
USENIX Association

Proceedings of
USITS ’03:

4th USENIX Symposium on
Internet Technologies and Systems

Seattle, WA, USA
March 26–28, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Network-Sensitive Service Discovery

An-Cheng Huang and Peter Steenkiste
Carnegie Mellon University
{pach,prs}@cs.cmu.edu

Abstract

We consider the problem of network-sensitive service
selection (NSSS): finding services that match a partic-
ular set of functional and network properties. Cur-
rent solutions handle this problem using a two-step pro-
cess. First, a user obtains a list of candidates through
service discovery. Then, the user applies a network-
sensitive server selection technique to find the best ser-
vice. Such approaches are complex and expensive
since each user has to solve the NSSS problem inde-
pendently. In this paper, we present a simple alterna-
tive: network-sensitive service discovery (NSSD). By in-
tegrating network-sensitivity into the service discovery
process, NSSD allows users who are looking for services
to specify both the desired functional and network prop-
erties at the same time. Users benefit since they only
have to solve a restricted version of the server selection
problem. Moreover, NSSD can solve the NSSS problem
more efficiently by amortizing the overhead over many
users. We present the design of NSSD, a prototype im-
plementation, and experimental results that illustrate how
NSSD can be utilized for different applications.

1 Introduction

There is considerable interest in network services that are
more sophisticated than traditional Web services. Ex-
amples include interactive services such as video con-
ferencing, distributed games, and distance learning. An
important property of these services is that their perfor-
mance depends critically on the network, so the service
selection process should consider the network capabil-
ities, i.e., it should be network-sensitive. One way of
building such sophisticated services is through compo-
sition of service components (e.g., automatic path cre-
ation [23] in Ninja [13], Panda [31], and Libra [34]).
The “brokers” that select and compose the service com-
ponents also have to consider network properties, e.g.,
they should make sure sufficient bandwidth is available
between a component and the users, and between com-
ponents. The key operation in these examples is the
network-sensitive service selection (NSSS) problem.

Existing research related to the NSSS problem falls

in roughly two classes. Service discovery infrastructures
allow a user to find a set of servers with certain functional
properties, where the properties are typically described
as a set of attribute-value pairs. Existing solutions, for
example, [16] and [6], differ in the flexibility of naming
and matching and in their scalability properties. On the
other hand, given a set of servers that provide a particular
service, the server selection problem is to select the one
that can best satisfy the user’s requirements. Previous
work in this area has mostly focused on the problem of
identifying the Web server that is “closest” to a client,
e.g., has the highest-bandwidth or lowest-latency path [3,
4, 21, 32].

Clearly we can solve the NSSS problem by combin-
ing service discovery and server selection in the follow-
ing way. A user first utilizes a service discovery infras-
tructure to obtain a list of servers that can provide the
required service and then applies a server selection tech-
nique to identify the server that can best satisfy the user’s
requirements. Unfortunately, this solution is often not
practical. A first problem is scalability: for common
services, the number of servers to be considered in the
server selection phase would be overwhelming, making
the process very expensive. A second problem is com-
plexity: server selection is a difficult problem, and re-
quiring each user (e.g., application or broker) to develop
these mechanisms from scratch increases the develop-
ment cost. Finally, if services are offered by commer-
cial providers, they may not be willing to expose their
individual servers, so user-side selection cannot be per-
formed.

We propose a simple alternative, namely network-
sensitive service discovery (NSSD). The idea is that
when users contact the service discovery infrastructure,
they can specify not only static functional properties,
but also network connectivity and server load proper-
ties. NSSD returns the best server (or a small number
of good servers) according to the user’s requirements.
Therefore, in effect we have moved most of the com-
plexity of server selection from the user to the service
discovery infrastructure. Providers do not need to ex-
pose all their servers to users, since server selection is
handled by NSSD, which is trusted by the providers.



Moreover, by integrating service discovery and server se-
lection, NSSD can amortize overhead such as collecting
network information across multiple users and can also
apply distributed solutions. Therefore, we can solve the
NSSS problem more efficiently and in a more scalable
way.

The remainder of this paper is organized as follows.
We elaborate on challenges associated with the NSSS
problem in the next section. In Section 3 we describe our
network-sensitive service discovery solution, including
the design of the service API and the mechanisms used
for network-sensitive service discovery. We describe a
prototype system in Section 4, and Section 5 presents an
evaluation using the PlanetLab testbed. Finally, we dis-
cuss related work and summarize.

2 Problem Statement

2.1 Service Model

Let us first identify the players:
• Providers: Each provider provides a service, for ex-

ample, a service that provides streaming video of
movies. Typically, a provider will use a set of dis-
tributed servers to deliver the service, for example, a
set of replicated streaming servers.

• Users: Each user invokes and uses one or more ser-
vices. A user can either be an end user, for example,
a person watching a movie using a streaming video
service, or another service provider, for example, a
video streaming service may rely on another service
provider for transcoding service.

For a particular service type, there will typically be
many different providers, each of which may have many
servers. In a traditional setup, a user utilizes a service
discovery mechanism to select a provider that can de-
liver the required service. The selection of the specific
server can then either be done by the selected provider
(provider-side selection), or it can be done by the user,
assuming the provider makes information about its inter-
nal capabilities available to the user (user-side selection).

Unfortunately, server selection becomes more com-
plicated if the selection has to be done in a network-
sensitive fashion or if users want to use user-specific se-
lection criteria. Before we address these questions, let us
look at some application examples.

2.2 Applications

In Figure 1, four users want to play a multiplayer online
game together, so they need a game server to host their
gaming session. Specifically, they need a game server
that not only satisfies certain functional properties (e.g.,
supports a particular game and has certain anti-cheating
features) but also delivers good “performance”. For this

user1
1.1.1.1

user2
2.2.2.2

user3
3.3.3.3

user4
4.4.4.4

server1
5.5.5.5

server2
6.6.6.6

server3
7.7.7.7

Figure 1: Selecting a game server for a multiplayer online
game

user1
1.1.1.1

user2
2.2.2.2

user3
3.3.3.3

user4
4.4.4.4

ESM Proxy
5.5.5.5

6.6.6.6

7.7.7.7

ESM
Overlay

Figure 2: Proxy-based End System Multicast (ESM) example

application, this means that the players have a low net-
work latency to the server and that the server is lightly
loaded.

In the second example (Figure 2), a group of users
want to use a proxy-based End System Multicast (ESM,
see [5]) service. Each participant sends its packets to an
ESM proxy, and all proxies serving this group construct
an ESM overlay to efficiently deliver the packets to all
other participants. The problem is finding a set of ap-
propriate ESM proxies to serve the users. One possible
selection metric in this case is the sum of the latencies
between each user and the ESM proxy assigned to the
user, since minimizing this metric may reduce the total
network resource usage.

The third example is a simple service composition sce-
nario (Figure 3): a user wants a service that provides
low bit rate MPEG-4 video streams, and we can deliver
such a service by putting together a high bit rate MPEG-
2 video streaming service and an MPEG-2-to-MPEG-4
video transcoding service. If our goal is to minimize
the total bandwidth usage, this scenario presents an in-
teresting situation: selecting a streaming server close to
the user can reduce bandwidth usage, but a more distant
streaming server may turn out to be a better choice if we
can find a transcoder that is very close to the server. In
other words, this problem requires the coordinated selec-
tion of multiple services.

2.3 Current Solutions

There has been a lot of research on network-sensitive
server selection, i.e., given a list of servers, select the
best one considering certain network properties. Some
approaches perform active probing at selection time to



Selection 1:
Server closer to user
consumes more bandwidth

Streaming
server

Transcoder

User
Selection 2:
The more distant server
is a better choice

high
bit rate

low
bit rate

Figure 3: Composing a video streaming service

determine the best server, for example, [4] and [8], while
others use network properties that have been computed,
measured, or observed earlier, for example, [3, 30, 32,
33]. Most of these techniques were developed for spe-
cific applications, and they were applied either on the
user side or on the provider side.

In a provider-side approach, a user first utilizes service
discovery to select a provider, and the provider then in-
ternally applies a network-sensitive selection technique
to select one of its servers for the user. In a user-side ap-
proach, a user obtains a list of candidate servers from the
selected provider, and it then applies network-sensitive
selection to select one of the candidates.

Although applying network sensitivity on the user side
or the provider side is suitable for some applications
(e.g., user-side Web mirror server selection, provider-
side cache selection in content distribution networks,
etc.), both user-side and provider-side approaches have
their limitations. The advantage of provider-side ap-
proaches, i.e., being transparent to users, is also its dis-
advantage: a user does not control the selection crite-
ria and does not know what level of performance can
be expected. User-side approaches, on the other hand,
have high overhead: every user needs to obtain a po-
tentially long list of candidates and collect network sta-
tus information for the candidates. Also, each applica-
tion has to implement a network-sensitive selection tech-
nique. Moreover, providers must release details about
their internal capabilities, a dubious assumption at best.

In this paper, we propose a different approach:
network-sensitive service discovery (NSSD), which in-
tegrates service discovery and network-sensitive server
selection. NSSD allows a user to specify both func-
tional and network properties when selecting a server.
Given these properties, NSSD returns the best server or
a small number of “good” candidates to the user. The
user can then use the candidates to perform user-specific
optimizations. There may be competing NSSD infras-
tructures, and providers and users can choose which one
to use. A large provider providing many servers/services
can even implement its own NSSD infrastructure.

Compared with provider-side approaches, NSSD al-
lows users to control the selection criteria, and it exposes
sufficient information to allow users to further optimize

the selections (e.g., global optimizations in service com-
position). Compared with user-side approaches, NSSD
has lower overhead both in terms of service discovery
(only a small number of good candidates are returned to
the user) and network sensitivity (NSSD can amortize the
cost of collecting network status information). In addi-
tion, providers only need to release their complete server
information to a “trusted” NSSD infrastructure.

3 Network-Sensitive Service Discovery

We define the API used for formulating NSSD queries
and describe several possible NSSD designs.

3.1 NSSD API

To define our API for NSSD, we need to determine what
functionalities NSSD should provide. From the three ex-
amples in Section 2.2, we can see that the server selec-
tion problem is an optimization problem: find a solution
(e.g., a game server) that optimizes a certain metric (e.g.,
the maximum latency) for a target or a set of targets (e.g.,
the players). The examples illustrate two types of opti-
mization problems: local and global. A local optimiza-
tion problem involves the selection of a single service,
e.g., select a game server that minimizes the maximum
latency to a group of players. A global optimization
problem involves the coordinated selection of different
services, e.g., select a streaming server and a transcoder
such that the overall bandwidth usage is minimized. Note
that in service composition scenarios (e.g., Figure 3), se-
lecting each service independently using local optimiza-
tions may not yield the globally optimal solution.

The key question is: what part of the optimization
should be done by NSSD and what part should be left
to the user. We decided to define an API that would al-
low a user to ask NSSD to perform local optimizations
for individual services using generic optimization met-
rics. However, a user can also ask NSSD to return a small
number of “locally good” candidates for each service so
that the user can then apply global optimization criteria
across services using the returned results.

Let us elaborate on these design decisions:
• Local optimization only: Our API allows users to

specify local optimization problems only, i.e., a user
can only ask NSSD to select one service at a time.
The reason for this decision is that global optimiza-
tions are likely to be service-specific and may be ar-
bitrarily complex, so it is more appropriate to leave
them to the user. Note, however, that multiple “iden-
tical servers” may be required to provide a service.
For example, in Figure 2, we need to select three
ESM proxies for the ESM service, using the sum of
the latencies as the optimization metric. We consider
such optimization problems to be local, and they are



FindServers(
service_properties, // service attributes
target_list, // optimization targets
num_servers, // num. of identical servers needed
num_solutions, // num. of solutions needed
latency_type, // MAX/AVG/NONE
latency_constraint, // constraint/MINIMIZE/NONE
bw_type, // MIN/AVG/NONE
bw_constraint, // constraint/MAXIMIZE/NONE
load_constraint // constraint/MINIMIZE/NONE

)

Output
solution // solution(s)
mapping // user-server mapping(s)
fitness // the ‘‘score(s)’’ of the solution(s)

Figure 4: The NSSD API

supported by NSSD.

• A set of standard metrics: Our API allows a user to
specify constraints and preferences on a set of stan-
dard metrics: maximum and average latency, mini-
mum and average bandwidth, and server load. While
it may be possible to allow users to specify, for exam-
ple, their own utility functions based on these stan-
dard metrics, it is currently not clear that the potential
benefit is worth the extra complexity.

• Best-n-solutions: As defined by the first two deci-
sions, NSSD supports local optimizations based on
a set of standard metrics. While this is sufficient
in many cases involving the selection of single ser-
vices, it is not adequate in cases requiring the coor-
dinated selection of multiple services or the use of
user-specific metrics. Therefore, NSSD also allows
a user to ask for a number of good solutions when
selecting a service. The user can then apply user-
specific or global optimization criteria on these lo-
cally good solutions. In Section 3.2, we will use a
service composition example to illustrate the use of
this best-n-solutions feature.

Figure 4 shows the resulting NSSD API. The argument
“num servers” specifies how many identical servers are
required in a solution, and “num solutions” specifies
how many locally good solutions should be returned.
The solutions are returned in “solution”, in the form of
IP addresses. When multiple identical servers are needed
in a solution, “mapping” specifies which server is used
for each user. NSSD also returns a “fitness” (i.e., the
value of the selection metric) for each returned solution,
which may be helpful to the user for use in further op-
timizations. This can be viewed as a compromise be-
tween two extremes: having the provider not release any
details about the service it can provide (which prevents
user-specific optimizations) and having the provider list
all its capabilities (which would be needed for pure user-
side optimizations). Note that a server returned may be

FindServers(
"(type=ESMProxy)(protocol=Narada)\

(version=1.0)",
"1.1.1.1,2.2.2.2,3.3.3.3,4.4.4.4",
3, 1,
AVG, MINIMIZE,
NONE, NONE, NONE

)

Output
solution: {"5.5.5.5,6.6.6.6,7.7.7.7"}
mapping: {"0,1,2,2"}
fitness: {42.42}

Figure 5: Using the API in the ESM example

the front end of a cluster of servers. Since servers in a
cluster have similar network properties, this does not af-
fect the effectiveness of the network-sensitive selection
in NSSD, and it leaves room for the provider to do inter-
nal load balancing. Note also that additional information
regarding each solution (e.g., monetary cost) may need
to be returned so that the user can perform further opti-
mizations.

Let us use the End System Multicast (ESM) example
in Figure 2 to illustrate the use of the API. The top part
of Figure 5 shows the NSSD query in this scenario. We
first specify that we want to find ESM proxies that are
using the Narada protocol version 1.0. The next param-
eter specify that the selection should be optimized for
the four users in this scenario. The next two parameters
specify that we want three identical ESM proxies in a so-
lution, and we only need the best solution. The remain-
ing input parameters specify that we want to minimize
the average latency, and we do not have constraints or
preferences on bandwidth and load. Assuming that the
best solution is the configuration in Figure 2, the result
returned by the API is shown in the bottom part of Fig-
ure 5. NSSD returns the best solution, which consists of
three ESM proxies, and the “mapping” specifies that user
1 is assigned to ESM proxy 5.5.5.5, user 2 is assigned to
6.6.6.6, and users 3 and 4 are assigned to 7.7.7.7. In ad-
dition, the fitness value of this solution is 42.42.

3.2 A Sample Application: Service Composition

In this section, we use a more complex example of ser-
vice composition to illustrate the use of NSSD. Suppose
the five users in Figure 6 want to establish a video con-
ferencing session. The problem is that they are using
different video conferencing applications and hardware
platforms: P1 and P2 are using the MBone applications
vic/SDR, P3 and P4 are using Microsoft NetMeeting,
and P5 is using a handheld device that is receive-only
and does not do protocol negotiation. We can support
this conference by composing a video conferencing ser-
vice using the following more primitive service compo-
nents. First, we need a “video conferencing gateway”



vic/SDR

vic/SDR

NetMeeting

NetMeeting

handheld
(receive-only)

VGW

HHP

d1

d2

d3

d4

e1

e2

e3

h1

n1

n2

P1

P2
P3

P4

P5

ESM
Overlay

ESM
Proxy

Figure 6: An example of service composition: video confer-
encing session

(VGW) that supports interoperability between H.323,
which is used by NetMeeting, and Session Initiation Pro-
tocol (SIP), which is used by SDR. Second, we need a
“handheld proxy” (HHP) that can join the session on be-
half of the handheld user and forward the video stream to
the handheld device. Finally, we can use the ESM service
to establish a multicast session among the vic users, the
VGW, and the HHP, as shown in Figure 6. Note that this
is more general than service composition based on a path
model, which is explored in, for example, the Ninja [23]
and Panda [31] projects.

This service composition example raises an interest-
ing challenge: the selection of the different components
is mutually dependent. For example, suppose our goal is
to minimize the total network resource usage, and the op-
timization heuristic we use is to minimize the following
function:

W1(d1 + d2 + d3 + d4 +
2
3
(e1 + e2 + e3))

+W2h1

+W3(n1 + n2) (3.1)

where W1, W2, and W3 are weights for the three parts
(multicast, handheld, and NetMeeting) of the service,
and the other variables are the latencies between differ-
ent nodes as depicted in Figure 6. Different weights for
the three parts reflect the difference in bandwidth con-
sumption. For example, NetMeeting can only receive
one video stream, and the HHP may reduce the video
bandwidth before forwarding it to the handheld.

Unfortunately, selecting all the components together
to minimize the above function may be too expensive to
be practical. For example, suppose there are n VGWs,
n HHPs, and n ESM proxies available. To find the opti-
mal configuration, we need to look at roughly n 5 pos-
sible configurations, which is only feasible when n is
small. Therefore, our approach is to use the following
heuristic: select each component using local optimiza-
tions and then combine the locally optimal solutions into
a global solution. This is the approach supported by

NSSD. For example, in the video conferencing service
above, we first ask NSSD to return the VGW that is
closest to the NetMeeting users (since they only support
unicast), we then ask NSSD to return the HHP that is
closest to the handheld user, and finally we ask NSSD
to return the optimal set of ESM proxies (minimizing
d1 + d2 + d3 + d4) for the vic/SDR users, the selected
VGW, and the selected HHP. In other words, we uti-
lize NSSD to solve three local optimization problems se-
quentially (using three local optimization heuristics) and
combine the three local solutions to get a global solution.

Of course, a combination of locally optimal solutions
may not be globally optimal. To improve the component
selection, we can utilize the “best-n-solutions” function-
ality provided by NSSD. For example, in the video con-
ferencing service, we first ask NSSD to return the best n
VGWs (in terms of latency to NetMeeting users), and we
then ask NSSD to return the best (closest to the handheld
user) m HHPs. Now we have nm possible VGW/HHP
combinations. For each of the nm combinations, we ask
NSSD to find the optimal set of ESM proxies, and we get
a global solution by combining the VGW, the HHP, and
the ESM proxies. Therefore, we have a set of nm global
solutions, and we can use Function 3.1 to evaluate them
and select the best global solution in this set.

We believe this approach can yield a reasonably good
global solution and allow a provider to adjust the trade-
off between global optimality and optimization cost by
controlling the values of n and m. For example, if n and
m are set to 1, the resulting solution is simply a combina-
tion of locally optimal solutions. On the other hand, if n
and m are the total numbers of VGWs and HHPs, respec-
tively, we are in fact performing an exhaustive search in
the complete search space, and we will find the globally
optimal solution at a higher cost. Later in Section 5.4 we
will use this video conferencing example to evaluate the
effectiveness of this approach.

3.3 A Simple NSSD Query Processor

Given the NSSD API described in Section 3.1, NSSD
queries can be resolved in many different ways. In this
section, we first describe a simple approach that heavily
leverages earlier work in service discovery and network
measurement; this is also the design used in our proto-
type. We mention alternative approaches in the next sec-
tion.

As shown in Figure 7, a simple NSSD query proces-
sor (QP) can be built on top of a service discovery infras-
tructure (e.g., the Service Location Protocol [16]) and a
network measurement infrastructure that can estimate the
network properties (e.g., latency) between nodes. When
the QP module receives an NSSD query (step 1 in Fig-
ure 7), it forwards the functional part of the query to the



Query Processor (QP)

Network
Measurement
Infrastructure

NSSD query:
Type=StreamingServer
minimize latency to user X

Query: 
Type=StreamingServer

Service Directory

Candidates:
server A
server B

Latency between A and X?
Between B and X?

A and X: 50
B and X: 75

NSSD reply:
server A

User X

1

5

4

3

2

Figure 7: Handling an NSSD query

service directory (step 2). The directory returns a list of
candidates that match the functional properties specified
in the query (step 3). Then the QP module retrieves the
necessary network information (e.g., the latency between
each of the candidate and user X) from the network mea-
surement infrastructure (step 4). Finally, the QP module
computes the best solution as described below and re-
turns it to the user (step 5).

One benefit of integrating service discovery and server
selection in a single service is that caching can be used
to improve performance and scalability. When NSSD
gets requests from many users, the cost of collecting net-
work status information or server load information can
be amortized. Furthermore, network nodes that are close
to each other should have similar network properties.
Therefore, nodes can be aggregated to reduce the amount
of information required (for example, use the same la-
tency for all users in an address prefix). This should im-
prove the effectiveness of caching.

Selecting the best solution(s) requires solving a fairly
general optimization problem. Through the NSSD API
described earlier, a user can specify many different com-
binations of (1) constraints and preferences on three met-
rics (latency, bandwidth, and load), (2) how many iden-
tical servers are needed in a solution, and (3) how many
solutions are needed. The QP computes the solution for
a query as follows. First, the QP applies any constraints
in a query to eliminate any ineligible candidates. Then,
the preferences in a query can be formulated as an opti-
mization problem. If there is only a single preference, the
QP can simply sort the candidates accordingly. If there
are multiple preferences (e.g., minimize load and mini-
mize latency), there may not be any candidates that sat-
isfy all preferences. One possible solution is to have the
QP define an order among the preferences (e.g., in the
order they appear in the query) and sort the candidates
accordingly. Finally, if a query requests multiple identi-
cal servers in a solution (e.g., requesting 3 ESM proxies
for 4 users), the optimization problem can be cast as p-
median, p-center, or set covering problems [7], which are
more expensive to solve.

3.4 Alternative Solutions

The above NSSD design is only one option. Here we
briefly describe three distributed implementations.

A content discovery system based on hashing is de-
scribed in [12]. The system uses a hash-based overlay
network mechanism (such as Chord [35]) to allow pub-
lishers and subscribers to find each other in rendezvous
points based on common attribute-value pairs, which
may be dynamic. Therefore, it can also be used as a
service discovery infrastructure, and one can incorporate
network sensitivity into the query resolution phase of the
system so that the returned matches satisfy certain net-
work properties specified in the query.

Another alternative is application-layer anycast-
ing [38], in which each service is represented by an any-
cast domain name (ADN). A user submits an ADN along
with a server selection filter (which specifies the selec-
tion criteria) to an anycast resolver, which resolves the
ADN to a list of IP addresses and selects one or more
from the list using the filter. Potentially, the ADN and
resolvers can be extended to allow users to specify the
desired service attributes, and the filter can be general-
ized to support more general metrics.

Finally, distributed routing algorithms are highly scal-
able, and they can, for example, be used to find a
path that satisfies certain network properties and also in-
cludes a server with certain available computational re-
sources [19]. A generalization of this approach can be
combined with a service discovery mechanism to handle
NSSD queries.

4 Implementation

We describe a prototype NSSD based on Service Loca-
tion Protocol (SLP) [16] and Global Network Positioning
(GNP) [24]. We have experimented with versions of our
NSSD implementation on the ABone [1], Emulab [9],
and PlanetLab [29] testbeds.

4.1 Extending SLP

Our implementation of NSSD is based on OpenSLP [26],
an implementation of SLP. Available services register
their information (location, type, and attributes) with
a Directory Agent (DA), and users looking for ser-
vices send queries (specifying the type and attributes
of the desired services) to the DA. Service types and
attributes are well known so that a user knows what
to ask for. SLP query specification is quite general:
attributes can be specified as an LDAPv3 search fil-
ter [18], which supports, for example, logical opera-
tions, inequality, and substring match. Therefore, a
user query includes a service type (e.g., “GameServer”)
and a filter, e.g., “(&(game=Half-Life)(mod=Counter-



(|(&(game=Half-Life)(mod=Counter-Strike)
(version>=1.5)(load<=10))

(&(x-NSSD-targets=1.01,2.02;3.03,4.04)
(x-NSSD-maxlatency=minimize)))

Figure 8: A sample filter for the game example

Strike)(version>=1.5))”. We believe this query represen-
tation is sufficiently general to support NSSD queries as
defined by the API in Section 3.1.

In order to support NSSD queries, we extended the
semantics of the SLP filter to include a set of special
attributes, representing the parameters described in Fig-
ure 4. For example, suppose a user wants to find a game
server that (1) matches certain service attributes, (2) is
serving at most ten sessions, and (3) minimizes the maxi-
mum latency for the two players whose GNP coordinates
are “1.01,2.02” and “3.03,4.04”, respectively. These pa-
rameters can be specified by the filter shown in Figure 8.

The original SLP API returns a list of “service
URLs” [15]. To return additional information about
each selected server, we simply add the information
to the end of the URLs. For example, to return
the mapping, the DA can return the following ser-
vice URL: “service:GameServer://192.168.0.1;x-NSSD-
mapping=0,0,0,0”.

Since server load is also a service attribute, each
server’s registration includes the load attribute (e.g.,
“load=0.5”). When conducting “live” experiments (i.e.,
involving applications running on actual network hosts),
we need mechanisms to dynamically update the load
value of each server. Our live experiments are developed
and conducted on the PlanetLab wide-area testbed [29],
which allows us shell access on about 70 hosts at nearly
30 sites. We implemented a “push-based” load update
mechanism: servers push their load information (in the
form of a registration update) to the DA. In our evalua-
tion, we look at how the frequency of load update affects
the performance of the server selection techniques.

4.2 Network Measurement

A network measurement infrastructure provides a way
for users to obtain network information. A number
of such infrastructures have been proposed, for ex-
ample, IDMaps [11] and Global Network Positioning
(GNP) [24]. Most of these infrastructures only provide
latency information. Since it is in general much harder to
estimate the bandwidth between two network nodes, we
currently focus on dealing with the latency metric.

In our implementation, we use GNP as the network
measurement infrastructure to provide latency (round
trip time) information between two network nodes. The
key idea behind GNP is to model the Internet as a geo-
metric space using a set of “landmark nodes”, and each
network host can compute its own coordinates by prob-

ing the landmarks. It is then straightforward to compute
the distance (latency) between two hosts given their co-
ordinates. Since the PlanetLab testbed is our current plat-
form, we use the GNP approach to obtain a set of coor-
dinates for every PlanetLab node.

In the GNP model, each node computes its own coor-
dinates. Therefore, in our implementation, we use GNP
coordinates as a service attribute, i.e., when a server reg-
ister with the SLP DA, the registration includes the co-
ordinates of the server node. When a user specifies the
list of optimization targets in a query (see the API in Sec-
tion 3.1), each target is specified in the form of GNP co-
ordinates. When a QP asks for a list of candidates, the
DA returns the list along with the coordinates of each
candidate. The advantage of this design is that since the
coordinates are computed off-line, and the latency infor-
mation can be derived from the coordinates directly, the
cost of querying the network measurement infrastructure
at runtime is eliminated. A QP can simply use the candi-
dates’ and the targets’ coordinates to solve the particular
optimization problem specified by a user.

4.3 Selection Techniques

The API defined in Section 3.1 can be used to specify a
wide range of selection techniques. Below we list the se-
lection techniques that are currently implemented in our
QP and used in our evaluation (k denotes the number of
identical servers needed in a solution, and n denotes the
number of locally good solutions needed).

• “k = 1, n = 1, minimize load” (MLR): find the server
with the lowest load. If there are multiple servers
with the same load, select one randomly.

• “k = 1, n = 1, minimize maximum latency” (MM):
find the server that minimizes the maximum latency
to the specified target(s).

• “k = 1, n = 1, load constraint x, minimize maximum
latency” (LCxMM): among the servers that satisfy
the specified load constraint (load ≤ x), find the one
that minimizes the maximum latency to the specified
target(s).

• “k = 1, n = 1, minimize load, minimize maximum
latency” (MLMM): find the server with the lowest
load, and use maximum latency as the tiebreaker.

• “k = p, n = 1, minimize average latency” (PMA):
find a set of p servers and assign each target to a
server so that the average latency between each tar-
get and its assigned server is minimized (i.e., the p-
median problem [7]).

• “k = 1, n = m, minimize average latency” (MMA):
find the best m servers in terms of the average latency
between server and each user.

• “Random” (R): randomly select a server.



In the evaluation section, we use these techniques to
solve the NSSS problem for different applications.

5 Evaluation

We present the results of experiments that quantify how
well our NSSD prototype can support two sample appli-
cations. First, we use a multiplayer gaming application
to illustrate the importance of network-sensitive server
selection and to show the relative performance of the dif-
ferent selection mechanisms in our prototype. Next we
use the service composition example of Section 3.2 to
show the trade-offs between local and global optimiza-
tions. We also present the computational overhead of the
NSSD prototype.

The gaming service experiments are conducted on the
PlanetLab wide-area testbed [29]. The service composi-
tion experiments are simulations based on latency mea-
surement data from the Active Measurement Project at
NLANR [25].

5.1 Importance of Network Sensitivity

In the first set of experiments, we look at how network
sensitivity can help improve application performance.
We implemented a simple “simulated” multiplayer game
client/server: a number of game clients join a session
hosted by a game server, and every 100ms each client
sends a small UDP packet to the hosting server, which
processes the packet, forwards it to all other participants
in the session, and sends an “ACK” packet back to the
sender. Our performance metric for the gaming service is
the maximum latency from the server to all clients since
we do not want sessions in which some players are very
close to the server while others experience high latency.
Note that the latency metric is measured from the time
that a packet is sent by a client to the time that the ACK
from the server is received by the client.

The goal of this set of experiments is to evaluate the
role of network performance in the server selection pro-
cess. Therefore, we minimized the computation over-
head in the game server to ensure that the server com-
putation power, including the number of servers, does
not affect game performance. We compare four differ-
ent scenarios. First, we consider two scenarios, each of
which has 10 distributed servers selected from PlanetLab
nodes. The MM and R techniques are applied in the two
scenarios, respectively. For comparison, we also con-
sider two centralized cluster scenarios, CAM and CMU,
each of which has a 3-server cluster, and a random server
is selected for each session. In the CAM scenario, the
cluster is located at the University of Cambridge; in the
CMU scenario, the cluster is at CMU. The user machines
are randomly selected from 50 PlanetLab nodes.

Figure 9 shows the average maximum latency (of 100

0

20

40

60

80

100

120

140

160

180

2 4 6 8

Number of participants per session

A
ve

ra
ge

 m
ax

im
um

 la
te

nc
y 

(m
s)

CMU
CAM
MM
R

Figure 9: Central cluster vs. distributed servers in a multi-
player game application

0

100

200

300

400

500

600

4 6 8 10 12 14 16 18
Per-packet processing (units)

A
ve

ra
ge

 m
ax

im
um

 la
te

nc
y 

(m
s)

R
MLR
MM
LC3MM
MLMM

Figure 10: Effect of per-packet processing: average maximum
latency

sessions) as a function of the number of participants in
each session. MM consistently has the lowest maxi-
mum latency, confirming that network-sensitive service
discovery can successfully come up with the best solu-
tion. More specifically, the results illustrate that being
able to choose from a set of distributed servers (MM out-
performs CMU and CAM) in a network-sensitive fash-
ion (MM outperforms R) is a win. Interestingly, having
distributed servers is not necessarily better than a cen-
tralized solution. In our case, a centrally-located cluster
(CMU) outperforms a distributed network-“insensitive”
solution (R).

5.2 Different Selection Techniques

While the focus of this paper is not on new selection
techniques, we next show how NSSD can easily sup-
port different techniques. We use the simulated game
applications to compare the effectiveness of different se-
lection techniques in NSSD. We look at the techniques
MLR, MM, LC3MM, MLMM, and R described in Sec-
tion 4.3. (LC3MM has load constraint 3, which means
that only servers serving no more than three sessions
are eligible.) Ten nodes at 10 different sites are used
as game servers, 50 other nodes are game clients, and
there are four randomly selected participants in each ses-



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4 6 8 10 12 14 16 18
Per-packet processing (units)

A
ve

ra
ge

 r
an

k

R
MLR
MM
LC3MM
MLMM

Figure 11: Effect of per-packet processing: average rank

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Maximum latency (ms)

R
MM

LC3MM

Figure 12: Cumulative distribution under 15 units per-packet
processing

sion. There are on average 10 simultaneous sessions at
any time, and the server load information in the DA’s
database is updated immediately, i.e., each server’s load
value is updated whenever it changes (we relax this in
the next section). We ran measurements for different
per-packet processing overhead, which we controlled by
changing the number of iterations of a computationally
expensive loop. The unit of the processing overhead
corresponds roughly to 1% of the CPU (when hosting
a 4-participant session). For example, on a server that
is hosting a single 4-participant session with 10 units of
per-packet processing overhead, the CPU load is about
10%.

Figure 10 shows the average maximum latency (of 200
sessions) as a function of the per-packet processing cost.
R and MLR have almost identical performance, which is
expected since in this case MLR evenly distributes ses-
sions based on the number of gaming sessions on each
server. MM and LC3MM are also almost identical when
the per-packet processing is low. However, the perfor-
mance of MM degrades rapidly at higher loads, while
LC3MM remains the best performer throughout this set
of experiments.

Figure 11 shows the results from a different perspec-
tive: it shows the average “rank” of the five techniques,

0

20

40

60

80

100

120

140

160

180

200

1 4 8
Update interval (number of load changes between consecutive updates

A
ve

ra
ge

 m
ax

im
um

 la
te

nc
y 

(m
s)

R
MLR
MM
LC3MM
MLMM

Figure 13: Effect of load update frequency: average maxi-
mum latency

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 8
Update interval (number of changes between consecutive updates

A
ve

ra
ge

 r
an

k
R
MLR
MM
LC3MM
MLMM

Figure 14: Effect of load update frequency: average rank

i.e., for each session, we rank the techniques from 1 to
5 (best to worst), and we then average over the 200 ses-
sions. We see that although the rank of MM gets worse
for higher loads, it is still better than R and MLR at the
highest load, despite the fact that its average is much
worse than those of R and MLR. The reason can be seen
in Figure 12, which compares the cumulative distribu-
tions of the maximum latency of R, MM, and LC3MM
for the case of 15 units per-packet processing. It shows
that MM in fact makes many good selections, which
helps its average rank. However, the 10% really bad
choices (selecting overloaded servers) hurt the average
significantly. In contrast, LC3MM consistently makes
good selections, which makes it the best performer both
in terms of average and rank.

5.3 Effect of Load Update Frequency

In the previous set of experiments, the server load infor-
mation stored in the DA’s database is always up-to-date,
which is not feasible in practice. We now look at how the
load update frequency affects the performance of the se-
lection techniques. The experimental set up is the same
as that in the previous section, except that we fix the per-
packet processing to 15 units and vary the load update
interval, which is defined as the number of system-wide



“load changes” between two consecutive updates of the
load information on the DA. Note that load changes in-
clude both establishing a new session and terminating an
old session. We experimented with three different update
intervals: 1 (i.e., immediate updates, as in the previous
set of experiments), 4, and 8. Since there are on average
10 simultaneous sessions at any time, an update interval
of 8 means that when an update occurs, 40% of the active
sessions have been replaced since the previous update.

Figure 13 shows the average maximum latency for
the different techniques using different update intervals.
Since R and MM are not affected by load, we show
the data from the previous set of experiments for com-
parison. We see that as the update interval becomes
longer, the performance of both LC3MM and MLMM
degrades significantly since they make decisions based
on stale load information. They are worse than R under
longer update intervals. However, in Figure 14, LC3MM
and MLMM consistently have a better average rank than
R. The reason is that when the load update interval is
long, LC3MM and MLMM occasionally make really bad
choices, which greatly affect the average numbers.

5.4 Local Optimization vs. Global Optimization

In the last set of experiments, we use NSSD in the ser-
vice composition scenario described in Section 3.2. As
depicted in Figure 6, we need to find a video conferenc-
ing gateway (VGW), a handheld proxy (HHP), and a set
of ESM proxies. We use the heuristic described in Sec-
tion 3.2: first, we ask NSSD to select the best n VGWs
using the MMA technique (see Section 4.3), and then we
ask NSSD to select the best m HHPs using MMA. For
each of the nm VGW/HHP combinations, we ask NSSD
to find the optimal set of ESM proxies using the PMA
technique. Finally, we evaluate the resulting nm global
solutions using Function 3.1 and select the best one.

Since we are only interested in the global optimality
(as defined by Function 3.1) of the resulting service in-
stances, we do not need to run the various components on
actual machines. Therefore, our experiments are based
on simulations using the latency measurement data from
the NLANR Active Measurement Project [25]. The data
consists of round trip time measurements from each of
130 monitors (mostly located in the U.S.) to all the other
monitors. We process the data to generate a latency ma-
trix for 103 sites, and then in the simulations we ran-
domly select nodes from these sites to represent users
and various components. Next, we present the results
from three sets of experiments and compare them.

5.4.1 Weighted-5

In the weighted-5 set, we use weights 5.0, 2.0, and 1.0 for
W1, W2, and W3, respectively. We select 40 random nodes

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e 
gl

ob
al

 o
pt

im
al

ity

Session rank

(n,m)
(1,1)
(2,2)
(3,3)
(4,4)

Figure 15: Relative global optimality for sessions in a typical
weighted-5 configuration

as client nodes, 5 random nodes as VGWs, 5 as HHPs,
and 5 as ESM proxies (these 4 sets are disjoint). We
then generate 100 sessions by selecting 5 participants (2
vic/SDR, 1 handheld, and 2 NetMeeting) from the client
nodes for each session. For each session, we vary the
values of n and m (from 1 to 5) and compute the cor-
responding global solutions. This process (node selec-
tion/session generation/simulation) is repeated 20 times,
resulting in 20 simulation configurations. The perfor-
mance metric is “relative global optimality”, which is
defined as the value of Function 3.1 for a solution di-
vided by the value for the globally optimal solution. For
example, a solution with relative global optimality 1.25
is 25% worse than the globally optimal solution.

Let us first look at all 100 sessions in a typical simu-
lation configuration. We experimented with four differ-
ent settings for (n,m): (1,1), (2,2), (3,3), and (4,4), and
the results from a typical configuration are plotted in Fig-
ure 15. For each (n,m) setting, the sessions are sorted ac-
cording to their relative global optimality (rank 1 to 100,
i.e., best to worst). When (n,m) is (1,1), we are able to
find the globally optimal solution for 27 sessions, and the
worst-case relative global optimality is 1.19. We can see
that as we increase the size of the search space using the
best-n-solutions feature of NSSD, we not only increase
the chance of finding the globally optimal solution but
also improve the worst-case performance. Therefore, the
result demonstrates the effectiveness of our approximate
approach.

Next, we want to look at the results for all sessions
in all 20 simulation configurations using all (n,m) set-
tings. The average relative global optimality result is
shown in Figure 16. Each data point is the average of
20 configurations, each of which is the average of 100
sessions. We decided to present the average (mean) rel-
ative global optimality for each (n,m) setting instead of
the median value because (as we can see in Figure 15)
the median value often can not show the difference in the
performance of different settings. When (n,m) is (1,1),



1

3

51 2 3 4 5

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14
R

el
at

iv
e 

g
lo

b
al

 o
p

ti
m

al
it

y

m

n

1.12-1.14
1.1-1.12
1.08-1.1
1.06-1.08
1.04-1.06
1.02-1.04
1-1.02

Figure 16: Relative global optimality for weighted-5

1

8

15

221 3 5 7 9

11 13 15 17 19 21 23 25

1

1.04

1.08

1.12

1.16

1.2

1.24

1.28

R
el

at
iv

e 
g

lo
b

al
 o

p
ti

m
al

it
y

m

n

1.24-1.28
1.2-1.24
1.16-1.2
1.12-1.16
1.08-1.12
1.04-1.08
1-1.04

Figure 17: Relative global optimality for weighted-25

the resulting solution is on average 13.7% worse than the
globally optimal solution. When we use (2,2) for (n,m),
we are performing an exhaustive search in 16% of the
complete search space, and the resulting solution is 5.3%
worse than the globally optimal solution.

5.4.2 Weighted-25

The weighted-25 setup is the same as weighted-5 above
except that we use 25 VGWs, 25 HHPs, and 25 ESM
proxies for this set. Figure 17 shows the average rela-
tive global optimality for this set of experiments. When
we set (n,m) to (1,1) and (10,10), the average relative
global optimality of the resulting solution is 1.279 and
1.035, respectively (i.e., 27.9% and 3.5% worse than the
globally optimal solution).

1

8

15

221 3 5 7 9

11 13 15 17 19 21 23 25

1

1.01

1.02

1.03

1.04

1.05

1.06

R
el

at
iv

e 
g

lo
b

al
 o

p
ti

m
al

it
y

m

n

1.05-1.06
1.04-1.05
1.03-1.04
1.02-1.03
1.01-1.02
1-1.01

Figure 18: Relative global optimality for unweighted-25

5.4.3 Unweighted-25

The unweighted-25 set is the same as weighted-25 above
except that the weights W1, W2, and W3 in the global op-
timization function (Function 3.1) are all set to 1.0. The
average relative global optimality result is shown in Fig-
ure 18. When we set (n,m) to (1,1) and (10,10), the re-
sulting solution is on average 5.9% and 0.1% worse than
the globally optimal solution, respectively.

5.4.4 Comparison

A comparison between weighted-5 and weighted-25 il-
lustrates a few points. First, although using the com-
bination of locally optimal solutions can greatly reduce
the cost of solving the selection problem, it can lead to
bad solutions (in terms of global optimality). Second,
using the best-n-solutions feature of NSSD is effective,
as we can significantly improve the global optimality of
the resulting solution by searching in a relatively small
space. Third, the performance at (1,1) seems to degrade
as the complete search space becomes larger (1.137 in
weighted-5 and 1.279 in weighted-25). On the other
hand, the effectiveness of the best-n-solutions approach
seems to increase with the size of the complete search
space, e.g., when searching only 16% of the complete
search space (i.e., when we set (n,m) to (2,2) and (10,10)
in weighted-5 and weighted-25, respectively), the im-
provement in weighted-25 is greater than in weighted-5
(27.9%→3.5% vs. 13.7%→5.3%).

When comparing weighted-25 with unweighted-25,
we see that in unweighted-25, the performance at (1,1)
is much better than that in weighted-25 (1.059 vs.
1.279), and increasing n and m improves the global op-
timality much faster than it does in weighted-25, e.g.,
5.9%→1.0% vs. 27.9%→12.6% when (n,m) is (4,4).



1

8

15

22

1 3 5 7 9

11 13 15 17 19 21 23 25
0

0.05

0.1

0.15

0.2

0.25

0.3

F
ra

ct
io

n
 o

f 
ti

m
e 

b
ei

n
g

 g
lo

b
al

ly
 o

p
ti

m
al

Rank of HHP

Rank of VGW

Figure 19: Fraction of time each VGW/HHP combination is
globally optimal (unweighted-25)

An intuitive explanation of this significant difference be-
tween the weighted and the unweighted configurations
is that, in this video conferencing service composition
example, the unweighted global optimization function is
actually quite close to the sum of the local optimization
metrics used to select the individual services. As a re-
sult, a “locally good” candidate is very likely to also be
“globally good”. On the other hand, in the weighted con-
figuration, the global optimality of a solution is less de-
pendent on the local optimality of each component, and
therefore, we need to expand the search space more to
find good global solutions.

To verify this explanation, we look at how likely each
particular VGW/HHP combination results in the glob-
ally optimal solution. Specifically, for each of the 2000
sessions, we look at which VGW/HHP combination (ac-
cording to their local ranks, e.g., the combination of the
i-th ranked VGW and the j-th ranked HHP) results in
the globally optimal solution. Then we aggregate the re-
sults and present, for all 1 ≤ i ≤ 25 and 1 ≤ j ≤ 25, the
fraction of time that the combination of the i-th ranked
VGW and the j-th ranked HHP results in the globally
optimal solution. Figure 19 shows that in unweighted-
25, nearly 30% of the time simply using the best VGW
(rank 1) and the best HHP (rank 1) results in the glob-
ally optimal solution. Similarly, about 11% of the time
using the 2nd-ranked VGW and the 1st-ranked HHP re-
sults in the globally optimal solution, and so on. In fact,
in unweighted-25, the vast majority of globally optimal
solutions involve the best few VGWs and HHPs. On the
other hand, Figure 20 shows the results for weighted-25.
Although using the combination of the 1st-ranked VGW
and the 1st-ranked HHP is still more likely to result in
the globally optimal solution than any other VGW/HHP
combinations, the fraction is now only 4.3%. Further-

1

8

15

22

1 3 5 7 9

11 13 15 17 19 21 23 25

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

F
ra

ct
io

n
 o

f 
ti

m
e 

b
ei

n
g

 g
lo

b
al

ly
 o

p
ti

m
al

Rank of HHP

Rank of VGW

Figure 20: Fraction of time each VGW/HHP combination is
globally optimal (weighted-25)

more, the distribution is much more dispersed. There-
fore, these results match our intuition.

5.5 NSSD Overhead

We used the ESM scenario of Figure 2 to evaluate the
overhead of the NSSD implementation. We register 12
ESM proxies (and 24 other services) with NSSD. Each
query asks NSSD to select three ESM proxies for four
random participants while minimizing the average la-
tency between each participant and its assigned ESM
proxy. The queries are generated using a Perl script and
sent (through a FIFO) to another process that uses the
SLP API to send the queries to the service directory.
The replies flow in the reverse direction back to the Perl
script. All the processes are running on a single desktop
machine (CPU: Pentium III 933MHz).

We measure the total time of generating and process-
ing 4000 back-to-back queries, and the average (over 10
runs) is 5.57 seconds (with standard deviation 0.032),
which shows that in this set up NSSD can process
roughly 718 queries per second. We believe this is a
reasonable number given the complexity of selecting the
ESM proxies and the fact that the time also includes the
overhead of query generation and IPC.

6 Related Work

We summarize related work in the areas of service dis-
covery, network measurement infrastructure, and server
selection techniques.

There have been many proposals for service discov-
ery infrastructures. For example, Service Location Pro-
tocol [16], Service Discovery Service [6], and Java-
based Jini [20]. A distributed hashing-based content
discovery system such as [12] can also provide service



discovery functionality. These general service discov-
ery infrastructures only support service lookup based on
functional properties, not network properties. Naming-
based approaches for routing client requests to appropri-
ate servers can also provide service discovery function-
ality. Application-layer anycasting [38] performs server
selection during anycast domain name resolution. In
TRIAD [14], requests are routed according to the de-
sired content and routing metrics. The Intentional Nam-
ing System [2] resolves intentional names, which are
based on attribute-value pairs, and routes requests ac-
cordingly. Active Names [36] allows clients and service
providers to customize how resolvers perform name res-
olution. NSSD can potentially be built on top of the ser-
vice discovery and server selection mechanisms in these
approaches.

An important part of NSSD is the network measure-
ment infrastructure, which provides estimates of network
properties such as latency between hosts. A number of
research efforts focus on such an infrastructure. For ex-
ample, in IDMaps [11], the distance between two hosts
is estimated as the distance from the hosts to their nearest
“tracers” plus the distance between the tracers. GNP [24]
utilizes a coordinates-based approach. Remos [22] de-
fines and implements an API for providing network in-
formation to network-aware applications.

Many network-sensitive server selection techniques
have been studied before. For example, in [4] a number
of probing techniques are proposed for dynamic server
selection. Client clustering using BGP routing informa-
tion [21] or passive monitoring [3] has been applied to
server selection. Similarly, distributed binning [30] can
be used to identify nodes with similar network proper-
ties. In SPAND [32], server selection is based on passive
monitoring of application traffic. The effectiveness of
DNS-based server selection is studied in [33]. Network-
layer anycast [28] handles network-sensitive selection at
the routing layer. The Smart Client architecture [37] uti-
lizes a service-specific applet to perform server selec-
tion for a user (primarily for load-balancing and fault-
transparency). The performance of various selection
techniques is evaluated in [17] and [8]. These studies
provide new ways of collecting and using network in-
formation for server selection and are complementary to
our work. Some other efforts address the problem of re-
quest distribution in a server cluster, for example, [10]
and [27]. They are also complimentary to NSSD since
all nodes within the same cluster have similar network
properties.

7 Conclusion

For many applications, the ability to find a server (or a set
of servers) that satisfies a set of functional and network

properties is very valuable. In this paper, we have pro-
posed an integrated solution: network-sensitive service
discovery (NSSD). NSSD allows users to benefit from
network-sensitive selection without having to implement
their own selection techniques, and it does not require
providers to expose all their server information to users.
The local optimization techniques supported by NSSD
can be used in common cases involving the selection of
individual servers, and the best-n-solutions feature pro-
vides additional information that allows users to perform
user-specific global optimizations.

In our evaluation, we show that our prototype imple-
mentation of NSSD has reasonably good query process-
ing performance. Experimental results for game server
selection show that by using the local optimization func-
tionality provided by NSSD, the simulated multiplayer
game can get significant performance improvements.
Simulation results for service composition demonstrate
that NSSD also provides the flexibility for users to ap-
proximate the performance of global optimizations us-
ing results from local optimizations. By using the best-
n-solutions feature, a user can perform global optimiza-
tions in a small search space and greatly improve the per-
formance of the resulting solution.

Acknowledgments

This work was supported in part by the Defense Ad-
vanced Research Project Agency and monitored by
AFRL/IFGA, Rome NY 13441-4505, under contract
F30602-99-1-0518. Additional support was provided by
Intel. We thank the organizations hosting the PlanetLab
testbed for their support. We also thank the National
Laboratory for Applied Network Research for provid-
ing the latency measurement data, which was sponsored
by National Science Foundation Cooperative Agreement
No. ANI-9807479. We would like to thank Tze Sing Eu-
gene Ng for his help on GNP related issues, his imple-
mentation of a heuristic search algorithm, and his com-
ments on earlier drafts of this paper.

References
[1] Active Network Backbone (ABone).

http://www.isi.edu/abone/.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and
J. Lilley. The design and implementation of an intentional
naming system. In Proceedings of ACM SOSP ’99, Dec.
1999.

[3] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, and
F. Zane. Clustering and Server Selection using Passive
Monitoring. In Proc. IEEE INFOCOM 2002, June 2002.

[4] R. Carter and M. Crovella. Server Selection Using Dy-
namic Path Characterization in Wide-Area Networks. In
Proceedings of IEEE INFOCOM ’97, Apr. 1997.



[5] Y. Chu, S. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM Sigmetrics, June 2000.

[6] S. E. Czerwinski, B. Y. Zhao, T. Hodes, A. D. Joseph, and
R. Katz. An Architecture for a Secure Service Discovery
Service. MobiCOM ’99, Aug. 1999.

[7] M. S. Daskin. Network and Discrete Location: Models,
Algorithms, and Applications. John Wiley & Sons, Inc.,
1995.

[8] S. G. Dykes, C. L. Jeffery, and K. A. Robbins. An Em-
pirical Evaluation of Client-side Server Selection Algo-
rithms. In Proc. of IEEE INFOCOM 2000, Mar. 2000.

[9] The Emulab testbed. http://www.emulab.net.

[10] A. Fox, S. Gribble, Y. Chawathe, and E. A. Brewer.
Cluster-Based Scalable Network Services. In Proceed-
ings of ACM SOSP ’97, Oct. 1997.

[11] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt,
and L. Zhang. IDMaps: A Global Internet Host Distance
Estimation Service. IEEE/ACM Trans. on Networking,
9(5):525–540, 2001.

[12] J. Gao and P. Steenkiste. Rendezvous Points-Based Scal-
able Content Discovery with Load Balancing. In Pro-
ceedings of NGC 2002, Oct. 2002.

[13] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi,
J. Hill, A. Joseph, R. Katz, Z. Mao, S. Ross, and B. Zhao.
The Ninja Architecture for Robust Internet-Scale Systems
and Services. IEEE Computer Networks, Special Issue on
Pervasive Computing, 35(4), Mar. 2001.

[14] M. Gritter and D. R. Cheriton. An Architecture for Con-
tent Routing Support in the Internet. In Proceedings of
USITS 2001, Mar. 2001.

[15] E. Guttman, C. Perkins, and J. Kempf. Service Templates
and Service: Schemes. RFC 2609, June 1999.

[16] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service
Location Protocol, Version 2. RFC 2608, June 1999.

[17] J. Guyton and M. Schwartz. Locating Nearby Copies of
Replicated Internet Servers. In Proceedings of ACM SIG-
COMM ’95, Aug. 1995.

[18] T. Howes. The String Representation of LDAP Search
Filters. RFC 2254, Dec. 1997.

[19] A.-C. Huang and P. Steenkiste. Distributed Load-
Sensitive Routing for Computationally-Constrained
Flows. In Proceedings of ICC 2003 (to appear), May
2003.

[20] Jini[tm] Network Technology.
http://wwws.sun.com/software/jini/.

[21] B. Krishnamurthy and J. Wang. On Network-Aware Clus-
tering of Web Clients. In Proceedings of ACM SIG-
COMM 2000, Aug. 2000.

[22] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A Resource Query Inter-
face for Network-Aware Applications. 7th IEEE Sympo-
sium on High-Performance Distributed Computing, July
1998.

[23] Z. M. Mao and R. H. Katz. Achieving Service Portabil-
ity in ICEBERG. IEEE GlobeCom 2000, Workshop on
Service Portability (SerP-2000), 2000.

[24] T. S. E. Ng and H. Zhang. Predicting Internet Network
Distance with Coordinates-Based Approaches. In Pro-
ceedings of IEEE INFOCOM 2002, June 2002.

[25] Active Measurement Project (AMP), National Laboratory
for Applied Network Research. http://watt.nlanr.net/.

[26] OpenSLP Home Page. http://www.openslp.org/.

[27] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware Request
Distribution in Cluster-based Network Servers. In Pro-
ceedings of ASPLOS-VIII, Oct. 1998.

[28] C. Partridge, T. Mendez, and W. Milliken. Host Anycast-
ing Service. RFC 1546, Nov. 1993.

[29] PlanetLab Home Page. http://www.planet-lab.org/.

[30] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server
Selection. In Proceedings of IEEE INFOCOM 2002, June
2002.

[31] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko. Auto-
mated Planning for Open Architectures. In Proceedings
for OPENARCH 2000 – Short Paper Session, pages 17–
20, Mar. 2000.

[32] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared
Passive Network Performance Discovery. In Proceedings
of USITS ’97, Dec. 1997.

[33] A. Shaikh, R. Tewari, and M. Agrawal. On the Effective-
ness of DNS-based Server Selection. In Proc. of IEEE
INFOCOM 2001, Apr. 2001.

[34] P. Steenkiste, P. Chandra, J. Gao, and U. Shah. An Ac-
tive Networking Approach to Service Customization. In
Proceedings of DARPA Active Networks Conference and
Exposition (DANCE’02), pages 305–318, May 2002.

[35] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proceedings of ACM
SIGCOMM 2001, Aug. 2001.

[36] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal.
Active Names: Flexible Location and Transport of Wide-
Area Resources. In Proceedings of USITS ’99, Oct. 1999.

[37] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Ander-
son, and D. Culler. Using Smart Clients to Build Scalable
Services. In Proceedings of USENIX 1997 Annual Tech-
nical Conference, Jan. 1997.

[38] E. W. Zegura, M. H. Ammar, Z. Fei, and S. Bhattachar-
jee. Application-Layer Anycasting: A Server Selec-
tion Architecture and Use in a Replicated Web Service.
IEEE/ACM Trans. on Networking, 8(4):455–466, Aug.
2000.


