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Abstract

Workstations and PCs typically are rich in re-
sources, in contrast to palmtop devices, which are
generally quite limited. This disparity offers chal-
lenges to integrating these heterogeneous devices
into a single distributed system. Services must be
available to each device, but it may be necessary to
modify certain services if the connected device does
not have the desired resources.

A key component of many distributed systems is
remote access to data. Traditional distributed file
systems are typically rather static and are not able
to adapt to the current available resources of the
devices involved. Data files are treated as contin-
uous streams of bytes and the interfaces to access
them are designed for unstructured data; they sim-
ply transfer buffers of contiguous data. Providing
modality and adapting content using these inter-
faces proves difficult.

In this paper, we present an adaptive data object
service for pervasive computing environments using
distributed objects. Data is manipulated through
an object-oriented interface based on containers and
iterators. The interface is also used to model data
operations, conversions, and proxies. The system is
aware of its environment and can instantiate objects
in the proper locations to optimize performance.

*This research is supported by a grant from the National
Science Foundation, NSF 98-70736.

1 Introduction

The recent popularity of personal digital assistants
(PDAs) and Web-enabled cell phones has brought
mobile handheld computing into the mainstream.
Users are now able to perform many tasks that were
once restricted to larger desktop systems. Although
these devices will almost certainly always possess
less computing power than their desktop counter-
parts, they will eventually offer universal access to
the network. Ome of the key challenges is the in-
tegration of these handheld devices into larger dis-
tributed systems. The handheld devices should be-
come an extension of the system that they can inter-
act with in the same way that a stationary machine
can.

The increasing diversity of devices accessing dis-
tributed systems makes traditional data distribu-
tion mechanisms inappropriate, since differing de-
vice types may require the service to behave in dif-
ferent ways. For example, when displaying video on
a small device, it may be better to decode MPEG
on a nearby host and send raw pixmaps to the hand-
held used for output. Systems that are not able to
adapt to the current environment are therefore not
best suited for heterogeneous distributed systems.

An active area of research involving highly het-
erogeneous environments has been that of perva-
sive computing [Wei93, Abo99, MIT, Hew, Mic|.
These environments consist of intelligent rooms or
areas, containing appliances (whiteboard, video pro-



jectors, etc), powerful stationary computers, and
mobile wireless handheld devices. The large col-
lection of devices, resources, and peripherals must
be coordinated and access to them must be made
simple. Such coordination may be viewed as be-
ing analogous to the role of a traditional operating
system. However, the heterogeneity, mobility, and
sheer number of devices makes the system vastly
more complex [RC00]. Applications may have the
choice of a number of input devices, such as mouse,
pen, or finger; output devices, such as monitor, PDA
screen, wall-mounted display, or speakers. An in-
frastructure for such a space must be able to locate
the most appropriate device, detect when new de-
vices are spontaneously added to the system, and
adapt content when data formats are not compat-
ible with output devices. For example, if a user
wishes to view an on-going presentation on a small
handheld, images of the slides could be sent to the
roaming user, but in a format more appropriate for
the device, such as a scaled down image to fit the
small screen size. Moreover, more extreme transfor-
mations may be performed, such as converting text
data to audio. Applications should not be both-
ered with the complexities of such conversions; they
should gain access to data in a particular format by
simply opening the data source as the specific de-
sired type. The system should automatically adapt
content to the desired format and place the conver-
sion modules in locations to maximize efficiency.

To address the foregoing issues, we have built a
general data distribution service targeted at het-
erogeneous environments, that incorporates auto-
matic content adaptation, location awareness, and
knowledge of environment. The design of the ser-
vice is based on the concept of containers and
iterators exhibited in the Standard Template Li-
brary (STL) [SL94, MS96]; containers provide data
manipulation operations, parsing mechanisms, and
content transformations for structured data and
convenient access is provided via iterators. Con-
tainers may be instantiated in the most appropriate
locations, and access to these components may be
transfered among nodes, enabling containers placed
on various nodes to communicate. The application
programming interface uses C++ templates and
generic programming [Mus89] concepts to hide the
communication infrastructure and maximize code
reuse. In the current implementation, we have used
CORBA as the underlying middleware layer. How-
ever, we are not restricted to using CORBA and
are planning on porting the system to a light-weight
communication core.

The remainder of this paper is presented as follows:
section 2 gives an overview of our data service, in-
cluding a brief description of the larger system the
service is a part of. Section 3 describes the system
layer of the service and the user layer containers and
iterators, including examples. Section 4 presents
our continuing work. Sections 5 and 6 present re-
lated work and concluding remarks, respectively.

2 The Data Object Service

The Data Object Service (DOS) is the data deliv-
ery mechanism for Gaia, an operating system for
physical spaces we are currently developing. In the
following sections, we describe Gaia and the design
of the data service.

2.1 Overview of Gaia

Gaia is an infrastructure that exports and coordi-
nates the resources contained in a physical space,
thereby defining a generic computational environ-
ment [Gai00]. Gaia converts physical spaces and
the ubiquitous computing devices they contain into
a programmable computing system. Gaia is anal-
ogous to traditional computing systems; just as a
computer is viewed as one object, composed of in-
put/output devices, resources and peripherals, so is
a physical space populated with many devices. An
operating system for such a space must be able to
coordinate the resources available in such a space.
Gaia is similar to traditional operating systems by
managing the tasks common to all applications built
for physical spaces.

Gaia provides some core services, including events,
entity presence (devices, users, and services), dis-
covery, naming, location, trading. Devices are able
to detect when they have entered new spaces and
can take advantage of the services available in the
physical location. By specifying well-defined inter-
faces to devices and services, applications may be
built in a generic way that are able to run in ar-
bitrary spaces. For example, a classroom applica-
tion may be built that uses the physical devices in
a room. When the user moves to a new classroom,
the application can use the devices present in the
new space.
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Figure 1: Servers manage their local native files and devices. The system can instantiate containers on any
node in the system and adapt content for different device types. Rounded rectangles represent container

instances. Hexagons represent template wrappers.

In addition, we are developing an application model
for pervasive computing environments that is in-
spired from the Model-View-Controller (MVC) ar-
chitecture. The MVC components are no longer re-
stricted to software entities, i.e., they may be physi-
cal entities. For example, a house may be the model,
providing data to various views of its sub-systems.
Our model introduces an adaptor that can modify
data from the model to a format the view desires.

Gaia is an extension of our previous work on the
2K operating system. 2K is a middleware operat-
ing system using CORBA [The98] as the communi-
cation mechanism and runs on top of existing plat-
forms, such as Windows NT and Solaris. It uses a
modified version of the TAO Object Request Bro-
ker (ORB) [SC99], called dynamicTAO [KRL*00],
that offers dynamic configuration of the ORB inter-

nal engine in order to adapt to the dynamic needs
of users.

Our initial implementation of DOS uses CORBA
to leverage some of the standard CORBA services.
In Gaia, we are applying these services in the con-
text of physical spaces. Two services that are used
heavily are the Name Service and the Trading Ser-
vice. The Name Service allows transparent access
to particular object references for applications. The
Trading Service allows applications to find objects
that possess some specific constraints. We are us-
ing these services in conjunction to provide loca-
tion specific trading services. The Event Service is
used with physical location detection systems (e.g.,
badges) to provide presence notifications of entities,
such as users and devices. In addition, events are
used to send “heartbeat” messages to the system to



determine entity liveness.

Since Gaia targets pervasive computing environ-
ments, many small devices interact with the sys-
tem. In the future, we will use a small composable
communication mechanism, called the Universal In-
teroperable Core (UIC), that can communicate via
different protocols (e.g., GIOP, SOAP) for mobile
handheld devices that users may carry [UBI0O0]. The
UIC can be composed dynamically, using only the
required components. This allows the implementa-
tion to be customized to small devices and allows
these devices to interact with services using stan-
dard protocols. In addition, devices can include
server-side functionality, allowing them to accept
events and method invocations. Since UIC is able
to communicate with standard CORBA servers, we
will be able to access the standard and custom ser-
vices from these small handheld devices.

2.2 Data Objects in Gaia

Traditional distributed file systems [HowS88,
SGK™85, Wel92] are generally designed for homo-
geneous environments and simply transfer data
to the local node. However, the heterogeneous
nature of pervasive computing environments deems
the static configurations of traditional distributed
file systems inappropriate, since some nodes (e.g.,
handhelds) may require additional support from the
infrastructure. Fixed policies may preclude some
nodes from participating in these environments. A
data access service that is dynamically configurable
offers modality for different device types.

DOS is a middleware data service that makes use
of the native operating system to manage data on
disk. However, the service offers more than sim-
ple access to file data. In general, data is no longer
transported as streams of bytes (although this mode
is supported), but as data objects. Traditional file
system interfaces (i.e., open, read, write, close) are
replaced with object-oriented abstractions: contain-
ers and iterators [GHIJV95, SL94]. These abstrac-
tions are a more suitable interface for accessing data
as objects, since iterators can return data of a cer-
tain type and can be used to traverse the objects.
Iterators provide the indirection needed to manip-
ulate different containers using a single interface.
In contrast to the standard read method for exam-
ple, which passes a buffer to be filled in, an iterator
returns references to objects whose size may be un-

known a priori to the user.

In the most basic form, containers are simply wrap-
pers for native file data or directories, but they
can also be much more interesting and useful ob-
jects. In general, containers may represent any col-
lection of data, that may be generated on-the-fly,
gathered from disparate sources, or common data
shared among distributed applications. They may
also be used to interface with devices (e.g., writing
a postscript file to a printer).

Containers are constructed as CORBA objects and
applications can communicate with them through
ORBs. CORBA provides infrastructure for trans-
parent and platform-independent access to remote
(or local) objects. Objects can be instantiated on
any host and references to these objects can be
passed around in a simple manner. This facilitates
the creation of containers in various locations that
may easily be connected together, as illustrated in
Fig. 1. Dynamic placement of objects (and their
functionality) is critical for heterogeneous environ-
ments to support all device capabilities. Different
containers hold different kinds of data and CORBA
handles the job of marshaling/unmarshaling and
transporting the data. DOS assumes some of the
burden generally placed on the programmer by pars-
ing native file contents into indexed components
that applications can manipulate more easily.

Some containers may be instantiated on prozy
servers. These servers generally do not provide
clients access to disk, but rather to their CPU and
memory. For example, a proxy [Sha86] may be used
to perform some expensive parsing or computation
that should not be performed on the node maintain-
ing the native files (as not to hinder other clients in-
teracting with that server) or on the client (it is too
weak to perform the parsing itself). The system can
configure itself by placing container objects in the
best location, based on knowledge of surrounding
devices, to optimize performance.

For example, when performing a grep on a collec-
tion of files, simply copying data as-is to a small
handheld device and searching locally may be in-
appropriate due to the severe resource limitations.
It may be better to find matches on the file server
and then transfer the resulting text to the hand-
held, as illustrated in Fig. 2. Clients can then use
the search results to retrieve only those files that
are of interest. However, the system should be con-
figurable to direct where such operations should be
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Figure 2: (a) Searching locally requires all data to
be transfered to the local node. (b) Remote search-
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carried out to provide optimal performance. Pow-
erful desktops connected with high-speed networks
should not burden the server with these operations;
they should use their own resources to complete the
task. Weak devices should instead use the server
computing power. Operations on data can be seen
as containers that wrap a primitive data format and
re-export it either as a different format or as the re-
sult of a transformation on the source.

As another example, Fig. 1 shows (on the right) a
container translating MPEG to bitmaps for stream-
ing video to a Palm Pilot device. The application
can simply retrieve objects from an MPEG con-
tainer and direct them to a display device, unaware
of the complexity of establishing proxies and trans-
lating between data formats.

3 Architectural Design

The data service consists of two layers; a low-level
system layer and a high-level user layer, as illus-
trated in Fig. 3. The lower layer has access to
CORBA object references and includes a compo-

nent to organize the storage naming hierarchy. The
upper layer provides a simple user interface. We
now describe both layers in the following sections.

Converter

Container

Manager Layout

Figure 3: Layered structure of DOS.

3.1 User Interface Layer

The top layer consists of user level containers and it-
erators that hide the CORBA mechanics and reside
in the local address space. Through a combination
of wrapper classes and C++ templates, the user is
presented with a clean and easy to use interface.
Templates are used with generic programming con-
cepts to provide a distributed generic programming
model.

3.1.1 Containers

User level containers inherit from a template
class that maintains a reference to the underlying
CORBA container and provides methods for cre-
ation and adaptation. Container subclasses provide
specialized operation for a particular container type
(e.g., setting the dimensions of a slide presentation)
and hide the existence of the template, providing a
clean interface for application developers. If no spe-
cial methods are necessary for a specific container
type, the subclass is simply a wrapper and merely
specifies the template parameter list. As shown in
Fig. 4, the parameter list consists of the container
type (C), buffer type (B), and object type (O),
which are the CORBA container, transport buffer
(a sequence of objects), and the indexed component
object types, respectively. In addition, the subclass
specifies the type of iterator to use. In this way, the
application developer never sees the existence of a
template, merely a particular container type (exam-
ples are given in section 3.2). The template glues



together the correct combination of components for
the container to work correctly. Containers gener-
ally do not need to add specialized code, so creating
a container wrapper (only specifying the parameter
types) can be done in one line of code.

Templates are used to provide compile-time poly-
morphism of CORBA container types, thereby
applying generic programming techniques to dis-
tributed objects. Different CORBA containers pro-
vide methods to get and put objects of a particu-
lar type. However, the name of the methods must
adhere to a convention (getObjects()/putObjects())
for each container. The particular object types to
be transfered are specified in the template parame-
ter list. Therefore, the template container transfers
data of a certain type when communicating with the
remote ORB.

In effect, the user level container provides a consis-
tent view of a CORBA container, although objects
of different types are specified in the IDL container
descriptions and are marshaled over the network.
The need to use the CORBA type Any to transfer
objects is removed and eliminates the need to type-
cast objects to a specific type.

3.1.2 Iterators

Tterators provide a simple interface for users to tra-
verse the structure of the data inside a container.
They maintain the current position and cache infor-
mation about their respective containers. Caching
specific information about the container locally re-
duces the need to access the remote object as often,
therefore, reducing network access and latency.

Different containers require different access meth-
ods and are associated with a specific iterator type.
Since containers create iterator instances, the user
is forced to use the correct iterator. The syntax for
obtaining an iterator is identical to the STL and
examples of its use are given below.

There are two types of iterators: Objectlterators and
Streamlterators. Objectlterators treat the contents
of a container as objects, in contrast to Streamlter-
ators, that view the contents as a stream of octets.
The latter are required to provide the traditional
view of files, as streams of bytes, efficiently. The
implementations of iterator types differ in how they
detect when the iterator is at the end of a container.

Subclasses provide specific methods for traversal.
For example, RandomQObjectlterator allows random
placement of the iterator in the container.

Iterators are useful for retrieving remote objects in-
crementally [HV99] and containers hide caching of
object groups. Although the container is a collec-
tion of items, the items need not all be loaded into
local memory at the same time, as shown in Fig. 5.
For example, when a user iterates over a collection
of objects, they do not have to be individually pulled
over from a remote server. Some number of objects
may be prefetched and cached. The local template
container plays the role of a buffer cache in stan-
dard file systems [MJ86]. If an object is requested,
but is already available, it can be retrieved out of
the cache. However, if the object is not available,
the next group of objects may be retrieved to local
memory and the current object passed to the user.
The iterator hides this caching mechanism from the
user; objects are handled as if they were all local.

The above described caching mechanism is used
if data content is parsed remotely or on a proxy.
However, if a container is resident locally, all data
is transported to the local node and parsed there.
Therefore, nodes with enough resources can cache
the entire contents of a data source.

3.2 Interface Usage

The following examples illustrate the user interface.
The first example opens a container as a stream
of bytes in read-only mode. The container is then
adapted to look like a container of text line objects.
An iterator is then created and each line is printed
to the console. Exception handling is removed for
clarity.

ByteContainer b("MyFile", FS::Read);

LineContainer 1 = b.as("LineContainer");

LineContainer::iterator i;

for (i = 1.begin(); i != l.end(); i++)
cout << *i << endl;

It may be noted that although the containers are ac-
tually different template types, assignment is han-
dled correctly. The as() method instantiates a
CORBA LineContainer adaptor container on the lo-
cal node (by default). However, the user or system
may specify that it be instantiated remotely.
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Figure 4: UML class diagram of relationship between LineContainer and RandomObjectlterator objects.
Containers may retrieve groups of data objects and cache them (not shown) to reduce the number of
network requests. C is Container Type; B is Buffer Type; O is Object Type.

Typically, the system uses the as() method to pro-
vide implicit adaptor instantiations; a container
may be opened as a particular type directly, rather
than having to first open it as a native container
type and then specifying the adaptor. Therefore,
applications can open containers in the format that
they require and any adaptation/conversion is done
automatically. This method is shown in the remain-
ing examples.

The next example illustrates how a weak device may
view a video sequence over a very slow network con-
nections. Due to the limited resources available on
such a device, it may be incapable of decoding and
displaying MPEG video. However, the sequence
may be transformed to bitmap images using a con-
verter container and then pulled by the handheld
device [HRCMO0]. The container may need to han-
dle the real-time nature of particular data sources,
for example, by dropping frames if the client cannot
keep up with the data source. It is the responsibil-
ity of the service to install the correct converter in
the proper location, transparent to the application
programmer.

BitmapViewer viewer;

BitmapContainer b("MyMPEG");

BitmapContainer::iterator i;

for (i = b.begin(); i != b.end(); i++)
viewer.display (*i);

It may be desirable to “display” data in a format
different from the source format when it is more
convenient for the user. For instance, when using
a computer with a small screen (e.g., a cellphone),
retrieved messages may be more easily heard than
read. A converter could be instantiated to present
the data in the desired format.

AudioDevice device;
AudioContainer a("MyMailbox");
AudioContainer::iterator i = a.begin();

. get user input for message number ...
i += num;
device << *i;

The next example illustrates how a Palm Pilot can
view a Microsoft PowerPoint presentation. The
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system opens the presentation file with a Power-
PointContainer (using OLE), which contains data
objects (slides) in GIF format. It then con-
verts the GIF slides to bitmap images using a
GIF2BitmapContainer. The interface that the ap-
plication manipulates is a BitmapContainer, which
the GIF2BitmapContainer implements.

BitmapViewer viewer;
BitmapContainer p("MyPresentation.ppt");
BitmapContainer::iterator i;
for (i = p.begin(); i != p.end(); i++)
. get user input for next slide ...
viewer.display (*i);

The previous examples implement different iterator
types, but are used in a similar manner. The com-
plexity of specific container and iterator creation are
transparent to the user. Also notice that the con-
tainers create iterators to handle the specific data
object types it holds.

3.3 System Layer

The system layer provides access to servers and ser-
vants via CORBA object references. A local com-
ponent caches object references and provides name
resolution support. Several types of system contain-
ers exist, which are hidden by the user level contain-
ers discussed above. The following sections describe
the different types of containers available. In ad-
dition, the mechanisms that exist for locating data
and creating components are discussed.

3.3.1 Containers

Containers are the main abstraction for represent-
ing data and provide methods for creation and dele-
tion of the data objects they hold. Concrete con-
tainers are implemented using the Gaia component
model. Each container is built as a dynamic link li-
brary (on Windows) or a shared object (on Solaris).
The component model allows the service to load,
create, and activate container components. Decou-
pling the containers from the service allows new
container types to be added to the running system
without interrupting current applications. There
are several different container types that perform
different roles in the system.

File Containers File containers enable access to
native operating system files and directories. File
containers parse data of different file types into in-
dexed components (e.g., DirectoryContainer, Mail-
Container, etc). Parsing meta-data can be cached
persistently for future container accesses, therefore
eliminating the need to determine object boundaries
each time a container is opened. This is particularly
useful for containers that do not change frequently.
Altering the contents of a container invalidates the
cache.

There are several strategies that may be used when
implementing a file container. Access mode and file
size affect which strategy is employed. For example,
if a container is accessed as read-only, the bytes on
disk will not change. If parsing meta-data is avail-
able, access to indexed components only requires



the server to seek to a component boundary (which
is included in the parse meta-data), reading in the
appropriate amount of data, and sending it to the
client.! However, if the container is accessed read-
write, the byte layout on disk will probably change.
Information regarding the insertion and deletion of
objects in the container are cached in memory and
then committed once the container is released. Al-
ternately, the entire container can be loaded into
memory (i.e., as an STL container) and insertion
and deletion of objects are performed in memory.
When releasing the container, the entire contents of
the in-memory container is written to disk. This
strategy is implemented more easily, but requires
more memory. An area of future work is determin-
ing when to use a particular strategy depending on
access mode and file size. For example, large files
should probably not be completely loaded into mem-
ory.

Some files do not contain any well-defined structure.
Such files may be represented as a stream of bytes
(ByteContainer), thereby supporting traditional file
semantics. Finally, ByteContainers can be used by
applications that want to bypass the type system of
DOS, be it for backward compatibility or due to the
lack of an appropriate container type.

Processor Containers Containers can represent
things other than standard files and directories.
Processor containers act as “files” with dynamic
content; the “file” is created on-the-fly. For exam-
ple, a GrepContainer may provide the ability to per-
form remote grep processing on files in a directory.
This allows the computation of pattern matching to
be performed at a remote location and the results
transfered to the client. This not only reduces com-
putational overhead on a weak client, but network
traffic as well.

Such remote processing may be performed on the
server or at a proxy node. Too much processing
on a server may slow down data access by other
clients [SHG98]. If performed at a proxy, the server
managing the native files acts as a traditional file
server (just serving byte streams). Resource con-
sumption is therefore split between two machines;
the proxy server is used for memory and CPU, while
the file server is used for disk access. This is man-
aged quite easily through CORBA, since placing a
component on a particular node is only a matter of

IMore than one component may be sent in one request.

directing a particular node to instantiate the object.

Converter Containers Weak devices may not
be able to render data in its original format or pro-
cess containers may require data to be in a partic-
ular formats [Wir]. Conversion of content is per-
formed via a converter container, which is used to
transcode data to a new format. Converter con-
tainers may be created on demand or automatically,
when it is determined that the original data format
is inappropriate, to provide on-the-fly transcodings.

Complex conversion may require the support of sev-
eral converter containers; therefore, converters can
be linked together. Converters can be created on
different hosts, such as the local machine, the ma-
chine maintaining the native data, or any other ma-
chine. Creating an converter inserts a component
into the flow of data and changes the container in-
terface, similar to a module in a stream [Rit84].

For example, if a converter exists that transforms
Microsoft Word documents into ASCII text format,
a grep could be performed on Word files. Since grep
requires ASCII text as input, the Word file would
be opened as an ASClIContainer, which the system
would transparently convert in order to present the
file in the format that grep expects.

3.3.2 System Core

The system core consists of a component that main-
tains a cache of references to machines exporting
storage and provides name resolution facilities. The
core includes a prefix table mechanism® [WOS6]
and, when needed, attempts to make connections to
available remote data servers or proxy servers listed
in the prefix table. Each remote data server man-
ages the data content on their respective machines
and is responsible for creating CORBA container
objects on that host. A server may be started on
the local node (if resources are available) so that
the local disk may be accessed (if available) and
containers can be created locally.® The interface to
access local and remote objects is identical, so con-
tacting any server is merely a matter of getting an

2Names are paths. Path prefixes, or “mount points”, are
translated to object references.

3Mobile handheld devices would probably not launch the
local server and would rely on remote servers to instantiate
all containers.



object reference to the correct server. This man-
agement component is a C++ class rather than a
CORBA object, since it does not need to be ac-
cessed remotely.

The local view of the storage layout (namespace)
is constructed through the use of the prefix tables.
The prefix tables are used for name resolution and
to locate storage. When a new file, directory, or
device is accessed, the local container name in the
hierarchy is translated to the native name and the
manager finds the correct server hosting the con-
tent. Requests are then directed towards manager
components (see section 3.3.4), which are responsi-
ble for the creation/destruction of various types of
containers.

3.3.3 Layout Manager

The Layout Manager stores the prefix tables that
allows machines and devices to export all or a por-
tion of their storage. This manager is implemented
as a service and may provide private local storage
for a group or a physical space. For example, there
may be a manager running in each space. When a
user with a device enters a space, the device may
obtain the storage descriptions of the space to build
the local storage namespace. Another, more inter-
esting, possibility is that the mobile device exports
some of its storage. Consider a room that contains a
projector and presentation software. The mobile de-
vice of the user may contain the actual presentation.
When the user enters the room, the device contacts
the Layout Manager and informs it of which part of
its storage it wishes to export and the room then
adds this storage to its namespace. The user may
then navigate with the presentation software, which
resides in the room, to the directory containing the
presentation of the user, residing on the mobile. In
such a scenario, there is no need to manually trans-
fer files; the space automatically detects the exis-
tence of a new storage device and incorporates it.
Hence, the namespace (i.e., what storage the room
is aware of) can change dynamically as new ma-
chines and devices enter and leave physical spaces.

3.3.4 Container Manager

Access to each data source is initiated via a Con-
tainer Manager. These managers act as factories
for container creation and are the main entry point

to gaining access to object references. Once a man-
ager has successfully created an association between
a container and a native file, processor, or converter
container, a reference to the container is returned.

Container Managers also assist in data content
adaptation/conversion, as described above, by find-
ing an appropriate converter and returning a new
interface.* Conversion may be done automatically
by the manager when a request to open a container
type does not match the underlying data source
type. It may also be performed after a container
has already been opened. This procedure is illus-
trated in Fig. 6. In order to adapt a container in-
terface, a container object reference is transfered
to the manager performing the adaption via the
adaptinterface() method (Fig. 6-a). The manager
determines the type of the container and examines
a graph to see if a possible converter exists between
the container type that was passed and the desired
target container type. If a suitable converter con-
tainer is found, a concrete instance is created on
that node (each container provides a static create()
method to generate an instance of itself on behalf of
the Container Manager factory), and the new con-
verter container is given the original object refer-
ence. The converter uses this object reference as its
data source and knows the format of data that the
source provides. Therefore, the converter receives
objects of one type and sends objects of another
type. The object reference of the newly created con-
verter is then returned to the client, which can use
it to get and put objects of the new type the adap-
tor supports (Fig. 6-b). Hence, containers can be
linked together and the data can change as if flows
through the links. Since these converters can be
placed on various nodes, they may act as proxies
for weak clients.

3.3.5 Container Descriptions

In order for containers to be linked together to pro-
vide the proper conversion, a description of the con-
tainers must be available. We describe containers
using XML. Each description specifies the name of
the container component (i.e., the name of the li-
brary that must be loaded that contains the com-
ponent), type of the container (file, processor, or
converter), input data object type, output data ob-
ject type, and an optional file type (expressed as

4The new interface has the same method names, but han-
dles different data object types.
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Figure 6: Container Managers enable adaptation of container interfaces.

a file extension) that the container is associated
with. When a Container Manager first starts up
(or when a new container type is added to the sys-
tem), it reads the XML descriptions and creates a
graph based on the input/output types. This graph
is used to determine which containers need to be in-
stantiated and in what order to perform a particular
conversion.

4 Continuing Work

Our current implementation is based on the
CORBA standard. We will port our system to the
UIC composable communication core to provide a
light-weight implementation that can be used on
small devices, such as Palm Pilot. In addition, the
UIC can be composed to provide server-side func-
tionality. We will develop a small server-side im-
plementation that will allow a mobile device to au-
tomatically be added to the storage namespace of
a physical space once it is detected by the space.
This will allow scenarios, such as the one described
in section 3.3.3, to be realized.

Another issue of future work is deciding the best lo-
cation to instantiate containers (i.e., where to place
proxy containers). We will use the 2K resource
manager [Yam00] for load balancing and to deter-
mine if a costly operation should be performed on a
proxy node. Our service contains the mechanisms to
place containers on various nodes, but this decision
engine must be added.

Currently, client applications must pull objects.
However, there are many situations where data
should be pushed out to a client. For example, if

a group of users are engaged in a discussion us-
ing a whiteboard, remote users may wish to see the
schematics on the board. These updates to the con-
tents of the board should be pushed out to remote
users so that they can view new drawings. We will
be adding push technology to our system to facil-
itate such scenarios by registering callbacks with
containers. Real-time data may be streamed us-
ing RTP packets. We are building mechanisms to
connect containers via streams, that will treat RTP
packets as our data objects.

5 Related Work

Our work has a resemblance to file systems in
some respects. Some previous systems have treated
data as groups of data, rather that contiguous
bytes of of unstructured storage. Semantic file sys-
tems [GJSJ91] index data when files and directories
are created and updated. They allow extraction of
attributes using file-type transducers. Such a sys-
tem provides the user with alternate views of data
and a query mechanism for finding information. The
Choices file system [Mad92] defines a framework for
building different file system types. Data on sec-
ondary storage is represented as containers and is
parsed and indexed depending on file type. In ad-
dition, container contents can be viewed in different
ways. However, the system is not distributed and
does not perform adaptation and conversions. A re-
placement for standard file system organization has
been proposed that logically treats files as nested
boxes [BA99]. Remote copy operations and con-
verters are incorporated into the design.

The effects of mobile code were evaluated on a dis-



tributed file service [SHG98]. The cost of perform-
ing remote file operations versus increase in server
load was measured. It was found that moving op-
erations to the file server (i.e., agrep) is typically
advantageous when client CPU power is below that
of the server and network latencies are high. How-
ever, excessive computational load on the server can
reduce throughput for clients simply requesting byte
streams. Our service can be configured to perform
such computations on a remote node when appro-
priate.

Our API borrows concepts from the Standard Tem-
plate Library (STL) [SL94, Gla97], which defines
objects for organizing collections of data. It also
defines generic iterator objects, similar to the C++
stream interface [Str98], to access the data of un-
derlying data collections. Iterators form an abstract
interface to a number of different collection types.
The collections are typically located in the local ad-
dress space, requiring the local node to parse data
into components for insertion into the collection.
The Java stream package, (java.io) [Sun], defines
basic streams that may be adapted to add specific
functionality. However, such adaptors may only be
applied locally.

Several pervasive computing projects have investi-
gated the problem of information access and shar-
ing in heterogeneous environments. IBM’s TSpaces
enhances the concept of a Tuplespace by adding
consideration for heterogeneity of devices, scalabil-
ity, and persistence [WMLF98]. TSpaces allow dis-
tributed applications to share information in a de-
coupled manner and allows a high degree of interop-
erability, via tuples. Their implementation includes
support for access control, event notification, and
efficient retrieval of information. In addition, new
operators may be dynamically added to the server,
which may be used immediately. This is similar to
our design of allowing new container types to be
spontaneously added to the system. The TSpaces
project resembles a database system, where our sys-
tem is more focused on adaptation of content. How-
ever, we could create a container type that was
specifically tailored for tuples, which could be used
as a shared data among applications.

The Infospheres project at Caltech is constructing
an infrastructure for organizing task forces [Cha96].
Their goal is to build a system that allows highly
dynamic groups to be rapidly assembled and share
information. Other concerns are how to scale to
billions of objects, restricting access to objects to

authorized personnel, dealing with message delays
over networks that may scale globally, and manag-
ing resources by “freezing” and “thawing” objects
when needed. This research is more focused on or-
ganizing dynamic groups of people.

Jini technology enables heterogeneous devices
equipped with a Java virtual machine to discover
services in physical spaces [Wal]. Devices may reg-
ister themselves with the Jini lookup service. Once
registered, other devices may discover them and im-
mediately use their services. Using the code mobil-
ity of Java, custom user interfaces or application
may be sent to client devices to allow interaction
with services or resources. Jini technology main fo-
cus is to allow devices to discover and interact with
each other. Our system is more concerned with the
delivery of data and adaptive content, rather than
particular services.

The Document Object Model (DOM) is an object-
oriented model to represent documents as a tree of
nodes [CBNW]. Interfaces are available to traverse
and manipulate the tree to gain access to structured
data. The DOM interfaces are typically used as
a result of parsing XML documents. Such docu-
ments can encompass an array of object types. We
were more concerned with groups of similar objects,
which simplifies our user interface. We could, how-
ever, create a container that resembles the function-
ality of DOM.

The work most similar to ours is that of the Ninja
project from UC Berkeley [GWvB™00]. The Ninja
architecture defines four main components: bases,
units, active proxies, and paths. Bases are mani-
fested as a cluster of workstations that provide scal-
ability, fault tolerance, and concurrency. Units com-
prise the myriad of devices that may be connected
to the infrastructure. The active proxies provide
adaptation of content (similar to our containers),
and are the result of previous research in data dis-
tillation using the TACC [Fox] model to perform on-
the-fly data transformations [FGBA96]. Transcod-
ing data formats was found to greatly increase the
performance of certain applications [FGG198]. The
last component, paths, constructs flows of data that
may be transformed while passing through different
components, using their active proxies. These are
similar to our channels. Our methodology is slightly
different, in that we have leveraged the features of
CORBA and its services and approach the problem
from an operating system point of view, where the
Ninja project takes a Java-centric Internet-service



approach. We have also focused on the user inter-
face, to allow simple data access and ease applica-
tion development.

6 Conclusions

DOS provides the data transfer mechanism in Gaia,
an operating system for physical spaces. DOS is
able to alter behavior based on knowledge of com-
puting device characteristics and location. Data is
represented by containers and access is gained using
iterators. Modeling files and directories as contain-
ers unifies the interface for data distribution in our
system; the interface is also used to model data op-
erations, conversions, and proxies. Containers may
be connected together as modules that can act on
data passing through them. The system is aware
of its environment and has the mechanisms to in-
stantiate objects in the proper locations to optimize
performance and provide load balancing.

We have hidden the details of CORBA from the
developer by using C+4 templates and wrapper
classes and have applied generic programming con-
cepts to distributed objects. Objects of a particular
type are marshaled over the network and typecast-
ing becomes unnecessary. User-level containers and
iterators are defined as template classes that com-
bine the proper components together to allow type-
safe remote access to objects. Templates have made
the construction of user-level containers trivial.

DOS is a dynamic flexible system, in contrast to
typical distributed file systems, that are designed for
a particular operating environment. The dynamic
nature of our data service makes it well-suited for
heterogeneous environments, prevalent in pervasive
computing.
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8 Availability

Resources for DOS and Gaia are available at:

http://choices.cs.uiuc.edu/gaia
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