
USENIX Association

Proceedings of BSDCon ’03

San Mateo, CA, USA
September 8–12, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The WHBA Project:
Experiences “deeply embedding” NetBSD

Jason R. Thorpe
Allen K. Briggs

Wasabi Systems, Inc.

Abstract
Traditionally, use of BSD in an embedded application has been limited to “stand-alone” environments such

as server appliances, wireless access points, and the control plane of routing equipment. Recently, Wasabi Systems
was given the opportunity to use NetBSD in a more “deeply embedded” application, as the software on a PCI
storage adapter card. This paper will introduce our specific application and describe the requirements of the storage
adapter environment, the challenges presented by this type of environment, and the solutions we have developed to
address these challenges, along with the results of our effort and some outstanding issues that warrant further study.

1. Introduction
BSD has been used in embedded systems for

several years in applications such as server appliances
and network infrastructure equipment. These
applications tend to take advantage of BSD’s traditional
strengths, namely networking and file systems.
However, these applications present environments not
all that different from the traditional stand-alone UNIX
system.

Recently, Wasabi Systems, Inc. was given the
opportunity to use NetBSD as the firmware on a PCI
storage adapter card. This “deeply embedded”
application is very different from traditional BSD
embedded applications.

The goal of the WHBA (Wasabi Host Bus
Adapter) project is to produce a design for a PCI add-in
card that can be used to offload a variety of processing
chores from the host system, which is typically a server.
The initial application is that of an iSCSI target HBA.
An iSCSI target HBA performs TCP/IP, IPsec, and
iSCSI protocol processing, then passes the SCSI
command and data payload up to the host system.
Once the host system has processed the SCSI
command, the HBA encapsulates the status code and
any payload or sense data as necessary, and then sends
the result back to the initiator. This is very similar to a
parallel SCSI or Fibre Channel HBA operating in target
mode.

Other potential applications for the WHBA
include iSCSI initiator, IPsec offload processor, RDMA
processor, TCP offload engine (TOE), and RAID
controller.

2. WHBA requirements
The requirements of an HBA application are

much different from those in a traditional embedded
BSD environment. Here we will discuss the
requirements of our application, as well as the general
requirements and challenges of the HBA environment.

2.1. Overview of iSCSI
iSCSI is a transport layer for the Small

Computer System Interface command set that uses
TCP/IP to connect initiators and targets over standard
IP networks. There are several usage models for iSCSI,
including:

• Expandable direct-attached storage for consumer
and SoHo environments

• At-distance connectivity to disk mirrors and tape
volumes

• IP-based Storage Area Networks (iSANs)

Each of these usage models has different
characteristics and performance requirements
(described below).

The main advantage of iSCSI is its ability to
run on any IP network, including LANs and WANs.
Since IP-capable networks are ubiquitous, the cost of
deploying iSCSI is low, especially compared to the cost
of Fibre Channel; in addition to the cost savings from
not having to deploy a different type of network (Fibre
Channel), every server and client system on the market
today comes with an Ethernet port. In environments
where a SAN is not needed, iSCSI still has the
advantage of not requiring the storage to be located
within a few meters of the system to which it is
attached.

iSCSI’s basic unit for data transfer is a
protocol data unit, or PDU [1]. There are several PDU
types, but they all share the same basic structure:

• A basic header segment (BHS) that contains the
PDU’s opcode, the LUN, task tag, CDB, or other
opcode-specific fields

• Zero or more additional header segments (AHS)
• An optional header digest (CRC32C)
• An optional data segment
• An optional data digest (CRC32C)

The maximum PDU size is negotiated when an
iSCSI session is established. All data transfers are
broken down into one or more PDUs. Since a common
PDU size is 8KB, it is likely that any given SCSI data
transfer will require multiple PDUs.

In addition to the overhead of encapsulating
into or de-encapsulating data out of PDUs, the iSCSI
transport has an optional error recovery mechanism,
known as markers [2], that requires additional
processing. Markers are inserted into the data stream at
regular intervals, and allow an iSCSI target or initiator
to re-synchronize the stream in the event a PDU with an
invalid header digest is received (the length fields in the
basic header segment can not be used in this case).
These markers are orthogonal to PDUs, and thus are not
accounted for in length fields or the header or data
digests.

The combination of TCP/IP processing, PDU
encapsulation and de-encapsulation, CRC32C
generation and verification, and marker insertion and
removal make a compelling argument for including an
offload component in an iSCSI solution.

2.2. Usage model requirements
Each of iSCSI’s usage models has its own set

of characteristics and performance requirements. There
are several variables to be factored in, including:

• Target audience and what they expect from a
storage system.

• Acceptable cost of the storage system.
• Need for remote or local connectivity.

In order to understand the requirements of the
HBA, it is helpful to have a basic understanding of
some of iSCSI’s usage models.

2.2.1. Consumer / SoHo
As homes around the world become “wired”,

the need for high-capacity storage increases. Consider
the amount of space required to store music, pictures
and movies, etc. Not only is the typical consumer PC
limited in the amount of disk drives that can be directly
attached, but the typical home PC user is not a
computer hardware expert, and usually does not wish to
open up his or her computer to install new disk drives.

A similar situation exists with the SoHo
environment. Data stored on an office storage system is
often business-critical, and tends to be stored for long
periods of time. Therefore, as time goes on, more
storage is needed. Because of the business-critical
nature of this data, the downtime and risk associated
with migrating to new, higher-capacity disks is
unacceptable.

From the perspective of storage, consumer and
SoHo environments are not generally high-performance
environments. Low-end PCs and laptops, which are
generally tuned for reduced power consumption, are
common. The expectation of the user is that their files
and pictures will be available on-demand, and their
music and movies will play smoothly. The
performance achievable with 100Mb/s Ethernet is
adequate for audio applications. Gigabit Ethernet is
becoming increasingly common on consumer PCs, and
the iSCSI performance that can be achieved on Gigabit
will likely be comparable to, if not better than, what the
user would experience with disk drives directly
attached to the computer.

In this usage model, cost is a dominant factor.
In order for an offload solution to work in this market, a
small number of low-cost parts should be used on the
HBA.

2.2.2. At-distance backup
At-distance backup is a scenario where storage

resides in one physical location and the capacity to back
up that storage resides in another, possibly far away,
location. There are a number of reasons why this
strategy might be used, including cost-effectiveness
(backup systems can be expensive) and disaster
recovery (losing your data and its backup in the same
fire would render the backup useless).

This environment is constrained by the
characteristics of wide-area networks. The user will not
expect low latency or high throughput access to storage,
but will expect the data to stream effectively, and for
software on the initiator (client) side to behave as
though the storage were local, to the extent possible [3].

This usage model is less concerned with cost
than the low-end consumer/SoHo market. However,
small businesses are likely to be a major part of this
market, and so keeping the cost down is still important.

2.2.3. Storage Area Networks
Storage Area Networks, or SANs, are typically

deployed in environments where multiple systems
require access to pooled storage, or where redundant
connections to storage are required in order to ensure
uptime.

SANs are currently dominated by Fibre
Channel. However, Fibre Channel has a high total cost
of ownership [4]:

• Fibre Channel is not commonly used for IP
networks, and thus is always added cost.

• Fibre Channel equipment is expensive.
• IT staff generally needs additional training in

order to manage and maintain a Fibre Channel
SAN.

Because iSCSI runs over any IP network, it
can utilize existing networking infrastructure and
expertise, thus reducing the total cost of ownership.

Even though Fibre Channel is currently faster
than Gigabit Ethernet (Fibre Channel is available in
1Gb/s and 2Gb/s speeds), the reduced cost of iSCSI still
makes a compelling argument in favor of its use.
However, users of Fibre Channel have come to expect
low latency and high throughput from their SANs,
largely due to the fact that Fibre Channel is a fairly
low-overhead protocol and Fibre Channel HBAs
offload all of the necessary processing.

Even an expensive iSCSI HBA is likely to be
less expensive than a Fibre Channel HBA; current
iSCSI HBAs retail for approximately $500US, and
Fibre Channel HBAs retail for $800US and up.
Combined with the cost savings associated with the use
of commodity Gigabit Ethernet networking equipment,
iSCSI presents a much lower-cost alternative for SAN
deployment. As such, the cost of an iSCSI HBA is less
of a factor in this usage model.

2.3. Host communication
An HBA plugs into a host system and must

communicate with it. HBA applications based on
intelligent I/O processors generally use a messaging
uni t and a DMA controller to implement host
communication.

A messaging unit is a device in an I/O
processor that provides support for notifying the host
and the HBA when new messages are available. A
typical messaging unit is comprised of two or more
doorbell registers and two or more sets of queue
pointers.

The queue pointers in the messaging unit are
used to implement a ring of message descriptors. These
message descriptors reside in host memory. The DMA
controller is used to copy the host-resident descriptors
to HBA local memory. The DMA controller is also
used to move payload data between the HBA and host.

We looked at several examples of message
passing APIs used by storage controllers. Most were
either too simplistic (early BusLogic and Adaptec), too
complicated to implement in a short period of time
(I2O), or too tied to their specific hardware platform
and application (recent Adaptec). Since one of our
goals was to produce a solution that could offload
different types of workloads, we decided to borrow
ideas from the early BusLogic [5] and the I2O [6] APIs
and create our own.

The WHBA message passing API is based on
two circular queues; one for host->HBA messages and
one for HBA->host messages. The general data flow is
that the host sends a message to the HBA and at some
time in the future, the HBA responds to that message,

although there are a few exceptions to this rule.
Messages and replies use the same data format.

Each message is 64 bytes long and begins with
a standard header:

uint32_t msgid_high;
uint32_t msgid_low;
uint16_t msg_type;
uint16_t hdr_reserved;

The msgid_high and msgid_low fields
are not processed by the WHBA, but are copied into the
corresponding fields of message replies, where they
may be used by the host’s driver software to identify
the context associated with original message sent by the
host to the HBA. The msg_type field defines the
remaining data fields after the header. The
hdr_reserved is reserved for future expansion.

There are currently four groups of messages
defined in the WHBA message passing API:

• General messages
• iSCSI common messages
• iSCSI initiator messages
• iSCSI target messages

Some of these messages are self-contained,
and others contain pointers to additional message data.
This data is then transferred using the DMA controller
from the host’s memory to the HBA’s memory. Either
the message or the additional message data may also
contain pointers to payload data associated with the
message.

2.4. HBA hardware
Two hardware platforms, both based on Intel’s

XScale™ processor core, were used during the
development of the WHBA:

• The Intel IQ80321 reference platform for the
i80321 I/O Processor

• The ADI Engineering i/HBA (which was
designed and built expressly for the purpose of
demonstrating the WHBA)

The IQ80321 was used for early prototyping
and development. This board consists of the i80321 I/O
Processor, an Intel i82544 Gigabit Ethernet controller,
an IBM PCIX-PCIX bridge, a DIMM slot, 8MB of
flash memory, and a UART. The i80321 contains the
XScale™ core, PCI controller, DMA controller, timers,
and an I2O-compatible messaging unit.

The ADI i/HBA was the target platform for the
WHBA. The i/HBA consists of an i80200 CPU, an
Intel i82545 single-port or an i82546 dual-port Gigabit
Ethernet controller, an Intel i21555 non-transparent

PCI-PCI bridge, 128MB or 512MB of on-board
SDRAM, 8MB of flash, and a Xilinx Virtex-II FPGA
containing the companion chip, known as HBACC.

The HBACC is a descendant of the BECC
(“Big Endian Companion Chip”) used on ADI’s BRH
XScale™ development platform. The HBACC
contains a high-performance memory controller, the
PCI controller, a DMA controller with CRC32C offload
capability, timers, and a UART. The i21555 non-
transparent PCI-PCI bridge contains an I2O-compatible
messaging unit.

Initial tests on each of these platforms showed
raw TCP throughput of 300-400Mb/s, with the IQ80321
being on the low end of that range and the i/HBA being
on the high end. Since a high-performance host could
easily saturate either of these platforms, it is necessary
to utilize the hardware available on the WHBA as
effectively as possible.

The XScale™ processor is an implementation
of the ARM5TE architecture. This processor has an
MMU and virtually-indexed/virtually-tagged
instruction and data caches. While the MMU provides
some support for address space identifiers, the
semantics of these identifiers and the requirements of
the application preclude their use. As a result, process
context switches carry a significant penalty: changing
address spaces requires a complete cache clean and
TLB invalidation.

In addition to context switch overhead, the
memory buffer used to stage data to and from the host
must be managed. The means of moving data in and
out of this buffer is through a DMA controller, so
extracting the physical address of any given region of
the buffer is a time-critical operation.

Finally, the latency of application notification
when a messaging unit doorbell or queue pointer
register is written is critical.

2.5. System start-up and shutdown
System start-up and shutdown in the HBA

environment are very different from start-up and
shutdown in the desktop and server environments
where BSD is traditionally found. These differences
present some interesting challenges.

Most BSD systems rely on the system’s
firmware to bootstrap the hardware and read in a loader
program from a storage device, such as disk or
CompactFlash. In the HBA environment, there are no
disks. While our prototyping systems had the RedBoot
[7] bootstrap and debug environment in ROM, it is
unlikely that any final product sold to end-users will
include it. This puts the onus of hardware bootstrap
entirely on the operating system, which must be loaded
into ROM at the reset vector.

Furthermore, BSD systems have historically
not been very fond of unexpected shutdowns, which are
often associated with long restart times (due to file
system checks) and lost data (due to data not being
flushed out to disk, as would happen in a clean
shutdown). In contrast, unexpected shutdowns are a
part of normal operation in an HBA environment.
These can be caused by a number of events on the host
system including reboot, driver load/unload, and power
management activity.

3. The Wasabi Embedded Programming
Environment™

In order to meet the challenges before us, we
concluded a traditional BSD operating model would not
be appropriate for the following reasons:

• A good portion of our application needs to reside
in the kernel in order to be able to interact with
messaging and DMA hardware effectively.

• A large chunk of physically contiguous SDRAM
is required for efficiency.

• We needed to address the start-up and shutdown
issues associated with the HBA environment.

We observed that by placing the entire
application into the kernel, user space became
completely superfluous. Eliminating support for user
space would free up a large chunk of space in the
virtual address map that we could be used to
contiguously map SDRAM. With no user-land, there is
little need for a root file system, and eliminating the
root file system goes a long way towards addressing
start-up and shutdown issues.

Unfortunately, our existing iSCSI software
was a pthreads application that ran in user space. What
we needed was an application environment that would
allow an application to run either in user space or the
kernel. So, we developed one, and called it the Wasabi
Embedded Programming Environment™, or WEPE for
short.

WEPE is actually a combination of three
things:

• An API for applications that provides portability
to both user space and kernel WEPE
environments

• A configuration management framework that
eliminates the need for configuration files

• A set of modifications to the NetBSD kernel that
removes support for processes running in user
space and provides a simple, extensible
debugging console

While there are many applications that can
benefit from the simplified single address space model
that WEPE provides in the kernel environment, it is
important to recognize that there are significant trade-
offs associated with using this model.

Perhaps the most significant of these is the
lack of memory protection; a badly behaving
application can corrupt data structures in another
application.

Secondly, since all applications are linked
together into a single ELF image, applications, as well
as the kernel itself, must be careful with regard to
symbol namespace.

Finally, the WEPE API must contend with the
fact that the semantics of calling system facilities is
quite different in the user space and kernel
environments, and global state, such as errno cannot
be used in the kernel environment. While thread-
specific data can be used to work around many of the
awkward POSIX API issues, such schemes can have
problems with efficiency that vary from platform to
platform. For this reason, WEPE does not provide a
POSIX API, requiring that applications be ported to the
WEPE API.

3.1. The WEPE API
In addition to the trade-offs listed above, there

are some functions available in the user space
environment that do not map directly to equivalent
functions in the kernel. It is therefore necessary to
provide applications with a compile-time indication of
whether they will be run in user space or in the kernel
environment. This indication is provided by the
presence of a C preprocessor macro:

• _WEPE_MODEL_SINGLE indicating the single
address space kernel environment

• _WEPE_MODEL_VIRTUAL indicating a full user
space virtual memory environment

WEPE API elements are logically grouped by
function, and have naming rules that help to identify
their function and grouping. For example, functions
whose names begin with wepe_sys_ map to system
calls. The following sub-sections provide an overview
of these functional groups.

3.1.1. File I/O functions
WEPE file I/O functions are made available by

including the <wepe_fileio.h> header file. This
functional group provides WEPE versions of several
Unix file-related system calls, such as open(2), read(2),
and close(2). All of these functions return 0 on success
or an error code to indicate the reason for failure.
Functions that would return a file descriptor or a byte

count in a POSIX environment take an additional
pointer to that returned value in WEPE.

3.1.2. Socket I/O functions
WEPE socket I/O functions are made available

by including the <wepe_sockio.h> header file.
This functional group provides WEPE versions of
several Unix socket-related system calls, such as
socket(2), bind(2), and listen(2). Like the file I/O
group, all of these functions return 0 on success or an
error code to indicate the reason for failure, and
functions that would return a file descriptor in a POSIX
environment take an additional pointer to that returned
value in WEPE.

As in POSIX, any file descriptor returned by a
WEPE socket I/O routine may be used with file I/O
functions.

3.1.3. Thread functions
WEPE thread functions are made available by

including the <wepe_thread.h> header file. This
functional group includes a threads API similar to, but
simpler than, POSIX threads, including thread creation,
mutexes, read/write locks, and condition variables. The
thread group also includes some basic process
management functions.

3.1.4. Networking functions
WEPE networking functions are made

available by including the <wepe_net.h> header
file. This functional group provides WEPE versions of
several networking-related functions, such as
getifaddrs(3), getaddrinfo(3), and getnameinfo(3). In
the kernel environment, this group also provides
function calls that allow applications to configure
network interfaces, set routing table entries, and access
the kernel’s DHCP client.

3.2. WEPE configuration management
While the configuration management

framework used by WEPE is actually independent from
WEPE, it bears mentioning in this context since WEPE
relies on its functionality. The main problems it
attempts to solve are as follows:

• In embedded systems, management and storage
of multiple configuration files can be
problematic, especially if there is no file system
in which to store multiple files.

• Configuration files have differing syntaxes, and
thus make it difficult to provide a consistent
configuration interface.

The MIB model used by the BSD sysctl(8) tool
is very attractive from a consistency point of view.

However, it does not define the storage mechanism for
the configuration data.

The solution that WEPE employs, both in the
kernel and in user space environments, is known as
wctdb (“Wasabi Config Tool Database”). The database
consists of simple key-value pairs. The keys are
hierarchical MIB names, similar to those found in the
sysctl(8) interface. The API is made available by
including the <wctdb.h> header file.

The implementation of the back-end database
is completely hidden from the user of the API. In user
space, btree(3) is used. In the kernel environment, a
simple key-value list designed for storage in memory-
mapped flash is used.

3.3. WEPE kernel modifications
The WEPE kernel modifications fall into four

categories:

• Replacement of several functions in the kernel
proper in order to remove the user address space

• Implementation of the WEPE API
• Implementation of the WEPE debug console

kshell
• Kernel environment debugging tools

In this section we will discuss the replacement
functions, the kshell debug console, and the kernel
environment debugging tools.

3.3.1. Replacement functions
One of our goals was to make WEPE as non-

invasive to the rest of the kernel as possible. However,
there are several places in the kernel proper that access
the user address space, using routines such as
copyin() and copyout(). By replacing these
functions, we are able to use all of the system call
functions in the kernel to provide WEPE API support
without modifying them.

There is a slight problem with this approach,
however. The semantics of these user address space
access functions dictate that the data be copied. This is
not strictly necessary in the kernel environment, since
all tasks share a single address space. Unfortunately,
many parts of the kernel assume that the arguments
provided in a system call are “owned” by the code that
implements the call, and thus may modify the
arguments while executing the system call. For this
reason, we must accept a certain amount of this data
copying.

There is one other function that is replaced,
although for a different purpose. The start_init()
routine, which normally takes care of starting init(8), is
replaced with the entry point for the kshell debug
console.

3.3.2. The kshell debug console
The k s h e l l debug console provides a

command-line interface to the WEPE environment. Its
primary purpose is for debugging, but it is extensible
and could be used to provide a command-line based
management interface in an appliance application. The
kshell is also responsible for initializing all of the
applications that are linked into the kernel image.

The kshell provides several API components
available only in the kernel environment. These API
components are made available by including the
<wepe_kshell.h> header file.

Kshell takes the place of init(8) as process #1.
When it starts, its first task is to initialize the console
device in a way that mimics the behavior of a normal
tty; the initial (and only) session is created, the console
device is set as its controlling terminal, and backspace
is set to ^H.

Once the console is initialized, kshell calls the
initialization function provided by each application
linked into the image. Applications register themselves
using a C preprocessor macro: KSHELL_APPINIT().
This macro causes a pointer to the application’s
initialization function to be placed into a special section
in the final ELF image. The kshell then traverses this
special section, calling through each function pointer.
This scheme not only allows applications to be linked
into the image easily, but also facilitates binary-only
distributions to licensees. Applications may perform
any start-up tasks they require using this mechanism,
including creating additional processes and/or threads.

Once all of the application initialization tasks
have been performed, the kshell enters a command
loop. The following built-in commands are provided:
about, help, ddb, reboot, halt, and poweroff, the latter
three being the equivalent of the user space commands
of the same names.

The kshell also allows applications linked into
the image to add commands to the command line
interface. Applications register these commands using
the KSHELL_COMMAND_DECL() C preprocessor
macro. This macro causes a pointer to a structure
describing the command to be placed into a special
section in the final ELF image. This section is
consulted by the kshell command loop when a
command is entered on the command line interface.
The command description includes the command name,
a usage string, and a pointer to the function that
implements the command.

The kshell exports some support functions that
help application programmers to implement command
extensions. These support functions include a
getopt(3)-like routine and a paged-output routine.

3.3.3. Kernel environment debugging tools
Debugging tools for Unix systems are

generally used in a user space environment; if your
program crashes, you run gdb(1) on it to figure out
why. Similarly, if you want to profile your application,
you compile it for profiling, run it, and use gprof(1) to
analyze the profiling data.

NetBSD also provides support for using
debugging and profiling tools on the kernel: in-kernel
(DDB) and remote (KGDB) debuggers are available,
and the standard BSD kernel profiling feature kgmon(8)
is supported.

Unfortunately, the standard BSD debugging
and profiling tools were insufficient for the WEPE
kernel environment for the following reasons:

• DDB is not a source-level debugger, and thus has
limited usefulness for debugging a complex
application.

• KGDB requires a dedicated serial port; the
WHBA target hardware only has one, which is
used for the console.

• Kgmon requires a user space application to
control kernel profiling and to extract the profile
data.

The debugging problem was addressed by
enhancing the in-kernel DDB debugger to interact
better with KGDB. When an event that traps into DDB
occurs (either a special sequence on the console, the
ddb command in kshell, or a fatal trap or kernel panic),
DDB is entered as normal. If the user wishes to use
KGDB to debug the problem, the new kgdb command
is entered at the DDB command prompt. This causes
the console port to become the KGDB port, disabling
normal console output. The user may now interact with
the application using KGDB. When the user is finished
using KGDB, he or she simply disconnects the
debugger and the port returns to console mode,
presenting the DDB command prompt once again. At
this point, any DDB command, including continue, may
be issued.

The profiling problem required a more
complex solution. We started by implementing a
kgmon application for the kernel environment. This
optional application is linked into the kshell command
line interface using the standard kshell extension
facilities, and includes the same functionality as the
user space kgmon(8) utility. This allowed us to perform
all of the necessary control operations for kernel
profiling.

Once we were able to control kernel profiling,
we needed a way to examine the profile data. Since our
gprof(1) tool is cross-capable, we decided to add a

TFTP client to the kernel in order to dump the profiling
data over the network.

4. Implementation of the HBA application
The iSCSI application for the HBA breaks

down into several components: startup code, the PCI
interface, the iSCSI engine, and some glue that stitches
the pieces together.

4.1. HBA startup
The start-up component of the HBA

application varies from platform to platform. For
example, the IQ80321 platform requires that bootstrap
software configure the memory controller so that
SDRAM is available, whereas the i/HBA’s HBACC
performs this task.

The primary challenge of HBA start-up is that
the application requires certain PCI resources that must
be configured by the host system. Meanwhile, the host
must not configure the PCI resources until the HBA has
completed its initial setup, such as setting of the size of
the PCI base address registers that the host must
program. This issue is handled differently on our two
hardware platforms.

The IQ80321 uses a semi-transparent PCI-X
bridge and the host system programs the i80321’s PCI-
X configuration space directly. The bridge may be set
into a mode such that configuration cycles issued from
the primary (host) side of the bridge will be locked out
and retried by the host until software on the HBA
releases the bridge. However, if the bridge locks out
configuration cycles from the host system for too long,
the host system may fail its boot-time configuration and
power-on self-test (POST). Since the i80321’s memory
controller must be programmed and an ECC scrub
performed, PCI BAR sizes must be programmed by
reset vector code. Fortunately, the RedBoot bootstrap
environment for this board configures the i80321’s PCI
BARs in a way that is compatible with our HBA
application, which allowed us to skip this task in our
start-up code.

The i/HBA, on the other hand, uses the i21555
non-transparent PCI bridge. This bridge is similarly
configured to lock out PCI configuration cycles,
allowing our application code to configure the bridge.
Fortunately, the i/HBA does not require an ECC scrub,
and thus can start the HBA software rather quickly.

The HBA software is stored in flash memory
on both of the platforms we used. In order to minimize
the flash footprint of the HBA software, a special loader
called gzboot was developed to allow the software to be
stored in compressed form. Gzboot can be prepended
onto a flat binary image of a NetBSD kernel that has
been compressed with gzip(1) and the resulting image
can be written to flash memory. When started, gzboot

will then decompress the kernel into a pre-determined
location in SDRAM and jump to it. Code to bootstrap
SDRAM and configure PCI BARs can be placed into
gzboot’s start-up code.

During development, the RedBoot bootstrap
environment was used on both boards to provide initial
start-up support. On the IQ80321, a RedBoot script is
used to perform an unattended start-up of the HBA
software. On the i/HBA, the RedBoot reset vector code
will automatically jump to the HBA software written
into flash, but to aid development, it will drop into the
RedBoot command prompt if a test point on the board
is shorted to ground at hardware reset.

4.2. HBA PCI interface
As mentioned, the PCI configuration is

somewhat different between the i/HBA and the
IQ80321. For development, though, we wished to
minimize the differences visible to the application
layer. In this section, we’ll go into a bit more detail on
how we work with the PCI interface on each card and
how we create an abstraction to keep the application
code itself away from the differences.

4.2.1. IQ80321 PCI interface
The host system sees the IQ80321 as two

devices: the IBM PCI-X bridge and the i80321 I/O
processor (on the secondary side of the bridge).
Depending on the configuration of the board, the host
may also see other PCI devices on the secondary side of
the PCI-X bridge.

The IQ80321 has four inbound PCI BARs.
The first BAR is set to its minimum size, 4KB, and
maps the i80321’s Messaging Unit (MU) into the host’s
PCI space. The next two BARs are disabled. The last
BAR maps the IQ80321’s local memory onto the PCI
bus, providing a window for PCI devices under the
i80321’s control to access the entire range of the
IQ80321’s SDRAM.

Since the PCI-X bridge on the IQ80321 is
semi-transparent, it is possible for the host system to
access the PCI devices under the i80321’s control. The
IQ80321 has a set of switches that allow the on-board
PCI devices to be “hidden” (by making its IDSEL line
unavailable) from the host.

The DMA controller on the i80321 can
address the PCI bus directly; no address translation is
required. This means that the HBA software can
directly use the PCI addresses provided by the host
system. Unfortunately, the DMA controller does not
support true scatter-gather; there is a single chain of
buffer descriptors, each descriptor containing a source
address, destination address, and length. Since the
length applies to both the source and destination in that
descriptor, the source and destination DMA segments

must map 1:1. It is not very likely that this would ever
happen with host-provided scatter-gather lists during
normal operation, so it is necessary to buffer data
to/from the PCI bus in a physically contiguous memory
region.

4.2.2. i/HBA PCI interface
The host sees the i/HBA as a single device: the

i21555 PCI bridge. On the secondary side of the bridge
is a completely independent PCI bus with its own
address space. There are mapping windows on both the
primary side and secondary side of the bridge that allow
devices on either side to access devices on the other.
Transactions that pass through the bridge go through an
address translation process.

While the DMA controller on the HBACC can
address the PCI bus directly (like the i80321), the
HBACC’s DMA controller does not operate on the
same address space as the host (unlike the i80321).
This requires the HBA software to translate PCI
addresses provided by the host.

Further complicating PCI access on the i/HBA
is the fact that the i21555’s upstream (secondary to
primary) memory window is not large enough to map
all of the memory that might be installed on the host
system. The i21555 provides a look-up table that sub-
divides the upstream memory window into pages and
remaps those individual pages onto the host’s PCI
address space. Note that the HBACC DMA controller
and the bridge’s look-up tables are distinct, which
requires us to put some knowledge of the look-up tables
into the HBA application in the i/HBA case.

One fixed BAR on the i21555 is part of the
first downstream memory window. The first 4KB of
that BAR maps the local registers on the i21555, and it
is through this BAR that the host accesses the doorbell
registers to signal the i/HBA. Another 4KB BAR is
configured for access to a page of HBA local RAM that
is used for extra register space, as there are only a few
general purpose “scratch” registers on the i21555. The
upstream BARs and look-up tables are configured on
the fly.

Wasabi was consulted numerous times during
the design of the HBACC, and as a result, we had a fair
amount of input on the design of the HBACC DMA
controller. The HBACC DMA controller fully supports
independent scatter-gather lists for both the source and
destination, and thus does not require a physically
contiguous staging area. The DMA controller also
supports the iSCSI CRC32C algorithm, and can
compute a full or partial CRC32C when copying data or
in a read-only mode (where no destination is used).

4.2.3. Messaging Unit API
While the messaging units on our two

hardware platforms are both I2O-compatible, the
interface is somewhat different both from the host’s and
HBA software’s perspective. In order to minimize the
impact of these hardware differences on the HBA
software, we developed a general framework for
interfacing with messaging units called muapi.

Muapi is a session-oriented mechanism for
sending and receiving messages through different types
of messaging portals found in a messaging unit. The
basic architecture of muapi consists of back-ends,
portals, sessions, and messages. Back-ends present
portals to the muapi framework. Each portal has an
associated data type:

• Doorbell portals can indicate a small number of
specific events, such as “new message available”
or “error occurred”, represented by a bit mask.

• Mailbox portals can pass single integer messages.
Mailboxes can be used to implement handshake
protocols for initialization, among other things

• Message queue portals consist of head and tail
pointers. The message producer advances the
head pointer, and the message consumer
advances the tail pointer. The pointers are
indices into a ring of message buffers. These
message buffers are usually accessed using the
DMA controller.

Clients of the API create a session associated
with a specific portal. Clients send messages by calling
muapi_put_message(). Clients may receive
messages either asynchronously (using a callback) or
synchronously (using muapi_get_message() or
muapi_sync(), which waits for the callback to be
invoked). Once a client has processed the message, it
acknowledges the messaging unit by calling the
muapi_release_message() function, which may
clear a mailbox or advance a tail pointer.

4.2.4. Data mover API
As with the messaging unit, our two hardware

platforms used different DMA controllers with different
programming interfaces. We also wanted a single
framework capable of moving data between SDRAM
and the PCI bus, moving data from one region of
SDRAM to another, and handling CRC32C offload.

The solution used in the HBA application is
called dmover. Dmover provides a session-oriented
mechanism for queuing data movement operations.
The API is fully asynchronous, and clients are notified
by a callback when an operation completes.

The basic architecture of dmover consists of
back-ends, algorithms, sessions, and requests. Back-

ends present algorithms to the dmover framework.
Clients of the API create a session to perform a specific
algorithm, at which times a backend is chosen and
assigned to the session. The client then allocates
requests, fills in the necessary information, and queues
them with the session.

In order to provide maximum future
expandability of the interface, algorithms are named
using strings. Back-ends and clients that wish to
interoperate must agree on a name for a given
algorithm. For example, the main dmover algorithms
used by the HBA application are pci-copyin (copy from
PCI to SDRAM) and pci-copyout (copy from SDRAM
to PCI).

Since the address spaces used by the CPU
running the HBA application and the PCI bus are
separate, dmover must also handle multiple data
representations. The dmover API currently supports
linear buffers (mapped into the kernel virtual address
space), UIOs, CPU physical addresses, and 32-bit and
64-bit scatter-gather lists. The following usages are
common in the HBA application:

• pci-copyin with a source buffer type of sglist32
and a destination buffer type of paddr.

• pci-copyout with a source buffer type of paddr
and a destination buffer type of sglist32.

4.3. HBA iSCSI engine
The iSCSI engine is largely untouched from

the user space application, but we did rework a couple
of routines to adapt them to the kernel environment.

A number of the functions used in the iSCSI
application were already wrapped to allow the kernel
and user space implementations to be different. For
example, all uses of malloc() and free() in the
iSCSI code were already using iscsi_malloc()
and iscsi_free() . Calls to these wrapper
functions were replaced with calls to the corresponding
WEPE API functions.

The most obvious place the iSCSI engine
required retooling, however, was in how it handled
network I/O. The iSCSI engine code uses struct
uio and the readv()/writev() family of functions
to read and write vectors of data. While this works well
in user space, and was possible to do in the kernel
environment using WEPE, it is much more natural and
efficient in the NetBSD kernel to use mbuf chains in
those places. This was achieved by adding some data
type abstraction in the iSCSI application code.

Since our iSCSI software had heretofore been
targeted at stand-alone appliances, it included a full
SCSI command processing engine and assumed direct
access to the backing-store. Since SCSI command
processing is performed by the host in the HBA case,

our iSCSI engine was changed so that a distinct
boundary exists between the transport and command
processing components, in order to allow either piece to
be replaced. This has benefits beyond enabling the
HBA application: it enables our appliance software to
support other SCSI transports, such as Fibre Channel.

4.4. HBA glue
In addition to code that parses messages from

the host system, the HBA application requires a certain
amount of “glue” to interface to the iSCSI application.
This glue layer forms the SCSI command processing
half of the iSCSI engine.

The interface is designed so that the HBA
handles as much iSCSI-specific processing as possible.
The interface between the host and the HBA is
therefore largely a SCSI interface with a couple of
hooks to notify the host of new iSCSI connections and
sessions.

After each new session is established or a
session disconnects, the HBA notifies the host with a
unique session identifier. Apart from those messages,
the bulk of the interface is simply data movement.

When a new command is received, the HBA
sends a message to the host with the SCSI CDB. The
host responds with one of several commands:

• S e n d D a t a I n , indicating that the target is
responding to a SCSI “data-in” command or
phase. In this case, the message contains a
scatter-gather list pointing to the data in host
memory that should be sent to the iSCSI initiator.

• ReceiveDataOut, indicating that the target is
ready for the data in a SCSI “data-out” command
or phase. In this case, the message contains a
scatter-gather list pointing to the space in host
memory where the data from the iSCSI initiator
should be placed.

• ScsiCommandComplete, which, when sent in
reply to a new CDB, usually means an error
condition was encountered. This message
contains the status and response codes as well as
any sense data that should be sent to the iSCSI
initiator.

The principal job of the HBA glue code is to
marshal these requests from the host with the data
requested and provided on the iSCSI session. It also
handles moving the data to and from the host, using the
scatter-gather lists provided by the host and the dmover
facility.

5. Results
We had several goals in embarking on this

project. Our primary goal was to build a workable

system for tackling these “deeply embedded” types of
applications with NetBSD running on an XScale‰-
based platform. Secondary goals included efficient use
of the hardware, maximum performance, and adequate
tools to measure different aspects of system
performance.

While it is difficult to fully quantify, we
believe that we have met our primary goal. We have
functional iSCSI target HBA prototypes built around
our modified NetBSD and a public proof-of-concept
demonstration was given at Storage Networking World
in April 2003 using an IQ80321-based iSCSI target
HBA prototype, in cooperation with Intel and DataCore
Software. Unfortunately, we have been less successful
in meeting the secondary goals.

After we established the basic functionality of
the prototype system, we set out to look at performance.
For testing the performance of the iSCSI application,
we required two systems: the initiator and the target.
The target system included a prototype HBA, driven by
a pre-release version of DataCore’s SANsymphony™
software with support for iSCSI. This software was
running on a dual 2.4GHz Xeon system with 512MB of
RAM running Microsoft Windows Advanced Server
2000. The iSCSI initiator system was a Dell Dimension
4500 running with the Intel Pro/1000 IP Storage adapter
under Windows XP Professional. On the initiator
system, we ran an I/O test application called Iometer
[8]. The default Iometer workload settings were used.

With the settings we used, iSCSI traffic to and
from the target peaked at approximately 7.5MB/s using
both 100Mb/s and Gigabit Ethernet networks. As the
speed was effectively constant at different wire speeds,
we had to conclude that the limiting factor was not in
the network path but either in the test structure or in the
HBA application itself.

The entire HBA application is relatively
complex. To get a clearer picture of the system
behavior, we began looking at just the raw TCP/IP
performance. For this test, we used the i/HBA mounted
in the PCI slot on an ADI Engineering BRH board and
the Xeon system above running NetBSD with a
uniprocessor kernel. The test application used here was
kttcp, a TCP performance testing tool similar to ttcp,
except the kernel provides the data source and sink,
thus enabling us to test performance in an environment
similar to the HBA. On the Xeon system, the kttcp
version in NetBSD’s pkgsrc system in
pkgsrc/benchmarks/kttcp was used; on the i/HBA, the
same was ported to the kshell environment. While the
i/HBA’s low-level diagnostics are able to send raw
Ethernet frames at near-line-rate speeds in external
loop-back tests, we were only able to achieve a bit
above one-third of that speed in basic intersystem
testing (as noted in section 2.4). Obviously, we would
expect some overhead for TCP/IP processing, but we

did not expect to see such a substantial difference in
performance.

After profiling the i/HBA side of the kttcp test
both with time-based profiling and with profiling based
on the hardware-resident performance monitoring
counters, there is no one clear cause for the poor
performance.

Clearly, for this system to progress from
“workable” to “commercially viable” on this class of
hardware, the performance issues will have to be
addressed. However, considering the short amount of
time we had in which to produce a working demo, we
feel that the effort was a success.

6. Conclusions
In this paper we have described an embedded

application outside the realm of traditional BSD
embedded applications. We have shown the
requirements and challenges of the HBA environment,
and how we adapted the NetBSD kernel to deal with
them. We have also provided results that show that
NetBSD is a viable platform for these types of
applications, but that more work is needed in order for
it to reach its full potential.

We also believe that WEPE has the potential
to enable NetBSD to be used in several applications
that were previously off-limits, including system
firmware and on MMU-less platforms.

7. Areas for future study
The semantics of Unix system calls make it

difficult to write extremely high-performance
applications. In particular, the implied ownership of a
data buffer before, during, and after a system call is
problematic. Furthermore, in the presence of a flat
address space, there is no protection boundary to cross
during a system call, complicating the use of existing
zero-copy data movement schemes. Asynchronous
APIs with explicit data ownership should be employed
to address these issues.

The memory footprint is still somewhat larger
than we would like for the HBA application. Some
work should be done to identify dead code and
eliminate it. Similarly, we should be able to improve
the cache footprint of the software significantly in the
kernel environment.

The extant profile analysis tools for Unix
assume that time units are counted by the profiling
subsystem [9]. This can result in confusing profile
reports when using other types of profiling triggers,
such as branch prediction misses, data cache misses, or
TLB misses. Knowledge of other types of profile
events should be added to these tools so that more
meaningful reports can be generated.

Some performance gains could be achieved by
offloading more processing onto hardware. For
example, the Intel i82544 Gigabit Ethernet MAC can
perform “TCP segmentation offload”, which allows the
host to provide a large data buffer, along with a
template TCP header, to the MAC, which then performs
the task of breaking up the large buffer into
appropriately sized TCP segments. The NetBSD
TCP/IP stack should be adapted to take advantage of
such features.

The basic threading model in the kernel is
different from that provided by libpthread in user
space. Assumptions in one model or the other may
adversely affect performance in the other space. It
should be possible to either mitigate the adverse effects
or develop tools to better measure the effects of
scheduling on performance of an application.

8. References
[1] J. Satran et al. “iSCSI”, Internet Draft

draft-ietf-ips-iscsi-20.txt, pp. 107-108.

[2] J. Satran et al. “iSCSI”, Internet Draft
draft-ietf-ips-iscsi-20.txt, pp. 198-200.

[3] J. Hufferd. “iSCSI: The Universal Storage
Connection”, pp. 31-33. Addison-Wesley
Publishing Company (2003)

[4] J. Hufferd. “iSCSI: The Universal Storage
Connection”, p. 25. Addison-Wesley
Publishing Company (2003)

[5] “BusLogic Multi-Master Ultra SCSI Host
Adapters for PCI Systems Technical
Reference Manual”, BusLogic, Inc. (1996)

[6] “Intelligent I/O (I2O) Architecture
Specification, Version 2.0”, I2O Special
Interest Group (1999)

[7] RedBoot: http://sources.redhat.com/redboot/

[8] Iometer: http://sourceforge.net/projects/
iometer/

[9] S. Graham, P. Kessler, M. McKusick. “gprof:
A Call Graph Execution Profiler”, proceedings
of the SIGPLAN ’82 Symposium on Compiler
Construction, SIGPLAN Notices, Vol. 17,
No. 6., pp. 120-126 (1982)

9. About the authors
Jason R. Thorpe is the Chief Science Officer

of Wasabi Systems, Inc. A contributor to the NetBSD

Project since 1994, he has been involved in developing
high-performance storage and networking systems
using NetBSD for over eight years. Mr. Thorpe is a
past participant in the IETF’s TCP implementation
working group, and also contributes to the GNU GCC,
Binutils, and GDB projects.

Allen K. Briggs started working with BSD
shortly after the release of 386BSD 0.0 by contributing
to a BSD port to Apple’s m68k-based Macintosh
systems, which evolved into NetBSD/mac68k. Mr.
Briggs has continued to work with NetBSD in his spare
time, and in late 2000, joined Wasabi Systems, Inc.,
where he has been involved in a number of NetBSD-
based embedded systems projects.

