

 Page 1

Carnegie Mellon’s CyDAT
Harnessing a Wide Array of Telemetry Data to Enhance

Distributed System Diagnostics
Chas DiFatta (chas@cmu.edu), Mark Poepping (poepping@cmu.edu), Carnegie Mellon University

Daniel V. Klein (dvk@lonewolf.com), LoneWolf Systems

Abstract
The number and complexity of distributed applications has exploded, and to-date, each has
had to create its own method for providing diagnostic tools and performance metrics. These
distributed services have become increasingly dependent, not only on the system and network
infrastructures upon which they are built, but also each other. The effectiveness of a
diagnostician is seriously hindered by the difficulty in accessing diagnostic data. However,
even when access can be gained, it exposes the daunting challenge of correlating a myriad of
different data formats and an incredible amount of data (both in static files and real time
streams). To say that diagnosis of distributed systems is a complex and difficult is a vast
understatement; and the task is getting tougher every day. There is a paucity of tools, data
mining methods and logfile standards that has been worsening for years. Researchers face the
same difficulty in gaining access to data for purposes of experimentation. Responding to these
difficulties, we've established the CyDAT (Cyber-center for Diagnostics Analytics and
Telemetry) effort within CyLAB at Carnegie Mellon, to enable researchers to interact with a
rich and varied set of data in an open, multi-vendor environment that enables and supports
open, interdisciplinary research. This paper described the CyDAT and a reference
implementation of an event framework (EDDY) to normalize, transform, and transport
telemetry data to the analytics that need them, providing a means for tackling the diagnostic
Hydra.

Introduction
Consider any of the myriad daily tasks we
perform at our computers: sending email,
browsing web and ftp sites, accessing remote
databases, submitting forms on the web
(including the submission of this paper). Now
consider the myriad failures that we have all
experienced when attempting these tasks – some
silent, some cryptic, and some verbose. When
something goes wrong, what is the cause?

The problem could be caused by a hundred
different circumstances: perhaps the web site is
at fault, maybe there’s an intervening firewall,
possibly a link is down, or your perhaps the
document has a virus. How can we quickly
pinpoint the most effective next step as we try to
fix (or work around) the difficulties?

There are many difficult issues to address, and
the most significant challenge is that the log
information is never written in the language of
the problem. There’s no log that says “Doug
doesn’t know if he submitted his proposal,” so
even in the simplest of scenarios it is incredibly
difficult to map the question of “what went

wrong?” to a solution of “here’s what happened
and what you need to do next”.

In spite of great strides in software development
languages, software engineering techniques,
hardware engineering, fabrication, and quality
management methodologies, errors remain
inevitable in the systems we deploy, and systems
still fail. As the demands on computing systems
continue to increase and the complexity of
interdependent components continues to grow,
problems in production environments will
increasingly result from unexpected interactions
between software components; from a range of
infrastructure layers that were developed
separately, at different times, and by different
people, mostly with little knowledge of the
requirements now placed on their components.

This combination of conditions leaves the
modern IT shop in the very difficult position of
having precious little information about failures
when they occur, with little to go on in trying to
avoid the next failure or limit its potential
impact. Diagnostic procedures have gone from a
simple program to test the proper functioning of

 Page 2

a component to black-art intuition based on
incomplete information.

Logging (or the lack thereof) extends to physical
systems and environments as well as virtual.
The process control industry long ago learned
that process monitors, flow-rate meters, and
active controls are as essential to the
manufacturing process as the pipes, valves, and
reactions they monitor and control. With the
recent and continuing emergence of inexpensive
small sensors, an explosion in capability for
sensing and telemetry has been created.
Networked through Information Technology
standards, this new physical sensing and control
capability is partly transformed into an
Information Technology problem.

Carnegie Mellon has significant research efforts
that have contributed solutions to IT and IT-
enabled systems. From embedded sensor
systems, health of legacy infrastructures, and
behavior of active physical environments,
through software systems research, security
infrastructures, and process modeling techniques,
involving data mining, fault tolerance, and
autonomics, to algorithms for pattern analysis,
behavior characterization, and anomaly
detection. All this research shares at least one
common thread: the need for systematic
gathering and management of data related to the
system being studied and the experiment
designed to inform the researcher. This Data
Problem forces most researchers to become
expert data collectors in addition to their core
domain expertise as data analyzers, synthesizers,
and hypothesizers.

Carnegie Mellon’s CyDAT
The Cyber-center for Diagnostics, Analytics, and
Telemetry is a attempt to create an open,
advanced, collaborative instrument to support
research into the collection, management, and
use of advanced telemetry and analytics in a
multi- and inter-disciplinary fashion.

It is not aimed at any particular discipline or
analytic approach. Rather it expects to
accommodate and integrate telemetry data,
analytic algorithms, and response mechanisms
for multiple disciplines for radical improvement.

CyDAT is positioned to catalyze and
significantly reduce the data collection and
management burden for researchers while
simultaneously expanding the realm and reach of
data possibilities, including information from

operational systems, experimental sensors, and
laboratory environments. The essential goal is to
create a capability and expertise in data
orchestration and management along with a
generalized, sustained research instrument to
gather and manage data from arbitrary IT-
enabled observation points, making that data
available to researchers with interest to study it.

We have established a framework and created an
evolving environment where we can begin to
effectively experiment with parameters of
Telemetry, Analytics, Diagnostics, and
Autonomics

What We Learned First
Interviews were initially conducted with a wide
variety of individuals who both use and manage
large distributed system facilities, as well as
smaller IT shops. Help desk staff, system and
network administrators, managers, systems
architects and developers all participated in the
interviews. Surprisingly, most shared a common
belief of the major obstacles in diagnosing
distributed systems. These obstacles can be
categorized into five specific areas which we call
the “banes of the distributed system
diagnostician:”

• Access: Little or no access to diagnostic data
on systems that may be involved in the fault.
If access could be obtained to the system, then
chances are that file protection access was
restricted. When there was a need to share
data with others outside the administrative
domain of the system in question, it was an
extremely difficult process due to policy
concerns. In many cases the logging of
specific diagnostic data had been suspended or
had never been enabled.

• Multiple Formats: Most systems have many
log formats (typically one for each service:
application, version, OS type, etc). Keeping
up with version changes becomes a daunting
task.

• Scale: Systems that provide enterprise mail or
web services generally have an enormous
amount of log data generated. Network
devices (such as routers) have flow data in
excess of 100K flow events/sec. Each event
could contain between 128 and 512 bytes,
which is approx. 50MB/sec. Clearly,
collecting these events and inserting them in a
database is not possible.

 Page 3

• Proof of the diagnosis: There is a need for a
common audit record to provide evidence for
non-repudiation when two or more participants
are working on the problem. A typical scenario
is where the network group says “it’s the
problem with the web application,” and the
web developers say “it’s the network.” Which
group is right and how can you prove it?

• Sharing Knowledge: Having domain experts
share their diagnoses and the methods for
discovery with the rest of the organization is
essential, not only for rapid fault diagnosis but
efficient use of resources. Automating the
transfer of knowledge from an expert to less
experienced operational staff was deemed very
important to those interviewed.

A New Approach
The group agreed to take a direction that
promoted experimenting with new diagnostic
methods to begin to understand the scale of the
task at hand and test if our ideas would expose
any possibility of success without the investment
of too many resources.

While the access problem was complex, we
decided to opt for a simple solution: to export the
diagnostic data off the system quickly (in real-
time), to a common data-store and use
file/directory permissions as well as specific
anonymization methods to preserve privacy
while exposing valuable information. An
additional requirement was when exporting the
diagnostic data off the target system, there
should be minimum changes needed to the
existing logging system. This way, adoption of
our methods within production facilities would
be more widely accepted.

The diagnostic data format issue (currently being
addresses by many standards organizations) was
extremely fragmented; based primarily on the
diagnostic domain (network, security, etc).
Monitoring their assorted efforts would be the
best approach to gain insight of any
consolidation. Rather then waiting (perhaps
years) for the standards to consolidate, we
decided to take a radical leap and build a
common event record (CER). In designing the
CER, we attempted to maximize the ability to
correlating events while remaining as domain-
agnostic as possible (and enabling us to proceed
with research while the standards were still being
bickered over).

While our main focus was within the IT realm
(system, network, application and security
events), colleagues began encouraging us to
consider including events outside of IT,
including building management, environmental
sensors, and healthcare domains. This expansion
would certainly test the design of our CER as
regards being a generic event diagnostic record.
At the same time it would prove that the CER
would be flexible enough to serve as a base for
experimentation in other (non-IT) domains.
Additiionally, the CER design also directly
addressed the non-repudiation requirement. so a
common audit record could be used for all
diagnostic domains.

Some members within our development group
thought that the issue of scale would be the
primary challenge, drawing analogies to “finding
a needle in a haystack.” Interviews with
diagnostic experts suggested that most of the
diagnostic data generated would be of little use
to a broad audience. Specific diagnostic domain
areas would be interested in only that data that
their analysis tools could process, but regardless
wanted the ability to receive additional
diagnostic data, as needed. Since network events
presented the greatest volume of data (and thus
the greatest challenge to scalability), the group
set a proof-of-concept scale of at least 5K
events/sec initally. If our testbed could handle
that, we stood a good change of addressing scale
in other event domains.

We also wanted to capture the knowledge of
expert diagnosticians and export it to other
members of their tream in an automated way,
therefore a new taxonomy was needed. This
taxonomy would result in an automated means of
collecting information into manageable groups.
We focused on an approach that acknowledged
that:

• there would be multiple orders of diagnostic
events, where the lower orders would be the
single records within the logs themselves,

• by combining events multiple events, one
could generate higher orders of events (much
like an expert does when they begin to
diagnose a problem).

See Figure 1 for a representational overview of
the flow of data consolidation, reduction, and
synthesizing higher order analysis records.

 Page 4

A Real-world Example

Consider the case where an organization uses
flow records to monitor their network egress for
bandwidth abuse. We envisioned (and
constructed) agents that:

• process flow records at a high rate of over
8,000 events/sec

• transform groups of flow events into a
consolidated record that enables better
correlation

• strip off the attributes that are of little value to
the end analysis tool

• build higher order events that express the N
hosts that use the most network bandwidth,
packets, and flows (as well as which services
each uses).

The higher order events would only need to be
updated every 10 seconds or so (which would be
a mere fraction of the traffic generated by the
network flow records). These high-order events
(which would mimic those created by a domain-
expert) could feed help desk and bandwidth
abuse applications. The intermediate events
could feed security applications and (if properly
anonymized), could be used by researchers for a
myriad of purposes (see Figure 2).

Figure 1: Representational overview of event collection, transformation/reduction and analysis

Figure 2: Real-world usage, analysis of Network Flows

 Page 5

CyDAT Architectural Approach
It was clear from the onset that a generalized
architecture and data model was required as a
reference to assist in managing integration-
maturity through the variety of data formats and
transport models.

Data Model
With the pre-exisiting and on-going work on
standard formats for representing log and
performance data, it was not scalable or effective
for us to immediately engage in standards work.
Indeed, the goals of data standardization are
entirely complementary to the primary goals of
CyDAT as a place for integration and
experimentation, so we instead opted for a very
simple and flexible model to encapsulate the
native format while allowing for experimentation
on incremental exposure of native semantics.

Transport Architecture
Since we had had significant experience with a
data-driven model for real-time reporting of
network flow information, it was natural for us
to design from a data-flow (or streaming
database) perspective. Although many log and
event models engage file-based recording instead
of a push-based event model, a real-time element
provides significant additional flexibility to the
current routine.

The general model engages a modified pipeline
pattern where data sources are immediately
normalized into a common event form. They
may then be transported across a backplane of
agents to optimize the flow of information to
target analytics. Figure 3 shows a high-level
view of the proposed architecture (as embodied

in the reference implementation). The following
is a short description of the core elements of the
pipeline model.

• Normalize – encapsulate raw events in their
native form for transport to interested agents

• Select – choose which events to receive based
on preset (or adaptive) search criteria

• Transform – modify the form (e.g. syntax or
scale) of an event

• Project – choose a subset of elements from a
particular event (this feature requires some
semantic parsing of raw events)

• Route – transport events to downstream agents
based on static or dynamic configuration

• Store – retain sets of events for later analysis

• Query – ask for historical events of interest

• Analyze – examine contents of one or more
events from one or more sources to automate
correlation and validate hypotheses

• Application Proxy – reformat event syntax so
it may be consumed by an external application

There are many other semantic elements not
described in detail here, including issues of
discovery, access control, privacy, delivery
guarantees, data lifecycle, optimization,
provisioning, element actuation, adaptive
configuration, and proxy to/from existing
applications, but these nine methods are
suggested as basic capability for the event
backplane to support a good base model from
which to build.

Figure 3: The CyDat Architecture as embodied in the EDDY diagnostic backplane

 Page 6

Getting Started: The EDDY Reference
Implementation
For a basic architecture, we needed an
experimental core to build around in order to
begin testing concepts and begin integration as
use-cases brought new platforms and pieces to be
fitted. We created a reference implementation
called EDDY (for End-to-end Diagnostic
Discovery) to get ourselves started.

EDDY is an experimental lingua franca for
exchange, management, and correlation of log
and event information. It defines a common form
for encapsulation and a method for efficient
transport of native event information from
sensors to data managers to analyzers.

The EDDY architecture is grounded in the
following assumptions:

1. Performance matters and pragmatics are
important – there is no end to the monitoring
one might do and no limit to the variations
that different sites will choose. A system
must be simple enough to be useable by a
small installation with only a few focused
events per minute, yet flexible and fast
enough to accommodate a large installation
with millions of distributed events per
second.

2. It must be possible to experiment and grow
into the use of a unified diagnostic data
management system without mandating a
‘cutover’ day – without immediate or
catastrophic change to existing diagnostic
infrastructures and techniques.

3. Leverage domain expertise, don’t reinvent
the wheel. The initial goal of EDDY is to
provide a data orchestration function that
can be leveraged by existing analytic
techniques, but the final goal is to enable
those techniques to be composed, modified,
and extended to consider other information
(possibly including that which hadn’t
previously been available) in the analysis.

4. Models may be pretty but there must be
working code. Our initial approach has led
to some innovative correlation, but there is
much to learn. There are many options for
creating an interoperable diagnostic
infrastructure. We intend to build and learn
and rebuild, focusing on the standardization
and reference implementation of key
formats and interfaces to enable
interoperation.

Initial Directions and Prototypes
In 2004 we decided to focus on building a
diagnostic event orchestration platform to
experiment with different methods and data
structures. This would address the five banes of
the diagnostician, be as inobtrusive as possible
(to create a low barrier for adoption), and be
flexible enough to enable component substitution
(to facilitate experimentation). The initial version
(0.1) of this experimental platform (the End-to-
end Diagnostic DiscoverY, or EDDY), was
released in 2005. It was developed in Java,
which proved to be a good compromise between
application performance and rapid application
development. Other languages would be
considered at a later date, incoporating developer
preference, performance, or interfaces to event
import/export. A requirement of the platform
was the ability to supply campus researchers
with a source of data that was isolated from
format changes at the source (version changes or
changing network flow engines) and that
accommodated a wide variety of analysis
applications (with different APIs). The initial
data types we focused on were network flow
events and application events such as HTTPD,
and Syslog.

The EDDY Architecture
The EDDY architecture was designed
fundamentally to be simple, efficient, and highly
extensible. We started from the assumption that
there was much we didn’t know, and any initial
design was likely to require several iterations
before the components of value would become
apparent. In that spirit then, we started from a
small kernel of functionality to satisfy some
simple requirements and constraints.

Event Definition and Basics
The following provides the basic motivation and
description of the elements and format of the
EDDY Common Event Record (CER)
architecture, the basic data construct of the
EDDY diagnostic infrastructure.

1. Minimal common event elements: to
maintain efficiency and maximize
generality, we felt that only a few elements
were essential

o CER version

o Unique reference identifier per record

o Timestamp for event creation

 Page 7

o Location where the event was seen

o Location where the event was
introduced into the event backplane

o Type of enclosed event

2. Additional common elements: to allow
immediate experimentation with generic
analysis and correlation across multiple
sources and event types.

o Severity of the event, an easily
identifiable and discoverable parameter
to assist in high-level classification of
events;

o An explicit, extensible user ‘tag’
attribute, representative to the desire to
easily leverage (and route) important
event semantics

3. Encapsulation of the transported events: no
constraints on domain-based definition of
events.

o Opaque encapsulation of external
schema – many domains have ongoing
efforts to define control and audit
information appropriate for their own
components. The basic idea is to
capture the external event in its entirety,
attach the required common elements,
calculate and attach the extra common
elements, and forward it along, now
enabled for normalized processing.

o Ad hoc schema – in addition to pre-
existing events, we anticipate that a
pipelining of events and event
processors will give rise to new event
types, borne from creative analysis of
sets of event flows. Two possibilities
include: composing events (merging a
set of events into a single “class” or
“super” event) and analyzed events
(where a certain sequence of events
indicates another condition).

4. Event representation: variations in
representation and exposure of key event
elements can allow for pipeline processing
and real-time insights not previously
possible.

We decided to use XML for formatted
representation of common event elements.
This has its tradeoffs (verbosity and the
overall volume of data transmitted), but the
flexibility and wide availability of XML
read/write tools allows us to easily

experiment and still optimize when needed.
This enables us to easily encapsulate events,
with both “raw events” (a complete, opaque
origin event encapsulated in minimal XML)
and “cooked event elements” (a hierarchical
XML representation of specific components
from the origin event).

Generic correlation across event types from
different domains will require common
semantics, but as this is very new, we also
wanted to enable experimentation. We
started with two forms of standardization of
common schema elements for inter-domain
processing:

o Simple data types (e.g. integer, string)
for event elements. This will allow a
great number of generic analyses
completely agnostic of event domain.
Instance counts and statistical analyses
are often the best first reporting
requirements.

o Common diagnostic objects (e.g. host,
temperature, location). As we learn
more, we will discover objects and
elements that are common subjects and
actors across a great number of
domains. As we attempt to correlate
events based on the commonality of
subject or actor, new experimental
syntax and semantics will be required.
We have little preconceived notion for
the extent of this need, but expect to see
many models for experimentation.

Transport Services
The following provides a summary description
of the elements and form of the EDDY transport
architecture, the basic method for moving
Common Event Records.

1. The Event Channel emulates a UNIX
pipeline for transporting events from a
source, through selection and translation, to
analysis or storage. There are several key
values we immediately gain through a data-
driven approach:

o it enables in-line analytics and some
easy data-reduction optimizations.

o it allowed us to defer issues regarding
data discovery, location, and
authorization. If we presume to push the
appropriate data to those with the
interest and authorization to receive it,

 Page 8

we do not have to design nor implement
universal data access and protection
protocols. Simplifying the problem
simplified our task.

o it deferred considerations for database
maintenance and lifecycle issues

o it is entirely compatible with and
complementary to a process-driven
model.

The default model for the event channel is
unmodified event forwarding from source to
destination (other models are of course
available). The EDDY architecture enhances
this basic view by an explicit definition of
event selection, and by replication methods
at each point in the pipeline. The EDDY
architecture also provides a control method
for a downstream component to interact with
an upstream provider, in order to modify the
content of the data stream.

2. The Query Channel is a process-driven
system for event processing, where an
investigator writes queries against a data
store to acquire information. The EDDY
reference implementation currently does not
implement a rich query model, expecting
that other common, complementary
elements could easily add this desired
functionality.

Performance Considerations
While the reference implementation is primarily
to experiment with functional elements, our first
pragmatic assumption was that performance
matters, so we did identify a few goals to support
the notion of CyDAT as living laboratory:

Basic throughput

Our initial target rate was 10,000 records per
second between two modern desktop hosts. This
number was chosen because it mapped to the
event rate for a network flow probe on a
moderately loaded enterprise backbone.
Transaction rates for most other logging systems
are generally substantially less than this, though
there are many scenarios where this is woefully
inadequate.

Horizontal scaling

As the bandwidth of data being analyzed (and
reported) increases, a divide-and-conquer
method can be applied to assist in event

processing. We envision several approaches to
horizontal scaling to aid performance:

• Selective projection – substantially reduce
total bandwidth and text processing by in-
flight trimming of records to contain only data
of interest.

• Partial stream commonality – replication of a
single source feed to multiple sinks.

• Parallel striping – combine selective projection
and partial stream commonality to enable
striped processing.

Format and Data Optimizations

• Compression of XML (reducing a verbose
general format into a concise domain-specific
format).

• Sessioning – collecting redundant elements of
successive events into a session to reduce
overall data transmissions.

Security Considerations
Although “a little learning is a dangerous thing,”
a complete knowledge of the workings (and
failings) of an IT network can be even more
dangerous in the wrong hands. Therefore, the
security ramifications of collecting and
correlating activity data cannot be overstated. It
is our opinion that we must address the issues
up-front to allow for open dialogue about the
risks inherent in this style of activity, but also to
weigh the value of new methods against the risk
of abuse, and to openly encourage work to
maximize value and minimize risk.

One aspect of the transformation of data must
include the ability to anonymize data so that
trends can be identified without exposing
individual components to targeted attack.

Summary & Future Work
CyDAT is a real-world, active testbed for
experimentation with real-time and historical
performance data for active and experimental
systems in many areas across Carnegie Mellon.
CyDAT leverages EDDY to deliver diagnostic
events to algorithms for dynamic analysis. In the
current incarnation at Carnegie Mellon, we are
monitoring network flows from both core and
egress networks comprising over 100,000 hosts,
we’re enabling analysis on DNS lookups, web
access, syslog records, email logs, Shibboleth
logs, embedded system events, environmental
sensors, and more..

 Page 9

We are continuing to evolve the testbed based on
our experiences, and believe that it is a fertile
environment for experimenting with a highly
distributed, ever-changing distributed ecosystem.
The EDDY prototype supplies both IT staff and
researchers valuable diagnostic data to their
analytics, in real-time and in the form that they
need.

The EDDY source code is freely available at
http://www.cmu.edu/eddy, and we encourage
other organizations to experiment, grow, and
contribute to the toolset. We are also actively
encouraging industry leaders to adopt the EDDY
diagnostic framework, which will further
enhance its usability and acceptance, and
ultimately improve the state of distributed
diagnostics

References
TBD. There are many auxiliary references, but
little of the related work is directly cited, above.
If accepted, we will fill out this section, but time
constraints preclude this in our initial [delayed]
submission.

Acknowledgements
Development of the EDDY Toolkit was
supported with funding from Carnegie Mellon
University and the National Science Foundation
(CNS-0433540), plus early support from
Internet2 and the NSF Middleware Initiative
(Cooperative Agreement No. OCI-0330626).

