and limits the target market. Virtual Iron has since aban-

doned the product for commercial reasons, which largely

seems to stem from its dependence on such high-end

hardware. vNUMA, in contrast, demonstrates how novel

techniques can achieve good performance on commod-

ity hardware.

Little is known about vSMP, other than that it runs

on x86-64 hardware and also relies on InfiniBand. The

company claims scalability to 128 nodes, but only pub-

lishes benchmarks showing the performance of (single-

threaded) SPEC benchmarks. No real comparison with

vNUMA is possible with the information available.

7 Conclusions and Future Work

We have presented vNUMA, a system that uses virtual-

ization to present a small cluster as a shared-memory

multiprocessor, able to support legacy SMP/NUMA

operating-system and multiprocessor applications. This

approach provides a higher level of transparency than

classical software DSM systems. Implementation in the

hypervisor also has the advantage that many operations

can be implemented more efficiently, and can make use

of all the features of the underlying processor architec-

ture. However, a faithful mirroring of the underlying

ISA is required.

The different trade-offs resulted in protocols and im-

plementation choices that are quite different from most

existing DSM systems. Specifically, we developed

a protocol utilizing broadcast of write-updates, which

adaptively transitions between write-update/multiple-

writer, write-update/single-writer and write-invalidate

modes of operation. We also designed a deterministic

incremental merge scheme that can provide true write

coherence.

The evaluation showed that vNUMA scales signifi-

cantly better than TreadMarks on HPC workloads, and

equal to distcc on compiles. Database benchmarks

showed the limitations of vNUMA for workloads which

make extensive use of locks.

At the time this project was commenced (2002), Ita-

nium was envisaged as the commodity system of the

future, a 64-bit replacement of x86. This clearly has

not happened, and as such, hardware supporting the

present vNUMA implementation is not exactly consid-

ered “commodity”, widespread deployment of Itanium

systems in HPC environments notwithstanding. We are

therefore investigating a port of vNUMA to AMD64

platforms. Some optimisations, such as those described

in Section 4.3, will not apply there, but there is scope for

other architecture-specific optimisations.

References

[1] James K. Archibald. A cache coherence approach

for large multiprocessor systems. In 2nd Int. Conf.

Supercomp., pages 337–345, 1988.

[2] Amnon Barak, Oren La’adan, and Amnon Shiloh.

Scalable cluster computing with MOSIX for

Linux. In Proceedings of Linux Expo ’99, pages

95–100, 1999.

[3] John K. Bennett, John B. Carter, and Willy

Zwaenepoel. Munin: Distributed shared mem-

ory based on type-specific memory coherence. In

PPOPP, pages 168–176. ACM, 1990.

[4] Brian N. Bershad and Matthew J. Zekauskas. Mid-

way: Shared memory parallel programming with

entry consistency for distributed memory multi-

processors. Technical Report CMU-CS-91-170,

Carnegie Mellon University, 1991.

[5] John B. Carter. Design of the Munin distributed

shared memory system. J. Parall. & Distr. Com-

put., 29:219–227, 1995.

[6] Matthew Chapman. vNUMA: Virtual Shared-

Memory Multiprocessors. PhD thesis, School

Comp. Sci. & Engin., University NSW, Sydney

2052, Australia, Mar 2009.

[7] Matthew Chapman and Gernot Heiser. Implement-

ing transparent shared memory on clusters using

virtual machines. In 2005 USENIX, pages 383–

386, Anaheim, CA, USA, Apr 2005.

[8] Xavier Defago, Andre Schiper, and Peter Urban.

Total order broadcast and multicast algorithms:

Taxonomy and survey. Comput. Surveys, 36:372–

421, 2004.

[9] M. Rasit Eskicioglu, T. Anthony Marsland, Weiwu

Hu, and Weisong Shi. Evaluation of JIAJIA soft-

ware DSM system on high performance computer

architectures. In 32nd HICSS, 1999.

[10] D. Bailey et al. The NAS parallel benchmarks.

Technical Report RNR-94-007, NASA Ames Re-

search Center, Mar 1994.

[11] Brett D. Fleisch and Gerald J. Popek. Mirage:

A coherent distributed shared memory design. In

12th SOSP, pages 211–223, 1989.

[12] Ben Gamsa, Orran Krieger, Jonathan Appavoo,

and Michael Stumm. Tornado: Maximising local-

ity and concurrency in a shared memory multipro-

cessor operating system. In 3rd OSDI, pages 87–

100, New Orleans, LA, USA, Feb 1999.

[13] Ganesh Gopalakrishnan, Dilip Khandekar, Ravi

Kuramkote, and Ratan Nalumasu. Case studies

in symbolic model checking. Technical Report

UUCS-94-009, Dept of Computer Science, Uni-

versity of Utah, 1994.

[14] Charles Gray, Matthew Chapman, Peter Chubb,

David Mosberger-Tang, and Gernot Heiser. Ita-

nium — a system implementor’s tale. In 2005

USENIX, pages 264–278, Anaheim, CA, USA,

Apr 2005.

[15] Zhiyi Huang, Wenguang Chen, Martin Purvis, and

Weimin Zheng. VODCA: View-oriented, dis-

tributed, cluster-based approach to parallel com-

puting. In 6th CCGrid, 2001.

[16] Intel Corp. A Formal Specification of Intel Ita-

nium Processor Family Memory Ordering, Oct

2002. http://www.intel.com/design/

itanium2/documentation.htm.

[17] Intel Corp. Itanium Architecture Soft-

ware Developer’s Manual, Jan 2006.

http://www.intel.com/design/

itanium2/documentation.htm.

[18] Kenji Kaneda. Virtual machine monitor for provid-

ing a single system image. http://web.yl.

is.s.u-tokyo.ac.jp/˜kaneda/dvm/.

[19] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas,

and Willy Zwaenepoel. Treadmarks: Distributed

shared memory on standard workstations and op-

erating systems. In 1994 Winter USENIX, pages

115–131, 1994.

[20] R.E. Kessler and Miron Livny. An analysis of dis-

tributed shared memory algorithms. In 9th ICDCS,

pages 498–505, 1989.

[21] Leslie Lamport. Time, clocks, and the ordering of

events in a distributed system. CACM, 21:558–565,

1978.

[22] Joshua LeVasseur, Volkmar Uhlig, Yaowei Yang,

Matthew Chapman, Peter Chubb, Ben Leslie, and

Gernot Heiser. Pre-virtualization: soft layering for

virtual machines. In Y-C Chung and J Morris,

editors, 13th IEEE Asia-Pacific Comp. Syst. Arch.

Conf, pages 1–9, Hsinchu, Taiwan, Aug 2008.

IEEE Computer Society Press.

[23] Kai Li and Paul Hudak. Memory coherence in

shared virtual memory systems. Trans. Comp.

Syst., 7:321–59, 1989.

[24] Daniel J. Magenheimer and Thomas W. Christian.

vBlades: Optimised paravirtualisation for the Ita-

nium processor family. In 3rd USENIX-VM, pages

73–82, 2004.

[25] Paul E. McKenney and John D. Slingwine. Read-

copy update: Using execution history to solve con-

currency problems. In 10th IASTED Int. Conf. Par-

all. & Distr. Comput. & Syst., Las Vegas, NV, USA,

Oct 1998.

[26] Message Passing Interface Forum. MPI: A

message-passing interface standard, Nov 2003.

[27] Christine Morin, Renaud Lottiaux, Geoffroy

Vallée, Pascal Gallard, David Margery, Jean-Yves

Berthou, and Isaac D. Scherson. Kerrighed and

data parallelism: cluster computing on single sys-

tem image operating systems. In 6th Int. Conf.

Cluster Comput., pages 277–286, 2004.

[28] Bill Nitzberg and Virginia Lo. Distributed shared

memory: A survey of issues and algorithms. IEEE

Comp., 24(8):52–60, Aug 1991.

[29] Martin Pool. distcc, a fast free distributed com-

piler. In 5th Linux.Conf.Au, Jan 2004. http:

//distcc.samba.org/.

[30] PostgreSQL Global Development Group. Post-

greSQL database software. http://www.

postgresql.org/.

[31] Larry Rudolph and Zary Segall. Dynamic decen-

tralized cache schemes for MIMD parallel proces-

sors. In 11th ISCA, pages 340–347, 1984.

[32] The Versatile SMP (vSMP) architecture and solu-

tions based on vSMP Foundation. ScaleMP White

Paper.

[33] Evan Speight and John K. Bennett. Brazos: A third

generation DSM system. In 1st USENIX Windows

NT WS, pages 95–106, 1997.

[34] Alex Vasilevsky. Linux virtualization on Virtual

Iron VFe. In 2005 Ottawa Linux Symp., Jul 2005.

[35] Bruce J. Walker. Open single system image

(openSSI) Linux cluster project. http://www.

openssi.org/ssi-intro.pdf, accessed on

30th September 2008.

[36] Steven Cameron Woo, Moriyoshi Ohara, Evan

Torrie, Jaswinder Pal Singh, and Anoop Gupta.

The SPLASH-2 programs: Characterization and

methodological considerations. In 22nd ISCA,

pages 24–36, 1995.

[37] Matthew J. Zekauskas, Wayne A. Sawdon, and

Brian N. Bershad. Software write detection for a

distributed shared memory. In 1st OSDI, pages 87–

100, 1994.

