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Abstract

Online advertising is a major source of revenues in the
Internet. In this paper, we identify a number of vulnera-
bilities of current ad serving systems. We describe how
an adversary can exploit these vulnerabilities to divert
part of the ad revenue stream for its own benefit. We
propose a collaborative secure scheme to fix this prob-
lem. The solution relies on the fact that most of online
advertising networks own digital authentication certifi-
cates and can become a source of trust. We also explain
why the deployment of this solution would benefit the
Web browsing security in general.

1 Introduction

Over the last decade, online advertising has become a
major component of the Web, leading to large annual rev-
enues (e.g., $22.7 billion in the US in 2009 [17]). Most
of online services rely on online advertising as their main
source of revenue. Unsurprisingly, the ad revenue has
caught the eye of many ill-intentioned people who have
started abusing the advertising system in various ways.
In particular, click fraud has become a phenomenon of
alarming proportions [14].

Recently, a new type of ad fraud has appeared, con-
sisting in the on-the-fly modification of the ads them-
selves. A prominent example is the Bahama botnet, in
which malware causes infected systems to display to end
users altered ads as well as altered search results (e.g.,
Google) [6]. Another reported example of such a botnet
is Gumblar [13].

Botnets usually consist of compromised end users’
PCs that are turned into bots and controlled remotely by
a bot master. Lately, botnets started targeting wireless
routers: from the botnet’s point of view, wireless routers
have the advantage of being almost always connected to
the Internet and of being vulnerable [11, 15]. Once a
wireless router is infected with a malware and turned into

a bot, the botnet master can instruct the bot to perform
on-the-fly modifications of the ads of the web pages that
pass through the router.

If the modification of ads is successful, users are dis-
played ads that are different from what they would oth-
erwise be. Consequently, users may click on altered ads
and generate revenue for the bot master instead of the
advertising network (AN). Thus, the modification of the
ads undermines the business model of ANs. In addition,
such attacks may also negatively affect the security of
end users, the reputation of websites and the revenue of
“legitimate” advertisers.

In order to prevent such man-in-the-middle attacks,
well-known solutions consist in deploying authentica-
tion and data integrity mechanisms to help guarantee
the end-to-end security of communications, as done
with HTTPS [30]. Nevertheless, such mechanisms have
various drawbacks that hinder their large-scale deploy-
ment [30, 31, 36]. First, these authentication mecha-
nisms make use of digital certificates to enable the au-
thentication of web servers. Digital certificates are inher-
ently expensive because central trusted authorities must
manually verify the identity of web servers. An alter-
native for web servers is to generate self-signed certifi-
cates. These certificates are hard to validate for end users
and could be tampered with in the man-in-the-middle at-
tacks. In order to help users properly verify self-signed
certificates, the system of network notaries is built that
monitors over time consistency of web servers’ public
keys [36]. However, this solution also has several draw-
backs [36]. Second, the protection of the web content re-
lies on cryptographic operations that induce a large com-
putation cost on servers [30].

For these reasons, various alternative approaches were
proposed to protect web content in an efficient fash-
ion [28, 29]. Previous work suggests to encrypt all web
communications using opportunistic encryption [28]: a
secure channel is set up without verifying the identity
of the other host. This provides a method for detecting

1



tampering with web pages, but only for expert users who
know how to check certificates. However, it does not
defeat man-in-the-middle attacks because an adversary
can still replace the certificates used for authentication
to impersonate websites. Another approach focuses on
the protection of web content integrity by detecting in-
flight changes to web pages using a web-based measure-
ment tool called web tripwire [29]. Web tripwire hides
javascript code into web pages which detects changes to
an HTTP web page and reports them to the user and to
the web server. Web tripwire offers a less expensive form
of a page integrity check than HTTPS but as acknowl-
edged by the authors is non-cryptographically secure.

In this work, we first model the threats to ad serving
systems caused by on-the-fly modifications of ads. We
show novel attacks by selfish adversaries that generate
significant revenue. Second, we evaluate the feasibility
of such attacks by implementing a proof of concept code
on wireless routers. We show the limitations that botnet
designers may face in practice to deploy such attacks. Fi-
nally, we propose a novel solution to fix the problem of
ad fraud and provide integrity of web content. Our solu-
tion is based on the collaboration of the parties involved
in advertising systems. We rely on the fact that most of
advertising networks own digital certificates and can be-
come a source of trust. We use hash-chains [20] to pro-
vide data integrity in an efficient fashion. We show that
our scheme is significantly more efficient than HTTPS
and provides the same level of data integrity. Impor-
tantly, all involved parties have incentives to participate
in this collaborative scheme.

2 Advertising on the Internet

Internet advertisement is generally constituted of a short
text, an image, or an animation embedded into a web
page and linking to an advertised website. The purpose
of an ad is to generate traffic to the advertised website
and, consequently, to increase the revenue for the ad-
vertised products or services. Hence, for many of the
websites users visit, a number of advertisements appear
together with the content of a Web page.

2.1 Ad Serving Architecture

Ads are embedded into web pages either through an ad
serving system, or by websites themselves. The preva-
lent model of the Internet advertisement serving archi-
tecture is depicted in Figure 1. In this model, Advertisers
(AV) subscribe to an Ad Network (AN) whose role is to
automatically embed ads into related web pages. Ads are
stored at Ad Servers (AS), which belong to the ad net-
work. Ad networks have contracts with Websites (WS)
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(WS)

User
(U)

1.
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Figure 1: The advertisement serving architecture. WS
and AS have a contractual agreement (dashed arrow) that
lets AS add advertisement to WS’s web pages. The pro-
tocol illustrated with arrow numbers is given below.

that want to host advertisements. When a User (U) vis-
its a website that hosts ads (Figure 1, step 1), the user’s
browser starts downloading the content of the web page
(step 2), and is then directed to one of the ad servers
belonging to the ad network (step 3). During the first
communication with the ad server, a script is served to
the user (step 4) that executes on the user’s machine and
fetches ads from the ad server (step 5). The ad server
chooses and serves ads that match users’ interest (step 6)
in order to maximize the potential ad revenue.

The protocol can be modeled as follows:

1. U →WS: GET URLWS

2. WS → U : p
3. U → AS: GET URLAS , WSID

4. AS → U : script
5. U → AS: GET URLAS , WSID , cAS

6. AS → U : ads

where→ means communications over HTTP.
With the first two messages (Figure 1), U fetches a

web page p identified withURLWS from a WS. The web
page p contains an ad frame f redirecting U towards the
ad server AS. The redirection includes theURLAS of the
AS and a unique identifierWSID of the WS (required by
the AS to properly transfer potential advertisement rev-
enue to the WS). With the next two messages, U fetches
typically a script from the AS (e.g., Javascript) that exe-
cutes locally on the user’s machine, and collects certain
parameters that influence selection of ads by the AS, in-
cluding the HTTP cookies cAS if were deposited by AS
during previous interactions with U . Cookies uniquely
identify users and enable profiling of their browsing pref-
erences. With the last two messages the script fetches ads
from the AS. The browser merges the ads with previously
downloaded elements of p.

This approach is widely used and has several advan-
tages: (i) the HTML code that directs users to fetch ads
is simple and easy to maintain, as only one line of code (a
reference to the Javascript) is added in the ad frames, (ii)
it is scalable, as the workload is distributed over users,
(iii) it allows ad servers and advertisers to keep the con-
trol, as ads are stored and maintained at their servers, and
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(iv) it enables ASs to track users across multiple web-
sites. There are several drawbacks as well. Because users
fetch ads from third-party servers, the ad serving tech-
nology slows down the display of web pages, consumes
extra bandwidth and affects the privacy of users [26].

There are other online advertisement serving tech-
niques. For example, a PHP script running on a web-
site can locally embed advertisements and serve them to
users together with the content of a web page. This tech-
nique is not very popular because it puts more workload
on the Web servers compared to the previous approach,
thus it does not scale well.

2.2 Targeted Advertisement
A notable difference between online and traditional ad
serving (e.g., television, radio...) is that online ads can
be targeted to individual user’s interests. Ads that ap-
pear on a user’s screen are selected by ASs in real time
to match the user’s interests. Typically, ads are targeted
to the content of the web page hosting the ad, users’ in-
terests extracted from their browsing history (e.g., using
HTTP cookies) or users’ geographical location.

Targeted advertising aims at increasing users’ interest
in the advertised products. At the AS, users’ interests can
be expressed with keywords. The AS associates ads with
each keyword and runs auction algorithms to select the
most relevant ads and the order in which they appear on
the web page, with the goal of maximizing the profit of
both advertisers and websites hosting the ads.

2.3 Revenue Models
There are two main revenue models: Advertisers may
pay the ad network on a per impression or per ad click ba-
sis. In the per impression model, advertisers pay the AN
for the exposure of their ads to end users, i.e., there is a
cost-per-mille (CPM) (cost to expose one ad to one thou-
sand users). In per ad click model, advertisers pay the
AN a cost-per-click (CPC) for each user-generated click
that directs the user’s browser to the advertised website.
The AN gives a fraction of the ad generated revenue to
the WS that hosted the ad.

These models provide incentive to participate in the
ad serving system: the AV earns the revenue created by
ads, the AS earns money for storing the ads and finding
a proper WS to display ads, and the WS earns money for
hosting ads and directing the U towards advertised WS.

3 Threats

In this section, we define the adversary model considered
through the rest of the paper and we identify a number of
possible attacks on ad serving.

3.1 Adversary model

We consider both a selfish adversary intending to take
advantage of the ad serving system and a malicious ad-
versary intending to harm it. A selfish adversary exploits
the system with the goal of diverting part of the ad rev-
enue for itself. In contrast, a malicious adversary may
perform any type of attacks on the ad system.

The adversary can be part of the ad serving architec-
ture (Figure 1) or part of the access network that pro-
vides Internet connectivity to end users. As discussed
in Section 2, all entities of the ad serving architecture
benefit from the delivery of ads to end users. However,
the access network that carries all users’ traffic does not
receive any ad revenue. Thus, the access network may
be tempted to tamper with the transiting data to generate
benefits for itself. In this paper, we focus on an adversary
located in the access network that is a legitimate member
of the network.

We assume an active adversary A: A controls the ac-
cess network and has the ability to eavesdrop, alter, in-
ject and delete messages. In other words, it can per-
petrate Man-in-the-Middle attacks. Such an adversary
can take various forms in practice. It can be local or in
the worst case global. For example, a local adversary
can deploy its own network of access points (APs) or hi-
jack existing wireless access points [33]. Lately, access
points have been compromised by botnets [11]: APs are
infected with a malware (i.e., turned into bots) and re-
motely controlled by a botnet master. With botnets A
can increase the scale of the attacks.

Today, ISPs need to invest into the infrastructure to
support the increased demand for bandwidth and to
accommodate government requirements (e.g., blocking
part of the P2P traffic) [1]. There is no clear answer on
how ISPs will obtain a return on that investment. Thus,
ISPs might be tempted to abuse the control over the Inter-
net traffic they transport to generate additional revenue.
ISPs have the means to monitor and modify the pack-
ets in real time (e.g., Deep packet inspection (DPI) [21]).
DPI is a packet filtering technology that allows for the
automatic examination and tampering of both the header
and data payload of packets.

3.2 Attacks on Ad Serving

Given the large revenue generated by online advertising,
an adversary has significant economic incentive to ex-
ploit the online ad serving in order to divert part of the
revenues to its own benefit. In this section, we describe
various MitM attacks against ad serving that can be per-
petrated by an adversaryA located in the access network.
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3.2.1 Injecting Advertisements

A can inject advertisements in web pages traversing
the access network by either adding new advertisements
or replacing already embedded advertisements. By in-
jecting ads, A thus bypasses the traditional ad serving
model. The attack is successful if the adversary can
obtain revenue with the injected advertisements. The
achievable revenue depends on users seeing the adver-
tisement (CPM model) or finding an ad interesting and
clicking on it (CPC model). To maximize the success of
the attack, the adversary should thus increase the visibil-
ity of injected ads and target them to users’ interests and
the content of corresponding web pages.

We present various types of injections of ads.

Pollution attack We call a pollution attack the injec-
tion of advertisements not necessarily targeted to the web
page’s content or users’ interests that is highly visible.
Rogers, a Canadian ISP, was reported to add content, no-
tably advertisement for their own services, into any web
page that traversed their access network [35]. This was
done by injecting into web pages a single line of code
that causes the user to fetch and execute a Javascript as if
it was part of the content of the web page.

Pollution attacks generate revenue for the adversary
but also spoil the appearance of web pages and may thus
harm the reputation of websites.

Targeted attack A more sophisticated version of the
pollution attack consists in adding ads targeted to users’
interest and the content of web pages. For example, A
can add highly targeted and visible ads into search en-
gine results. Search engines facilitate targeted advertis-
ing as search queries indicate users’ interest at the con-
sidered moment. In addition, surveys have shown that
more than half of the users click on one of the first two
native (i.e., non-sponsored) results [25] of Search Engine
Result Pages (SERP). Knowing this, A can add its ads at
the top of SERPs, resulting in a substantial increase of
users’ traffic on a website of the adversary’s choice. A
could also commercialize such services to advertisers.

Similarly, the adversary could inject ads into location-
based services (LBS) results. LBS provide points of in-
terests (POIs) near users’ location. LBS results are typ-
ically presented on a map (e.g., Google maps) to help
users locate POIs. Usually, LBS include ads in their
results that are targeted to users’ location and interests.
Knowing this, A can add its ads at the top of the list of
POIs. Hence, when a user queries a LBS for a POI in his
vicinity, the adversary can influence the user’s choice.

In practice, several ISPs already work with advertisers
to legally add advertisement to web pages. For example,
Phorm [2], is a personalization technology company that

offers an ad serving platform to ISPs. It currently part-
ners with Virgin Media, UK and is engaged in market tri-
als with KT, Korea. Another example is “free” ISPs [32]:
their business model consists in providing free Internet
access and generating revenue from injected ads.

3.2.2 Deleting Advertisements

An adversary can also remove ads from web pages. For
example, an ISP can automatically filter out all the ads
and offer this as a service to its customers. Blocking
ads is already possible at the end users [3], but doing
it network-wide would work transparently for users. In
addition, A could have an agreement with certain adver-
tisers or ad networks to filter out ads from competitors. In
practice, the infrastructure to block specific HTTP con-
tent is in place.

3.2.3 Website Impersonation Attacks

The adversary can manipulate the website IDs to control
which website earns revenue from hosting ads. We call
such attack a Website impersonation attack. For exam-
ple, if the adversary registered its website with the ad net-
work, then it could replace the IDs of other websites with
its own website ID. Consequently, the adversary would
be paid for all the traffic that was generated at victim
websites. In practice, such IDs are not protected by any
cryptographic means and could thus easily be replaced.

3.2.4 Phishing Attacks

Instead of stealing the ad revenue, a malicious adversary
can replace legitimate ads with malicious ads to divert
users’ traffic towards phishing websites. Such an adver-
sary affects the security of users as it was shown that
users usually believe that advertised links are trustwor-
thy. For example, A can replace the sponsored links in
search results with links to phishing websites.

3.3 On-the-fly Ads Modifications
In this section, we explain how the MitM attacks on ad-
vertisements can be implemented in practice.

First, an access network must identify ad objects in the
HTTP traffic. This can be done by checking the destina-
tion IP addresses or URLs of the requested objects. The
adversary can leverage on the lists of IP addresses and
domain names of the most popular ad servers that are
used by ad blocking softwares [3] to filter out advertise-
ments. If there is a match between a URL of a requested
object and a URL in the list of ad servers, A can con-
clude that the requested object is an advertisement. In
addition, an adversarial ISP can use DPI technology to
identify packets containing ads.
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Once A identifies ad objects, it can alter the ad traffic
either: (i) locally, without the help of external resources
or (ii) remotely, by redirecting users’ requests towards
servers chosen by the adversary. To locally alter ad traf-
fic, the adversary relies only on the locally available re-
sources (e.g., an access point). To remotely alter ad traf-
fic, the adversary can for example redirect the ad traffic
to another AS by modifying URLs of objects referenced
in ad frames. When a user fetches a web page, A modi-
fies on-the-fly the payload of packets carrying the URLs
of the ASs. Hence, ads are fetched from different ASs.

3.4 Economic Impact
In this section, we assess the potential revenue of an ad-
versary modifying ad traffic on-the-fly as explained in
Section 3. We take a bottom-up approach: we model the
browsing behavior of users, estimate the number of ads
affected by attacks and derive the ad revenue at stake.
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Figure 2: Popularity of the top 1000 websites based on
page views per year.

Users’ browsing behavior is profiled by web analytic
companies, such as Compete.com. We base our analy-
sis on measurement data we obtained from Compete.com
about the number of page views and the number of
unique visitors on each of the 1000 most popular web-
sites in 2009 (Figure 2). The exposure of users to online
ads has been evaluated extensively in [27] showing that
h = 58% of the top websites host ads and that on average
there are a = 8 ads per page. We estimate the total num-
ber of ads users see on the the top 1000 websites during
a year (It) as done in previous work [10, 34]:

It =

1000∑
i=1

(Page views on website i) · h · a (1)

The data from Compete.com is aggregated over all the
visitors of websites and does not give individual user

browsing profiles. Thus, the average number of ads Iu
a user sees on the the top 1000 websites during a year is:

Iu =

1000∑
i=1

Page views on website i
# of visitors of website i

· h · a (2)

We now compute the potential annual ad revenue R
generated per user. To do so, we take into account
that for a fraction φ of ads the ad network charges ad-
vertisers based on the number of impressions and for
the remaining 1 − φ based on performance (e.g., click-
throughs) [17]:

R = φ · Iu · CPI + (1− φ) · Iu · p · CPC (3)

where CPI is the cost-per-impression, CPC is the cost-
per-click and p is the probability that a click occurs on an
ad (i.e., click-through rate). Due to the large number of
ads, the cost-per-mille (CPM) representation is usually
preferred for impression based ads (CPM=CPI·1000).
Both CPM and CPC depend on the type of ads and the
hosting website. It is difficult to obtain a complete pic-
ture of CPMs and CPCs for the online advertising space,
thus we rely on the average estimates reported in prac-
tice: CPM= $2.39 [10] and CPC= $0.5 [12]. The prob-
ability p that a click occurs on an ad is around 0.1% [18].
The CPM pricing model accounts for φ = 35% of ad
revenues and CPC for 65%, as reported in [17]. Based
on expression (3), we estimate that the annual ad revenue
generated on the top 1000 websites per user isR = $494.
The total ad revenue generated at the top 1000 websites
is $4.88 billion.

We differentiate between adversaries based on: (i) the
number of users α the adversaryA can affect and (ii) the
resources A has to implement the attacks, which deter-
mines the fraction β of ad traffic (and consequently ad
revenue) it can modify. The upper bound of estimated
revenue (RA) A can gain by perpetrating attacks is:

RA = α · β ·R (4)

This model assumes that advertisers are willing to pay to
A at most the same CPMs and CPCs as to the original ad
network. We consider various values of α and β corre-
sponding to different adversaries that appear in practice
and derive the associated revenue gains in Table 1.

Table 1: A’s potential annual revenue gain.
Adversary α β RA (in US $)

Home wireless AP [1, 10] 1 [494, 4.94K]
Hot Spot AP [10, 100] 1 [4.94K, 49.4K]

Botnet [1K, 100K] 1 [494K, 49.4M]
WSC [10K, 2M] 1 [4.94M, 988M]
ISP [50K, 15M] 1 [24.7M, 7.41B]
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Note that these results are obtained from a sample
of users visiting the top 1000 websites exclusively, and
hence cannot be trivially generalized to the entire US
population. Instead, our results measure the economic
incentive of an adversary to tamper with the traffic of the
users that access the top 1000 websites.

We consider a single compromised home wireless AP,
a compromised hot spot AP, a network of compromised
APs [33] or a botnet [11], a wireless social commu-
nity (WSC) [8] and an ISP [16]. Figure 3 represents
the estimated revenue RA for the entire range of val-
ues β ∈ (0, 1], considering the maximal value of α of
each adversary from Table 1. The results show that even
a small subset of routers controlled by an adversary can
cause a significant loss of ad revenue for ad networks.
Also, even by applying the attack on a small portion of
traffic (β = 0.1), A can earn a significant revenue.
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Figure 3: A’s potential annual revenue gain (in US $).

We note that ISPs have a tremendous incentive to di-
vert even a small fraction of the ad revenue. The total
ad revenue in US in 2009 is $22.7 billion [17], meaning
that the ad revenue per day is $62.2 million. Although
some ISPs would not engage in such activities due to un-
foreseen legal consequences or the risk of damaging their
reputation, reports [9] mention that such behavior is ob-
served in practice in some countries. In [34], the authors
use game theory to model ISPs’ economic incentives to
perform MitM attacks on ad systems and show that under
certain conditions diverting revenue from online adver-
tisements may maximize the revenue of a rational ISP.

4 Implementation of Attacks

In order to test the feasibility of the attacks, we imple-
mented them on a wireless router. The attacks are exe-
cuted locally on the wireless router in a transparent way

to users. We used an Asus WL-500G Premium wireless
router with 32Mb of memory and a 266Mhz processor.
We uploaded an OpenWRT [4] firmware on the router as
it provides many customization features. We used the lat-
est compatible OpenWRT version, the Kamikaaze 8.09
with kernel 2.6.27.

The attacks rely on two main components: a transpar-
ent proxy (Squid v2.6) to parse HTTP traffic and exe-
cutables to implement the attacks. With this setting, the
attack is transparent as there is no change in the address
bar of users’ browsers.

The attacks consist of the following four steps:
(i) The router intercepts user generated HTTP traffic

on port 80. The interception is done using NAT with a
simple pre-routing rule.
(ii) The traffic is redirected to the transparent proxy
(Squid) running on port 3128.
(iii) A C program called redirector.c analyzes all re-
quested URLs. The redirector program detects matches
with predefined rules (e.g., request to an ad server).
If there is a match, the redirector program executes a
PHP script implementing one attack depending on the
matched rule. If there is no match, the redirector pro-
gram outputs the original link and the proxy serves the
original web page.
(iv) We use the built-in Busybox HTTPD server with
PHP to generate web pages dynamically and forward
them to the users.
Using this setting, we implemented three different at-
tacks.

Pollution Attack We implemented the pollution attack
using a similar script as in [35]. We add a javascript to
every web page which creates an HTML frame. In our
implementation, the HTML frame shows an EPFL logo.

Injecting Advertisements We considered two scenar-
ios in this implementation: we change ad server URLs or
change ad server javascripts.

To identify the URL of an AS, we use the list of known
ASs from Firefox plugin AdBlock. The list consists of
regular expressions where each expression represents a
URL of an AS. When the redirector program analyzes
URLs, it matches them with the URLs from the AdBlock
list. In this implementation, if there is a match, the URL
is locally replaced by the URL of the EPFL logo.

We replace Google ads with Yahoo! ads and vice versa
by swapping the corresponding javascripts. To do so, we
store both scripts at the router. If the requested URL cor-
responds to the Google (Yahoo!) JavaScript from one of
the ad servers, the URL is redirected to a local path on
the router to the stored Yahoo!’s (Google’s) JavaScript.
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Targeted Injection We implemented two targeted at-
tacks: on search engine results (SERPs) and on location-
based services (LBSs).

Our SERP attacks work with Google and Yahoo!
search results. The attacking PHP script first downloads
the original search result page based on users’ query.
Then, the received data is parsed searching for the unique
sequence of characters in the HTML source code defin-
ing the beginning of the search results area. This se-
quence was identified by analyzing the HTML source
code of the original SERP prior to implementation. We
add a link to the EPFL website as a first search result for
all search queries.

Our LBS attack targets users who are using Google
Maps. Google Maps use AJAX technology in order to
asynchronously communicate with the LBS server. This
enables users to move around a map without refreshing
the entire web page. The results of a user query are sent
in the form of banners called markers. All the asyn-
chronous information downloaded from the LBS server
(i.e., maps and markers) are implemented in JavaScript.
The attack intercepts the javascript and modifies it by
injecting a forged marker: we advertise the same fake
restaurant for all queried locations. The restaurant al-
ways appears as the first link in the results.

4.1 Evaluation of Attacks
Evaluation Metrics In order for the attacks to be trans-
parent to users, the on-the-fly modifications performed
by the router should not affect the load time of web
pages. We consider two criteria.

First, we evaluate the delay added by attacks on the
load time of web pages, i.e., the difference between the
time to load a web page through the router performing
on-the-fly modifications of ad traffic and the time to load
the web page through a standard router.

Second, we evaluate the scalability of local on-the-fly
modifications, i.e., the number of parallel requests that
the router running the attacks can support compared to
the number of parallel request a standard router can sup-
port. This is particularly relevant in a multi-user envi-
ronment, where the router has to modify on-the-fly and
in parallel the traffic of several users.

Evaluation Setup We measure the delay of loading
times of three different types of web pages. Each web
page triggers a different type of attack:

• www.20min.ch/ro/ : This is a Swiss newspaper
web page. With this web page, we replace Google
ads with Yahoo! ads.

• www.google.com/search?q=cars : This is a
Google search for a keyword “cars”. This web page

triggers the targeted injection attack on SERPs.

• maps.google.com : This is an example of LBS
website and this web page triggers the targeted in-
jection attack on LBSs.

Each page is loaded with three different router set-
tings: (i) the router without the proxy and the attacks,
(ii) the router running the proxy but without the attacks
and (iii) the router running the proxy and the attacks.

We wrote a Perl script that opens each page sequen-
tially with Firefox. There is a 15 seconds pause be-
tween each load to ensure that web pages are completely
loaded. Another Perl script parses the log files of the
router proxy to compute the loading times of each page,
based on the time of the first and the last request. In each
scenario, web pages are loaded 15 times and we compute
the average load time.

We evaluate the scalability of the attacks by measuring
the maximum number of parallel requests that the router
supports when running the proxy and the attacks.

We use a Perl script which generates a number
of parallel wget requests to retrieve the content of
web pages. We download a web page that corre-
sponds to Google SERP with a query “cars”, i.e.,
’http://www.google.com/search?q=cars’. Note that to
fully load this web page 11 GET requests are created.
We increase the number of parallel requests and measure
the average load time. In practice, we evaluate the aver-
age load time per request by parsing the log files of the
router proxy.
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Figure 4: Web pages loading times.

Results We show in Figure 4 the average loading time
of each web page when downloaded with different router
settings. For each web page, three bars correspond to the
loading times in the three scenarios. Delays are shown
relative to the reference value with standard router set-
tings. We observe two causes of delay: (i) the proxy at
the router and (ii) the on-the-fly modifications by the at-
tacks. The delay introduced by the proxy depends on the
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type of elements in web pages and is more significant for
web pages that have images. The delay introduced by
on-the-fly modifications depends on the type of attack.
Both, the proxy and on-the-fly modifications, cause net-
work delay and affect the download time of web pages.
The rendering time at the browser was almost constant
and did not account for the difference in loading times.

By observing the loading time for growing number of
parallel requests to Google search, we obtain that the
router can withstand about 230 parallel connections, i.e.,
GET requests. If we increase the number of connections
above 230, the router freezes. This result shows that the
scale of the attacks depends on the type of websites. In
case of a Google search, the router can modify the traffic
of more than 20 users in parallel, however the attack may
not scale well for websites like www.20min.ch that alone
generate around 180 GET requests. The router supports a
limited number of parallel connections because the proxy
(Squid) uses a fair amount of memory. Out of the 32Mb
available, only 6MB of memory are left once the router
is running OpenWRT, a PHP client, Squid and the at-
tacks implementations. Squid allocates memory for each
parallel connection and when the available memory goes
below 1MB, the router Freezes. A simple solution to im-
prove the scalability of the attack consists in adding some
memory to the router through the USB ports and allocate
Squid’s swap memory to it.

5 Countermeasures

The attacks described in this paper exploit vulnerabili-
ties of the ad serving system in the communications: (i)
between users and web servers and (ii) between users
and ad servers. To protect against these attacks, we
must guarantee the authenticity and integrity of both web
pages and advertisements. To do so, communicating par-
ties must derive security associations (SAs), i.e., estab-
lish shared security information between them to support
secure communication. Note that confidentiality is not
required to thwart the considered attacks.

In the following, we first explain the limitations of tra-
ditional approaches to derive SAs and then describe a
new collaborative solution in Section 5.2.

5.1 Traditional Approaches
There are well-known protocols to establish SAs at dif-
ferent levels of the IP stack, such as Internet Proto-
col Security (IPSec) [22] or Transport Layer Security
(TLS) [30].
IPSec The Internet Protocol Security (IPSec) protocol
secures communications between users and IPSec
servers at the network layer. IPSec is typically used by
Virtual Private Networks (VPN), not web servers. Thus,

IPSec does not provide end-to-end security between a
user and a website, because an adversary may be located
between IPSec servers and a website.

TLS The Transport Layer Security (TLS) protocol se-
cures end-to-end communication at the transport layer.
The secure version of HTTP, i.e., HTTPS, relies on TLS
to secure sensitive browsing data. HTTPS is thus a
straightforward solution to secure the ad serving system.

However, there are two problems with the large scale
deployment of HTTPS: first, authentication issues when
deploying HTTPS in practice, and second, HTTPS intro-
duces a significant overhead.

Authentication Problem The TLS authentication pro-
cedure supposes that web servers prove their identity us-
ing a public/private key pair and a corresponding digital
certificate. As there is no initial trust between a client and
a server, independent trusted third parties (TTPs) verify
the identity of servers and issue signed certificates prov-
ing the ownership of a given public key by a server. We
refer to a TTP that issues certificates (e.g., X.509 cer-
tificates) as a Certification Authority (CA). The certifi-
cate of each CA (i.e., a root certificate) is preloaded into
web browsers by software vendors. Users can then ver-
ify transparently the validity of servers’ certificates using
trust chains.

Previous work exposed several issues with such au-
thentication procedures [30, 31]. For example, malicious
web servers can downgrade security parameters during
the connection establishment [30] or governments can
force local CAs to issue bad certificates [31]. In these
scenarios, authentication fails and data integrity is not
guaranteed.

The most prevalent authentication issue with HTTPS
is that most websites cannot afford certificates signed by
a trusted CA, and prefer instead to provide their own un-
trusted certificates. Certificates signed by CAs tend to be
used mostly by large and profitable websites. Other web-
sites favor the use of self-signed certificates: a web server
signs its own certificate with its private key. Thus, users
must trust websites directly. A number of surveys on
users’ browsing habits [23] show that the vast majority
of users do not understand the concept and accept self-
signed certificates without proper verification. If users
accept invalid self-signed certificates, they may estab-
lish SAs with malicious websitess and thus be victims
of man-in-the-middle attacks.

To help users properly verify self-signed certificates,
the authors of [36] suggest that network notaries collect
server’s public keys over time in a public database. When
a client receives a self-signed certificate and its corre-
sponding public key from a server, it contacts the notaries
to obtain previous public keys used by that server. This
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additional information helps users make better security
decisions. However, this solution has several drawbacks.
First, any independent entity can propose to install and
maintain a notary server. Hence, the solution may fail
to protect against MitM attacks as some notaries may be
malicious [36]. Second, it takes some time to build trust-
worthy records before the service becomes reliable.

Overhead HTTPS introduces a significant communi-
cation and computation overhead. The major part of the
overhead is due to the initial key exchange [19]. In the
case of web browsing, sessions tend to be short and fre-
quent. Hence, the initial key exchange overhead rela-
tive to the session duration will be high. As investi-
gated in [19, 29], the throughput of an HTTPS server can
be significantly lower than the throughput of an HTTP
server. Because confidentiality is not required, we may
configure HTTPS to only verify data integrity and au-
thentication. However, the initial key exchange is still
required and the overhead remains significant.

5.2 Collaborative Approach to
Securing Online Advertising

We propose a novel solution where the WS hosting ad-
vertisements collaborate with the AS to build a secure ad
serving system. We design a collaborative secure proto-
col for ad serving that leverages on: (i) the existing trust
in ASs (based on their valid certificates), (ii) the business
relationships between ASs and associated WSs that host
ASs’ ads and (iii) economic incentives of ad networks to
protect their ad revenue.

We assume that ASs own valid certificates as they typ-
ically belong to major companies that already own valid
certificates. In contrast, WSs may not always have the
means to acquire a certificate from a CA. The game the-
oretic analysis in [34] shows that when facing the threats
of MitM attacks discussed in Section 3, the AS has eco-
nomic incentives to help affiliated WSs secure their com-
munications. Hence, we suggest to leverage on ASs to
help users properly authenticate WSs and protect the in-
tegrity of their communications. The collaboration ben-
efits both entities: first, WSs do not have to acquire valid
certificates and can rely on the AS’s valid certificates;
second, the secure communications between WSs and
users guarantee that ASs protect their ad revenue from
MitM attacks. By protecting their own interests, ad net-
works and websites indirectly provide secure communi-
cations to web users, giving incentives to users to adopt
this mechanism as well.

We propose two versions of a collaborative secure pro-
tocol, that we call Data Integrity in Advertising Services
Protocol (DIASP).

P1 P2 Pi Pk‐1 Pk

k ll i d k

P H(L )P P P

Lk Lk‐1 L2 L1

k equally‐sized packets

Pk
END H(Lk) H(L3) H(L2) signed

H(L1)Pk‐1 P2 P1

Figure 5: Authenticated hash-chain generation.

5.2.1 DIASP Primitive

There are multiple primitives to protect the authenticity
and integrity of communications. A computationally ef-
ficient method consists in computing the hash of a web
page and signing it. However, the browser cannot start
rendering the page before downloading the entire con-
tent and verifying the signature. In this work, we use
light-weight authenticated hash-chains [20] that enable
the real-time rendering of web pages. In [24] hash-chains
are used to solve the impossibility of proxy caching web
pages with HTTPS.

Authenticated hash-chains Authenticated hash-
chains (AHs) protect the integrity of a message m by
computing the hash of many subparts of the message
rather than the hash of the entire message at once. First,
the content of a web page is split into k equally sized
packets, P1, ..., Pk. An END tag is concatenated to the
last packet Pk in order to mark the end of the hash-chain,
Lk = Pk||END. Second, consider a one-way Hash
function H (e.g., SHA-1). Each packet is concatenated
with the hash of n previous packets as shown in Figure 5.
In this example, we consider n = 1 to minimize the size
of packets. The WS computes H(Lk) and concatenates
it with the previous packet Lk−1 = Pk−1||H(Lk).
Hence, if the integrity of Pk−1 is properly verified, the
integrity of Pk is verified as well. The WS can thus
repeat this operation to create a hash-chain. Finally, the
integrity of the entire chain depends on the integrity
of the first packet. This is typically guaranteed by
signing the first packet. In this way, a WS can compute
AH(m) and guarantee the integrity of a message m. To
verify the integrity of a message, the user only needs
to verify the signature of the first packet (H(L1)). The
following packets are verified based on the hash in the
corresponding previous packet.

5.2.2 DIASP v.1

DIASP v.1 creates two hash-chains: one for the web page
content AH(p) and one for the ads AH(a). In both
hash-chains, the first element (i.e., H(L1) and H(L′1))
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Figure 6: Communication schema of DIASP v.1.

is signed with the AS’s private key.
We detail the execution of DIASP v.1 in Figure 6 and

summarize it as follows:

1. U →WS: GET URLWS

2. WS: Computes AH(p)

3. WS
s−→ AS: H(L1)

4. AS
s−→WS: σAS(H(L1)))

5. WS → U : p, AH(p) with σAS(H(L1))
6. U → AS: GET URLAS , WSID

7. AS: Computes AH(a), σAS(H(L′
1))

8. AS → U : a, AH(a) with σAS(H(L′
1))

where s−→ means that communications are over HTTPS
and σAS(m) is the digital signature of a message m by
the AS. The WS authenticates the AS based on AS’s
valid certificate and the AS can authenticate the WS
based on some secret information that is established dur-
ing the registration process of the WS to host AS’s ads.
Users can check the integrity of the first packet and start
to dynamically render a web page as soon as they re-
ceive packets from the hash-chain. This solution also al-
lows users to independently check the integrity of the two
communication channels.

However, DIASP v.1 has two main drawbacks: (i) it
requires two signatures per web page hosting ads and
thus creates additional computation overhead; (ii) it is in-
compatible with the current implementation of browsers
as it uses cross domain signatures, i.e., the hash-chain
AH(p) is downloaded from URLWS but is signed by
the AS. The certificate of the AS corresponds to a differ-
ent domain name than the WS. Hence, browsers might
warn users about the domain mismatch. A potential so-
lution (requiring changes in browsers’ implementation)
is to help browsers differentiate between valid (WSs and
ASs using DIASP v.1) and invalid (MitM attacks) mis-
matches. To do so, web browsers could maintain a white
list of valid WS-AS associations.

DIASP v.2DIASP v.2
Lk L1 L’k L’1

H(L1)Pk
END H(L2)

P1 P’k
END H(L’2)
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H(L’ )
H(L1)
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signed
H(L’1)

ClientClient

Figure 7: Communication schema of DIASP v.2.

5.2.3 DIASP v.2

We propose a second version of DIASP that bypasses the
drawbacks of DIASP v.1. DIASP v.2 concatenates the
first packet of hash-chains AH(p) and AH(a) to create
a single element H(L1)||H(L′1). The AS only needs to
sign this element to authenticate both hash-chains. We
detail DIASP v.2 in Figure 7 and summarize it as follows:

1. U →WS: GET URLWS

2. WS: Computes AH(p)

3. WS
s−→ AS: H(L1)

4. WS → U : p, AH(p)
5. U → AS: GET URLAS , WSID

6. AS: Computes AH(a), σAS(H(L1)||H(L′
1))

7. AS → U : a, AH(a) with σAS(H(L1)||H(L′
1))

DIASP v.2 solves the problem of domain mismatch
and only requires one digital signature per web page
hosting ads. Still, users cannot verify the integrity of a
web page before receiving the signed elements from the
AS (step 7). This may add some delay in rendering web
pages. We note that browsers can make several requests
in parallel and that WS can reduce this potential latency
by placing the links to ASs at the beginning of the HTML
page. In addition, measurements from [27] indicate that
it is the number and size of ad objects that increase the
download time of a web page and not the latency of com-
munications.

5.3 Discussion
We discuss the implementation of DIASP in practice.

Type of the Web content There are three main types
of content on the Web: static, dynamic and personalized
content.

In the case of static content, the web server computes
the hash-chain (step 2) and communicates with the AS
(step 3) only once and then the same hash-chain can be
served to all visitors of the website.
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In the case of dynamic content (e.g., blog, newspa-
pers), the web server computes the hash-chain (step 2)
and communicates with the AS (step 3) each time the
page is updated with new content. Between the updates,
the WS can serve the same hash-chain to all visitors.

In the case of personalized content (e.g., Facebook),
the WS serves different pages to different users, an ad-
ditional mechanism is needed to link hash-chains to cor-
responding pages and visitors. To do so, the WS assigns
a randomly chosen unique number ID to each user re-
quest (step 1). Since the WS serves a personalized page
p (consequently, a different hash-chain) to each user the
WS has to communicate to the AS (step 3) the ID to-
gether with the first element (i.e., H(L1)) of the asso-
ciated hash-chain, such that the AS can link the hash-
chains it signs with the corresponding users’ requests for
ads. The AS keeps all σAS(H(L1), H(L′1)) associated
with IDs until it receives a request from a user (step 5)
with an ID that matches one of the records. After step 7,
the AS deletes the record with this ID. To protect user
privacy, IDs are changed at every interaction with WS
and AS.

Usability of DIASP DIASP may affect user browsing
experience when an integrity check fails (i.e., ads or web
pages have been altered). We envision two possible poli-
cies: first, the elements that failed the integrity check are
not displayed; second, users are warned by browsers and
make a decision.

If ads are not displayed, the ad network loses ad rev-
enue anyhow since the ads have been tampered with, but
the adversary modifying the traffic also does not earn any
revenue. This diminishes the adversary’s incentives to
mount MitM attacks. In addition, this protects ASs’ and
WSs’ reputation from the injection of inappropriate con-
tent and users from the injection of malicious ads.

If users are prompted, users have to interpret the warn-
ing messages before making a decision. DIASP could
even issue warnings specifying whether the content or
ads has been tampered with. It is out of the scope of this
work to determine which policy should be favored.

Bootstrapping DIASP DIASP cannot be used with all
HTTP communications as not all websites host ads and
have an association with an AS with a valid certificate.
Hence, browsers must be able to determine which pro-
tocol to use (DIASP or HTTP) to communicate with a
given website.

One approach consists in maintaining a white list of
all websites that use DIASP. Hence, before communicat-
ing with a website, a browser first checks if the website is
white listed and requires to run DIASP. Such white lists
can be maintained by leveraging on existing databases
that provide black lists of potential phishing websites.

Such databases are updated by major companies (e.g.,
Google or Yahoo) and most browsers are already config-
ured to check them before communicating with websites.

Another approach is to specify in DNS records the use
of DIASP. For instance, DNS replies would specify in
addition to the IP address of a website whether it uses
DIASP.

5.4 Evaluation of DIASP
In this section, we compare the performance of DIASP
with HTTPS in terms of web page loading time. We
set up a localhost server with both HTTP and HTTPS
protocols and use the Apache benchmark software [5]
to measure loading times. We estimate the performance
of HTTPS by measuring the loading time of web pages
using HTTPS (without encryption). Similarly, we esti-
mate the performance of DIASP by measuring the load-
ing time of the same web pages using HTTP and adding
the computation times of hash and signature functions
(Table 2) found in [7].

According to the measurements of [27], the average
size of a web page with ads in the .com domain is 301KB,
out of which 51KB are for ads. Thus, we estimate the
loading time of a 250KB content from a web server and
51KB of ads from an ad server.

Table 2: Performance of different functions.
Hash functions Signature functions

Algorithm MB/s Algorithm ms/operation

SHA-1 160 RSA 1024 Signature 1.48
SHA-256 116 RSA 1024 Verification 0.07
SHA-512 103 RSA 2048 Signature 6.05

RSA 2048 Verification 0.16

We load the same web page 1000 times and obtain
that the average loading time of the content (respectively,
ads) with HTTPS is 46.19ms (40.54ms) and only 0.72ms
(0.34ms) with HTTP. As the transmission time is equal
with both HTTPS and HTTP (i.e., we run the server lo-
cally), the difference is caused by the HTTPS handshake
which is expensive in terms of computation and commu-
nication overhead. We estimate the total loading times
using a conservative approach by assuming that commu-
nications between WS and AS are sequential (whereas in
practice, web browsers can make parallel requests). The
total loading time of a web page with ads over HTTPS
is: 46.19ms +40.54ms=86.73ms.

The total loading time with DIASP v.1 is: p+AH(p)+
σ + V (σ) + V (AH(p)) + a + AH(a) + σ + V (σ) +
V (AH(a)) == (0.72 + 2.15 + 1.48 + 0.07 + 2.15 +
0.34 + 0.44 + 1.48 + 0.07 + 0.44)ms = 9.34ms where
V () corresponds to the verification of a signature or a
hash-chain. The total loading time with DIASP v.2 is:
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p+AH(p) + a+AH(a) + σ + V (σ) + V (AH(p)) +
V (AH(a)) = 7.79ms.

The results show that DIASP v.1 is ≈ 9 times faster
than HTTPS and DIASP v.2 is ≈ 11 times faster. Note
that we do not consider the use of HTTPS accelerator. In
the case of larger file sizes (> 301KB), the overhead in-
troduced by HTTPS handshake becomes less significant.
Still, based on preliminary estimates DIASP reduces the
loading time of web pages compared to HTTPS.

6 Conclusion

With the attacks presented in this paper, we have shown
the tremendous power of the access network and the im-
pact it can have on the ad serving system. This impact
can translate into revenue loss for the advertisers, ANs
and websites and into lower security for the users. These
threats create incentives for all the entities to deploy the
proposed collaborative scheme to secure the ad serving
system, and protect the revenues and Web browsing. We
have shown that providing authentication and data in-
tegrity is necessary, for the security of both, the content
of web pages and the ads themselves. Thus, ad serving
would not only finance the Internet but would also fuel
the deployment of online security.
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8 Availability

The code of the implemented attacks is available at
http://icapeople.epfl.ch/freudiger/alterads/
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