
USENIX Association

Proceedings of
USITS ’03:

4th USENIX Symposium on
Internet Technologies and Systems

Seattle, WA, USA
March 26–28, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

NPS: A Non-interfering Deployable Web Prefetching System

Ravi Kokku Praveen Yalagandula Arun Venkataramani Mike Dahlin

Department of Computer Sciences, University of Texas at Austin
frkoku, ypraveen, arun, dahling@cs.utexas.edu

Abstract

We present NPS, a novel non-intrusive web
prefetching system that (1) utilizes only spare re-
sources to avoid interference between prefetch and
demand requests at the server as well as in the net-
work , and (2) is deployable without any modi�ca-
tions to servers, browsers, network or the HTTP pro-
tocol. NPS's self-tuning architecture eliminates the
need for traditional \thresholds" or magic numbers
typically used to limit interference caused by prefetch-
ing, thereby allowing applications to improve bene�ts
and reduce the risk of aggressive prefetching.

NPS avoids interference with demand requests by
monitoring the responsiveness of the server and ac-
cordingly throttling the prefetch aggressiveness, and
by using TCP-Nice, a congestion control protocol
suitable for low priority transfers. NPS avoids the
need to modify existing infrastructure by modifying
HTML pages to include JavascriptTM code that is-
sues prefetch requests and by wrapping the server in-
frastructure with several simple external modules that
require no knowledge of or no modi�cations to the in-
ternals of existing servers. Our measurements of the
prototype under a web trace indicate that NPS is both
non-interfering and eÆcient under di�erent network
load and server load conditions. For example, in our
experiments with a loaded server with little spare ca-
pacity, we observe that a threshold-based prefetching
scheme causes response times to increase by a factor
of 2 due to interference, whereas prefetching using
NPS decreases response times by 25%.

1 Introduction

A number of studies have demonstrated the bene-
�ts of web prefetching [12, 17, 24, 25, 32, 33, 42, 52].
And the attractiveness of prefetching appears likely
to rise in the future as the falling prices of disk stor-
age [14] and network bandwidth [41] make it increas-
ingly attractive to trade increased consumption of
these resources to improve response time and avail-
ability and thus reduce human wait time [7].

Despite these bene�ts, prefetching systems have
not been widely deployed because of two concerns:
interference and deployability. First, if a prefetching
system is too aggressive, it may interfere with de-
mand requests to the same service (self-interference)
or to other services (cross-interference) and hurt
overall system performance. Such interference may
occur at the server, in the communication network or
at the client. Second, if a system requires modi�ca-
tions to the existing HTTP protocol [19] , it may be
impractical to deploy. The large number of deployed
clients and networks in the Internet makes it diÆ-
cult to change clients, and the increasing complex-
ity of servers [23, 26, 28, 46, 55] makes it diÆcult to
change servers. What we therefore need is a prefetch-
ing system that (a) avoids interference at clients, net-
works, and servers and (b) does not require changes
to the HTTP protocol and the existing infrastructure
(client browsers, networks and servers).

In this paper, we make three contributions. First,
we present NPS, a novel non-interfering prefetching
system for the web that { (1) avoids interference
by e�ectively utilizing only spare resources on the
servers and the network and (2) is deployable with no
modi�cations to the HTTP protocol and existing in-
frastructure. To avoid interference at the server, NPS
monitors the server load externally and restricts the
prefetch load imposed on it accordingly. To avoid in-
terference in the underlying network, NPS uses TCP-
Nice for low-priority network transfers [51]. Finally,
it uses a set of heuristics to control resource usage
at the client. To work with existing infrastructure,
NPS modi�es HTML pages to include JavaScriptTM

code to issue prefetch requests, and wraps the server
infrastructure with simple external modules that re-
quire no knowledge of, or no modi�cations to the
internals of existing servers. Our measurements of
the prototype under real web load trace indicate that
NPS is both non-interfering and eÆcient under dif-
ferent network and server load conditions. For ex-
ample, in our experiments on a heavily loaded net-
work with little spare capacity, we observe that a
threshold-based prefetching scheme causes response
times to increase by a factor of 7 due to interference,

whereas prefetching using NPS contains this increase
to less than 30%.

Second, and on a broader note, we propose a self-
tuning architecture for prefetching that eliminates
the need for traditional \threshold" magic numbers
that are typically used to limit the interference that
prefetching in
icts on demand requests. This archi-
tecture divides prefetching into two separates tasks
{ (i) prediction and (ii) resource management. The
predictor proposes prioritized lists of high-valued
documents to prefetch. The resource manager lim-
its the number of documents to prefetch and sched-
ules the prefetch requests to avoid interference with
demand requests and other applications. This sep-
aration of concerns has three advantages � (i) it
simpli�es the design and deployment of prefetch-
ing systems by eliminating the need to choose ap-
propriate thresholds for an environment and update
them with changing conditions, (ii) it reduces the
risk of interference caused by prefetching that relies
on manually set thresholds, especially during periods
of unanticipated high load, (iii) it increases the ben-
e�ts of prefetching by prefetching more aggressively
than would otherwise be safe during periods of low
or moderate load. We believe that these advantages
would also apply to prefetching systems in many en-
vironments beyond the web.

Third, we explore the design space for building
a web prefetching system, given the requirement of
avoiding or minimizing changes to existing infras-
tructure. We �nd that it is straightforward to deploy
prefetching that ignores the problem of interference,
and it is not much more diÆcult to augment such a
system to avoid server interference. Extending the
system to also avoid network interference is more in-
volved, but doing so appears feasible even under the
constraint of not modifying current infrastructure.
Unfortunately, we were unable to devise a method to
completely eliminate prefetching's interference at ex-
isting clients: in our system prefetched data may dis-
place more valuable data in a client cache. It appears
that a complete solutionmay eventually require mod-
i�cations at the client [6, 8, 44]. For now, we develop
simple heuristics that reduce this interference.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the requirements and architecture of
a prefetching system. Sections 3, 4 and 5 present the
building blocks for reducing interference at servers,
networks and clients. Section 6 presents the prefetch
mechanisms that we develop to realize the prefetch-
ing architecture. Section 7 discusses the details of our
prototype and evaluation. Section 8 presents some
related work and section 9 concludes.

2 Requirements and Alternatives

There appears to be a consensus among re-
searchers on a high level architecture for prefetching

in which a server sends a list of objects to a client
and the client issues prefetch requests for the objects
on the list [9, 36, 42] . This division of labor al-
lows servers to use global object access patterns and
service-speci�c knowledge to determine what should
be prefetched, and it allows clients to �lter requests
through their caches to avoid repeatedly fetching ob-
jects. In this paper, we develop a framework for
prefetching that follows this organization and that
seeks to meet two other important requirements: self
tuning resource management and deployability with-
out modifying existing protocols, clients, proxies, or
servers.

2.1 Resource Management

Services that prefetch should balance the bene�ts
against the risk of interference. Interference can take
the form of self-interference, where a prefetching ser-
vice hurts its own performance by interfering with its
demand requests, and cross-interference, where the
service hurts the performance of other applications
on the prefetching client, other clients, or both.

Limiting interference is essential because many
prefetching services have potentially unlimited band-
width demand, where incrementally more bandwidth
consumption provides incrementally better service.
For example, a prefetching system can improve hit
rate and hence response times by fetching objects
from a virtually unlimited collection of objects that
have non-zero probabilities of access [5, 8], or by up-
dating cached copies more frequently [10, 50, 52].

Interference can occur at any of the critical re-
sources in the system.

� Server: Prefetching consumes extra resources
on the server such as processing time, memory
space and disk.

� Network: Prefetching causes extra data pack-
ets to be transmitted over the network, po-
tentially increasing queuing delays and packet
drops.

� Client: Prefetching results in extra processing
at clients. Furthermore, aggressive prefetching
can pollute a browser's memory and disk caches.

A common way of achieving balance between the
bene�ts and costs of prefetching is to select a thresh-
old and prefetch objects whose estimated probability
of use before modi�cation or eviction from the cache
exceeds that threshold [17, 29, 42, 52]. There are at
least two problems with such \magic number"-based
approaches. First, it is diÆcult for even an expert
to set thresholds to optimum values to balance costs
and bene�ts|although thresholds relate closely to
the bene�ts of prefetching, they have little obvious

relationship to the costs of prefetching [7, 21]. Sec-
ond, appropriate thresholds to balance costs and ben-
e�ts may vary over time as client, network, and server
load conditions change over seconds (e.g., changing
workloads or network congestion [56]), hours (e.g., di-
urnal patterns), and months (e.g., technology trends
[7, 41]).

Our goal is to construct a self-tuning resource
module that prevents prefetch requests from interfer-
ing with demand requests. Such an architecture will
simplify the design of prefetching systems by separat-
ing the tasks of prediction and resource management.
Prediction algorithms may specify arbitrarily long
lists of the most bene�cial objects to prefetch sorted
by bene�t, and the resource management module is-
sues requests for these objects and ensures that these
requests do not interfere with demand requests or
other system activities. In addition to simplifying
system design, such an architecture could have two
performance advantages over statically set prefetch
thresholds. First, such a system can reduce inter-
ference � when resources are scarce, it would re-
duce prefetching aggressiveness. Second, such a sys-
tem may increase the bene�ts of prefetching when
resources are plentiful by allowing more aggressive
prefetching than would otherwise be considered safe.

2.2 Deployability

Many proposed prefetching mechanisms suggest
modifying the HTTP/1.1 protocol [4, 15, 17, 42], to
create a new request type for prefetching. An advan-
tage of extending the protocol is that clients, proxies,
and servers could then distinguish prefetch requests
from demand requests and potentially schedule them
separately to prevent prefetch requests from interfer-
ing with demand requests [15]. However, such mech-
anisms are not easily deployable because modifying
the protocol implies modifying the widely-deployed
infrastructure that supports the current protocol in-
cluding existing clients, proxies, and servers. As web
servers evolve and increase in their complexity, re-
quests may traverse not only a highly optimized web
server [43, 49, 54, 55] but also a number of other
complex modules such as commercial databases, ap-
plication servers or virtual machines for assembling
dynamic content (e.g., Apache tomcat for execut-
ing Java Servlets and JavaServer pages), distributed
cluster services [2, 23], and content delivery networks.
Modifying servers to separate prefetch requests from
demand requests maybe complex or infeasible under
such circumstances.

If interference were not a concern, a simple
prefetching system could easily be built with the
present infrastructure, where clients can be made to
prefetch without any modi�cations to the protocol.
For example, servers can embed JavaScript code or

a Java applet [20], to fetch speci�ed objects over the
network and load them into the browser cache. An
alternative way is to add invisible frames to the de-
mand content that include and thereby preload the
prefetch content.

In this paper, we adapt such techniques to avoid
interference while maintaining deployability.

2.3 Architectural Alternatives

In this subsection, we present an overview of two
alternative architectures to build a prefetching sys-
tem. The high-level description in this section is in-
tended only to provide a framework for discussing
resource management strategies at the server, net-
work, and client in sections 3 through 5. These ar-
chitectures and resource management strategies are
pertinent regardless of whether prefetching is imple-
mented using a new protocol or by exploiting existing
infrastructure. In Section 6, we describe how our im-
plementation realizes one of these architectures in an
easily deployable way.

We begin by making the following assumptions
about client browsers:

� For easy deployability of the prefetching system,
browsers should be unmodi�ed.

� Browsers match requests to documents in their
caches based on (among other parameters) the
server name and the �le name of the object on
the server. Thus �les of the same name served
from di�erent servers are considered to be dif-
ferent.

� Browsers may multiplex multiple client requests
to a given server on one or more persistent con-
nections [19].

Figure 1 illustrates what we call the one-
connection and two-connection architectures respec-
tively. In both architectures, clients send their access
histories to the hint server and get a list of documents
to prefetch. The hint server uses either online or of-

ine prediction algorithms to compute the hint lists
consisting of the most probable documents that the
users might request in the future.

Client

Hint Lists

Demand/Prefetch
Requests

Content
Server

Hint
Server

Access History

Hint
Server

Client Prefetch
Requests

Prefetch
Server

Demand
ServerRequests

Demand

Hint Lists Access History

(a) One Connection (b) Two Connection

Figure 1. Design Alternatives for a Prefetch-
ing System

2.3.1 One Connection

In the one connection architecture (Figure 1(a)), a
client fetches both demand and prefetch requests
from the same content server. Since browsers multi-
plex requests over established connections to servers,
and since browsers do not di�erentiate between de-
mand and prefetch requests, each TCP connection
may interleave prefetch and demand requests and re-
sponses.

Sharing connections can cause prefetch requests
to interfere with demand requests for network and
server resources. If interference can be avoided, this
system is easily deployable. In particular, objects
fetched from the same server share the domain name
of the server. So, unmodi�ed client browsers can
use cached prefetched objects to service demand re-
quests.

2.3.2 Two Connection

In the two connection architecture(Figure 1(b)), a
client fetches demand and prefetch requests from dif-
ferent servers or from di�erent ports on the same
server. This architecture thus segregates demand
and prefetch requests on separate network connec-
tions.

Although the two connection architecture simpli-
�es the mechanisms for reducing interference at the
server by segregation, this solution appears to com-
plicate the deployability of the system. Objects with
the same names fetched from di�erent servers are
considered di�erent by the browsers. So, browsers
can not directly use the prefetched objects to service
demand requests.

2.3.3 Comparison

In the following sections, we show how to address the
limitations of both architectures.

� Some of the techniques we develop for avoid-
ing interference are useful for the one connec-
tion architecture, but some are less so. In par-
ticular, our strategy for reducing interference
at servers is based on end-to-end performance
and is equally applicable to the one and two
connection architectures. Conversely, the tech-
niques we use to avoid network interference ap-
pear much easier to apply to the two-connection
than the one-connection architecture.

� Despite the apparent deployability challenges to
the two connection architecture discussed above,
we �nd that the same basic technique we use to
make unmodi�ed browsers prefetch data for the
one connection architecture can be adapted to
support the two connection architecture as well.

0

20

40

60

80

100

120

140

160

180

0 14400 28800 43200 57600 72000 86400

R
eq

ue
st

s
pe

r
se

co
nd

Interval

One second intervals

0

20

40

60

80

100

120

140

160

180

0 240 480 720 960 1200 1440

A
ve

ra
ge

 r
eq

ue
st

s
pe

r
se

co
nd

Interval

One minute intervals

(a) (b)

Figure 2. Server loads averaged over (a) 1-
second and (b) 1-minute intervals for the
IBM sporting event workload.

We conclude that both architectures are tenable
in some circumstances. If server load is the primary
concern and if network load is known not to be a
major issue, then the one connection prototype may
be simpler than the two connection prototype. At
the same time, the two connection prototype is fea-
sible and deployable and manages both network and
server interference. Given that networks are a glob-
ally shared resource, we recommend the use of two
connection architecture in most circumstances.

3 Server Interference

An ideal system for avoiding server interference
would cause no delay to demand requests in the sys-
tem and utilize signi�cant amounts of any spare re-
sources on servers for prefetching. Such a system
needs to cope with, and take advantage of, changing
workload patterns over various time scales. HTTP
request traÆc arriving at a server often is bursty with
the burstiness being observable at several scales of
observation [13] and with peak rates exceeding the
average rate by factors of 8 to 10 [37]. For example,
Figure 2 shows the request load on an IBM server
hosting a major sporting event during 1998 averaged
over 1-second and 1-minute intervals. It is crucial
for the prefetching system to be responsive to such
bursts to balance utilization and risk of interference.

3.1 Alternatives

There are a variety of ways to prevent prefetch
requests from interfering with demand requests at
servers.

Local scheduling Server scheduling can help use
the spare capacity of existing infrastructure for
prefetching in a non-interfering manner. In principle,
existing schedulers for processor, memory [29, 31, 44],
and disk [35] could prevent low-priority prefetch re-
quests from interfering with high-priority demand re-
quests. Furthermore, as these schedulers are inti-
mately tied to the operating system, they should be

highly eÆcient in delivering whatever spare capacity
exists to prefetch requests even over �ne time scales.
Note that local scheduling is equally applicable to
both one- and two-connection architectures.

For many services, however, server scheduling may
not be easily deployable for two reasons. First, al-
though several modern operating systems support
process schedulers that can provide strict priority
scheduling, few provide memory, cache or disk sched-
ulers that isolate prefetch requests from demand re-
quests. Second, even if an operating system provides
the needed support, existing servers would have to
be modi�ed to di�erentiate between prefetch and de-
mand requests with scheduling priorities as they are
serviced [3]. This second requirement appears par-
ticularly challenging given the increasing complexity
of servers, in which requests may traverse not only
a highly-tuned web server [43, 49, 54, 55] but also
a number of other complex modules such as com-
mercial databases, application servers or virtual ma-
chines for assembling dynamic content (e.g., Apache
tomcat for executing Java Servlets and JavaServer
pages), distributed cluster services [2, 23], and con-
tent delivery networks.

Separate prefetch infrastructure An intu-
itively simple way of avoiding server interference is
to use separate servers to achieve complete isola-
tion of prefetch and demand requests. In addition
to the obvious strategy of providing separate de-
mand and prefetch machines in a centralized cluster,
a natural use of this strategy might be for a third-
party \prefetch distribution network" to supply geo-
graphically distributed prefetch servers in a manner
analogous to existing content distribution networks.
Note that this alternative is not available to the one-
connection architecture.

However, separate infrastructure needs extra
hardware and hence may not be an economically vi-
able solution for many web sites.

End-to-end monitoring A technique based on
end-to-end monitoring estimates the overall load (or
spare capacity) on the server by periodically probing
the server with representative requests and measur-
ing the response times of the replies. Low response
times indicate that the server has spare capacity and
high response times indicate that the server is loaded.
Based on such an estimate, the monitor utilizes the
spare capacity on the server by controlling the num-
ber and aggressiveness of prefetching clients.

An advantage of end-to-end monitoring is that it
requires no modi�cations to existing servers. Fur-
thermore, it can be used by both one- and two- con-
nection prefetching architectures. The disadvantage
of such an approach is that its scheduling precision
is likely to be less than that of a local scheduler that

has access to the internal state of the server and oper-
ating system. Moreover, an end-to-end monitor may
not be responsive enough to bursts in load over �ne
time scales.

In the following subsections, we discuss issues in-
volved in designing an end-to-end monitor in greater
detail, present our simple monitor design, and eval-
uate its eÆcacy in comparison to server scheduling.

3.2 End-to-end Monitor Design

Figure 3 illustrates the architecture of our
monitor-controlled prefetching system. The moni-
tor estimates the server's spare capacity and sets a
budget of prefetch requests permitted for an interval.
The hint server adjusts the load imposed by prefetch-
ing on the server by ensuring that the sum across the
hint lists returned to clients does not exceed the bud-
get. Our monitor design must adress two issues: (i)
budget estimation and (ii) budget distribution across
clients.

Demand/Prefetch
Requests

Samples
Request

Client Content
Server

MonitorServer
Hint

Budget

Hint Lists
Request for

Figure 3. A Monitored Prefetching System

Budget estimation The monitor periodically
probes the server with HTTP requests to repre-
sentative objects and measures the response times.
The monitor increases the budget when the response
times are below the objects' threshold values and de-
creases the budget otherwise.

As probing is an intrusive technique, choosing an
appropriate rate of probing is a challenge. A high
rate makes the monitor more reactive to load on the
server, but also adds extra load on the server. On
the other hand, a low rate makes the monitor react
slowly, and can potentially lead to interference to the
demand requests. Similarly, the exact policy for in-
creasing and decreasing the budget must balance the
risk of causing interference against underutilization
of spare capacity.

Budget distribution The goal of this task is to
distribute the budget among the clients such that (i)
the load due to prefetching on the server is contained
within the budget for that epoch and is distributed
uniformly over the interval, (ii) a signi�cant fraction
of the budget is utilized over the interval, and (iii)

clients are responsive to changing load patterns at
the server. The two knobs that the hint server can
manipulate to achieve these goals are (i) the size of
the hint list returned to the clients and (ii) the subset
of clients that are given permission to prefetch. This

exibility provides a freedom to choose from many
policies.

3.3 Monitor Prototype

Our prototype uses simple, minimally tuned poli-
cies for budget estimation and budget distribution.
Future work may improve the performance of our
monitor.

The monitor probes the server in epochs, each ap-
proximately 100 ms long. In each epoch, the moni-
tor collects a response time sample for a represen-
tative request. In the interest of being conserva-
tive � choosing non-interference even at the poten-
tial cost of reduced utilization � we use an additive
increase(increase by 1), multiplicative decrease (re-
duce by half) policy. AIMD is commonly used in
network congestion control [30] to conservatively es-
timate spare capacity in the network and be respon-
sive to congestion. If in �ve consecutive epochs, the
�ve response time samples lie below a threshold, the
monitor increases the budget by 1. While taking the
�ve samples, if any sample exceeds the threshold, the
monitor sends another probe immediately to check if
the sample was an outlier. If even the new sample ex-
ceeds the threshold, indicating a loaded server, the
monitor decreases the budget by half and restarts
collecting the next �ve samples.

In our simple prototype, we manually supply the
representative objects's threshold response times.
However, it is straightforward because of the pre-
dictable pattern in which response times vary with
load on server systems { a nearly constant value of
response time for low load followed by a sharp rise be-
yond the \knee" for high load. As part of our future
work, we intend to make the monitor automatically
pick thresholds in a self-tuning manner.

The hint server distributes the current budget
among client requests that arrive in that epoch. We
choose to set the hint list size to the size of one doc-
ument (a document corresponds to a HTML page
and all embedded objects). Our policy lets clients
to return quickly for more hints and thus be more
responsive to changing load patterns on the server.
Note that returning larger hint lists would reduce
the load on the hint server, but it would reduce the
system's responsiveness and its ability to avoid in-
terference. We control the number of simultaneously
prefetching clients, and thus the load on the server,
by returning to some clients a hint list of zero size
and a directive to wait until the next epoch to fetch
the next hint list. For example, if B denotes the

budget in the current epoch, and N the expected
number of clients in that epoch, D the number of
�les in a document, and � the epoch length, the hint
server accepts a fraction p = min(1; B��

N �D
) of requests

to prefetch on part of clients in that epoch and re-
turns hintlists of zero length for other requests. Note
that other designs are possible. For example, the
monitor can integrate with the prefetch prediction
algorithm to favor prefetching by clients for which
the predictor can identify high-probability items and
defer prefetching by clients for which the predictor
identi�es few high-value targets.

Since the hint server does not a priori know the
number of client requests that will come in an epoch,
it estimates that value with the number of requests
that come in the previous epoch. If more than the
estimated number of requests arrive in a epoch, the
hint server replies with list of size zero and a directive
to retry in the next epoch to those extra requests.
If fewer clients arrive, some of the budget can get
wasted. However, in the interest of avoiding interfer-
ence, we choose to allow such wastage of budget.

In the following Section 3.3.1, we evaluate the per-
formance of our prototype with respect to the goals
of reducing interference and reaping signi�cant spare
bandwidth and compare it with the other resource
management alternatives.

3.3.1 Evaluation

In evaluating resource management algorithms, we
are mainly concerned with interference that prefetch-
ing could cause and less with the bene�ts obtained.
We therefore abstract away prediction policies used
by services by prefetching sets of dummy data from
arbitrary URLs at the server. The goal of the ex-
periments is to compare the e�ectiveness of di�erent
resource management alternatives in avoiding server
interference against the ideal case (when no prefetch-
ing is done) with respect to the following metrics: (i)
cost: the amount of interference in terms of demand
response times and (ii) bene�t: the prefetch band-
width.

We consider the following resource management
algorithms for this set of experiments:

1. No-Prefetching: Ideal case, when no prefetching
is done or when we use a separate prefetching
infrastructure.

2. No-Avoidance: Prefetching with no interference
avoidance with �xed aggressiveness. We set the
aggressiveness by setting pfrate, which is the
number of documents prefetched for each de-
mand document. For a given service, a given
prefetch threshold will correspond to some aver-
age pfrate. We use �xed pfrate values of 1 and
5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e(

se
c)

Demand Throughput (Conns/sec)

No-Prefetching
No-Avoidance, pfrate=1
No-Avoidance, pfrate=5

Scheduler, pfrate=1
Scheduler, pfrate=5
Monitor, thres=3ms

Monitor, thres=10ms

Figure 4. Effect of prefetching on demand
throughput and response times with vari-
ous resource management policies

3. Scheduler: As a simple local server scheduling
policy, we choose nice, the process scheduling
utility in Unix. We again use �xed pfrate values
of 1 and 5. This simple server scheduling algo-
rithm is only intended as a comparison; more so-
phisticated local schedulers may better approx-
imate the ideal case.

4. Monitor: We perform experiments for two
threshold values of 3ms and 10ms.

For evaluating algorithms 2 and 4, we set up one
server serving both demand and prefetch requests.
These algorithms are applicable in both one connec-
tion and two connection architectures. Our proto-
type implementation of algorithm 3 requires that the
demand and prefetch requests be serviced by di�er-
ent processes and thus is applicable only to the two
connection architecture. We use two di�erent servers
listening on two ports on the same machine, with one
server run at a lower priority using the Linux nice.
Note that the general local scheduling approach is
equally applicable to the one-connection architecture
with more intrusive server modi�cations.

Our experimental setup includes Apache HTTP
server [1] running on a 450MHz Pentium II, with
128MB of memory. To generate the client load, we
use httperf [38] running on four di�erent Pentium
III 930MHz machines. All machines run the Linux
operating system.

We use two workloads in our experiments. Our
�rst workload generates demand requests to the
server at a constant rate. The second workload is
a one hour subset of the IBM sporting event server
trace, whose characteristics are shown in Figure 2.
We scale up the trace in time by a factor of two, so
that requests are generated at twice the original rate,
as the original trace barely loads our server.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

B
an

dw
id

th
 (

M
bp

s)

Demand Throughput (Conns/sec)

No-Prefetching
Demand:No-Avoidance, pfrate=1
Prefetch:No-Avoidance, pfrate=1

Demand:Scheduler, pfrate=1
Prefetch:Scheduler, pfrate=1
Demand:Monitor, thres=3ms
Prefetch:Monitor, thres=3ms

Demand:Monitor, thres=10ms
Prefetch:Monitor, thres=10ms

Figure 5. Prefetch and demand bandwidths
achieved by various algorithms

Constant workload Figure 4 shows the demand
response times with varying demand request arrival
rate. The graph shows that both Monitor and Sched-
uler algorithms closely approximate the behavior of
No-Prefetching in not a�ecting the demand response
times. Whereas, the No-Avoidance algorithm with
�xed pfrate values signi�cantly damages both the
demand response times and the maximum demand
throughput.

Figure 5 shows the bandwidth achieved by the
prefetch requests and their e�ect on the demand
bandwidth. The �gure shows that No-Avoidance ad-
versely a�ects the demand bandwidth. Conversely,
both Scheduler and Monitor reap spare bandwidth
for prefetching without much decrease in the demand
bandwidth. Further, at low demand loads, a �xed
pfrate prevents No-Avoidance from utilizing the full
available spare bandwidth. The problem of too lit-
tle prefetching when demand load is low and too
much prefetching when demand load is high illus-
trates the problem with existing threshold strategies.
As hoped, the Monitor tunes prefetch aggressiveness
of the clients such that essentially all of the spare
bandwidth is utilized.

IBM server trace In this set of experiments, we
compare the performance of the four algorithms for
the IBM server trace. Figure 6 shows the demand
response times and prefetch bandwidth in each case.
The graph shows that the No-Avoidance case a�ects
the demand response times signi�cantly as pfrate in-
creases. The Scheduler and Monitor cases have less
adverse e�ects on the demand response times.

These experiments show that resource manage-
ment is an important component of a prefetching
system because overly aggressive prefetching can sig-
ni�cantly hurt demand response time and through-
put while timid prefetching gives up signi�cant band-

No-
Pre

fe
tch

ing

pf
ra

te
=1

pf
ra

te
=5

pf
ra

te
=1

0

pf
ra

te
=1

5

pf
ra

te
=1

pf
ra

te
=5

pf
ra

te
=1

0

pf
ra

te
=1

5

th
re

s=
2m

s

th
re

s=
10

m
s

th
re

s=
20

m
s

0.000

0.010

0.020

0.030

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Avg Response Time

(0
.1

45
 s

ec
)

No-Avoidance Scheduler Monitor

0

20

40

60

80

P
refetch B

andW
idth (M

bps)

Prefetch BW (in Mbps)

Figure 6. Performance of No-Avoidance,
Scheduler and Monitor schemes on the IBM
server trace

width. They also illustrate a key problem with
constant non-adaptive magic numbers in prefetching
such as the threshold approach that is commonly pro-
posed. The experiments also provide evidence of the
e�ectiveness of the monitor in tuning prefetch aggres-
siveness of clients to reap signi�cant spare bandwidth
while keeping interference at a minimum.

4 Network Interference

Mechanisms to reduce network interference could,
in principle, be deployed at clients, intermediate
routers, or servers. For example, clients can reduce
the rate at which they receive data from the servers
using TCP
ow control mechanisms [48]. However,
it is not clear how to set the parameters to such
mechanisms or how to deploy them given existing
infrastructure. Prioritization in routers that provide
di�erentiated service to prefetch and demand pack-
ets can avoid interference e�ectively [47]. However,
router prioritization is not easily deployable in the
near future. We focus on server based control be-
cause of the relative ease of deployability of server
based mechanisms and their e�ectiveness in avoiding
both self- and cross-interference.

In particular, we use a transport level solution at
the server � TCP-Nice [51]. TCP-Nice is a conges-
tion control mechanism at the sender that is speci�-
cally designed to support background data transfers
like prefetching. Background connections using Nice
operate by utilizing only spare bandwidth in the net-
work. They react more sensitively to congestion and
backo� when a possibility of congestion is detected,
giving way to foreground connections. In our previ-
ous study [51], we provably bound the network in-
terference caused by Nice under a simple network
model. Furthermore, our experimental evidence un-
der wide range of conditions and workloads shows

that Nice causes little or no interference and at the
same time reaps a large fraction of the spare capacity
in the network.

Nice is deployable in the two connection context
without modifying the internals of servers by con�g-
uring systems to use Nice for all connections made
to the prefetch server. A prototype of Nice runs on
Linux currently, and it should be straight-forward to
port Nice to other operating systems. The other way
to use Nice in non-Linux environments is to put a
Linux machine running Nice in front of the prefetch
server and make the Linux machine serve as a reverse
proxy or a gateway.

It appears to be more challenging to use Nice in
the one connection case. In principle, the Nice im-
plementation allows
ipping a connection's conges-
tion control algorithm between standard TCP (when
serving demand requests) and Nice (when serving
prefetch requests). However, using this approach for
prefetching faces a number of challenges: (1) Flipping
modes causes packets already queued in the TCP
socket bu�er to inherit the new mode. Thus, de-
mand packets queued in the socket bu�er may be
sent at low-priority while prefetch packets may be
sent at normal-priority, thus causing network inter-
ference. Ensuring that demand and prefetch packets
are sent in the appropriate modes would require an
extension to Nice and a �ne-grained coordination be-
tween the application and the congestion control im-
plementation. (2) Nice is designed for long network

ows. It is not clear if
ipping back and forth be-
tween congestion control algorithms will still avoid
interference and gain signi�cant spare bandwidth.
(3) HTTP/1.1 pipelining requires replies to be sent in
the order requests were received, so demand requests
may be queued behind prefetch requests, causing de-
mand requests to perceive increased latencies. One
way to avoid such interference may be to quash all
the prefetch requests queued in front of the demand
request. For example, we could send a small error
message (eg. HTTP response code 307 { \Temporary
Redirect" with a redirection to the original URL) as
a response to the quashed prefetch requests.

Based on these challenges, it appears simpler to
use the two connection architecture when the net-
work is a potential bottleneck. A topic for future
work is to explore these challenges and determine if
a deployable one connection architecture that avoids
network interference can be devised.

5 Client Interference

Prefetching may interfere with the performance of
a client in at least two ways. First, prefetch requests
consume processing cycles and may, for instance, de-
lay rendering of demand pages. Second, prefetched

data may displace demand data from the cache and
thus hurt demand hit rates for the prefetching service
or other services.

As with the interference at the server discussed
above, interference between client processes could,
in principle, be addressed by modifying the client
browser (and, perhaps, the client operating system)
to use a local processor scheduler to ensure that pro-
cessing of prefetch requests never interferes with pro-
cessing of demand requests. Lacking that option, we
resort to a simpler approach: as described in Sec-
tion 6, we structure our prefetch mechanism to en-
sure that processing prefetch requests does not be-
gin until after the loading and rendering of the de-
mand page, including all inline images and recur-
sive frames. Although this approach will not help
reduce cross-interference with other applications at
the client, it may avoid a potentially common case of
self-interference of the prefetches triggered by a page
delaying the rendering of that page.

Similarly, a number of storage scheduling algo-
rithms exist that balance caching prefetched data
against caching demand data [6, 8, 31, 44]. Unfortu-
nately, all of these algorithms require modi�cations
to the cache replacement algorithm.

Because we assume that the client cannot be mod-
i�ed, we resort to two heuristics to limit cache pol-
lution caused by prefetching. First, in our system,
services place a limit on the ratio of prefetched bytes
to demand bytes sent to a client. Second, services
can set the Expires HTTP header to a value in the
relatively near future (e.g., one day in the future)
to encourage clients to evict prefetched document
earlier than they may otherwise have done. These
heuristics have an obvious disadvantage: they resort
to magic numbers similar to those in current use, and
they su�er from the same potential problems: if the
magic numbers are too aggressive, prefetching ser-
vices will interfere with other services, and if they are
too timid, prefetching services will not gain the ben-
e�ts they might otherwise gain. Fortunately, there
is reason to hope that performance will not be too
sensitive to this parameter. First, disks are large and
growing larger at about 100% per year [14] and rel-
atively modest-sized disks are e�ectively in�nite for
many client web cache workloads [52]. So, disk caches
may absorb relatively large amounts of prefetch data
with little interference. Second, hit rates fall rela-
tively slowly as disk capacities shrink [5, 52], which
would suggest that relatively large amounts of pol-
luting prefetch data will have relatively small e�ects
on demand hit rate.

Figure 7 illustrates the extent to which our heuris-
tics can limit the interference of prefetching on hit
rates. We use the 28-day UCB trace of 8000 unique
clients from 1996 [22] and simulate the hit rates of

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10

H
it

R
at

e

Prefetch Aggressiveness

Ideal LRU 1MB
LRU 1MB

LRU-24hr 1MB

Ideal LRU 10MB
LRU-24hr 10MB

 LRU 10MB

Ideal LRU 30MB LRU-24hr 30MB LRU 30MB

Figure 7. Effect of prefetching on demand
hit rate

1 MB, 10 MB and 30 MB per-client caches. Note
that these cache sizes are small given, for exam-
ple, Internet Explorer's defaults of using 3% of a
disk's capacity (e.g., 300 MB of a 10 GB disk) for
web caching. On the x-axis, we vary the number of
bytes of dummy prefetch data per byte of demand
data that are fetched after each demand request. In
this experiment, 20% of services use prefetching at
the speci�ed aggressiveness and the remainder do
not, and we plot the demand hit rate of the non-
prefetching services. Ideally, these hit rates should
be una�ected by prefetching. As the graph shows,
hit rates fall gradually as prefetching increases, and
the e�ect shrinks as cache sizes get larger. For ex-
ample, if a client cache is 30 MB and 20% of services
prefetch aggressively enough that each prefetches ten
times as much prefetch data as the client references
demand data, demand hit rates fall from 29.9% to
28.7%.

6 Prefetching Mechanism

Figure 8 illustrates the key components of the
one and two connection architectures. The one-
connection mechanism consists of an unmodi�ed
client, a content server that serves both demand and
prefetch requests, a munger that modi�es content
on the content server to activate prefetching and a
hint server that gives out hint lists to the client to
prefetch. The hint server also includes a monitor that
probes the content server and estimates the spare
capacity at the server and accordingly controls the
number of prefetching clients.

The two-connection prototype, along with the
components above, also consists of a prefetch server
that is a copy of the demand server (running either on
a separate machine or on a di�erent port on the same
machine) and a front-end that intercepts certain re-
quests to the demand server and returns appropriate

Client

Hint Lists

Demand/Prefetch
Requests

Munger

Fileset

Hint
Server

Content
Server

Fileset

FilesetHint
Server

Client

Hint Lists

Munger

Prefetch
Server

Demand
ServerFE

Requests
Demand

Prefetch
Requests

(a) (b)

Figure 8. Prefetching mechanisms for (a) one connection and (b) two connection architectures.

redirection objects as described later, thereby obvi-
ating any need to modify the original demand server.

In the following subsections, we describe the
prefetching mechanisms for the one and two connec-
tion architectures.

6.1 One-connection Prefetching Mechanism

Content modi�cation The munger augments
each HTML document with pieces of JavaScript and
HTML code that cause the client to prefetch.

On demand fetch

1. Client requests an augmented HTML document.
2. When an augmented HTML document (Fig-

ure 9) �nishes loading into the browser, the
pageOnLoad() function is called. This func-
tion calls getPfList(), a function de�ned
in pfalways.html (Figure 10). The �le
pfalways.html is loaded within every aug-
mented HTML document. pfalways.html is
cacheable and hence does not need to be fetched
everytime a document gets loaded.

3. getPfList() sends a request for pflist.html
to the hint server with the name of the enclosing
document, the name of the previous document
in history (the enclosing document's referer) and
TURN=1 as extra information embedded in the
URL.

4. The hint server receives the request for
pflist.html. Since the client fetches a
pflist.html for each HTML document (even
if the HTML document is found in the cache),
the client provides the hint server with a his-
tory of accesses to aid in predicting hint lists.
In Figure 10, PFCOOKIE contains the present
access (document.referrer) and the last access
(prevref) by the client. The hint updates the
history and predicts a list of documents to be
prefetched by the client based on that client's
history and the global access patterns. It puts
these predictions into the response pflist.html
such as shown in 11, which it returns to the
client.

5. pflist.html replaces pfalways.html on the
client. After pflist.html loads, the preload()

<HTML> <HEAD> <! -- existing header goes here -- >
<SCRIPT LANGUAGE="JavaScript">
function pageOnLoad() {
myiframe.getPFlist(document.referrer);

} </SCRIPT> </HEAD> <BODY>

<! -- existing body goes here -- >
if(null == window.onload) {
window.onload = pageOnLoad();}

else {
var origfn = window.onload;
window.onload = function(){origfn();pageOnLoad();};}

<IFRAME SRC="pfalways.html" name="myiframe"
width=0 height=0 frameborder=0>

</IFRAME> </BODY> </HTML>

Figure 9. Augmentation of HTML pages

<HTML> <HEAD> <SCRIPT LANGUAGE="JavaScript">
function getPFList(var prevref) {
document.location="HINT-SERVER/pflist.html+PCOOKIE="

+ document.referrer + "+" + prevref + TURN=1;
document.close();

} </SCRIPT> </HEAD> </HTML>

Figure 10. pfalways.html

function in its body preloads the documents to
be prefetched from the prefetch server (which is
same as the demand server in the one connection
case).

6. After all the prefetch documents are preloaded,
the myOnLoad() function calls getMore() that
replaces the current pflist.html by fetching a
new version with TURN=TURN+1.

Steps 5 and 6 repeat until the hint server has sent
everything it wants, at which point the hint server re-
turns a pflist.html with no getMore() call. When
there is not enough budget left at the server, the hint
server sends a pflist.html with no �les to prefetch
and a delay, after which the getMore() function gets
called. The information TURN breaks the (possi-
bly) long list of prefetch suggestions into a \chain"
of short lists.

On demand fetch of a prefetched document

The client browser fetches it from the cache as if it
is a cache hit.

<HTML> <HEAD> <SCRIPT LANGUAGE="JavaScript">

function myOnLoad() { //exeutes after body loads
preload("DEMAND-SERVER/c.html"); //For two-conn only
getMore() ;

}
function getMore() {
document.location="HINT-SERVER/pflist.html +

PCOOKIE=" + document.referrer +
"+" + prevref + "+" + "TURN=2";

document.close();
}

var myfiles=new Array()
function preload(){
for (i=0;i<preload.arguments.length;i++){
myfiles[i]=new Image() ;
myfiles[i].src=preload.arguments[i] ;

}
} </SCRIPT> </HEAD>

<BODY onload="myOnLoad()">
<SCRIPT LANGUAGE="JavaScript">
preload("PREFETCH-SERVER/a.jpg",

"PREFETCH-SERVER/b.jpg",
"PREFETCH-SERVER/c.html");

</SCRIPT> </BODY> </HTML>

Figure 11. An example pflist.html returned
by the hint server

<HTML> <SCRIPT LANGUAGE="JavaScript">
if (document.referrer.indexOf ("pflist") < 0)

document.location="PREFETCH-SERVER/c.html";
document.close();
</SCRIPT> </HTML>

Figure 12. Wrapper for c.html, stored in
cache as DEMAND-SERVER/c.html

6.2 Two-connection Prefetching Mechanism

The two-connection prototype employs the same
basic mechanism for prefetching as the one-
connection prototype. However, since browsers
identify cached documents using both the server
name and document name, documents fetched from
prefetch server are not directly usable to serve de-
mand requests. In order to �x this problem, we mod-
ify step 6 such that before calling getMore(),

6.a The myOnLoad() function (Figure 11) requests
a wrapper (redirection object) from the demand
server for the document that was prefetched.

6.b The frontend intercepts the request (based on
the referer �eld) and responds with the wrapper
(Figure 12) that loads the prefetched document
in response to a client's demand request.

The prefetch server serves a modi�ed copy of the
content on the demand server. Note that the rela-
tive links in a webpage on the demand server point
to pages on demand server. Hence, all relative links
in the prefetch server's content are changed to abso-
lute links, such that when client clicks on a link in the

prefethed web page, the request is sent to the demand
server. Also, all absolute links to inline objects in the
page are changed to be absolute links to the prefetch
server, so that prefetched inline objects are used.
Since prefetch and demand servers are considered as
di�erent domains by the client browser, JavaScript
security models [40] prevent scripts in prefetched
documents to access private information of the de-
mand documents and vice versa. However, to �x this
problem, JavaScript allows us to explicitly set the
document.domain property of each HTML document
to a common suÆx of prefetch and demand servers.
For example, for servers demand.cs.utexas.edu
and prefetch.cs.utexas.edu, all the HTML doc-
uments can set their document.domain property to
cs.utexas.edu.

On demand fetch of a prefetched document: (i)
a hit results for the wrapper in the cache, (ii) at
the loading time, the wrapper replaces itself with
the prefetched document from the cache, (iii) inline
objects in the prefetched document point to objects
from the prefetch server and hence are found in the
cache as well, and (iv) links in the prefetched docu-
ment point to the demand server.

This mechanism has two limitations. First,
prefetched objects might get evicted from the cache
before their wrappers. In such a case, when the wrap-
per loads for a demand request, a new request will be
sent to the prefetch server. Since sending a request to
the prefetch server in response to a demand request
could cause undesirable delay, we reduce such occur-
rences by setting the expiration time of the wrap-
per to a value smaller than the expiration of the
prefetched object itself. Second, but not a signi�cant
limitation is that some objects may be fetched twice,
once as demand and once as prefetch objects as the
browser cache considers them as di�erent objects.

6.3 Prediction
For our experiments, we use prediction by partial

matching [11] (PPM-n/w) to generate hint lists for
prefetching. The algorithm uses a client's n most
recent requests to the server for non-image data to
predict URLs that will appear during a subsequent
window that ends after the w'th non-image request
to the server. Our prototype uses n=2 and w=10.

In general, the hint server can be made to use any
prediction algorithm. It can be made to use standard
algorithms proposed in the literature [17, 18, 24, 42]
or others that utilize more service speci�c informa-
tion such as a news site that prefetches stories relat-
ing to topics that interest a given user.

6.4 Alternatives
We explored other alternatives for prefetching in

the two-connection architecture. We could have used

a Java Applet instead of the JavaScript in Figure 9.
One could also use a zero-pixel frame that loads the
prefetched objects instead of JavaScript. The refresh
header in HTTP/1.1 could be exploited to iteratively
prefetch a list of objects by setting the refresh time
to a small value.

As an alternative to using wrappers, we also con-
sidered maintaining state explicitly at the client to
store information about whether a document has al-
ready been prefetched. Content could be augmented
with a script to execute on a hyperlink's onClick
event that checks this state information before re-
questing a document from the demand server or
prefetch server. Similar augmentation could be done
for inline objects. Tricks to maintain state on the
client can be found in [45].

7 Prototype and Evaluation

Our prototype uses the two connection architec-
ture whose prefetching mechanism is shown in Fig-
ure 8(b). We use Apache 2.0.39 as the server, hosted
on a 450MHz Pentium II, serving demand requests
on one port and prefetch requests on the other. As
an optimization, we implemented the frontend as a
module within the Apache server rather than as a
separate process. The hint server is implemented
in Java and runs on a separate machine with 932
MHz Pentium III proessor, and connects to the server
over a 100 Mbps LAN. The hint server uses pre-
diction lists generated o�ine using the PPM algo-
rithm [42] over a complete 24 hour IBM server trace.
The monitor runs as a separate thread of the hint
server on same machine. The content munger is also
written in Java and modi�es the content o�ine (as
shown in Figure 9). We have successfully tested our
prefetching system with popular web browsers inlud-
ing Netscape, Internet Explorer, and Mozilla.

7.1 End to End Performance

In this section, we evaluate NPS under various se-
tups and evaluate the importance of each component
in our system. In all setups, we consider three cases:
(1) No-Prefetching, (2) No-Avoidance scheme with
�xed pfrate, and (3) NPS (with Monitor and TCP-
Nice). In these experiments, the client connects to
the server over a wide area network through a com-
mercial cable modem link. On an unloaded network,
the round trip time from the client to the server is
about 10 ms and the bandwidth is about 1 Mbps.

We use httperf to replay a subset of the IBM server
trace. The trace is one hour long and consists of
demand accesses made by 42 clients. This work-
load contains a total of 14044 �le accesses of which
7069 are unique; the demand network bandwidth is

about 92 Kbps. We modify httperf to simulate the
execution of JavaScript as shown in Figures 9, 10
and 11. Also, we modify httperf to implement a
large cache per client that never evicts a �le that
is fetched or prefetched during a run of an experi-
ment. In No-Avoidance case, we set the pfrate to
70, i.e. it gets a list of 70 �les to prefetch, fetches
them and stops. This pfrate is such that neither the
server nor the network becomes a bottleneck even for
the No-Avoidance case. For NPS, we assume that
each document will consist of ten �les (a document
is a HTML page along with the embedded objects).
Thus the hint server gives out hint lists of size 10 to
the requesting clients. Note that many of the �les
given as hints could be cache hits at the client.

Unloaded resources In this experiment, we use
the setup explained above. Figure 13(a) shows
that when the resources are abundant, both No-
Avoidance and NPS cases signi�cantly reduce the
average response times by prefetching. The graph
also shows the bandwidth achieved by No-Avoidance
and Nice.

Loaded server This experiment demonstrates the
e�ectiveness of the monitor as an important compo-
nent of NPS. To create a loaded server condition,
we use a client machine connected on a LAN to the
server running httperf that replays a heavier sub-
set of the IBM trace and also prefetches like the
WAN client. Figure 13(b) plots the average de-
mand response times and the bandwidth used in the
three cases. As expected, even though the server is
loaded, the clients prefetch aggressively in the No-
Avoidance case, thus causing the demand response
times to increase by more than a factor of 2 rather
than decrease. NPS, being controlled by the moni-
tor, prefetches less data and hence avoids any damage
to the demand response times. NPS in fact bene�ts
from prefetching, as shown by the decrease in the
average demand response time.

Loaded network This experiment demonstrates
the e�ectiveness of TCP-Nice as a building block of
NPS. In order to create a heavily loaded network with
little spare capacity, we set up another client ma-
chine running httperf that shares the cable modem
connection with the original client machine, replays
the same trace, and also prefetches like the origi-
nal client. Figure 13(c) plots the average demand
response times, demand bandwidth, and prefetch
bandwidth in all three cases. The results show that
when the network is loaded, No-Avoidance causes
signi�cant interference to demand requests, thereby
increasing the average demand response times by a

No-Prefetching Prefetching NPS0.000

0.020

0.040

0.060

0.080

0.100

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Avg Response Time

No-Avoidance

0

50

100

150

200

B
andw

idth (K
bps)

Demand Bandwidth
Prefetch Bandwidth

No-Prefetching Prefetching NPS0.000

0.020

0.040

0.060

0.080

0.100

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Avg Response Time

No-Avoidance

0

50

100

150

200

B
andw

idth (K
bps)

Demand Bandwidth
Prefetch Bandwidth

No-Prefetching Prefetching NPS0.000

0.020

0.040

0.060

0.080

0.100

A
vg

 D
em

an
d

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Avg Response Time

No-Avoidance

(0
.2

21
 s

ec
)

0

50

100

150

200

B
andw

idth (K
bps)

Demand Bandwidth
Prefetch Bandwidth

(a) Unloaded Resources (b) Loaded Server (c) Loaded Network

Figure 13. Effect of prefetching on demand response times.

factor of 7. Although NPS doesn't show any improve-
ments, it contains the increase in demand response
times to less than 30%, which shows the e�ectiveness
of TCP-Nice in avoiding network interference. The
damage is because TCP-Nice is primarily designed
for long
ows.

8 Related Work

Several studies have published promising re-
sults that suggest that prefetching (or pushing)
content could signi�cantly improve web cache hit
rates by reducing compulsory and consistency
misses [12, 17, 24, 25, 32, 33, 42, 52]. However, exist-
ing systems either su�er from a lack of deployability
or use threshold-based magic numbers to address
the problem of interference. Several existing com-
mercial client-side prefetching agents that require
new code to be deployed to clients are available
[39, 27, 53]. At least one system makes use of Java
applets to avoid modifying browsers [20]. It is not
clear however, what, if any, techniques are used
by these systems to avoid self- and cross-interference.

Duchamp [17] proposes a �xed bandwidth limit
for prefetching data. Markatos [36] adopts a
popularity-based approach where servers forward
the N most popular documents to clients. Many
of these studies [17, 29, 52] propose prefetching
an object if the probability of its access before
it gets modi�ed is higher than a threshold. The
primary performance metric in these studies is
increase in hit rate. However, the right measures
of performance are end-to-end latency when many
clients are actively prefetching, and interference to
other applications.

Davison et. al [16] propose using a connectionless
transport protocol and using low priority datagrams
(the infrastructure for which is assumed) to reduce
network interference. Servers speculatively push
documents chunked into datagrams of equal size
and (modi�ed) clients use range requests as de�ned
in HTTP/1.1 for missing portions of the document.
Servers maintain state information for prefetching
clients and use coarse-grained estimates of per-client

bandwidth to limit the rate at which data is pushed
to the client. Their simulation experiments do
not explicitly quantify interference and use lightly
loaded servers in which only a small fraction of
clients are prefetching. Crovella et. al [12] show
that a window-based rate controlling strategy for
sending prefetched data leads to less bursty traÆc
and smaller queue lengths.

In the context of hardware prefetching, Lin et.
al [34] propose issuing prefetch requests only when
bus channels are idle and giving them low replace-
ment priorities so as to not degrade the performance
of regular memory accesses and avoid cache pollu-
tion. Several algorithms for balancing prefetch and
demand use of memory and storage system have been
proposed [6, 8, 31, 44]. Unfortunately, applying any
of these schemes in the context of Web prefetching
would require modi�cation of existing clients.

9 Conclusion

We present a prefetching mechanism that (1) sys-
tematically avoids interference and (2) is deployable
without any modi�cations to the HTTP/1.1 proto-
col, existing clients, existing servers, or existing net-
works.

References

[1] Apache HTTP Server Project. http://httpd.apache.org.
[2] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster re-

serves: a mechanism for resource management in cluster-
based network servers. In Measurement and Modeling of
Computer Systems, pages 90{101, 2000.

[3] G. Banga, P. Druschel, and J. Mogul. Resource Contain-
ers: A New Facility for Resource Management in Server
Systems. In OSDI, 1999.

[4] C. Bouras and A. Konidaris. Web Components: A Con-
cept for Improving Personalization and Reducing User
Perceived Latency on the World Wide Web. In The 2nd
International Conference on Internet Computing, 2001.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web Caching and Zipf-like Distributions: Evidence and
Implications. In Proceedings of IEEE Infocom, 1999.

[6] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A Study of
Integrated Prefetching and Caching Strategies. In SIG-
METRICS, 1995.

[7] B. Chandra. Web Workloads In
uencing Disconnected
Service Access. Master's thesis, University of Texas at
Austin, May 2001.

[8] B. Chandra, M. Dahlin, L. Gao, A. Khoja, A. Razzaq,
and A. Sewani. Resource Management for Scalable Dis-
connected Access to Web Services. In WWW10, May
2001.

[9] X. Chen and X. Zhang. Coordinated Data Prefetching by
Utilizing Reference Information at Both Proxy and Web
Servers. In PAWS 2001.

[10] J. Cho and H. Garcia-Molina. Synchronizing a Database
to Improve Freshness. In 2000 ACM International Con-
ference on Management of Data, May 2000.

[11] J. Cleary and I. Witten. "Data compression using adap-
tive coding and partial string matching". IEEE Trans.
Commun., 1984.

[12] M. Crovella and P. Barford. The Network E�ects of
Prefetching. In Proceedings of IEEE Infocom, 1998.

[13] M. Crovella and A. Bestavros. Self-Similarity in World
Wide Web TraÆc: Evidence and Possible Causes. In
SIGMETRICS, May 1996.

[14] M. Dahlin. Technology trends data.
http://www.cs.utexas.edu/users/dahlin/techTrends
/data/diskPrices/data, January 2002.

[15] B. Davison. Assertion: Prefetching with GET is Not
Good. Web Caching and Content Distribution Workshop,
June 2001.

[16] B. D. Davison and V. Liberatore. Pushing Politely:
Improving Web Responsiveness One Packet at a Time
(Extended Abstract). Performance Evaluation Review,
28(2):43{49, September 2000.

[17] D. Duchamp. Prefetching Hyperlinks. In Second USITS,
October 1999.

[18] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web Prefetch-
ing between Low-Bandwidth Clients and Proxies: Poten-
tial and Performance, 1999.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee. HTTP/1.1. Technical
Report RFC-2616, IETF, June 1999.

[20] Fireclick. Net
ame. http://www.�reclick.com.
[21] J. Gray and P. Shenoy. Rules of Thumb in Data Engineer-

ing. In Proceedings of the 16th International Conference
on Data Engineering, pages 3{12, 2000.

[22] S. Gribble and E. Brewer. System Design Issues for Inter-
net Middleware Services: Deductions from a Large Client
Trace. In USITS97, Dec 1997.

[23] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable Distributed Data Structures for In-
ternet Service Construction. In OSDI, 2002.

[24] J. GriÆoen and R. Appleton. Automatic Prefetching in
a WAN. In IEEE Workshop on Advances in Parallel and
Distributed Systems, October 1993.

[25] J. S. Gwertzman and M. Seltzer. The Case for Geograph-
ical Push-Caching. In Proceedings of the Workshop on
Hot Topics in Operating Systems, May 1995.

[26] IBM. Websphere. http://www.ibm.com/websphere.
[27] IMSI Net Accelerator.

http://nct.digitalriver.com/ful�ll/0002.3.
[28] Intel. N-tier Architecture improves scalability and ease

of integration. http://www.intel.com/eBusiness/pdf
/busstrat/industry/wp012302.pdf.

[29] Q. Jacobson and P. Cao. Potential and Limits of Web
Prefetching Between Low-Bandwidth Clients and Prox-
ies. In Third International WWW Caching Workshop,
1998.

[30] V. Jacobson. "Congestion avoidance and control". In
Proceedings of the ACM SIGCOMM '88 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communication, 1988.

[31] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad,
P. Cao, E. Felten, G. Gibson, A. R. Karlin, and K. Li.
A Trace-Driven Comparison of Algorithms for Parallel
Prefetching and Caching. In OSDI, pages 19{34, 1996.

[32] M. Korupolu and M. Dahlin. Coordinated Placement
and Replacement for Large-Scale Distributed Caches. In
Workshop On Internet Applications, June 1999.

[33] T. M. Kroeger, D. E. Long, and J. C. Mogul. Exploring
the Bounds of Web Latency Reduction from Caching and
Prefetching. In USITS, 1997.

[34] W.-F. Lin, S. Reinhardt, and D. Burger. Designing a
Modern Memory Hierarchy with Hardware Prefetching.
In IEEE Transactions on Computers special issue on
computer systems, volume Vol.50 NO.11, November 2001.

[35] C. Lumb, J. Schindler, G. R. Ganger, E. Riedel, and D. F.
Nagle. Towards Higher Disk Head Utilization: Extracting
\Free" Bandwidth from Busy Disk Drives. In OSDI 2000.

[36] E. Markatos and C. Chronaki. A Top-10 Approach to
Prefetching on the Web. In INET 1998.

[37] J. C. Mogul. Network Behavior of a Busy Web Server and
its Clients. Technical Report WRL 95/5, DEC Western
Research Laboratory, Palo Alto, California, 1995.

[38] D. Mosberger and T. Jin. httperf: A Tool for Measuring
Web Server Performance. In First Workshop on Internet
Server Performance, pages 59|67. ACM, June 1998.

[39] Naviscope. http://www.naviscope.com.
[40] Netscape Communications Corporation. JavaScript Se-

curity.
http://developer.netscape.com/docs/manuals/
communicator/jsguide4/sec.htm.

[41] A. Odlyzko. Internet Growth: Myth and Reality, Use
and Abuse. Journal of Computer Resource Management,
pages 23{27, 2001.

[42] V. N. Padmanabhan and J. C. Mogul. Using Predictive
Prefetching to Improve World-Wide Web Latency. In
Proceedings of the SIGCOMM, 1996.

[43] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
EÆcient and Portable Web Server. In USENIX Annual
Technical Conference, 1999.

[44] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed Prefetching and Caching. In
SOSP, 1995.

[45] R. Rajamony and M. Elnozahy. Measuring Client-
Perceived Resonse Times on the WWW. In USITS, 2001.

[46] Resonate Inc. http://www.resonate.com.
[47] RFC 2475. An Arhitecture for Di�erentiated services.

Technical Report RFC-2475, IETF, June 1999.
[48] N. T. Spring, M. Chesire, M. Berryman, V. Sahasrana-

man, T. Anderson, and B. N. Bershad. Receiver Based
Management of Low Bandwidth Access Links. In INFO-
COM, pages 245{254, 2000.

[49] C. S. Systems. http://www.cheetah.com.
[50] A. Venkataramani, M. Dahlin, and P. Weidmann. Band-

width Constrained Placement in a WAN. In Symposium
on the Principles of Distributed Computing, Aug 2001.

[51] A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice:
A Mechanism for Background Transfers. In OSDI, De-
cember 2002.

[52] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif,
and M. Dahlin. The Potential Costs and Bene�ts of Long
Term Prefetching for Content Distribution. In Sixth Web
Caching and Content Distribution Workshop, June 2001.

[53] Wcol.
http://shika.aist-nara.ac.jp/products/wcol/wcol.html.

[54] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet Ser-
vices. In SOSP, 2001.

[55] Zeus Technology. http://www.zeus.com.
[56] Y. Zhang, V. Paxson, and S. Shenkar. The Stationarity of

Internet Path Properties: Routing, Loss, and Through-
put. Technical report, AT&T Center for Internet Re-
search at ICSI, http://www.aciri.org/, May 2000.

