USENIX Association

Proceedings of the
BSDCon 2002
Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Problems updating FreeBSD’s card system from ISA to PCI

M. Warner Losh
Timing Solutions, Inc

Boulder, Co
imp@village.org

Abstract

FreeBSD’s 16-bit PC Card implementation has used
the ISA legacy interface. PCI support was added
by making PCI-CardBus and PCI-PCMCIA bridges
behave in ISA compatibility mode. While this tech-
nique worked in laptops, it made support of add-
in PCI cards with CardBus or PCMCIA bridges
impossible. PCI-PC Card bridges are unlike tra-
ditional devices because they can have connections
to multiple busses, offering both ISA and PCI inter-
rupt routing for them and any devices connected to
them. Expanding support to add-in PCI cards with
16-bit PC Cards connected exposed weaknesses in
the PC Card implementation of FreeBSD as well
as other parts of the system. Vendor BIOS qual-
ity, variance in hardware implementation details
from standard and weaknesses in the FreeBSD de-
velopment model made incorporation of these im-
provements into FreeBSD 4.4-RELEASE difficult.
Lessons learned will be incorporated into the 32-bit
CardBus support forthcoming in FreeBSD 5.0.

1 Problem

FreeBSD’s[FreeBSD] PC Card implementation in
FreeBSD 4.3-RELEASE and earlier only routed ISA
interrupts to 16-bit PC Card cards. It configured
PCI-PC Card bridges to look like old ISA devices,
complete with ISA interrupt routing. This strategy
worked well for Laptops where the ISA interrupt
signals were available to the PCI bridge. However,
for add-in PCI-PC Card bridge cards, this strategy
failed because the add-in cards do not have connec-
tions to the ISA bus’ interrupts. Since there was no
connection to the ISA interrupts, these add-in cards
could not be configured to use them. The growing
popularity of these cards in new PCI only systems
was a problem. Additionally, ISA interrupts can-

not be shared in the absence of specialized hard-
ware which laptops lack, making some laptops very
difficult to configure. Since ISA interrupts are also
hard to detect for devices that do not have drivers
configured for them, mysterious failures happened
frequently when a novice user would configure a
FreeBSD’s PC Card system improperly.

An effort was made to allow PCI routing of inter-
rupts on PCI bridges, and for sharing of interrupts
of 16-bit PC Cards when they are connected to a
PCI-PC Card bridge. No attempt was made to ex-
pand FreeBSD support to include 32-bit CardBus
cards as part of this effort. As a result of this ef-
fort, 16-bit PC Cards in add-in PCI-PC Card bridge
cards now work, as do most of the bridges sup-
ported by the previous code. In addition, the sup-
port load from improperly configured laptops has
dropped with the new automatic interrupt configu-
ration.

2 Implementation History

Prior to the 4.4-Release, FreeBSD’s PC Card imple-
mentation relied on treating all PC Card[PC Card]
bridges as ISA devices. FreeBSD’s implementation
was written in a time before PCI[PCI] devices that
supported PC Card were widely available. Two ba-
sic types of PCI bridges have appeared. One is a
16-bit PC Card bridge and called a PCI to PCM-
CIA bridge. The other is for 16 or 32-bit cards and
called a PCIto CardBus bridge. While most of these
bridges support a standard configuration space and
register set, some older bridges do not and need
varying amounts of special case code. This paper
uses the term PCI-PC Card bridge to generically
refer to any of these bridges.

FreeBSD’s PC Card code was able to treat these
PCI-PC Card bridges as ISA devices because they

generally were connected to the ISA bus or ISA bus’
interrupts in the laptop configuration. Since laptop
support was the primary target of FreeBSD’s PC
Card code, little attention was paid to the add-in
card problem since most machines had an ISA slot,
which was well supported. Microsoft’s hardware de-
sign guides have ensured that laptops manufacturers
made these connections to the ISA bus. FreeBSD
was able to program these PCI devices in such a
way as to ensure that the ISA compatibility worked
for laptop users, at the price that the laptop user
would have to hand configure each laptop to list
those interrupts not used by other hardware.

In recent years, a number of trends in the industry
has made ignoring the add-in card problem less and
less appealing. The first trend was toward more and
more desktop or server machines having PC Card
in them at all. Many users desired to read flash
cards from their digital cameras on desktops. One
of the solutions to do this was to install PC card
slots and insert the flash cards into the PC Card
slots, possibly with an adapter. A second reason
for having PC Card slots in a desktop or server ma-
chine was for wireless support. While some of the
early, pre—802.11 wireless cards were available in PC
Card, ISA and PCI versions, nearly all of the recent
802.11[WiFi] and 802.11b cards have only PC Card
versions. To place an 802.11b wireless card into a
desktop or server machine, you needed to have some
type of PC Card bridge to provide the slots to in-
sert the wireless card into. ISA, PCI and other so-
lutions exist to solve these needs. The PCI add-in
card forced FreeBSD wireless PC users to use ISA
PC Card bridges. This solution was adequate for a
long time, but other trends made it less viable.

The second trend was the retirement of the ISA
bus expansion from PC compatible computers. The
number of ISA slots in system had been shrinking
for years as the superior PCI bus provided a number
of advantages. Microsoft had a vested interest in re-
tiring ISA support from Windows, so created the PC
98 System Design Guide (not to be confused with
the PC-98[PC-98] machines made by NEC and sold
in Japan). To be compliant with the PC 98 Design
Guide, a system could not have any ISA expansion
bus slots if it was manufactured after a certain date.
Subsequent design guides[PC99, PC2001] reaffirmed
this restriction. Many systems now omit ISA bus
expansion slots. FreeBSD users that wanted to con-
nect wireless cards to these system were left without
a general solution (although specialized solutions re-
mained available to PCI only systems).

The third trend has been towards integration of
more and more devices into laptops which can cause
a decreased availability of unused interrupts. In
some generations of laptops, each of these devices
would use an interrupt. Since FreeBSD couldn’t
share PC Card interrupts with other devices, some
machines could not find enough interrupts to sup-
port multiple PC cards. Some laptops also could not
reserve an interrupt for card change status events.
As the number of free interrupts on the typical
laptop has declined, the difficulty and complexity
of correctly configuring the system grew. While
FreeBSD has tried to prevent the user from reusing
an interrupt, it cannot protect against devices where
no driver has attached and there’s no way of know-
ing which resources are consumed. Laptops release
in the last year or two have shown a trend away from
ISA devices in favor of PCI devices, which automati-
cally configure resources and which can share IRQs.
While the number of devices on laptops continues
to grow, their impact has been lessened somewhat,
leaving only the problems of highly integrated lap-
tops from a few years ago.

3 Prior Implementation Details

The FreeBSD PC Card implementation prior to 4.4—
RELEASE was done in two parts. One part of the
implementation was done in the kernel, while an-
other part was done in a user-land daemon.

When the system boots, the kernel detects PCI-PC
Card bridges and programs them into ISA compat-
ibility mode. Sometimes, for proper operation, spe-
cial settings in the BIOS are required. A separate
part of the kernel then detects the ISA devices (or
the PCI ones in ISA compatibility mode). On at-
tach, things are setup to detect cards arriving into
the system, using the traditional ISA interface. This
mode uses only the ExCA registers, defined in the
PCIC standard, to manipulate the bridge.

When a card is inserted into a PC Card slot, the
kernel does a basic power up of the card, and noti-
fies pccardd that a card status has changed. Once
the card is ready, pccardd will read its meta data,
which it uses to configure the card. It then resets
the card, and tells the kernel which resources the
card requires, and what driver to attach to the card.
The kernel then asks the driver if it really supports
the card, and if so, adds it to the FreeBSD device

tree. The pccardd daemon is then informed of the
success of the operation. Any final user-land config-
uration of the new device will follow. When a card
is ejected, the kernel will tell detach the device and
tell pccardd that the device is gone. A program ex-
ists to query the state of the PC Card system, read
the card’s meta data and to force configuration of a
card exists.

During the configuration process, both the kernel
and pccardd will manipulate the hardware in a num-
ber of ways. They set bits in the hardware to cause
certain things to happen, then polls the bits for a
response. So as to allow other system activity in the
interim, there is a small sleep between attempts to
check the bits. This polling works well in an ISA
system. If an interrupt handler fails to clear the in-
terrupt condition, nothing happens for the typical
ISA device (except maybe to miss future interrupts)
since the ISA bus uses edge triggered interrupts.
While FreeBSD is manipulating the hardware to
configure a PC Card, various interrupts may occur.
The FreeBSD implementation didn’t need to handle
these interrupts to appear to be working, since they
were one shots.

4 Important Hardware Details

A number of problems present themselves when
this solution is attempted. However, to under-
stand them one must understand how PCI hard-
ware works, what 16-bit PC Cards do at each step
of their configuration process, and how the PCI-PC
Card bridges react. Some of these items are well
documented, while others are observed behavior.

The PCI bus differs from the ISA bus in many ways.
Unlike the ISA bus, the PCI bus has level sensitive
interrupts. The PCI bus also allows for interrupt
sharing. The PCI bus defines 4 signals for inter-
rupts that are routed to each device on the PCI
bus, INTA#, INTB#, INTC# and INTD#.
The PCI device can pick one it will use (although
that choice is usually hardwired to INTA#). When
a PCI device asserts an interrupt, it stays asserted
until the interrupting condition is cleared. Failure
to clear an interrupt condition in the device’s ISR
will cause the PCI INTx# line to remain asserted.
Since the the interrupt remains when the ISR ex-
ists, it will be called again. Lather. Rinse. Repeat.
If the ISR never clears the condition, this causes

an interrupt storm. This will cause the system to
loop forever in a wedged, or semi-wedged state. If
one fails to clear an interrupt condition on an ISA
device, no such pathological behavior happens.

PCI-PC Card bridges assert two types of interrupts.
The first type is for card status changes, while the
second is for function interrupts. The first type
can be masked, but the card function cannot be
masked. When a PC Card indicates that an inter-
rupt is present, the PCI interrupt line is asserted.
Short of instructing the bridge to use ISA signal-
ing for card function interrupts, there is no way to
magsk this interrupt. Every family of PCI-PC Card
bridges have their own method to control how inter-
rupts are routed, which adds complication. The im-
plications of this are that both the bridge driver and
children drivers of the bridge must be more careful
in their interrupt handling. PCI-PC Card bridges
do not offer a way to mask the card function in-
terrupts. Driver writers must ensure that an ISR
is present before the card begins to generate inter-
rupts.

A 16-bit card can be reset by writing certain bits to
a configuration register (sometimes called a COR
reset). When the card is in this reset state, it’s
READY pin will sometimes be pulled low to in-
dicate that the card is not ready (or that the card
has finished resetting, depending on the card). The
READY pin is shared with the IREQ pin for 16-
bit PC Cards. The IREQ# pin is active low and
indicates that the card is interrupting. This signal
is held low until the reset bits are turned back off.
The COR register varies in location from PC Card
to PC Card, and is contained in the CIS (or meta
data) that is parsed by pccardd.

When powering a 16-bit card up, an interrupt is
generated when the power sequence is complete on
many (but apparently not all) PC Card bridges.
Driver writers are expected to detect this interrupt,
acknowledge it, and continue with their power on
sequence.

5 Naive Implementation

A naive implementation strategy to add PCI in-
terrupts to FreeBSD 16-bit implementation would
be to create a real PCI attachment for the PC
Card bridges, program the PCI bridge into “native”

mode, but otherwise leave the previous implementa-
tion alone. The author tried a naive implementation
in full ignorance of the problems he faced in doing
SO.

The experienced reader may have already notice
several pitfalls from the above descriptions. Nearly
all of the problems result in system hangs due to
interrupt storms. Some problems are less obvious
and more failsafe, but can result in no PC Cards
working.

Each of the above problems posed a hurdle in up-
grading FreeBSD’s PC Card implementation. These
problems were dealt with in two ways. Many of the
busy wait portions of the code were rewritten and
moved entirely into the kernel. They were made
interrupt driven and each of the interrupts were ac-
knowledge. These were the easy ones to fix (once
you discovered which magic register the interrupt
source bits were stored in, as there are more than
one). The hard part of fixing these bugs was always
finding sufficient documentation to be sure that the
interrupt bits in question were the right ones.

Two of the issues were hard to fix and merit fur-
ther discussion. The first issue is that of the COR
reset. In the user-land approach, all knowledge of
where to write the magic bits rests in pccardd. In-
deed, when level interrupts weren’t an issue, it made
good sense to have all the knowledge there. The
normal PC card bus driver interfaces allowed the
right part of the attribute memory to be mapped at
the right times to write to the COR. pccardd didn’t
have to manage that at all, it just would seek to the
right location; write to set the reset bit; wait and
then seek/write to clear the reset bit. Moving all
this functionality into the kernel proved to be dif-
ficult. The kernel would have to be told where the
COR was located, and the ISR routine would need
to write the right value to the COR. Since the old
implementation made this tedious to do, I elected to
fix the problem in another way. Examination of the
BSD/OS, Linux[Linux-CS] and NetBSD[NetBSD]
PC Card code showed that none of them had a COR
reset at all. It appears to be unique to FreeBSD’s
PC Card implementation. I eliminated it and so far
no ill effects have be traced to its elimination.

The second issue was PC Card function interrupts.
During the configuration process, these were as-
serted at unpredictable times. Each card appears to
have its own way of resetting these condition dur-
ing startup. Since the PC Card bus driver had no

knowledge of the plurality of card dependent meth-
ods, it could not acknowledge the interrupt, or oth-
erwise force it to go away, thus causing an interrupt
storm. The solution adopted by the author was to
route the function interrupts to the ISA bus until
the driver had attached an interrupt status routine.
This solved the transient problem, but may be the
cause of strange system hangs on reboot.

6 PCI Interrupt Routing

Once the simple problems were solved, I deployed
my code on a number of laptops and desktop system
with a variety of chip-sets. The results showed that
addition hurdles awaited. However, to understand
them, some basic hardware and system boot strap
issues must be discussed.

The biggest problem encountered was PCI interrupt
routing. On the laptops I had done the initial devel-
opment the BIOS automatically routed an interrupt
to the PCI - Cardbus bridge. It turns out that the
BIOS is not required to route the interrupts, and
the OS is responsible for doing this in some cases.

The PCI interrupt routing problem is thornier than
it may appear on the surface. It is generally not the
case that all interrupts can be directed to any pin on
any card on the PCI bus. There are usually signif-
icant restrictions on which interrupts can be used.
These restrictions come from two different sources.
First, most PCI Cards are wired using the so-called
barber pole arrangement, where INTA# of slot 1
is connected to INTB# of slot 2, INTC# of slot
3, INTD+# of slot 4, INTA# of slot 5, etc. The
standard doesn’t specify the arrangement, so others
exist. These pins are wire-ored together, so they
can only be connected to one interrupt at the bus
controller. If one is routing interrupts for a given de-
vice, and another device has routed an interrupt on
the wire that, there is no choice in which interrupt
gets routed. The two devices must share that inter-
rupt. Since the wiring diagram of a PCI bus can be
arbitrary and complex, the Operating System must
have knowledge of this wiring diagram.

The second source of problems is controlling the
bridges between the device and the CPU. They may
have restrictions on which interrupts can be used,
and each chip-set has a slightly different API to
route the interrupts. Also, exact knowledge of how

the bridges are wired together is often required to
program the bridges correctly. The number of dif-
ferent bridge chip-sets found in deployed computers
is large. Far larger than one could hope to ever
support, even if one could get the wiring knowledge
necessary to do the routing, which isn’t possible in
the absence of auxiliary tables.

To bring order to this chaotic state of affairs, the
PCI SIG standardized the BIOS API in the PCI
BIOS Specification[PCI BIOS]. This standard in-
cludes way to access each PCI Device’s config space.
version 2.1 added the ability to query $PIR Inter-
rupt Routing Table and to route interrupts. These
functions made it possible to do the routing.

Mike Smith wrote a fairly complete implementation
of PCI interrupt routing using PCI BIOS. How-
ever, his implementation was for the forth coming
FreeBSD 5.0, and not for FreeBSD 4.x which my PC
Card implementation was targeted at. After porting
most of the PCI interrupt code to 4.x, I was able to
use many of the machines that had previously had
unassigned interrupts for the PC Card bridge. This
new interrupt routing was not without its faults.

6.1 Calling the BIOS

The PCI BIOS Specification defines two different
ways one could call the PCI BIOS. The OS can look
for a special signature in the BIOS ROM area of the
computer (Physical address 0E0000h - OFFFFFFh).
Once it finds the signature, the entry point address
is located with the entry and can be used to call
the PCI BIOS using a standard CALL FAR (callf)
instruction. The OS uses the BIOS32 Service Di-
rectory to obtain information to build the proper
segments for this entry point.

The PCI BIOS also provides a 16-bit real and pro-
tected mode interface. The int 1Ah software inter-
rupt is used to access the 16-bit interface, and oper-
ates in either real or protected mode. These BIOS
functions may also be accessed by calling the indus-
try standard address for int 1Ah (physical address
OFFEGEh) by simulating a INT instruction (pushf
followed by callf).

Unfortunately, the PCI BIOS standard doesn’t ap-
pear to mandate that both of these interfaces be
available to the OS. The PC97 Design Guide ap-
pears to rectify this situation by stipulating that

both interfaces must be supported. However, the
PC 98 Design guide required all machines to migrate
towards using ACPI to configure their interrupts, a
trend that continued in subsequent Design guides.
As such, extremely new machines have also started
to exhibit problems with PCI BIOS configuring the
interrupts.

Unfortunately, the standard doesn’t appear to man-
date that all calling methods actually work. With
some BIOSes, only a subset of the calling methods
are available. If you are lucky, the one you want will
work. Some BIOSes appear to support the BIOS
calls, but later will perform an illegal access inside
the BIOS call. On machines newer than about 1996,
these issues appear to have been corrected. The PCI
BIOS Specification was published in 1994, but it was
not until after Window 95 became widely deployed
that BIOS writers get their act together and make
these functions work.

The current FreeBSD implementation requires that
the BIOS implement the BIOS32 interface. As such,
some older machines will not allow interrupts to be
routed, and must fall back to using tradition ISA
interrupt routing (if possible). Like Windows 98
and newer, it requires that the BIOS be at least
PCI 2.1-compliant and provides the $PIR Interrupt
routing Table.

6.2 Bad PCI config space

The PCI Standard[PCI] requires that all devices
that can have interrupts routed to them, but do not
currently, have an INTLINE (Configuration Regis-
ter offset 0x3c) of Oxff. However, a large number of
devices have been seen in the wild with a value of 0.
For IBM AT compatible systems, this is an illegal
value. There is no way to route IRQ 0 to anything
except the programmable interval timer, sometimes
used to keep track of time.

Many PCI CardBus bridges either default to a value
of 0 for INTLINE, or the BIOS on the machine that
they are in writes a value of 0 into INTLINE. The
PC Card subsystem in FreeBSD properly doesn’t
know about these problems. The PCI subsystem
had to have code added to it to work around these
buggy implementations.

6.3 Standards Deviation

The PC Card standard[PC Card] for PCI bridges
(formerly known as YENTA) is incomplete. It does
not specify a way, for example, to cause the card
function interrupts to be routed using ISA inter-
rupts. And there are a number of minor, but impor-
tant, variations between vendors on how to do sim-
ple things. The author worked around the need to
have varying code initialize and manage the bridges
by using the fairly standard jump table technique.
Each family of PCI-PC Card bridges had its own set
of functions, and a table pointing to them. The rest
of the FreeBSD PC Card system uses these tables
to manage the bridge as needed.

On problem the author had in creating these func-
tions and tables was gaining access to all the differ-
ent families of devices. There are five major families
of “YENTA” compliant PCI CardBus bridges. Cir-
rus Logic makes one family, Texas Instruments an-
other, Toshiba a third, Ricoh a forth and O2Micro
a fifth. The Texas Instrument ones are the most
commonly used, and easiest to find and support.
While the O2Micros were the hardest to find (the
author still doesn’t have a machine with an example
bridge), they turned out to be the most standard
and the generic routines easily supported them.
Toshiba’s ToPIC family has proven to be the hard-
est to support (as well as moderately difficult for the
author to afford for laptops with the newer members
of the ToPIC family).

6.4 3.3V 16-bit PC Cards

The “YENTA” specification spells out a uniform
standard to supply voltages to PC Cards. This stan-
dard replaced the multitude of pre-existing methods
to control card voltage. Prior to “YENTA” there
were at least 5 different 3.3V standards: Two from
Cirrus Logic, one from Intel, one from Ricoh, and
one from Vadem. Since the original PCIC hardware
didn’t support 3.3V cards, each of these methods
extended the original ExCA register set in different,
incompatible ways.

One would like to use the “YENTA” interface
to configure card voltages. However, many PCI
bridges take using this interface to mean that the
whole “YENTA” interface will be used to program
the card, and where it replaces functionality of the

old ExCA register set, that functionality will no
longer work. The TI based chip-sets were found
to break badly when using only the power interface.

This area is one area that would greatly benefit
from further study. Debugging of the code which
attempted to implement the “YENTA” power API
was unable to turn up the cause of the difficulties.
The author failed to make it work, and believes this
would be a fruitful area of exploration.

6.5 Those Pesky Legacy Laptops

Before the “YENTA” specification was widely im-
plemented, both Intel and Cirrus Logic produced
PCI-PCMCIA bridges that looked more like a PCIC
on PCI than “YENTA”. PCIC is the name for
the original Intel ISA to PCMCIA bridge chip (the
82365). These chip-sets required greater knowledge
of how the interrupts are connected to the chip-set
than “YENTA” chip-sets.

Cirrus Logic produced one PCI chip that followed
this form. The CL-PD6729 glued a PCIC interface
on the PCI bus. It used the same I/O index+data
registers that the PCIC chip used. It used the Cir-
rus Logic variant of the ExCA register set, and could
either be wired to deliver interrupts on the PCI bus,
or wired to deliver interrupts on the ISA bus. There
was no easy way for the driver writer to know which
way the bridge was physically wired. The author as-
sumed it was ISA, with the intention to make it pos-
sible for the user to specify PCI at a later date. This
curiosity would have remained an obscure footnote
to the computer industry had it not been extremely
popular in Pentium 120, 133 and 150 based laptops.
Surprisingly, many of these laptops are still in ser-
vice today.

Intel also produced a similar PCI chip. The
82092A A implemented what its data-sheet calls the
PPEC register set. This part has a PCMCIA bridge,
as well as an IDE bridge on it. Only evaluation
boards were ever made of this device. However, a
number of clone makers cloned or licensed this de-
sign, and it appears in a few older laptops. For-
tunately, its interface is similar enough to the CL-
PD6729 that the same code works for its clones as
well (and presumably on it, but the author has been
unable to locate an existing PCI add-in card or lap-
top that uses this chip). The PPEC register set
differs only in how it implements 3.3V extensions.

6.6 The Newest Laptops

The very newest laptops surprising showed a num-
ber of problems. The quality of their PCI BIOS
seems to have started to vary widely. The older
laptops tended to have good PCI BIOS support due
to its mandate in the PC 97 Design Guide[PC97].
Older laptops with first generation “YENTA” parts
on them had problems with their PCI BIOS im-
plementation, which isn’t surprising. It did surprise
the author the number of new laptops that have this
problem.

Months after the code was committed to “current,”
ACPI support was added to the tree. One of the
many things ACPI does is to route PCI interrupts.
The newer laptops that had been having problems
using PCI BIOS to route the interrupts suddenly
started working when ACPI was used to route the
same interrupt. ACPI support has been mandated
since the PC 98 Design Guide[PC98], so it is not
surprising that this code path is tested more by sys-
tems integrators than the non-ACPI code path that
the PCI BIOS takes. It is believed that the lat-
est versions of Windows use ACPI more than PCI
BIOS, so vendors are less likely to discover problems
in the PCI BIOS API than they are in the ACPL

7 Remaining problems

Three problems remain in the code. Most Toshiba
ToPIC devices do not work when set to CardBus
mode in the BIOS. Some systems will hang on
the reboot process due to an interrupt storm. A
small number of systems will hang on card insertion
events, due to an interrupt storm. The author is
aware of these problems, and is attempting to ac-
quire hardware or access to hardware that exhibits
these problems. Users experiencing other problems
are invited to write to the author, or to the mo-
bile@freebsd.org mailing list.

8 Development Model Weakness

Although not related to the hardware, or an exist-
ing flaw in the software, one final problem should
be noted. FreeBSD’s development model, which

normally operates effectively failed to catch major
problems in the PCI implementation before it was
released into the stable tree. Fortunately, the pro-
cess tends to correct itself, and these flaws didn’t
appear in 4.4-RELEASE.

FreeBSD keeps its source code in a CVS[CVS] tree.
FreeBSD branches major releases in this tree, and
then starts on its next major release. The branched
trees are called “stable branches” because they
aren’t supposed to contain fully tested code. The
main development branch is called “current” and
contains code that might not be finished yet. Code
is committed first to the “current” branch (yes, al-
though it is technically the trunk, people often call
it a branch). There people test it, fix problems with
it and allow it to solidify. Once the code has been
in “current” for a while, and appears ready for gen-
eral users, and it is functionality needed in a prior
branch, it is merged to “stable.” In theory, this de-
velopment mode ensures that no bad code is merged
into “stable” since it has undergone testing in “cur-
rent” first.

The author committed all of the changes to im-
plement the functionality described in this paper
to FreeBSD’s “current” branch. He then prepared
patches against “stable” that included his changes,
as well as fairly extensive changes to the PCI layer
to use PCI BIOS more aggressively. These changes
had been in “current” for almost a year at this point.
The original author of them had no knowledge of
any major problems, except with a few off brand
motherboards. The patches were posted to several
mailing lists, and while problems were found in the
PC Card code, none were reported in the PCI merge
I was doing.

Within 48 hours of my committing the highly tested
patch set (which itself was tested in current for a
long time), I had to back out a large part of the PCI
patch. It turns out that a number of PCI BIOS im-
plementations do not report all the PCI devices on
a bus; filters the config space in unexpected ways;
and sometimes would hang the system unexpect-
edly. The extent and magnitude of these problems
took the author of the PCI code and myself by sur-
prise. Those two days showed that the convergence
testing that we thought had been happening in “cur-
rent” actually was minimal and insufficient for find-
ing these problems.

Within a week of the merge into “stable,” about 15
different bugs were reported (and mostly fixed) in

the PC Card code I had merged. Many of these
bugs were people using less popular PCI-PC Card
bridges with the new code. Some were configuration
errors, or bad configurations that the FreeBSD PC
Card layer could have detected but didn’t. While
most of these problems were easy to work through,
some exist to this day. As large a user base that I
had testing these patches before I did the merge was
still none the less insufficient to ensure high quality
for everyone.

While not directly related to the hardware quirks
of using PCI interrupt routing, it does show that
code dealing with both the generic PCI bus as well
as the PC Card bus must be tested on a huge range
of hardware, and be prepared to cope with a larger
than expected number of unconforming BIOS and
hardware implementations. The number of prob-
lem machines, and the nature of their problems sur-
prised the author, who has been committing kernel
code to FreeBSD for several years.

9 Acknowledgments

The author would like to thank Monzoon Network-
ing, LLC for funding the development of this soft-
ware. The author would also like to thank the
dozens of testers that helped him debug preliminary
versions of this software.

10 Availability

The software described in this paper have been in-
tegrated into the FreeBSD 4.4-RELEASE. FreeBSD
is available free of charge for download from
http://www.freebsd.org/.

References

[CVS] http://www.cvshome.org/
[FreeBSD] http://www.freebsd.org/
[Linux-CS] http://pcmcia-cs.sourceforge.net/

[NetBSD]| http://www.netbsd.org/

[PCI7] PC 97 System Design Guide. Microsoft Cor-
poration, (1996).
http://www.pcdesguide.org
/download/pc97.zip

[PCI8] PC 98 System Design Guide. Intel Corpo-
ration and Microsoft Corporation, (1997).
http://www.intel.com/design
/pc98/draft /pc98.pdf

[PC99] PC 99 System Design Guide. Intel Corpo-
ration and Microsoft Corporation, (1998).
http://www.pcdesguide.org
/pc99/default.htm

[PC99a] PC 99A Addendum. Intel Corporation and
Microsoft Corporation, (1999).

[PC2001] em PC 2001 System Design Guide, A
Technical Reference for Designing PCs and Pe-
ripherals for the Microsoft Windows Family of
Operating Systems. Intel Corporation and Mi-
crosoft Corporation, (2000).
http://www.pcdesguide.org
/pc2001 /default.htm

[PC Card] PC Card Standard, Release 7.0, PCM-
CIA, (February 1999).
http://www.pcmcia.org

[PC-98] http://www.pc98.nec.co.jp/

[PCI] PCI Local Bus Specification, Revision 2.2,
PCI Special Interest Group, (December 18,
1998).
http://www.pcisig.com

[PCI BIOS] PCI BIOS SPECIFICATION, Revsion
2.1, PCI Special Interest Group, (August 26,
1994).

[WiFi] http://www.wi-fi.org/

