Decaf {Movmg Device Drlvers to a
Modern Language

i 5 &
I\/Iatthe'w Renzelmann Michael Swn°t

\ University of Wisconsin-Madison '//,

. _/“_",’, '. /
o n‘ /
t 1 /
.".\ //
VY § /
/
J

/ \
v>1 /\"
/ ¥ a 7
: P
e

Driver Programming |s Not Easy

__free_pages —
argv_free —
blk_queue_free_tags —
dma_free_coherent —
free_all_bootmem -
free_page_and_swap_cache —

Vighy, ma

hci_free_dev

kfree —
kfree_skb —
mempool_kfree —
page_table_free —
pci_free_consistent —

release_and_free resource
rpc_free_iostats

sctp_ootbh_pkt free
skb_free_datagram
snd_device_free_all
snd_dma_free_pages
Ay-imore
n _pagis

snd_util_mem_free
snd_util_memhdr_free
ssp_free
try_to_free_swap

selinux_xfrm_policy_free
— snd_soc_dapm_free
vfree

What About Java?

2009 USENIX Annual Technical Conference

Kernel vs. Java Development

Memory Manual Garbage
management collection
Type safety Limited Extensive
Debugging Few tools / Many tools /
difficult easier

Data structure Subset of libc Java class library
library

_ Error handling Return values Exceptions

2009 USENIX Annual Technical Conference

Motivation

* Kernel programming is difficult and leads to
driver unreliability

* Existing approaches

— Isolating drivers (Nooks [Swift04], SafeDrive
[Zhou06])

— User-level drivers (Nexus [Williams08])

— New driver design (Dingo [Ryzhyk09], User-mode
Driver Framework [Microsoft06], Singularity
[Hunt05])

Decaf Drivers

* Decaf Drivers execute most driver code in user
mode Java

— Performance critical code left in kernel

* The Decaf System provides support for

1.migrating driver code into a modern language
(Java)

2.executing drivers with high performance
_3.evolving drivers over time

Outline

Introduction

Overview
— Goals
— Architecture

Desigh and Implementation
Evaluation
Conclusion

Goals: Making Decaf Practical

1. Compatibility with existing kernels/drivers

2. A migration path from existing drivers to
decaf drivers

3. Support for evolution as drivers, devices, and
kernels change

Existing Driver Architecture

* Little error checking at compile

Application or run time

* No rich data structure library

* Few debugging aids

Kernel

Driver > Device

Decaf Architecture

User-Level Driver

Application

Decaf Driver
(Java)

Decaf Runtime/XPC

Kernel

Nuclear
Runtime/XPC

Driver > Device

Decaf Architecture

L User-Level Driver
Decaf Driver Driver Library
|| Application (Java) (C)
Decaf Runtime/XPC
Kernel Nuclear
Runtime/XPC
Driver .
Device
Nucleus

Creating Decaf Drivers

1. From scratch

2. By migrating existing kernel drivers

— DriverSlicer provides tool support to move driver
code out of the kernel

Creating Decaf Drivers

Legacy Driver

1. Annotate it

Annotated Legacy Driver

2. Run DriverSlicer to split
the driver into a Driver DriverSlicer

Nucleus and Library

. Decaf Driver Driver Library
3. Migrate code from the (Java) (©)
. . . XPC
Driver Library into the
Decaf Driver XPC
Driver
Nucleus

Introduction

Overview

Outline

Design and Implementation

— Communication

— Creation

Evaluation

Conclusion

2009 USENIX Annual Technical Conference

Design: Runtime Components

* Locking/Synchronization: CombolLocks
* Sharing: Object Tracker
e Communication: Extension Procedure Call (XPC)

— Kernel/User upcalls and downcalls
— Java/C calls

ENS1371 Communication Example

User-Level Driver

Application

Decaf Driver | Driver Library

(Java) (C)

! S
Decaf Runtime/XPC

Kernel

Nuclear
Runtime/XPC

Driver

Nucleus

ENS1371 Communication Example

L User-Level Driver
Decaf Driver | __ | Driver Library
(Java) (C)
S
Decaf Runtime/XPC
Kernel Nuclear
Runtime/XPC
{0l snd_audiopci_probe Driver > Device
| Nucleus

2009 USENIX Annual Technical Conference

Kernel/User XPC

* Challenges

— Minimizing data copied

— Communicating complex data structures
* Solutions

— Copying only structure fields that are used
— Detecting recursion and linked data structures

Kernel/User XPC

L User-Level Driver
Decaf Driver Driver Library
|| Application (Java) (C)
Decaf Runtime/XPC
Kernel
_l'm'l'l'el'l'l'l'q_l'\'l_b
Driver .
Device
Nucleus

Java/C Communication

e Solution: Use Jeannie [Hirzel, OOPSLA '07]

— Allows C and Java code to be mixed at the
expression level

— Uses the back tick operator (') to switch from Java
to C

— No need to write Java Native Interface code

public static void outb(int val, int port)
“val, "port

Complex Java/C Transfer: XPC

 Example: invoking the Java implementation of
snd_audiopci_probe from C

 Complex data structures are communicated

via Java/C XPC
— XPC uses marshaling and demarshaling to transfer
data structures
— Wrappers implemented using Jeannie simplify
control and data transfer

Java/C XPC

l User-Level Driver

]
Decaf Driver Driver Library
|| Application (Java) (C)
F\time/XPC
Kernel clear
Runtime/XPC
Driver :
Device
Nucleus

Creation: DriverSlicer

* Goal: Migrate code in existing driver to Java

* DriverSlicer features
— Splits drivers into a driver nucleus and library

— Provides access to kernel data and functions from
Java

Access to Kernel Data and Functions

* Phase one: ClL-based tool
— Extracts all data structure definitions and typedefs
— Converts these definitions to an XDR specification
* Phase two: Enhanced existing rpcgen and
jrpcgen tools
— Create Java classes with public fields
— Support features like recursive data structures

Phase 1: Example romeioon

struct e1000_adapter{ ...
struct e1000_rx_ring test_rx_ring;
uint32_t * __ attribute__ ((exp(PCI_LEN))) config_space;

int msg_enable;
-} Original C code

typedef unsigned int uint32_t;

struct uint32_256 t {
uint32_t array_256[256];

}!

typedef struct uint32_t 256 *uint32_t 256 _ptr;

struct e1000_adapter { ...
struct e1000_rx_ring test_rx_ring;
uint32_t_256 ptr config_space;
int msg_enable;

e B Automatically-generated XDR Definition

Phase 2: Continued

typedef unsigned int uint32_t;
struct uint32_256 t {
uint32_t array_256[256];
}
typedef struct uint32_t 256 *uint32_t 256 ptr;
struct e1000_adapter { ...
struct e1000_rx_ring test_rx_ring;
uint32_t_256_ptr config_space;
int msg_enable;
. } Automatically-generated XDR Definition

public class e1000_adapter ... { ...
public e1000_rx_ring test_rx_ring;
public uint32_t 256 ptr config_space;
public int msg_enable;

public e1000_adapter () { ... }
public e1000_adapter(XdrDecStream xdr) { ... }
public void xdrEncode(XdrEncStream xdr) { ... }

public void xdrDecode(XdrDecStream xdr) { ... }
} Automatically-generated Java

Driver Evolution

 Example: E1000 network driver 2.6.18.1 to
2.6.27

— e1000_adapter structure needs additional
members

» XPC does not transfer new fields automatically

e Solution: the driver is the specification
1)Add new member definitions to original e1000.h
2)Re-run DriverSlicer

~ 3)Use variables in Driver Nucleus or Decaf Driver

Designh Summary

* Decaf meets its goals

* Decaf supports
— Compatibility with existing drivers
— A migration path from C to Java
— Evolution of kernels and drivers

Outline

* Introduction
* Overview
* Desigh and Implementation

e Evaluation
— Conversion effort
— Performance analysis
— Benefits of Decaf Drivers
e Case study of E1000 gigabit network driver

P *foncl usion

2009 USENIX Annual Technical Conference

Conversion Effort
| Functions
Anno-

Lines of . Driver Decaf Driver
tations

Code Nucleus Driver Library

ensl371 2,165

uhci-hcd 2,339

Original

2009 USENIX Annual Technical Conference

Results: Relative Performance

1.25
't
Q 1
o
(o))
2 0.75
fd
Z
~ 0.5
G
(S
@ 0.25
0
0 [I [[I
¢+ AY o o
QQQ QQQ & Ox\ @00
(é* (é\' S $Q QC,

2009 USENIX Annual Technical Conference

Results: CPU Utilization

= OnexpCeaevery | M Native Driver CPU
S 25 two seconds - W Decaf Driver CPU
- No XPC
O 20
..g \
N 15 15XPCalls | [~ -
- 10 on playback OA
= start/end /\
2 5 - \
a
O b\
O l [[[
+ + + N O <
oo\' c>°K QQ& QQ& \’,’;\ X o
N X Q Q S & R
5 o5 < <« ™ D S
S S

" E1000: Core 2 Quad 2.4Ghz, 4GB RAM

Allothers: Pentium D 3.0Ghz, 1GB RAM

2009 USENIX Annual Technical Conference

Experience Rewriting Drivers

e Step one: initial conversion
— Largely mechanical: syntax is similar

— Leaf functions first, then remainder

e Step two: use Java language features
— Example benefit: E1000 exception handling

Java Error Handling
Original C, 1000 _hw.c

if(hw->ffe_config_state == e1000_ffe config_active) {
ret_val = e1000_read_ phy reg(hw, 0x2F5B,
&phy_saved_data);
if(ret_val) return ret_val;

ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
if(ret_val) return ret_val;

msec_delay _irq(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,

IGP01E1000_IEEE_FORCE_GIGA);
if(ret_val) return ret_val;

_» Many extra conditionals
* Easy to miss an error condition

Java Error Handling

Java, e1000_hw.java

if(hw.ffe_config_state.value == e1000_ffe config_active) {
e1000_read_phy_reg(0x2F5B, phy_saved_data);
e1000_write_phy_reg((short) 0x2F5B, (short) 0x0003);
e1000_write_phy_reg((short) 0x2F5B, (short) 0x0003);
DriverWrappers.Java_msleep (20);
e1000_write_phy reg((short) 0x0000,
(short) IGPO1E1000 _IEEE_FORCE_GIGA);

 E1000 Decaf Driver: using exceptions

— Uncovered at least 28 cases of ignored error
conditions

— Resulting code 8% shorter overall

Conclusions

* Decaf Drivers simplify driver programming
— Provide a migration path from C to Java
— Allow driver code to run in user mode
— Support continued driver and kernel evolution
— Offer excellent performance

Questions?

For more information:
mjr@cs.wisc.edu

swift@cs.wisc.edu

http://pages.cs.wisc.edu/~swift/drivers

2009 USENIX Annual Technical Conference

