
Rump File Systems: Kernel Code Reborn

Antti Kantee
Helsinki University of Technology

pooka@cs.hut.fi

Abstract

When kernel functionality is desired in userspace, the
common approach is to reimplement it for userspace in-
terfaces. We show that use of existing kernel file sys-
tems in userspace programs is possible without modify-
ing the kernel file system code base. Two different op-
erating modes are explored: 1) a transparent mode, in
which the file system is mounted in the typical fashion
by using the kernel code as a userspace server, and 2) a
standalone mode, in which applications can use a kernel
file system as a library. The first mode provides isola-
tion from the trusted computing base and a secure way
for mounting untrusted file systems on a monolithic ker-
nel. The second mode is useful for file system utilities
and applications, such as populating an image or view-
ing the contents without requiring host operating system
kernel support. Additional uses for both modes include
debugging, development and testing.

The design and implementation of the Runnable
Userspace Meta Program file system (rump fs) frame-
work for NetBSD is presented. Using rump, ten disk-
based file systems, a memory file system, a network file
system and a userspace framework file system have been
tested to be functional. File system performance for an
estimated typical workload is found to be±5% of ker-
nel performance. The prototype of a similar framework
for Linux was also implemented and portability was ver-
ified: Linux file systems work on NetBSD and NetBSD
file systems work on Linux. Finally, the implementation
is shown to be maintainable by examining the 1.5 year
period it has been a part of NetBSD.

1 Introduction

Motivation. “Userspace or kernel?” A typical case
of driver development starts with this exact question.
The tradeoffs are classically well-understood: speed, ef-
ficiency and stability for the kernel or ease of program-

ming and a more casual development style for userspace.
The question stems from the different programming en-
vironments offered by the two choices. Even if code
written for the kernel is designed to be run in userspace
for testing, it is most likely implemented with#ifdef ,
crippled and does not support all features of kernel mode.

Typical operating system kernels offer multitudes of
tested and working code with reuse potential. A good
illustration is file system code, which in the case of most
operating systems also comes with a virtual file system
abstraction [18] making access file system independent.

By making kernel file systems function in userspace,
existing code can be utilized for free in applications. We
accomplished this by creating a shim layer to emulate
enough of the kernel to make it possible to link and run
the kernel file system code. Additionally, we have cre-
ated supplementary components necessary to integrate
the file system code with a running system, i.e. mount it
as a userspace file server. Our scheme requires no modi-
fications to existing kernel file system code.

We define a Runnable Userspace Meta Program
file system (rump fs) to be kernel file system code used
in a userspace application or as a userspace file server.
Results.NetBSD [20] is a free 4.4BSD derived OS run-
ning on over 50 platforms and used in the industry es-
pecially in embedded systems and servers. A real world
usable implementation of rump file systems, included in
NetBSD since August 2007, has been written.

The following NetBSD kernel file systems areus-
able and mountable in userspace without source mod-
ifications: cd9660, EFS, Ext2fs, FFS, HFS+, LFS,
MSDOSFS, NFS (client1), NTFS, puffs, SysVBFS,
tmpfs, and UDF. All are supported from the same code-
base without file system specific custom code.

Additionally, a quick prototype of a similar system
for the Linux kernel was implemented. Under it, the
relatively simple jffs2 [31] journaling file system from
the Linux kernel is mountable as a userspace server on
NetBSD. Other Linux file systems could also be made

to work using the same scheme, but since they are more
complex than jffs2, additional effort would be required.

Finally, we introduce thefs-utilssuite and an improved
makefsutility [19]. Both use rump for generic file sys-
tem access and do not implement private userspace file
system drivers. In contrast, software packages such as
mtools and e2fsprogs reimplement thousands of lines of
file system code to handle a single file system.
Contributions. This paper shows that it is possible and
convenient torun pre-existing kernel file system code in
a userspace application. This approach has been desired
before: Yang et al. described it as ideal for their needs
but rated implementation hopelessly difficult [32].

We also describe a way to make a monolithic style ker-
nel operate like a multiserver microkernel. In contrast to
previous work, our approachgives the user the choice of
micro- or monolithic kerneloperation, thereby avoiding
the need for the performance discussion.

The paper also shows it is possible to use kernel code
in userspace on top of a POSIX environment irrespec-
tive of the kernel platform the code was originally writ-
ten for. This paves way to thinking aboutkernel modules
as reusable operating system independent components.
Userspace file systems.This paper involves file systems
in userspace but it is not a paper on userspace fs frame-
works. Userspace fs frameworks provide a programming
interface for the file server to attach to and a method for
transporting file system requests in and out of the ker-
nel. This paper explores running kernel file system code
as an application in userspace. Our approach requires
a userspace fs framework only in case mounting the re-
sulting rump file system is desired. The choice of the
framework is mostly orthogonal. puffs [15] was chosen
because of the author’s familiarity and because it is the
native solution on NetBSD. Similarly, would the focus
of implementation have been Linux or Windows NT, the
choice could have been FUSE [28] or FIFS [3].
Paper organization. The rest of this paper is orga-
nized as follows: Section 2 deals with architecture is-
sues. Some major details of the implementation are dis-
cussed in Section 3. The work is measured and evaluated
in Section 4. Section 5 surveys related work and finally
Section 6 provides conclusions and outlines future work.

2 Architecture

Before going into details about the architecture of the
implementation, let us recall how file systems are imple-
mented in a monolithic kernel such as NetBSD or Linux.

• The interface through which the file system is ac-
cessed is the virtual file system interface [18]. It
provides virtual nodes as abstract objects for access-
ing files independent of the file system type.

• To access the file system backend, the file system
implementation uses the necessary routines from
the kernel. These are for example the disk driver for
a disk-based file system such as FFS, sockets and
the networking stack for NFS or the virtual memory
subsystem for tmpfs [27]. Access is usually done
through the buffer cache.

• For file content caching and memory mapped I/O a
file system is heavily tied to the virtual memory sub-
system [25]. In addition to the pager’s get and put
routines, various supporting routines are required.
This integration also provides the page cache.

• Finally, a file system uses various kernel services.
Examples range from a hashing algorithm to timer
routines and memory allocation. The kernel also
performs access brokering and makes sure the same
image is not mounted twice.

If the reuse of file system code in userspace is desired,
all of these interfaces must be provided in userspace. As
most parts of the kernel do not have anything to do with
hardware but rather just implement algorithms, they can
be simply linked to a userspace program. We define such
code to beenvironment independent(EI). On the other
hand, for example device drivers, scheduling routines
and CPU routines areenvironment dependent(ED) and
must be reimplemented.

2.1 Kernel and Userspace Namespace

To be able to understand the general architecture, it is
important to note the difference between the namespaces
defined by the C headers for kernel and for user code.
Selection of the namespace is usually done with the pre-
processor, e.g.-D KERNEL. Any given module must be
compiledin either the kernel or user namespace. After
compilation the modules from different namespaces can
be linked together, assuming that the application binary
interface (ABI) is the same.

To emulate the kernel, we must be able to make user
namespace calls, such as memory allocation and I/O.
However, code cannot use kernel and user namespaces
simultaneously due to collisions. For example, on a
BSD-based system, the libcmalloc() takes one pa-
rameter while the kernel interface takes three. To solve
the problem, we identify components which require the
kernel namespace and components which require the
user namespace and compile them as separate compila-
tion units. We let the linker handle unification.

The namespace collision issue is even more severe if
we wish to use rump file systems on foreign platforms.
We cannot depend on anything in the NetBSD kernel
namespace to be available on other systems. Worse,

app

syscall entry

vfs

kernel fs

kernel

app

syscall entry

vfs

puffs

kernel

libpuffs

libp2k

kernel fs

librump

app

libukfs

kernel fs

librump

user

kernel

Case 0:Regular
File System

Case 1:Mounted rump
File System Usingpuffs

Case 2:Standalonerump
File System Usingukfs

Figure 1: Rump File System Architecture

we cannot include any headers from the NetBSD ker-
nel namespace in applications on other platforms, since
it will create conflicts. For example, think what will
happen if an application includes both the native and
NetBSD<sys/stat.h> . To address this, we provide
a namespace which applications can use to make calls
to the rump kernel namespace. For example, the ker-
nel vnode operationVOPREAD() is available under the
nameRUMPVOPREAD().

2.2 Component Overview

The architecture of the framework is presented in Fig-
ure 1 using three different cases to illuminate the situ-
ation. Analogous parts between the three are signaled.
The differences are briefly discussed below before mov-
ing to further dissect the components and architecture.
Regular File System(Case 0). To give context, “Regu-
lar File System” shows a file system in the kernel. Re-
quests from an application are routed through the system
call layer and vfs to be handled by the file system driver.
Mounted rump File System Using puffs (Case 1).
From the application perspective, a mounted rump file
system behaves like the same file system running in the
kernel. The NetBSD userspace file systems framework,
puffs [15], is used to attach the file system to the kernel.
Standalone rump File System Using ukfs(Case 2). A
standalone rump file system is not mounted into the file
system namespace. Rather, applications use a special
API to mount and access the file system. While this re-
quires code level awareness, it allows complete freedom,
including the ability to target a certain file system and
make calls past the virtual file system abstraction. The
key benefits of standalone rump file systems are that they
do not require kernel support or the use of operations nor-
mally reserved for the superuser, e.g.mount() .

int rumpuser_gettimeofday(struct timeval * tv,
int * error);

ssize_t rumpuser_pread(int fd, void * buf,
size_t bufsize, off_t offset, int * error);

int rumpuser_thread_create(void * (* f)(void *), void *);

void rumpuser_mutex_enter(struct rumpuser_mtx *);

Figure 2: Examples ofrumpuserinterfaces

2.3 The File System Driver

The file system driver is compiled as a regular userspace
shared library. It can be linked directly into the file server
or loaded dynamically at runtime usingdlopen() .

2.4 librump

The interfaces required by a file system were classified
in the beginning of Section 2. The component to pro-
vide these interfaces in the absence of the real kernel is
librump. It emulates enough of the kernel environment
for the file system code to be able to run.

To solve the namespace problem described in Sec-
tion 2.1, librump is split into two: rumpkern and
rumpuser. The first is compiled as a kernel component
and the latter as a userspace component. Both must be
linked into rump file systems.

Figure 2 presents examples of routines provided by
rumpuser. There are two main classes of calls provided
by rumpuser: system calls and thread library calls. Ad-
ditionally, support calls such as memory allocation exist.

A convenient observation is to note that the file sys-
tems only call routines within themselves and interfaces
in our case provided by rumpkern. Rumpkern only calls
routines within itself, the file system (via callbacks) and

Component # of lines

rumpuser 491
rumpkern (ED) 3552
std kern (EI) 27137

puffs (kernel) 3411
FFS 14912

Table 1: rump library size analysis

rumpuser. Therefore, by closure, rumpuser is the com-
ponent defining the portability of a rump file system.

Librump was engineered bottom-up to provide kernel
interfaces for file systems. Most of the interfaces could
be used from the kernel source tree as such (environ-
ment independent), but some had to be reimplemented
for userspace (environment dependent). For example, the
vm subsystem was completely reimplemented for rump
and could be simplified from tens of thousands of lines of
code to just hundreds of lines because of most vm func-
tionality being irrelevant in userspace. Table 1 shows ef-
fort in lines of code without comments or empty lines.
Two kernel file systems are included for comparison.
Code size is revisited in Section 4.5.

2.5 libp2k

Mounted rump file systems (Case 1, Figure 1) use the
NetBSD userspace file systems framework, puffs [15].
We rely on two key features. The first one is transporting
file system requests to userspace, calling the file server,
and sending the results back. The second one is handling
an abruptly unmounted file system, such as a file server
crash. The latter prevents any kernel damage in the case
of a misbehaving file server.

puffs provides an interface for implementing a
userspace file systems. While this interface is clearly
heavily influenced by the virtual file system interface,
there are multiple differences. For example, the ker-
nel virtual file system identifies files by astruct
vnode pointer, whereas puffs identifies files using a
puffs cookie t value. Another example of a param-
eter difference is thestruct uio parameter. In the
kernel this is used to inform the file system how much
data to copy and in which address space. puffs passes
this information to the read interface as a pointer where
to copy to along with the byte count - the address space
would make no difference since a normal userspace pro-
cess can only copy to addresses mapped in its vmspace.
In both cases the main idea is the same but details differ.

Thep2k, or puffs-to-kernel, library is a request transla-
tor between the puffs userspace file system interface and
the kernel virtual file system interface. It also interprets
the results from the kernel file systems and converts them

int
p2k_node_read(struct puffs_usermount * pu,

puffs_cookie_t opc, uint8_t * buf,
off_t offset, size_t * resid,
const struct puffs_cred * pcr, int ioflag)

{
kauth_cred_t cred;
struct uio * uio;
int rv;

cred = cred_create(pcr);
uio = rump_uio_setup(buf, * resid, offset,

RUMPUIO_READ);
VLS(opc);
rv = RUMP_VOP_READ(opc, uio, ioflag, cred);
VUL(opc);
* resid = rump_uio_free(uio);
cred_destroy(cred);
return rv;

}

Figure 3:p2k node read () Implementation

back to a format that puffs understands.

To give an example of p2k operation, we discuss
reading a file. This is illustrated by the p2k read rou-
tine in Figure 3. We see the uio structure created by
rump uio setup () before calling the vnode operation
and freed after the call while saving the results. We
also notice the puffs credit type being converted to the
opaquekauthcred t type used in the kernel. This is done
by the p2k library’scred create () routine, which in
turn usesrump cred create (). TheVLS() andVUL()
macros in p2k to deal with NetBSD kernel virtual file
system locking protocol. They take a shared (read) lock
on the vnode and unlock it, respectively.

Mount utilities and file servers

Standard kernel file systems are mounted with utilities
such asmount efs , mount tmpfs , etc. These util-
ities parse the command line arguments and call the
mount () system call.

Our equivalent mountable rump file system counter-
parts are calledrump efs , rump tmpfs , etc. Instead
of calling the regular mount call, they attach to the sys-
tem by p2k and rump. To maximize integration, these
file servers share the same command line argument pars-
ing code with the regular mount utilities. This was done
by restructuring the mount utilities to provide an inter-
face for command line argument parsing.

Sharing the argument parsing means that the
file servers have the same syntax and makes usage in-
terchangeable just by altering the command name. We
also modified the system to handle arump option in
/etc/fstab . This allows to toggle certain mount-
points such as USB devices and CD/DVD to be handled
using rump file systems by just adding one option.

struct ukfs * ukfs_mount(const char * fstype,
const char * devpath, const char * mntpath,
int mntflag, void * arg, size_t arglen);

int ukfs_modload(const char * libpath);
int ukfs_modload_dir(const char * directory);

ssize_t ukfs_read(struct ukfs * u, const char * file,
off_t off, uint8_t * buf, size_t bufsize);

int ukfs_rmdir(struct ukfs * u, const char * dir);

Figure 4: Examples of ukfs interfaces

2.6 libukfs

The ukfs library, or user-kernel file system, provides a
standalone approach (Case 2 from Figure 1). Two classes
of interfaces are provided by libukfs, both having exam-
ples in Figure 4, and are discussed below:
Initialization. To use a file system, it must be virtually
mounted. The mount call returns astruct ukfs han-
dle which is passed to all other calls. This handle is anal-
ogous to the mountpoint path in a mounted file system.

Additionally, routines for dynamically loading file
system libraries are provided. This is similar to loading
kernel modules, but since we are in userspace,dlopen ()
is used for loading.
File system access.Accessing file system contents is
done with calls in this class. Most calls have an interface
similar to system calls, but as they are self-contained,
they take a filename instead of for example requiring a
separate open before passing a file descriptor to a call.
The rootpath is the root of the file system, but the li-
brary provides tracking of the current working directory,
so passing non-absolute paths is possible.

If an application wishes to do low level calls such as
vfs operations for performance or functionality reasons,
it is free to do so even if it additionally uses ukfs routines.

3 Implementation

This section deals with major points of interest in the
implementation. While the discussion is written with
NetBSD terminology, it attempts to take into account the
general case with all operating systems.

3.1 Disk Driver

A disk block device driver provides storage medium ac-
cess and is instrumental to the operation of disk-based
file systems. The main interface is simple: a request in-
structs the driver to read or write a given number of sec-
tors at a given offset. The disk driver queues the request
and returns. The request is handled in an order according
to a set policy, e.g. the disk head elevator. The request

must be handled in a timely manner, since during the pe-
riod that the disk driver is handling the request the object
the data belongs to (e.g. vm page) is held locked. Once
the request is complete, the driver signals the kernel that
the request has been completed. In case the caller waits
for the request to complete, the request is said to be syn-
chronous, otherwise asynchronous.

There are two types of backends: buffered and un-
buffered. A buffered backend stores writes to a buffer
and flushes them to storage later. An unbuffered backend
will write to storage immediately. Examples are a regular
file and a character device representing a disk partition,
respectively. A block driver signals a completed write
only after data has hit the disk. This means that a disk
driver operating in userspace must make sure the data is
not still in a kernel cache before it issues the signal.

There are three approaches to implementing the block
driver using standard userspace interfaces.

• Useread() andwrite() in caller context: this
is the simplest method. However, it effectively
makes all requests synchronous and kills write per-
formance.

• Asynchronous read/write: in this model the re-
quest is handed off to an I/O thread. When the re-
quest has been completed, the I/O thread issues an
“interrupt” to signal completion.

A buffered backend must flush synchronously ex-
ecuted writes. The only standard interface avail-
able for this isfsync() . However, it will flush
all buffered data before returning, including previ-
ous asynchronous writes. Non-standard ranged in-
terfaces such asfsync_range() exist, but they
usually flush at least some file metadata in addition
the the actual data causing extra unnecessary I/O.

A userlevel write to an unbuffered backend goes di-
rectly to storage. The system call will return only
after the write has been completed. No flushing
is required, but since userlevel I/O is serialized in
Unix, it is not possible to issue another write before
the first one finishes. This means that a synchronous
write must block and wait until an ongoing asyn-
chronous write has been fully executed.

The O_DIRECTfile descriptor flag causes a write
on a buffered backend to bypass cache and go di-
rectly to storage. The use of the flag also invali-
dates the cache for the written range, so it is safe to
use in conjunction with buffered I/O. However, the
flag is advisory. If conditions are not met, the I/O
will silently fall back to the buffer. This method can
therefore be used only when it applies for sure.

• Memory-mapped I/O: this method works only for
regular files. The benefits are that the medium ac-

cess fastpath does not involve any system calls and
that themsync() system call can be portably used
to flush ranges instead of the whole memory cache.

The file can be mapped using windows. This pro-
vides two advantages. First, files larger than the
available VA can be used. Second, in case of a
crash, the core dump is only increased by the size of
the windows instead of the size of the image. This is
a very important pragmatic benefit. We found that
the number of windows does not make a huge dif-
ference; we default to 16 1MB windows with LRU.

The downside of the memory mapping approach is
that to overwrite data, the contents must first be
paged in, then modified, and only after that writ-
ten. This is to be contrasted to explicit I/O requests,
where it is possible to decide if a whole page is be-
ing overwritten, and skip pagein before overwrite.

Of the above, we found that on buffered backends
O_DIRECTworks best. Ranged syncing and memory
mapped I/O have roughly equal performance and full
syncing performs poorly. The disk driver question is re-
visited in Section 4.6, where we compare performance
against a kernel mount.

3.2 Locking and Multithreading

File systems make use of locking to avoid data corrup-
tion. Most file systems do not create separate threads, but
use the context of the requesting thread to do the opera-
tions. In case of multiple requests there may be multiple
threads in the file system and they must synchronize ac-
cess. Also, some file systems create explicit threads, e.g.
for garbage collection.

To support multithreaded file systems in userspace, we
must solve various subproblems: locks, threads, legacy
interfaces and the kernel giantlock. We rely on the
userspace pthread library instead of implementing our
own set of multithreading and synchronization routines.
Locks and condition variables. There are three differ-
ent primitives in NetBSD: mutexes, rwlocks and condi-
tion variables. These map to pthread interfaces. The
only differences are that the kernel routines are of type
void while the pthread routines return a success value.
However, an error from e.g.pthread mutex lock ()
means a program bug such as deadlock and in case of
failure, the program is aborted and core is dumped.
Threads. The kernel provides interfaces to create and
destroy threads. Apart from esoteric arguments such as
binding the thread to a specific CPU, which we ignore,
the kernel interfaces can be mapped to a pthread library
calls. This means thatkthread_create() will call
pthread create() with suitable arguments.

Kernel giantlock. Parts of the NetBSD kernel not con-
verted to fine grained locking are still under the kernel
biglock. This lock is special, as it is recursive and must
be completely released when blocking. As all the system
calls rump makes are in rumpuser, the blocking points
are there also. We wrap the potentially blocking calls to
drop and retake the biglock.
Legacy interfacesA historic BSD interface still in use
in some parts of the kernel istsleep (). It is a facil-
ity for waiting for events and maps to pthread condition
variables.
Observations. It is clear that the NetBSD kernel and
pthread locking and threading interfaces are very close to
each other. However, there are minimal differences such
as the naming and of course under the hood the imple-
mentations are different. Providing a common interface
for both [8] would be a worthwhile exercise in engineer-
ing for a platform where this was not considered initially.

3.3 puffs as a rump file system

Using rump, puffs can be run in userspace on top of rump
and a regular userspace file system on top of it. It gives
the benefit of being able to access any file system via
ukfs, regardless of whether it is a kernel file system or a
userspace file system. Since puffs provides emulation for
the FUSE interface [16] as well, any FUSE file system
is usable through the same interface too. For instance, a
utility which lists the directory tree of a file system works
regardless of if the file system is the NetBSD kernel FFS
or FUSE ntfs-3g.

Naturally, it would be possible to call userspace file
system interfaces from applications without a system as
complex as rump. However, since we already do have
rump, we can provide total integration for all file sys-
tems with this scheme. It would be entirely possible to
make ukfs use different callpaths based on the type of
file system used. However, that would require protocol
conversion in ukfs to e.g. FUSE. Since the puffs stack
already speaks all the necessary protocols, it is more el-
egant to run everything through it.

3.4 Installation and Linking

Rump file systems are installed for userspace consumers
as a number of separate libraries. The base libraries are:
librump (rumpkern), librumpuser (rumpuser), libukfs
and libp2k. Additionally, there are all the individual file
system drivers such as librumpfsefs, librumpfsntfs and
so forth. To use rump file systems, the base libraries
should be linked in during compilation. The file system
driver libraries may be linked in during compilation or
loaded dynamically.

The NetBSD kernel expects all built-in file systems to
be stored in alink setfor bootstrap initialization. A link
set is a method for a source module to store information
to a specific section in the object. A static linker unifies
the section contents from all source modules into a link
set when the program is linked. However, this scheme is
not fully compatible with dynamic linking: the dynamic
loader would have to create storage to accommodate for
section information from each shared library. We discov-
ered that a link set entry only from the first shared library
on the linker command line is present runtime. We could
have attempted to modify the dynamic linker to support
this non-standard feature, but instead we chose to require
dynamic loading of file systems when support for more
than one is required. Loading is done using the ukfs in-
terfaces described in Section 2.6.

Since the kernel environment is in constant flux, the
standard choice of bumping the major library version for
each ABI change did not seem reasonable. Instead, cur-
rently the compatibility between librump and the file sys-
tem libraries is handled exactly like for kernel modules:
both librump and the file system libraries are embedded
with the ABI version they were built against. When a
file system library is attached to librump the versions are
compared and if incompatible the attach routine returns
EPROGMISMATCH.

3.5 Foreign Platforms

Different kernel version. An implication of rump file
systems is the ability to use file system code from a dif-
ferent OS version. While it is possible to load and unload
kernel modules on the fly, they are closely tied by the
kernel ABI. Since a rump file system is a self-contained
userspace entity, it is possible to use a file system from a
newer or older kernel. Reasons include taking advantage
of a new file system feature without having to reboot or
avoiding a bug present in newer code.
NetBSD rump file systems on Linux. This means us-
ing NetBSD kernel file systems on a Linux platform. As
Linux does not support puffs, libp2k cannot be used. A
port to FUSE would be required. Despite this, the file
system code can be used via ukfs and accessing a file
system using NetBSD kernel code on Linux has been
verified to work. A notable fact is that structures are
returned from ukfs using the ABI from the file system
platform, e.g.struct dirent is in NetBSD format
and must be interpreted by callers as such. Eventually, a
component translating structures between different oper-
ating systems will be provided.
Linux kernel file systems on NetBSD.Running Linux
kernel file systems on NetBSD is interesting because
there are several file systems written against the Linux
kernel which are not available natively in NetBSD or in

more portable environments such as userspace via FUSE.
Currently, our prototype Linux implementation supports
only jffs2 [31]. This file system was chosen as the initial
target because of its relative simplicity and because it has
potential real-world use in NetBSD, as NetBSD lacks a
wear-leveling flash file system.

An emulation library targeted for Linux kernel inter-
faces, lump, was created from scratch. In addition, a
driver emulating the MTD flash interface used by jffs2
for the backend storage was implemented.

Finally, analogous to libp2k, we had to match the in-
terface of puffs to the Linux kernel virtual file system
interface. The main difference was that the Linux kernel
has thedcachename cache layer in front of the virtual
file system nodes instead of being controlled from within
each file system individually. Other tasks were straight-
forward, such as converting thestruct kstat type
received from Linux to thestruct vattr type ex-
pected by puffs and the NetBSD kernel.
ABI Considerations. Linking objects compiled against
NetBSD headers to code compiled with Linux headers is
strictly speaking not correct: there are no guarantees that
the application binary interfaces for both are identical
and will therefore work when linked together. However,
the only problem encountered when testing on i386 hard-
ware was related to theoff_t type. On Linux,off_t
is 32bit by default, while it is 64bit on NetBSD. Making
the type 64bit on Linux made everything work.

If mixing components from different NetBSD ver-
sions, care must be taken. For example,time_t in
NetBSD was recently changed from 32bit to 64bit. We
must translatetime_t in calls crossing this boundary.

4 Evaluation

To evaluate the usefulness of rump file systems, we dis-
cuss them from the perspectives of security, develop-
ment uses, application uses, maintenance cost, and per-
formance. We estimate the differences between a rump
environment and a real kernel environment and the im-
pact of the differences and provide anecdotal information
on fixing several real world bugs using rump file systems.

4.1 Security

General purpose OS file systems are commonly written
assuming that file system images contain trusted input.
While this was true long ago, in the age of USB sticks
and DVDs it no longer holds. Still, users mount untrusted
file systems using kernel code. The BSD and Linux man-
ual pages for mount warn: “It is possible for a corrupted
file system to cause a crash”. Worse, arbitrary memory
access is known to be possible and fixing each file system
to be bullet-proof is at best extremely hard [32].

In a mounted rump file system the code dealing with
the untrusted image is isolated in its own process, thus
mitigating an attack. As was seen in Table 1, the size dif-
ference between a real kernel file system and the kernel
portion of puffs is considerable, about five-fold. Since an
OS usually supports more than one file system, the real
code size difference is much higher. Additionally, puffs
was written from ground up to deal with untrusted input.

To give an example of a useful scenario, a recent mail-
ing list posting described a problem with mounting a FAT
file system from a USB stick causing a kernel crash. By
using a mountable rump file system, this problem was
reduced to an application core dump. The problematic
image was received from the reporter and problem in the
kernel file system code was debugged and dealt with.

golem> rump_msdos ˜/img/msdosfs.img /mnt
panic: buf mem pool index 23
Abort (core dumped)
golem>

4.2 Development and Debugging

Anyone who has ever done kernel development knows
that the kernel is not the most pleasant environment for
debugging and iteration. A common approach is to first
develop the algorithms in userspace and later integrate
them into the kernel, but this adds an extra phase.

The following items capture ways in which rump file
systems are superior to any single existing method.

• No separate development cycle: There is no need
to prototype with an ad-hoc userspace implementa-
tion before writing kernel code.

• Same environment: userspace operating systems
and emulators provide a separate environment. Mi-
grating applications (e.g. OpenOffice or FireFox)
and network connections there may be challenging.
Since rump integrates as a mountable file system on
the development host, this problem does not exist.

• No bit-rot : There is no maintenance cost for case-
specific userspace code because it does not exist.

• Short test cycle: The code-recompile-test cycle
time is short and a crash results in a core dump and
inaccessible files, not a kernel panic and total appli-
cation failures.

• Userspace tools: dynamic analysis tools such as
Valgrind [21] can be used to instrument the code.
A normal debugger can be used.

• Complete isolation: Changing interface behavior
for e.g. fault and crash injection [14, 23] purposes
can be done without worrying about bringing the
whole system down.

To give an example, support for allocating an in-fs
journal was added to NetBSD ffs journaling. The au-
thor, Simon Burge, is a kernel developer who normally
does not work on file systems. He used rump and ukfs for
development and described the process thusly: “Instead
of rebooting with a new kernel to test new code, I was
just able to run a simple program, and debug any issues
with gdb. It was also a lot safer working on a simple file
system image in a file.” [4].

Another benefit is prototyping. One of the reasons
for implementing the 4.4BSD log-structured file system
cleaner in userspace was the ability to easily try different
cleaning algorithms [24]. Using rump file systems this
can easily be done without having to split the runtime
environment and pay the overhead for easy development
during production use.

Although it is impossible to measure the ease of devel-
opment by any formal method, we would like to draw the
following analogy: kernel development on real hardware
is to using emulators as using emulators is to developing
as a userspace program.

Differences between environments

rump file systems do not duplicate all corner cases accu-
rately with respect to the kernel. For example, Zhang and
Ghose [34] list problems related to flushing resources as
the challenging implementation issues with using BSD
VFS. Theoretically, flushing behavior can be different if
the file system code is running in userspace, and there-
fore bugs might be left unnoticed. On the flip-side,
the potentially different behavior exposes bugs otherwise
very hard to detect when running in the kernel. Rump file
systems do not possess exactly the same timing proper-
ties and details of the real kernel environment. Our posi-
tion is that this is not an issue.

Differences can also be a benefit. Varying usage
patterns can expose bugs where they were hidden be-
fore. For example, the recent NetBSD problem report2

kern/38057 described a FFS bug which occurs when the
file system device node is not on FFS itself, e.g. /dev
on tmpfs. Commonly, /dev is on FFS, so regular use did
not trigger the problem. However, since this does not
hold when using FFS through rump, the problem was
triggered more easily. In fact, this problem was discov-
ered by the author while working on the aforementioned
journaling support by using rump file systems.

Another bug which triggered much more frequently
by using rump file systems was a race which involved
taking a socket lock in the nfs timer and the data being
modified while blocking for the socket lock. This bug
was originally described by the author in a kernel mail-
ing list post entitled “how can the nfs timer work?”. It
caused the author to be pointed at a longstanding NFS

problem of unknown cause described in kern/38669. A
more detailed report was later filed under kern/40491 and
the problem subsequently fixed.

In our final example the kernel FAT file system driver
used to ignore an out-of-space error when extending a
file. The effect was that written data was accepted into
the page cache, but could not be paged out to disk and
was discarded without flagging an application error. The
rump vnode pager is much less forgiving than the kernel
vnode pager and panics if it does not find blocks which
it can legally assume to be present. This drew attention
to the problem and it was fixed by the author in revision
1.53 of the source module msdosfsvnops.c.

Locks: Bohrbugs and Heisenbugs

Next we describe cases in which rump file systems have
been used to debug real world file system locking prob-
lems in NetBSD.

The most reliably repeatable bugs in a kernel environ-
ment and a rump file system are ones which depend only
on the input parameters and are independent of the en-
vironment and timing. Problem report kern/38219 de-
scribed a situation where the tmpfs memory file system
would try to lock against itself if given suitable argu-
ments. This made it possible for an unprivileged user to
panic the kernel with a simple program. A problem de-
scribed in kern/41006 caused a dangling lock when the
mknod() system call was called with certain parame-
ters. Both cases were reproduced by running a regular
test program against a mounted rump file systems, de-
bugged, fixed and tested.

Triggering race conditions depends on being able to
repeat timing details. Problem report kern/40948 de-
scribed a bug which turned out to be a locking problem
in an error branch of the FFS rename vnode operation. It
was triggered when the rename source file was removed
halfway through the operation. While this is a race con-
dition, it was equally triggerable by using a kernel file
system and a mounted rump file system. After being de-
bugged by using rump and fixed, the same problem was
reported for tmpfs in kern/41128. It was similarly de-
bugged and dealt with.

Even if the situation depends on components not avail-
able in rump file systems, using rump may be helpful.
Problem report kern/40389 described a bug which caused
a race condition deadlock between the file system driver
and the virtual memory code due to lock order reversal.
The author wrote a patch which addressed the issue in
the file system driver, but did not have a system for full
testing available at that time. The suggested patch was
tested by simulating the condition in rump. Later, when
it was tested by another person in a real environment, the
patch worked as expected.

Preventing undead bugs with regression testing

When a bug is fixed, it is good practice to make sure it
does not resurface [17] by writing a regression test.

In the case of kernel regression tests, the test is com-
monly run against a live kernel. This means that to run
the test, the test setup must first be upgraded with the test
kernel, bootstrapped, and only then can the test be exe-
cuted. In case the test kernel crashes, it is difficult to get
an automatic report in batch testing.

Using a virtual machine helps a little, but issues still
remain. Consider a casual open source developer who
adds a feature or fixes a bug and to run the regression
tests must 1) download or create a full OS configuration
2) upgrade the installation kernel and test programs 3)
run tests. Most likely steps “1” and “2” will involve man-
ual work and lead to a diminished likelihood of testing.

Standalone rump file systems are standalone pro-
grams, so they do not have the above mentioned setup
complications. In addition to the test program, file sys-
tem tests require an image to mount. This can be solved
by creating a file system image dynamically in the test
program and removing it once the test is done.

For example, our regression test for the ffs rename race
(kern/40948) creates a 5MB FFS image to a regular file
and runs the test against it. If the test survives for 10 sec-
onds without crashing, it is deemed as successful. Oth-
erwise, an error is reported:

Tests root: /srcs/tests/fs/ffs

t_renamerace (1/1): 1 test cases
renamerace: Failed: Test case did not exit

cleanly: Abort trap (core dumped)

4.3 File system access utilities: fs-utils

Several application suites exist for accessing and modi-
fying file system images purely from userspace programs
without having to mount the image. For example, Mtools
accesses FAT file systems, ntfsprogs is used with NTFS
and LTOOLS can access Ext2/3 and ReiserFS. While
these suites generally provide the functionality of POSIX
command line file utilities such asls andcp , the name
and usage of each command varies from suite to suite.

The fs-utils [33] suite envisioned by the author and im-
plemented by Arnaud Ysmal has been done using stan-
dalone rump file systems. The utilities provide file sys-
tem independent command line utilities with the same
functionality and usage as the POSIX counterparts. The
code from the POSIX utilities were used as a base for
the implementation and the I/O calls were modified from
system calls to ukfs calls.

For example, thefsu ls program acts like regular
ls and provides the same 31 flags asls . The command
fsu ls ˜/img/ffs2.img -laF temp produces

the long listing of the contents of the “/temp” directory
of an FFS image located in the user’s home directory and
fsu ls /dev/rsd0e -laF temp does the same
for a FAT located on a USB stick. The file system type
is autodetected based on the image contents. Other ex-
amples of utilities provided by fs-utils arefsu cat ,
fsu find , fsu chown andfsu diff .

Additionally, fs-utils provides utilities which are nec-
essary to move data over the barrier between the host
system fs namespace and the image. To illustrate the
problem, let us considerfsu cp . Like with cp , all path-
names given to it are either relative to the current working
directory or absolute with respect to the root directory.
Since for a standalone rump file system the root direc-
tory is the file system image root directory,fsu cp can
be used only to copy files within the image. Conversely,
command output redirection (>) will write to a file on the
host, not the image. To remedy these problems, fs-utils
provides utilities such asfsu ecp , which copies files
over the boundary, as well asfsu write , which reads
from standard input and writes to a given file in the file
system. For example, the commandls | fsu write
˜/img/ffs2.img ls.txt “redirects” the output of
ls to the file /ls.txt on the image.

4.4 makefs

NetBSD is fully cross-compilable without superuser
privileges on a POSIX system [19]. This capability is
commonly referred to asbuild.sh after the shell script
which bootstraps the build process. For the system to
be cross-buildable the build process cannot rely on any
non-standard kernel functionality to be available, since it
might not exist on a non-NetBSD build host.

The canonical way to build a file system image for
boot media used to be to create a regular file, mount it
using the loopback driver, copy the files to the file sys-
tem and unmount the image. This required the target file
system to be supported on the build host and was not
compatible with the goals of build.sh.

When build.sh was originally introduced to NetBSD,
it came with a tool calledmakefs, which creates a file
system image from a given directory tree using only ap-
plication code. In other words, the makefs application
contains the file system driver. This approach does not
require privileges to mount a file system or support for
the target file system in the kernel. The original utility
had support for Berkeley FFS and was implemented by
modifying and reimplementing the FFS kernel code to
be able to run in userspace. This was the only good ap-
proach available at the time. Support for the ISO9660
CD file system was added later.

The process of makefs consists of four phases:

1. scan the source directory

original rump

FFS SLOC 1748 247
supported
file systems

FFS, iso9660 FFS, ext2, iso9660,
FAT, SysVBFS

FFS effort > 2.5 weeks
or 100 hours

2 hours

total effort 7 weeks or
280 hours

2 days or 16 hours

Table 2: Comparison between original and rump makefs.
Implementation effort for the original was provided by
Luke Mewburn, the author of the original utility. The
FFS figure stands only for driver implementation and
does not include additional time spent debugging.

2. calculate target image size based on scan data
3. create the target image
4. copy source directory files to the target image

In the original version of makefs all of the phases as
implemented in a single C program. Notably, phase 4 is
the only one that requires a duplicate implementation of
features offered by the kernel file system driver.

For comparison, we have implemented makefs us-
ing kernel file system drivers for phase 4. It is cur-
rently available as an unofficial alternative to the orig-
inal makefs. We partially reuse code from the original
makefs, since we need to analyze the source tree to de-
termine the image size (phases 1&2). We rely on an ex-
ternal newfs/mkfs program for creating an empty file sys-
tem image (phase 3). For phase 4 we use fs-utils and the
fsu put utility, which copies a directory hierarchy to
a file system image. The exception is ISO9660 support,
for which we use the original makefs utility; the kernel
CD file system driver is read-only.

For phase 3, we had to make sure that the mkfs/newfs
utility can create a file system to a regular file – typically
such utilities operate on device special files. Out of the
supported file systems, we had to add support for this
to the NetBSD FAT and SysVBFS utilities. Support for
each was approximately 100 lines of modification.

We compare the two implementations in Table 2. As
can be observed, over a third of the original effort was
for implementing support for a single file system driver.
Since we reuse the kernel driver, we get this functional-
ity for free. Additionally,fsu put from fs-utils could
be used as such. All of the FFS code for the rump im-
plementation is involved in calculating the image size
and was available from makefs. If code for this had not
been available, we most likely would have implemented
it using shell utilities. However, since determining the
size involves multiple calculations such as dealing with
hard links and rounding up directory entry sizes, we con-
cluded that reusing working code was a better option.

Total commits to the kernel 9640
Total commits to rump 438
Commits touching only rump 347
Build fixes 17
Functionality fixes 5
Unique committers 30

Table 3: Commit analysis for the rump source tree from
August 2007 to December 2008.

4.5 Maintaining rump in NetBSD

As rump implements environment dependent code in
parallel with the the kernel, the implementation needs
to keep up. There are two kinds breakage: the kind re-
sulting in compile failure and the kind resulting in non-
functional compiled code. The numbers in Table 3 have
been collected from version control logs from the period
August 2007 - December 2008, during which rump has
been part of the official NetBSD source tree. The com-
mits represent the number of changes on the main trunk.

The number of build fixes is calculated from the
amount of commits that were done after the kernel was
changed and rump not build anymore as a result. For ex-
ample, a file system being changed to require a kernel
interface not yet supported by rump is this kind of fail-
ure. Commits in which rump was patched along with the
kernel proper were not counted in with this figure.

Similarly, functionality fixes include changes to kernel
interfaces which prevented rump from working, in other
words the build worked but running the code failed. Reg-
ular bugs are not included in this figure.

Unique committers represents the number of people
from the NetBSD community who committed changes
to the rump tree. The most common case was to keep up
with changes in other parts of the kernel.

Based on observations, the most important factor in
keeping rump functional in a changing kernel is educat-
ing developers about its existence and how to test it. Ini-
tially there was a lot of confusion in the community about
how to test rump, but things have since gotten better.

It should be kept in mind that over the same time frame
the NetBSD kernel underwent very heavy restructuring
to better support multicore. As it was the heaviest set of
changes over the past 15 years, the data should be con-
sidered “worst case” instead of “typical case”.

For an idea of how much code there is to maintain,
Figure 5 displays the number of lines of code lines in for
rump in the NetBSD source tree. The count is without
empty lines or comments. The number of lines of en-
vironment dependent code (rumpkern + rumpuser) has
gone up from 1443 to 4043 (281%) while the number of
code lines used directly from the kernel has gone up from
2894 to 27137 (938%). Features have been added, but

0

5000

10000

15000

20000

25000

30000

08/07 12/07 04/08 08/08 12/08

Lines

Date

std kern

rumpkern

rumpuser

Figure 5: Lines of Code History

much of this has been done with environment indepen-
dent code. Not only does this reduce code duplication,
but it makes rump file systems behave closer to kernel
file systems on a detailed level.

There have been two steep increases in code size. The
first one was in January 2008, when all of the custom file
system code written for userspace, such as namei, was
replaced with kernel code. While functionality provided
by the interfaces remained equivalent, the special case
implementation for userspace was much smaller than the
more general kernel code. The general code also required
more complex emulation. The second big increase was in
October 2008, when the kernel TCP/IP networking stack
and support for socket I/O was added to rumpkern.

4.6 Performance

We measure the performance of three macro level op-
erations: directory traversal withls -lR , recursively
copying a directory hierarchy containing both small and
large files withcp -R and copying a large file withcp .
For testing rump, standalone rump file systems were used
with fs-utils. Mounted rump file systems were not mea-
sured, as they mostly test the performance of puffs and
its kernel cache. For the copy operations the source data
was precached. The figures are the duration from mount
to operation to unmount.

The hardware used was a 2GHz Core2Duo PC lap-
top with a 100GB ATA drive. We performed the mea-
surements on a 4GB FFS disk image hosted on a regular
file and a 20GB FFS partition directly on the hard disk.
Both file systems were aged [26]: the first one artificially

ls bigcp treecp

se
co

nd
s

0

10

20

30

40

50

60

70

80

kern rump r/w rump mmio

Figure 6: FFS on a regular file (buffered). rump r/w uses
direct I/O, as discussed in Section 3.1.

by copying and deleting files. The latter one is in daily
use on the author’s laptop and has aged through natural
use. The file systems were always mounted so that I/O
is performed in the classic manner, i.e. FFS integrity is
maintained by performing key metadata operations syn-
chronously. This is to exacerbate the issues with a mix
of async and sync I/O requests.

The results are presents in Figure 6 and Figure 7. The
figures between the graphs are not directly comparable,
as the file systems have a different layout and different
aging. The CD image used for the large copy and the
kernel source tree used for the treecopy are the same.
The file systems have different contents, so the listing
figures are not comparable at all.
Analysis. The results are in line with the expectations.

• The directory traversal shows that the read opera-
tions perform roughly the same on a regular file and
6% slower for an unbuffered backend. This differ-
ence is explained by the fact that the buffered file in-
cludes read ahead for a userspace consumer, while
the kernel mount accesses the disk unbuffered.

• Copying the large file is 98.5% asynchronous data
writes. Memory mapped I/O is almost twice as slow
as read/write, since as explained in Section 3.1, the
relevant parts of the image must be paged in be-
fore they can be overwritten and thus I/O band-
width requirement is double. Unbuffered userspace
read/write is 1.5% slower than the kernel mount.

• Copying a directory tree is a mix of directory meta-
data and file data operations and one third of the

ls bigcp treecp

se
co

nd
s

0

10

20

30

40

50

60

70

80

kern rump r/w

Figure 7: FFS on a HD partition (unbuffered), accessed
through a character device.

I/O is done synchronously in this case. The mem-
ory mapped case does not suffer as badly as the
large copy, as locality is better. The rump read/write
case performs 10% better than the kernel due to a
buffered backend. The tradeoff is increased mem-
ory use. In the unbuffered case the problem of not
being able to execute a synchronous write operation
while an asynchronous one is in progress shows.

Notably, we did not look into modifying the NetBSD
kernel to provide better system call interfaces for selec-
tive cache flushing and I/O to character devices. For now,
we maintain that performance for the typical workload is
acceptable when compared to a kernel mount.

5 Related Work

The Alpine [9] network protocol development infrastruc-
ture provides an environment for running kernel code in
userspace. It is implemented before the system call layer
by overriding libc and is run in application process con-
text. This approach both makes it unsuitable for stati-
cally linked programs and creates difficulties with shared
global resources such as theread ()/write () calls used
for I/O beyond networking. Furthermore, from a file sys-
tem perspective, this kind of approach shuts out kernel-
initiated file system access, e.g. NFS servers.

Rialto [8] is an operating system with a unified inter-
face both for userspace and the kernel making it possible
to run most code in either environment. However, this
system was designed from ground-up that way. Inter-
esting ideas include the definition of both internal and

external linkage for an interface. While the ideas are in-
spiring, we do not have the luxury to redo everything.

Mach is capable of running Unix as a user pro-
cess [11]. Lites [12] is a Mach server based on the
4.4BSD Lite code base. Debugging and developing
4.4BSD file systems under Mach/Lites is possible by us-
ing two Lites servers: one for the debugger and one for
the file system being developed, including applications
using the file system. If the Lites server being debugged
crashes, applications inside it will be terminated. Being a
single server solution, it does not provide isolation from
the trusted computing base, either. A multiserver micro-
kernel such as SawMill [10] addresses the drawbacks of
a single server, but does not permit a monolithic mode or
use of the file system code as an application library.

Operating systems running in userspace, such as User
Mode Linux [7], make it possible to run the entire operat-
ing system as a userspace process. The main aims in this
are providing better debugging & development support
and isolation between instances. However, for develop-
ment purposes, this approach does not provide isolation
between the component under development and the core
of the operating system - rather, they both run in the same
process. This results in complexity in, for example, using
fault injection and dynamic analysis tools. Neither does
a userspace operating system integrate into the host, i.e.
it is not possible to mount the userspace operating system
as a file server. Even if that could be addressed, booting
an entire kernel every time a ukfs application is run is a
very heavyweight solution.

Sun’s ZFS file system ships with a userspace testing
library, libzpool [1]. In addition to kernel interface emu-
lation routines, it consists of the Data Management Unit
and Storage Pool Allocator components of ZFS compiled
from the kernel sources. The ztest program plugs directly
to these components. This approach has several short-
comings compared to rump file systems. First, it does
not include the entire file system architecture, e.g. the
VFS layer. The effort of implementing the VFS interface
(in ZFS terms theZFS POSIX Layer) was specifically
listed as the hardest part of porting ZFS to FreeBSD [6].
Second, it does not facilitate userspace testing with real
applications because it cannot be mounted. Third, the
test program is specific to ZFS.

Many projects reimplement file system code for
userspace purposes. Examples include e2fsprogs [30]
and mtools [22]. Their implementation overlaps that
which is readily already provided by the kernel. Espe-
cially e2fsprogs must track Linux kernel features and
perform an independent reimplementation.

fuse-ext2 [2] is a userspace file server built on top
of e2fsprogs. It implements a translator from FUSE
to e2fsprogs. The functionality provided by fuse-ext2
is the same as that if rumpext2fs, but requires specifi-

cally written code. The ChunkFS [13] prototype is fully
mountable, but it is implemented on FUSE and userspace
interfaces instead of the kernel interfaces.

Simulators [5, 29] can be used to run traces on file
systems. Thekkath et al. [29] go as far as to run the
HPUX FFS implementation in userspace. However,
these tools execute against a recorded trace and do not
permit mounting.

6 Conclusions and Future Work

In this paper we described theRunnable Userspace Meta
Program file system (rump fs)method for using preex-
isting kernel file system code in userspace. There are
two different modes of use for the framework: the p2k
mode in which file systems are mounted so that they can
be accessed transparently from any application, and a
standalone mode in which applications can use file sys-
tem routines through the ukfs library interface. The first
mode brings a multiserver microkernel touch to a mono-
lithic kernel Unix OS, but preserves a user option for
monolithic operation. The second mode enables reuse
of the available kernel code in applications such as those
involved in image access. Implementations discussed in
this paper were makefs and fs-utils.

The NetBSD implementation was evaluated. We dis-
covered that rump file systems have security benefits es-
pecially with untrusted removable media. Rump file sys-
tems made debugging and developing kernel file system
code easier and more convenient, and did not require ad-
ditional case-specific “glue code” for making kernel code
runnable in userspace. The issues regarding the mainte-
nance of the rump shim were examined by looking at
over a year’s worth of version control system commits.
The build had broken 17 times and functionality 5 times.
These were attributed to the lack of a full regression test-
ing facility and developer awareness.

The performance of rump file systems using FFS was
measured to be dependent of the type of backend. For
file system images on a buffered regular file, properly
synchronized performance was at best 10% faster than
a kernel mount. Conversely, for a an unbuffered char-
acter device backend the performance was at worst 40%
slower. We attribute lower unbuffered performance to
there being no standard interfaces for intermingling syn-
chronous and asynchronous writes. We estimate typical
workload performance to be±5% of kernel mount per-
formance. Future work may include optimizing perfor-
mance, although for now we are fully content with it.

As a concluding remark, the technology has shown
real world use and having kernel file systems from ma-
jor open source operating systems available as portable
userspace components would vastly increase system
cross-pollination and reduce the need for reimplemen-

tations. We encourage kernel programmers to not only
think about code from the classical machine depen-
dent/machine independent viewpoint, but also from the
environment dependent/environment independent per-
spective to promote code reuse.

Acknowledgments

This work has been funded by the Finnish Cultural Foun-
dation, The Research Foundation of Helsinki University
of Technology and Google Summer of Code.

The author thanks the anonymous reviewers for their
comments and Remzi H. Arpaci-Dusseau, the shepherd,
for his guidance in improving the final paper.

A special thank you goes to Arnaud Ysmal for imple-
menting fs-utils. Additionally, the author thanks Simon
Burge, André Dolenc, Johannes Helander, Luke Mew-
burn, Heikki Saikkonen, Chuck Silvers, Bill Stouder-
Studenmund, Valeriy E. Ushakov and David Young for
ideas, conversations, inspiring questions and answers.

Availability

The source code described in this paper is avail-
able for use and examination under the BSD license
from the NetBSD source repository in the directory
src/sys/rump . Seehttp://www.NetBSD.org/
for more information on how to obtain the source code.

References

[1] ZFS source tour. http://www.opensolaris.org/os /commu-
nity/zfs/source/.

[2] A KCAN , A. fuse-ext2. http://sourceforge.net/projects/fuse-ext2/.
[3] A LMEIDA , D. FIFS: a framework for implementing user-mode

file systems in windows NT. InWINSYM’99: Proc. of USENIX
Windows NT Symposium(1999).

[4] B IANCUZZI , F. Interview about NetBSD WAPBL.BSD Maga-
zine 2, 1 (2009).

[5] BOSCH, P.,AND MULLENDER, S. J. Cut-and-paste file-systems:
Integrating simulators and file-systems. InProc. of USENIX
(1996), pp. 307–318.

[6] DAWIDEK , P. J. Porting the ZFS file system to the FreeBSD
operating system. InProc. of AsiaBSDCon(2007), pp. 97–103.

[7] D IKE , J. A user-mode port of the Linux kernel. InALS’00: Proc.
of the 4th Annual Linux Showcase & Conference(2000).

[8] DRAVES, R., AND CUTSHALL , S. Unifying the user and kernel
environments. Tech. Rep. MSR-TR-97-10, Microsoft, 1997.

[9] ELY, D., SAVAGE , S., AND WETHERALL, D. Alpine: A User-
Level infrastructure for network protocol development. InProc.
of USITS’01(2001), pp. 171–184.

[10] GEFFLAUT, A., JAEGER, T., PARK , Y., L IEDTKE, J., ELPHIN-
STONE, K. J., UHLIG , V., TIDSWELL, J. E., DELLER, L., AND

REUTHER, L. The sawmill multiserver approach. InProc. of the
9th ACM SIGOPS Europ. workshop(2000), pp. 109–114.

[11] GOLUB, D. B., DEAN, R. W., FORIN, A., AND RASHID, R. F.
UNIX as an application program. InProc. of USENIX Summer
(1990), pp. 87–95.

[12] HELANDER, J. Unix under Mach: The Lites server. Master’s
thesis, Helsinki University of Technology, 1994.

[13] HENSON, V., VAN DE VEN, A., GUD, A., AND BROWN, Z.
ChunkFS: using divide-and-conquer to improve file system relia-
bility and repair. InProc. of HOTDEP’06(2006).

[14] HSUEH, M.-C., TSAI, T. K., AND IYER, R. K. Fault injection
techniques and tools.IEEE Computer 30, 4 (1997), 75–82.

[15] KANTEE, A. puffs - Pass-to-Userspace Framework File System.
In Proc. of AsiaBSDCon(2007), pp. 29–42.

[16] KANTEE, A., AND CROOKS, A. ReFUSE: Userspace FUSE
Reimplementation Using puffs. InEuroBSDCon 2007(2007).

[17] KERNIGHAN, B. Code testing and its role in teaching.;login:
The USENIX Magazine 31, 2 (Apr. 2006), 9–18.

[18] KLEIMAN , S. R. Vnodes: An architecture for multiple file sys-
tem types in sun UNIX. InProc. of USENIX(1986), pp. 238–247.

[19] MEWBURN, L., AND GREEN, M. build.sh: Cross-building
NetBSD. InProc. of BSDCon(2003), pp. 47–56.

[20] NETBSD PROJECT. http://www.NetBSD.org/.
[21] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework for

heavyweight dynamic binary instrumentation. InProc. of PLDI
(2007), pp. 89–100.

[22] NIEMI , D., AND KNAFF, A. Mtools, 2007.
http://mtools.linux.lu/.

[23] PRABHAKARAN , V., BAIRAVASUNDARAM , L. N., AGRAWAL ,
N., GUNAWI , H. S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. IRON file systems.SIGOPS OSR 39, 5 (2005),
206–220.

[24] SELTZER, M. I., BOSTIC, K., MCKUSICK, M. K., AND

STAELIN , C. An implementation of a log-structured file system
for UNIX. In Proc. of USENIX Winter(1993), pp. 307–326.

[25] SILVERS, C. UBC: An efficient unified I/O and memory caching
subsystem for NetBSD. InProc. of USENIX, FREENIX Track
(2000), pp. 285–290.

[26] SMITH , K. A., AND SELTZER, M. I. File system aging—
increasing the relevance of file system benchmarks.SIGMET-
RICS Perform. Eval. Rev. 25, 1 (1997), 203–213.

[27] SNYDER, P. tmpfs: A virtual memory file system. InProc.
EUUG Conference(1990), pp. 241–248.

[28] SZEREDI, M. Filesystem in USErspace.
http://fuse.sourceforge.net/.

[29] THEKKATH , C. A., WILKES, J.,AND LAZOWSKA, E. D. Tech-
niques for file system simulation.Software - Practice and Expe-
rience 24, 11 (1994), 981–999.

[30] TS’ O, T. E2fsprogs: Ext2/3/4 Filesystem Utilities, 2008.
http://e2fsprogs.sourceforge.net/.

[31] WOODHOUSE, D. Jffs2 the journalling flash file system. InOt-
tawa Linux Symposium(2001).

[32] YANG, J., SAR, C., TWOHEY, P., CADAR , C., AND ENGLER,
D. Automatically generating malicious disks using symbolic ex-
ecution. InSP ’06: Proc. of 2006 IEEE Symp. on Security and
Privacy(2006), IEEE Computer Society, pp. 243–257.

[33] YSMAL , A. FS Utils. http://NetBSD.org/˜stacktic/fs-utils.html.
[34] ZHANG, Z., AND GHOSE, K. hFS: a hybrid file system prototype

for improving small file and metadata performance. InProc. of
EuroSys(2007), pp. 175–187.

Notes
1 The kernel NFS server works in userspace, but is not yet part of

the official source tree. There are conflicts between the RPC portmap-
per and mount protocol daemon for user- and kernel space nfs service.
Basically, there is currently no way to differentiate if an exported di-
rectory hierarchy should be served by the kernel or userspace daemon.

2 The NetBSD problem report database can be viewed with a web
browser by accessinghttp://gnats.NetBSD.org/<num> , e.g.
in the case of kern/38057 the URL is http://gnats.NetBSD.org/38057.
The string “kern” stands for kernel and signifies the relevant subsystem.

