
BLOCK MANAGEMENT IN
SOLID-STATE DEVICES

Abhishek Rajimwale (University of Wisconsin-Madison)
Vijayan Prabhakaran (Microsoft Research)
John D Davis (Microsoft Research)

Existing storage stack

  Storage stack has remained static
 Mechanical disk drives for decades
 Narrow block interface existing for years (ATA, SCSI)
 No information flow except block reads/writes

  File systems make assumptions about devices
 Sequential access much faster than random access
 Little or no background activity

  Assumptions true for disk drives
  What if the underlying device changes ?

Block management in SSDs

SSD – A different beast

  SSDs differ from disks
 No mechanical or moving parts
 Contain multiple flash elements
 Different internal architecture
 Complex internal operations

  SSDs differ among themselves
 Low, medium, and high end devices
 Firmware, interconnections, mapping, striping, ganging

  Will the existing file system assumptions hold ?

Block management in SSDs

Problem

  Several assumptions are no longer valid

Block management in SSDs

Assumptions Disks SSDs

Sequential accesses much faster than random  

No write amplification  

Little background activity  

Media does not wear down  

Distant LBNs lead to longer access time  

  Implications
 Need to modify storage stack for SSDs ?

Results

  Modifications to tune storage stack for SSDs
 Cope with violated assumptions

  Rich interface to convey more information to device
  IO priorities
 Free blocks

  More functionality in device
 Low level block management

  Possible Solution
 Object based storage (OSD)

Block management in SSDs

Talk outline

  SSD benchmarking
  Case studies

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

SSD benchmarking

Block management in SSDs

  Used a range of SSDs for experimentation
 Engineering samples and pre-production samples
 Used both SLC and MLC-based SSDs
 Anonymized the SSDs as S1, S2, S3, S4

  Performed read/write experiments on
 HDD: Seagate Barracuda 7200.11 drive
 SSD samples

SSD benchmarking results

Block management in SSDs

  Random-reads fast in SSDs
  Random-writes getting better with FTL techniques

Device Read (MB/s) Write (MB/s)

Seq Rand Ratio Seq Rand Ratio

HDD 86 0.6 143 86 1.3 66

S1slc 205 18 11 169 53 3.1

S2slc 40 4.4 9 32 0.1 328

S3slc 72 29 2.4 75 0.5 151

S4mlc 68 21 3.2 22 15 1.5

Talk outline

  SSD benchmarking
  Case studies (3 violated assumptions)

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

Methodology

  Measurement on real SSDs
  File system traces from real

machine
  DiskSim simulator (PDL)

 Complete storage stack
 Synthetic trace generator
 External traces

  SSD module extension

Block management in SSDs

Talk outline

  SSD benchmarking
  Case studies

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

Write amplification

  Low-end and medium-range
SSDs

  Reasons
 Write size < stripe size
 Physical page < logical page

Block management in SSDs

Write amplification in real device

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 (

M
B/

s)

Write size (MB)

SSD sample S2 – 32GB   Measurements taken on a
real device
  SSD sample S2 – 32GB

(Low end SSD)
  Experiment: Issued

continuous writes of
varying sizes

  Writes are striped
  Stripe size: 1 MB

  Write amplification not
seen in S1, S4

Block management in SSDs

Write amplification improvement

Block management in SSDs

Violated assumption
 No write amplification

Proposed improvement
 Merge requests along stripe boundary in device

Case study implementation
  Implemented logic in simulator SSD module
 Run traces on modified simulator

Write amplification- Results

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8

N
or

m
al

iz
ed

 R
es

po
ns

e
tim

e

Probability of sequential access

Normalized response time

Block management in SSDs

Benchmark Improvement (%)

Postmark 1.15

TPCC 3.08

Exchange 4.89

IOzone 36.54

Synthetic trace Real benchmark traces

Talk outline

  SSD benchmarking
  Case studies

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

Background activity

Violated Assumption
 Storage device passive - little or no background activity
 SSD does cleaning and wear-leveling

Problem
 Host can’t control background activity
 Prevent effect of background operations on priority

requests
Proposed Improvement: Priority-aware cleaning

  Inform device about priorities
 Device avoids background operations

Block management in SSDs

Priority-aware cleaning - Implementation

Methodology
 DiskSim supports priority request queuing
 Used synthetic trace generator
 Modified simulator SSD module

Improvement: Priority-aware cleaning
 Two cleaning thresholds

  Low
 Critical

 Outstanding priority requests
 Clean only if below the critical watermark

Block management in SSDs

Priority-aware cleaning - Results

  10% improvement
in response time of
priority requests

  Improvement at the
cost of non-priority
traffic

Block management in SSDs

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

20 40 60 80

Re
sp

on
se

 ti
m

e
 (

m
s)

Write percentage

Priority unaware cleaning
Priority aware cleaning

Priority requests

Non- Priority
requests

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

20 40 60 80

Re
sp

on
se

 ti
m

e
 (

m
s)

Write percentage

Priority unaware cleaning

Priority requests

Non- Priority
requests IO-Scheduling

Talk outline

  SSD benchmarking
  Case studies

 Write amplification
 Background activity
 Device wear-down

  Object-based storage
  Related work
  Conclusion

Block management in SSDs

Device wear-down

Violated Assumption
 Media does not wear down
 SSD: Blocks have finite erase cycles

Problem
 Must reduce writes to blocks

Proposed Improvement: Informed Cleaning
 File system has free block information
  Inform device about block freeing
 Free blocks need not be copied in cleaning

Block management in SSDs

Informed cleaning - Example

Block management in SSDs

1 2 3 4 5 6 7 8 9 SSD

File System 2,3,4,5,6,7,8,9

Free block
information

1

File system
used blocks

1,2,3,4,5,6,7,8 9 1,3,5,7 2,4,6,8,9

Informed cleaning - Implementation

Methodology
 Used postmark benchmark traces

from real machine
  Intercepted block-free calls at

pseudo driver below FS
 Generate real traces with free

block information
Improvement: Informed Cleaning

 Modified simulator SSD module
  Track freed blocks
  Skip copying free blocks for

reclamation

Block management in SSDs

Informed cleaning - Results

  Cleaning efficiency
 One-third pages moved
 Cleaning efficiency

improved by factor of 3
 Device lifetime improved

  Cleaning time
 30 to 40 % improvement
 Response time improved 0

50

100

150

200

250

300

5K 6K 7K 8K

#
 P

ag
es

 m
ov

ed
 (

th
ou

sa
nd

s)

transactions (postmark)

without free info with free info

Block management in SSDs

Summary of improvements

Block management in SSDs

  Write amplification
 Need “stripe size” from device

  Background activity (Priority aware cleaning)
 Need “IO priority” information from OS

  Device wear-down (Informed cleaning)
 Need “free block” information from FS

  Need richer interface

Possible solution

Block management in SSDs

  SSD has intricate knowledge of its internals
  Amount of parallelism

  Ganging ?
  Shared bus and/or shared data ?

  Logical to physical mapping
  Super-paging ?
  Striping ?

  Internal background operations
  When cleaning and wear-leveling ?
  Separate unit for cleaning ?

Solution:
  Rich interface to convey higher level semantics
  Device handles block management

SSD as OSD

Block management in SSDs

  OSD manages space for objects
  Informed cleaning
 Stripe aligned accesses
 Logical to physical mapping

  OSD has object attributes
 Wear-leveling using cold data information
 Priority assigned to objects

  OSD handles low-level operations
 Block management in SSD

Related work

  Design tradeoffs for SSDs
  MEMS-based storage devices and standard disk

interfaces
  Operating system management of MEMS based

storage devices
  Bridging the information gap in storage protocol stacks
  Non-Volatile Memory Host Controller Interface 1.0
  Object-based storage
  Track-aligned extents

Block management in SSDs

Conclusion

  Revisited storage specific assumptions for SSDs
 Several assumptions violated

  Proposed improvements to tune storage stack for
SSDs

  Need for richer interface
  More functionality in devices
  One possible solution: OSD

 Understands high-level semantics
 Handles low-level operations

Block management in SSDs

Questions

Block management in SSDs

