
USENIX Association

Proceedings of the
6th USENIX Conference on Object-Oriented

Technologies and Systems
(COOTS '01)

San Antonio, Texas, USA
January 29 - February 2, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

TORBA: Trading Contracts for CORBA

Rapha�el Marvie, Philippe Merle, Jean-Marc Geib, Sylvain Leblanc

Laboratoire d'Informatique Fondamentale de Lille

UPRESA 8022 CNRS

Bât. M3 { UFR d'I.E.E.A.

59655 Villeneuve d'Ascq { France

fmarvie,merle,geib,leblancg@li
.fr

Abstract

Trading is a key function in the context of dis-
tributed applications: It allows runtime discover-
ing of available resources. In order to standard-
ize this function, the Open Distributed Processing
(ODP) and Object Management Group (OMG) have
speci�ed a trading service for CORBA objects: The
CosTrading. This speci�cation has two main draw-
backs: First, this service is complex to use from ap-
plications and second, it does not o�er type check-
ing of trading requests at compilation time. Both are
discussed in this paper. The main goal of our Trader
Oriented Request Broker Architecture (TORBA) is
to provide a trading framework and its associated
tools, which tend to o�er typed trading operations
that are simple to use from applications and checked
at compilation time. In that, we de�ne the concept
of Trading Contracts, written with the TORBA
De�nition Language (TDL). Such contracts are then
compiled to generate trading proxies o�ering simple-
to-use interfaces. These interfaces completely hide
the complexity of the ODP/OMG CosTrading APIs.
In the meantime, TDL contracts could be dynami-
cally used through a generic graphical console ex-
ploiting a contract repository. The example used in
this paper, clearly states the advantages brought by
the TDL trading contracts: type checking at compi-
lation time, simple to use, and providing a powerful
framework for CORBA object trading.

1 Introduction

Nowadays, building, deploying, and running dis-
tributed applications rely on a set of ser-

vices/functions o�ered by standard middleware like
the Common Object Request Broker Architecture

[19] (CORBA) of the Object Management Group
(OMG), the Distributed Component Object Model

[8] (DCOM) of Microsoft, and more recently the
Java Remote Method Invocation [24] (RMI) of Sun
Microsystems. The main functions of such mid-
dleware solutions are synchronous communication
using operation invocation, asynchronous commu-
nication through message or event passing, trans-
action monitors, security, persistence, and resource
trading. This paper proposes an innovative frame-
work named Trader Oriented Request Broker Archi-
tecture (TORBA) to trade distributed objects over
CORBA.

A middleware trading function tends to provide
a means to discover resources available in a dis-
tributed system, in order to dynamically intercon-
nect at runtime the various components of an appli-
cation. For example, it allows a client to �nd back
its associated server. Such a search may be based
upon various criteria, like the physical location of
the resource (e.g. to �nd the printer service of the
third
oor), the symbolic name of the resource (e.g.
to �nd the BestPrint printer), or the characteriza-
tion of the resource using its properties (e.g. �nd a
color printer faster than ten pages per minute). The
conceptual contribution of this paper is to de�ne the
concept of trading contract in order to characterize
both the resource properties, and the search opera-
tions used by client applications.

The trading function has been studied both in
academic projects and industrial products. Some
projects have focussed on the interest of using such
a function in a large scale context in order to share
resources [16]. In 1993, the ANSA consortium has
discussed what the trading function should be [7].

More recently, Sun Microsystems has de�ned a trad-
ing function, included in the Jini environment [1].
Based on the easiness with Java to serialize objects,
this trading function allows applications to retrieve
serialized objects (like network stubs or complete
services). Other research works have focussed on
traders federations [5], performance [6], and scala-
bility [26]. In the context of object trading, the �rst
technical contribution of this paper is an innovative
approach that simpli�es and types the use of a trad-
ing function.

In order to standardize middleware trading func-
tion, the International Standardization Organiza-

tion (ISO) in its Open Distributed Processing [11]
(ODP) activity and the Object Management Group

(OMG) have de�ned a speci�cation of the functional
interfaces of such a function [17] using the OMG In-

terface De�nition Language (OMG IDL). This spec-
i�cation is mainly based on the work previously per-
formed by the ANSA consortium [7] and the DSTC
[28]. It de�nes a set of generic APIs for applications
to export and search CORBA object references in a
standard and portable way, whatever the underly-
ing implementation. Unfortunately, these APIs are
quite complex to use and very technical. Moreover,
using these APIs does not provide trading request
type checking at compilation time, but only at run-
time. Thus, the second technical contribution of
this paper is to perform trading request type check-
ing at compilation time, improving software quality
and reliability.

The objective of our work is to de�ne and to of-
fer a typed trading environment being easy to use
from CORBA applications. In that, we have de-
�ned the trading contract concept used to describe
typed properties (object characterizations) as well
as query operations to be used by applications. The
TORBA De�nition Language (TDL) is used to de-
�ne these contracts. Then, it is compiled to gener-
ate trading proxies o�ering simple specialized inter-
faces to be used from client applications. The use
of these interfaces is checked at compilation time,
based on their types (i.e. operation synopsis). Fur-
thermore, these proxy implementations completely
hide the technical complexity of the ODP/OMG
trader interfaces. In the meantime, TDL contracts
could be stored in a TDL repository, like OMG IDL
de�nitions are stored in CORBA's Interface Repos-
itory. Then, this repository could be used dynami-
cally from a graphical console to discover available
trading o�ers and to use de�ned query operations.

Section 2 of this paper presents an overview of the
ODP/OMG CosTrading service. This overview fo-
cuses on trading o�er typing and use of the query
operation, in order to outline their drawbacks: tech-
nical complexity and lack of type checking. Sec-
tion 3 discusses the trading contract concept, the
TDL language, the proxy generation and execution
process, as well as the dynamic approach. It also
presents the implementation of TORBA, using a
printer service as example to underline the bene-
�ts of our approach. Since TORBA use has only
been performed using simple examples, section 4
presents some empirical results. Section 5 discusses
the related work in middleware that are used in
TORBA: the proxy concept, the structure of ORBs,
and the component-oriented approach. Finally, sec-
tion 6 summarizes this paper, in progress, as well as
fore-coming work directions.

2 The CosTrading Service

2.1 Overview

The ODP/OMG CosTrading service is similar to
a search engine for CORBA object service refer-
ences. Figure 1 presents the CosTrading standard
use, composed of four steps. (1) Service designers
de�ne their service o�er types (see section 2.2). (2)
Service providers or application servers character-
ize and export their service o�ers using properties
describing the service. (3) Service users or client
applications search service references using criteria
describing their requirements. (4) Once references
have been retrieved, clients invoke operations on
the services. All these requests|de�nition, export,
lookup, and use|are carried by CORBA.

Client Server

Trading
Service

requests

Requests

3. Lookup
requests 2. Export

4. Service

Designer

1. Definition
requests

Service

OfferOffer

Offer Type

Figure 1: The ODP/OMG CosTrading Service Use.

The CosTrading service provides three main in-

terfaces for applications. The ServiceType-

Repository interface is used to de�ne and man-
age service o�er types. The Register interface is
used to export service o�ers. Finally, the Lookup

interface is used to search exported service o�ers.
Other interfaces are also available for administra-
tion purposes, like to set the behavior of the trader
and its search operation, as well as to build trader
federations|o�ering a potentially large-scaled and
uni�ed trading service [2].

2.2 Service O�er Types

In the CosTrading, service o�ers are strongly typed.
Any export operation is based on the use of an of-
fer type, similarly lookup operations are performed
upon a given type. Typed o�ers bring two main
advantages. First, applications cannot export or
search weird o�ers, but only o�ers de�ned at design
time. Second, a CosTrading implementation may
take advantage of types to improve performance,
only searching in o�ers of a given type instead of
in all the o�ers. This becomes vital when several
thousand of o�ers have been exported. Part of the
CosTrading service, the Service Type Reposi-

tory stores the various service o�er types. It also
provides type checking when exporting or search-
ing o�ers. In this repository, a service o�er type is
characterized using four elements:

� a name, which is a unique global identi�er in
a trader federation and used to de�ne, export,
and search service o�ers,

� some inherited super types, used with par-
ticular rules for rede�nition which are not dis-
cussed here,

� an OMG IDL interface to which exported
service references have to conform, and

� some service properties characterizing the
exported service.

Each service property is characterized using:

� a name, which is also a unique identi�er in a
service type,

� an OMG IDL type which characterizes the
type of the property values, and

� a using mode, which has to be set to:

{ normal: Giving a value to such a property
is optional at creation time. If a value
is given, it could be modi�ed or removed
during execution by the service provider.

{ readonly : It is not required to give a value
to such a property, but if so the value can-
not be modi�ed.

{ mandatory : The service provider has to
give a value to such a property at expor-
tation time.

{ mandatory readonly : The provider has to
give a value to the property, which cannot
change during the execution.

Figure 2 presents the OMG IDL interface of a
printer service. This service is used in this paper
to illustrate various aspects of the trading service
and our TORBA proposal.

interface PrinterServer {

void print (in string filename) ;

};

Figure 2: OMG IDL of a Simple Printer Service.

The related service o�er type is Printer, which is
characterized by the four properties presented in Ta-
ble 1. The color property speci�es if a printer could
print in color or only in B&W. The cost per page

property contains the cost to print a sheet of paper
for this printer. The number of pages per minute
a printer can produce is contained in the ppm prop-
erty. Finally, the queue property is the name of the
printer queue.

name type mode
color boolean normal
cost per page
oat normal
ppm unsigned short normal
queue string normal

Table 1: Printer Service O�er Properties.

As stated earlier, it is important to have typed
o�ers. However, dealing with software qual-
ity, the CosTrading service lacks a standard lan-
guage to describe o�er types. The only available
means is to use the add type() operation of the
ServiceTypeRepository interface provided by the
CosTrading service. Section 3.2 discusses how the

module CosTrading {

interface Lookup : TraderComponents,

SupportAttributes,

ImportAttributes {

void query (

in ServiceTypeName type,

in Constraint constr,

in Preference pref,

in PolicySeq policies,

in SpecifiedProps desired_props,

in unsigned long how_many,

out OfferSeq offers,

out OfferIterator offer_itr,

out PolicyNameSeq limits_applied

) raises (

IllegalServiceType,

UnknownServiceType,

IllegalConstraint,

IllegalPreference,

IllegalPolicyName,

PolicyTypeMismatch,

InvalidPolicyValue,

IllegalPropertyName,

DuplicatePropertyName,

DuplicatePolicyName

);

};

};

Figure 3: The Lookup Interface to Search O�ers.

TORBA De�nition Language (TDL) addresses this
problem.

2.3 Searching Service O�ers

As this paper focuses on the search process, the
drawbacks of the export process are not discussed
here. However, these drawbacks are similar to those
presented in this section.

Once o�ers have been exported by servers, their
references and properties could be retrieved using
the CosTrading search operation. Figure 3 presents
its Lookup interface used to perform searches. The
query operation allows clients to �nd back services
from the set of exported o�ers. The argument num-
ber of this operation is quite high. This is due to
the genericity required by the operation in order to
be usable in a wide number of applications.

The type parameter de�nes the o�er type required
by the client application. The constr parameter

contains a constraint to be matched by the prop-
erties of selected o�ers. This constraint is a string
containing a boolean expression written using the
OMG Constraint Language (OCL). The pref pa-
rameter speci�es the returned o�er order in OCL.
The policies parameter speci�es the strategies to
be used during the search. The desired props ar-
gument contains the properties to be returned for
each o�er to the client: none, all, or only speci�c
ones. As there may be a huge number of matching
o�ers, the how many argument �xes the maximum
number of o�ers to be returned. Following o�ers
could be retrieved later on using the offer itr it-
erator provided by the operation. Finally, the two
last out parameters contain, after processing, the
result (offers) and the limits e�ectively applied to
the search policy (limits applied).

Furthermore, when providing wrong parameter val-
ues, the query operation raises one of the ten listed
exceptions. Such exceptions mean a misuse of the
CosTrading service related to search strategies or
to its type model, like an illegal or unknown type
name, a badly expressed preference or constraint, or
an unknown property name. Thus, the CosTrading
service only checks requests at runtime, while type
checking could be performed at application compila-
tion time, improving both software quality and ser-
vice performance|avoiding runtime type checking.
At the moment, TORBA, as discussed in the follow-
ing, mainly addresses type checking at application
compilation time.

Figure 4 presents how an application, written in
OMG IDLscript1 [21], may retrieve o�ers about
color printers faster than two pages per minute. The
offers, iter et limits variables are initialized to
receive the query() operation results. The o�er
type, property constraints, and the result order are
provided as strings. Thus, it is up to the CosTrad-
ing server to check and to evaluate these strings in
order to perform the search, implying type errors to
be only discovered at runtime.

The simplicity of this excerpt relies on the use of the
OMG IDLscript language. However, a real applica-
tion has to set the search strategy, catch and process
the potential exceptions, and process the returned
results. The latter includes the offers sequence
processing, and potentially the use of the iter it-
erator to process the following o�ers. Thus, about
�fty lines of Java or C++ are required only to ob-

1IDLscript is the CORBA 3.0 scripting language, contri-
bution and speci�cation of our project CorbaScript [4, 13, 14].

variables to receive answers

using the out mode

offers = Holder() # returned offers

iter = Holder() # next offers iterator

limits = Holder() # limits applied

trader.query (

"Printer", # offer type required

OCL for offer constraint

"color == TRUE and ppm > 2",

"first", # answer order

use default strategy

CosTrading.PolicySeq(),

properties to be returned

CosTrading.Lookup.SpecifiedProps (

CosTrading.Lookup.HowManyProps.some,

["queue", "color",

"cost_per_page", "ppm"]

),

max number and out params

100, offers, iter, limits

)

Figure 4: Searching o�ers using IDLscript.

tain the list of color printers faster than two pages
per minute. In that, we claim that the query oper-
ation is complex and very technical to use. More-
over, the huge use of this operation forces appli-
cations to build, invoke, and process many trading
requests, introducing code complexity and potential
runtime errors. Section 3.3 discusses how TORBA
automates this trading related technical code pro-
duction to simplify application code.

2.4 Review

More than presenting the main operations provided
by the ODP/OMG CosTrading service to type and
search o�ers, this section outline the drawbacks
of these functions. First, the CosTrading service
does not provide a de�nition language to de�ne of-
fer types. Such a language is mentioned in the
CosTrading speci�cation, however only for an illus-
trative purpose. The service only relies on the use
of a type repository used at runtime. Then, the
technicity and complexity of this service have been
discussed. In order to bene�t from the CosTrading
service, it is necessary to master the use of oper-
ations like query and data structures provided by
the service. Finally, using strings to manipulate
properties implies runtime type checking and forbids
type checking at compilation time. This reduces the
easiness to produce reliable applications in an eÆ-

cient way. To summarize, as any CORBA service,
the CosTrading service only o�ers a set of complete
OMG IDL interfaces. This brings the following four
questions.

� How to simplify the use of the CosTrading ser-
vice?

� How to provide type checking at compilation
time?

� Which language should be used in order to de-
�ne o�er types?

� Which framework should be applied to trading?

Looking at today's software industry, three answers
arise. First, a GUI could be provided to use the
trading service easily. This solution is already avail-
able for many trading service products. Neverthe-
less, this choice does not address the use of the trad-
ing service from an application. Then, a library may
hide the trading service complexity. However, pro-
viding such a library is a huge task: It would be
easy to su�er the same drawbacks as the CosTrad-
ing interfaces. Moreover, it would only de�ne a pro-
gramming framework, but no design method, nor
language to specify o�er types. Finally, a trading
function, to be specialized to each application needs,
could be de�ned using the concept of trading con-
tract as discussed in the following section.

3 The TORBA Proposal

3.1 The Trading Contract Approach

The objective of TORBA is to provide a simple
and strongly typed trading facility for CORBA ap-
plications. In that, TORBA is based upon the
ODP/OMG CosTrading service, taking full advan-
tage of its functionalities like available implementa-
tions, complex lookup algorithms, o�er persistence,
large-scaled trader federations.

Then, the conceptual bene�t of TORBA is to de�ne
the concept of trading contracts. Such a contract is
de�ned at application design time like OMG IDL
interface contracts are de�ned [9]. These contracts
take into account o�er provider needs as well as
client application ones: This results in the de�nition

of trading o�er types. First, o�er types clearly iden-
tify and group together properties (i.e. name and
type of the values) characterizing exported CORBA
objects conform to a given OMG IDL interface. Sec-
ond, o�er types also contain a list of query oper-
ations commonly used in client applications. Such
operation is characterized through a synopsis (name
and parameters), as well as a boolean constraint to
be applied on both parameters and the properties
of the associated type. O�er types may be classi-
�ed using multiple inheritance. Such a classi�cation
permits designers to de�ne abstract types, like a de-
vice, that could be specialized to concrete types, like
a scanner and a printer. Moreover, concrete types
can also be inherited to de�ne new query operations
exactly meeting requirements of client applications.
Using multiple inheritance improves the reuseness
of properties and query operations.

The technical bene�t of TORBA is to provide a
complete generation and execution environment to
use trading contracts. O�er types are de�ned us-
ing the TORBA De�nition Language (TDL). Such
de�nitions are then compiled to generate trading
proxies o�ering to applications easy-to-use OMG
IDL interfaces. The use of these specialized in-
terfaces is thus checked at application compilation
time. Moreover, proxy implementations fully hide
the ODP/OMG CosTrading technicity. Such im-
plementation is generated for several programming
languages: OMG IDLscript, Java, and C++ later
on. In the meantime, trading contracts could also be
used dynamically through a generic graphical con-
sole. Trading contracts are stored into a repository
and browsed by the console which can also invoke
query operations de�ned for the given type.

3.2 The TORBA De�nition Language

The TORBA De�nition Language (TDL) is the for-
malism to de�ne TORBA trading contracts. Using
simple typed constructions, it describes o�er types,
their inheritance relation, their properties (name
and type), as well as query operations (name, pa-
rameters, and constraints). Property and parame-
ter types rely upon the OMG IDL type model. Con-
straints are de�ned using the OMG Constraint Lan-
guage (OCL) extended to take into account query
operation parameters as well as to o�er composition
of query operations. TDL is de�ned as two lan-
guages: an XML DTD and a BNF grammar. This
paper only describes the second one, being more

abstract offer Device {

property string name ;

query all () is TRUE ;

};

offer Printer : Device {

interface PrintService ;

property boolean color ;

property float cost_per_page ;

property unsigned short ppm ;

query colors () is color == TRUE ;

query faster (in unsigned short s)

is ppm > s ;

query faster_colors (in unsigned short s)

is colors () and faster (s) ;

};

Figure 5: Trading O�er Type De�nition using TDL.

concise and quite familiar to CORBA users. Fig-
ure 5 presents an example of o�er type de�nitions.

A trading o�er type is de�ned using the offer key-
word followed by the type name, and possibly the
list of inherited super-types. Basically, a type is
concrete: provider could export o�ers using this
type. Then, it has to include an interface en-
try de�ning the base interface to be supported by
exported objects. The abstract keyword de�nes a
type as being abstract, no o�er may be exported
for this type. It will be inherited to de�ne concrete
types. The TDL contract of Figure 5 de�nes two
o�er types related to the printer example of this pa-
per: The Printer concrete type inherits from the
Device abstract type, and speci�es o�ers for objects
implementing the PrintService interface (or one of
its sub-interfaces). Properties are de�ned using the
property keyword followed by an optional access
mode, an OMG IDL type, and a formal name. If
unde�ned the access mode is normal (see section
2.2).

The Printer o�er includes the four following prop-
erties: the name string inherited from Device, the
color boolean, the cost per page
oat, and the
ppm unsigned short. Search operations are de�ned
using the query keyword followed by a name, po-
tentially a list of arguments (de�ned as for OMG
IDL operations), and a constraint. The constraint
is based upon the properties of the o�er type (e.g.
the colors() query), the properties and the param-
eters (e.g. the faster() query), or a composition of
query operations (e.g. the faster colors() query).
The all() query is de�ned with TRUE as constraint

in order to retrieve all the available o�ers for the
Printer type. Query operation inheritance has the
following semantic: The constraint is kept, how-
ever it does not apply on the super-type, but on
the inherited type. The operation implementation
is implicitly overloaded in generated proxies. When
applied to the Device type, the all() operation re-
turns all the available device o�ers. When applied
to the Printer type, it only returns the available
printer o�ers.

De�ning speci�c queries for given values of proper-
ties should not be misused. The point is not to de-
�ne a query for any potential property value, but
to de�ne the most commonly used queries. For
queries that may appear from time to time only, the
generic query operation available with all types has
to be used (see section 3.3.1). Nevertheless, using
the generic query() generated by TORBA already
brings type checking and reduces the technicity of
the lookup mechanism.

Two constraints are implied by the use of TDL con-
tracts. First, like OMG IDL contracts, TDL con-
tracts have to be globally known to clients. More-
over, the type hierarchy of TDL may be extended
but has to stay consistent, i.e. no TDL contract
should be removed nor modi�ed. Second, each TDL
contract has to be de�ned using an identi�er being
unique in the whole system. Here too, like OMG
IDL de�nition it is important for designers to de-
�ne their TDL contracts using modules in order to
avoid name collisions.

This section has presented the second TDL formal-
ism (BNF grammar), being simple to learn. This
basis will be extended according to the need aris-
ing from our experiments. As an example, dynamic
properties speci�cation, whose values are computed
at runtime and not statically set at exportation
time, seems an interesting extension. However, it
is important for this language not to become too
complex and underused due to this complexity.

3.3 Trading Proxy Generation

Once trading contracts have been de�ned using
TDL, they may be compiled to generate trading
proxies for applications, as depicted in Figure 6.

The TDL compiler checks both the syntax and
the semantic of TDL de�nitions. Semantic check-

OMG
IDL

Proxy

TDL
Compiler

TDL

Figure 6: TDL Language Compilation Process.

ing controls OMG IDL type correctness, TDL type
names and properties, as well as OCL constraints
in order to ensure no type related problem could
arise at runtime. Proxy OMG IDL interfaces are
produced by the TDL compiler, as well as their im-
plementation for a given language|IDLscript and
Java for the moment, C++ later on. For porta-
bility purpose, the TDL compiler is written in the
Java language, based on the lexical and syntactic
analyzer generated using JavaCC [15].

3.3.1 Generated OMG IDL Interfaces

Each de�nition of trading o�er type is mapped to
an OMG IDL module named as the o�er type and
containing the �ve following de�nitions.

� The Offer structure represents a trading o�er.
It contains the exported object reference and a
�eld for each property de�ned in the o�er type
or its super-types. Field types are those of the
service interface and property types as de�ned
in the TDL o�er.

� The OfferSeq sequence is used by query oper-
ations to return matching o�ers.

� OfferType, Export, and Lookup interfaces re-
spectively describe the Service Type Reposi-
tory access, the export and the lookup proxies.
The latter inherits from the TORBA::Lookup

interface and contains an operation for each
query de�nition. Its also contains a generic but
nonetheless typed query operation.

Figure 7 presents an excerpt (the lookup proxy in-
terface) of the OMG IDL de�nitions generated for
the Printer trading contract as de�ned in Figure 5.

#include <TORBA.idl>

module Printer {

struct Offer {

PrintService service ;

string name ;

boolean color ;

float cost_per_page ;

unsigned short ppm ;

};

typedef sequence<Offer> OfferSeq ;

interface Lookup : TORBA::Lookup {

OfferSeq query_all () ;

OfferSeq query_colors () ;

OfferSeq query_faster

(in unsigned short s) ;

OfferSeq query_faster_colors

(in unsigned short s) ;

OfferSeq query (in TORBA::Query q)

raises (TORBA::IllegalConstraint) ;

};

// interfaces for type definition

// and exportation

};

Figure 7: OMG IDL Module Generated from the
Printer TDL Contract (excerpt)

The Printer o�er type is mapped to the Printer

OMG IDL module. The Offer structure rep-
resents a printer o�er. It contains a �eld for
the exported print service, as well as for the
name, color, cost per page, and ppm properties.
The lookup proxy query all(), query colors(),
query faster(), and query faster colors() op-
erations represent the queries de�ned in the
Printer contract. Parameters are the same as
those de�ned in the contract, while their return
type is a printer o�er sequence (i.e. OfferSeq).
The last query() operation allows applications to
perform searches not de�ned in the TDL contract.
The TORBA::IllegalConstraint exception may be
raised at runtime if the constraint is malformed.

Experiments have been performed using generation
rules presented here, validating these choices. As
an example, the Offer structure is a good means
to perform checking of export and lookup opera-
tions at compilation time. However, we also intend
to experiment the use of valuetypes2 instead of the
structure, as well as using a typed iterator interface
instead of the sequence.

2Since CORBA 2.3, valuetypes permit argument objects
to be passed by value instead of by reference.

File `PrinterProxies.cs'

import TORBArt

class Lookup (TORBArt.LookupBase) {

proc __Lookup__ (self) {

self.__LookupBase__ ("Printer",

Printer.Lookup)

}

proc query (self, constraint) {

answers = []

for offer in

self.generic_query (constraint) {

answers.append (

Printer.Offer (

offer["service"],

offer["name"], offer["color"],

offer["cost_per_page"],

offer["ppm"]

))

}

return answers

}

proc query_faster (self, s) {

return self.query ("ppm >= " +

s._toString())

}

proc query_all (self) {

return self.query ("TRUE")

}

other query operations

}

Figure 8: OMG IDLscript implementation of the
Printer lookup proxy (excerpt)

3.3.2 Generated Proxy Implementation

The generation of proxy implementations depends
on the constructions of a given language. However,
using an object-oriented language, each OMG IDL
interface is implemented by a class inheriting from a
base class provided by the TORBA runtime. These
classes fully hide the ODP/OMG CosTrading tech-
nicity: use of the service interfaces and data struc-
tures, as well as exception handling. Such runtime
classes provide generic operations used from proxy
implementations. Figure 8 presents an excerpt of
the lookup proxy implementation for the Printer

o�er type, generated for the OMG IDLscript lan-
guage.

The Lookup class inherits from the
TORBArt.LookupBase class provided by the
TORBA runtime. The Lookup constructor
invokes the super-class constructor providing the
TDL type name (i.e. Printer), as well as the im-

lookup = PrinterProxies.Lookup()

offers1 = lookup.query_faster_colors (2)

offers2 = lookup.query ("color == FALSE

and cost_per_page < 0.05 and ppm > 10")

Figure 9: Printer Search Proxy Use.

plemented interface type (i.e. Printer::Lookup).
The generic query operation is invoked by the query
operation providing the constraint to apply. Then,
the result is translated to a printer o�er sequence
(i.e. Printer::OfferSeq). The implementa-
tion of query operations, like query faster and
query all, only consists of creating the associated
constraint and invoking the query operation.

3.4 Using TORBA Proxies

Figure 9 presents, in OMG IDLscript, the use of
lookup proxy presented in the previous section. The
�rst line instantiates the lookup proxy class. The
second line invokes the query operation to �nd color
printers faster than two pages per minute. This op-
eration realizes the same search processing as the
one presented in Figure 4. Simplicity brought up
by TORBA becomes clear. The application de-
veloper does not bother with the trader technicity,
he/she can focus on the use of the trading contract
only. Moreover, the operation execution cannot fail
as types have been checked by the TDL compiler.
It can only return an empty sequence if no o�er
matches the search. The third line illustrates the
option of using a search operation not de�ned in the
trading contract: Searching o�ers related to B&W
printers faster than ten pages per minute, for a cost
less than �ve cents a page. Nevertheless, even if the
use of this operation is provided, software engineer-
ing quality is improved when all the search requests
are de�ned in the trading contract.

3.5 Execution of TORBA Proxies

Figure 10 presents the set of objects involved dur-
ing the execution of a query operation. The
lookup proxy object and its CORBA stub are co-
located with the application. This latter invokes
the proxy operations through its OMG IDL inter-
face. The proxy operation implementation invokes
the TORBA runtime class providing the appropri-

ate constraint. Then, this class invokes the CORBA
stub providing access to the ODP/OMG CosTrad-
ing service. As a result, the runtime class catches
the exceptions and the proxy class translates data
from its CosTrading representation to the represen-
tation de�ned in the trading contract. One future
work is to measure the overhead of lookup proxies
and to optimize their implementations in order to be
close to native CosTrading performance (see section
4).

�
�
�

�
�
�

��

��
��
��
��

Lookup

Lookup Proxy

Class

Lookup

OMG IDL Class

LookupBase

Application
Client

ODP / OMG

CosTrading

Service

Lookup

CosTrading

Stub

CORBA

Figure 10: Execution Process of Lookup Proxy Op-
erations.

3.6 The TORBA Dynamic Approach

Previous sections have presented the conceptual
bene�ts of TDL contracts, as well as the technical
ones brought by generation and execution of related
proxies. In the meantime, the TORBA environment
o�ers a dynamic approach to use trading contracts
as depicted in Figure 11. This approach permits
one to build applications without static knowledge,
at design time, about used trading contracts. This
knowledge will be learnt at runtime.

The dynamic approach in TORBA relies on a trad-
ing contract repository. This repository, currently
written in OMG IDLscript, stores TDL contracts
as a graph of CORBA objects. Each object of the
graph represents at runtime a semantic construc-
tion of the TDL language. Thus, offer, property,
and query constructions are mapped to OfferDef,
PropertyDef, and QueryDef interfaces de�ned in
the TORBA module. These interfaces provide oper-
ations to create and browse objects of the graph,

BNF

XML

Repository

Explorer
TDL TDL

Compiler

Figure 11: The TORBA Dynamic Approach.

providing TDL information at runtime. Creation
operations are used by a speci�c version of the TDL
compiler in order to feed the repository. Other oper-
ations are used by any TORBA application requir-
ing dynamic discovering of available trading con-
tracts. In order to validate this approach, we have
realized in JavaIDLscript3 a �rst dynamic applica-
tion: the TORBA explorer, illustrated in Figure 12.

Through a GUI written using Java Swing, the
TORBA explorer allows users to browse available
trading contracts, to select a contract, to consult
associated o�ers, and to perform prede�ned or spe-
ci�c query operations. The explorer implementation
does not rely on any trading contract: Graphical
interfaces are dynamically built at runtime accord-
ing to trading contracts discovered into the TORBA
repository. Thus, the TORBA explorer provides
a trading GUI dedicated to the contracts used by
applications, unlike GUI included with CosTrading
implementations. Finally, this explorer is a generic
and graphical proof of the relevance and strength of
the trading contract concept presented in this pa-
per.

4 Empirical Results

TORBA introduces extra processing while sending
requests to the CosTrading. This implies an over-
head. However, in the context of distributed ap-
plications, there are two levels in the evaluation of
overhead. First, there are remote method invoca-
tions which overhead is potentially high. Second,
there are local method invocations which overhead
is most of the time insigni�cant compared to re-
mote method one. In the context of TORBA, the

3JavaIDLscript is our second implementation of the OMG
IDLscript language o�ering access to CORBA and Java ob-
jects in the meantime.

overhead is introduced by the use of a local library,
which means local invocations only : Three local in-
vocations are added for each trading request. Thus,
it just increases local processing time and keeps
the number of remote method invocations identical,
compared to the standard use of the CosTrading.
Then, based on early test performed using the OR-
Bacus Trader, the overhead introduced by TORBA
is, without any ORB speci�c optimizations in pro-
ducing TORBA proxies, less than 5%.

There are few ways to improve performance related
to trading using TORBA. First, if the only use
of the trader is performed through TORBA, then
most of the trader checks (like type checking) can
be removed since already performed by the proxies.
Thus, the overhead brought up by the proxy would
be balanced. Second, proxies could be located close
to the trading server and not close to the client.
Then, the number of network requests could be op-
timized, improving global performance. Third, us-
ing smart proxies, local to the client, to perform
caching of trading results, the global performance
could be optimized. Finally, a composition of the
three aspects will bring the best results. Points two
and three are not incompatible as proxies would be
split between the trading server and the client ap-
plication. Client side proxies would perform caching
while server side ones would be dedicated to type
checking and network optimization.

5 Comparison and Source of Inspira-

tion

During the 80's, the ODP community has de�ned a
type management system for the ODP trading func-
tion [10]. This research result has been partly inte-
grated in the ODP / OMG CosTrading speci�ca-
tion. However, to our knowledge, no similar works
to our TORBA proposal have been performed to
reduce the CosTrading complexity and to increase
reliability of trading based applications. The trad-
ing aspects of ODL (Object De�nition Language)
de�ned by the TINA consortium [22] were only re-
lated to de�ning trading properties of objects. This
could only be seen as basic trading contracts : at-
tributes are inevitably strings and ODL do not per-
mit to de�ne typed queries. Thus, the complexity
of the trader's use is not reduced actually. In the
meantime, our original work relies on the use of well-
known mechanisms of distributed object computing

Figure 12: The TORBA Explorer.

middleware: the proxy principle, the ORB struc-
ture, and the component approach.

The proxy principle has been de�ned in [23] as a
structural concept to build distributed applications,
acting on the behalf of a remote object. This prin-
ciple extends the RPC (Remote Procedure Call)
mechanism as de�ned in [3] in order to use it in an
object-oriented context (i.e. Remote Method Invo-
cation). At the communication level, a proxy (a.k.a.
stub) serializes invocations to remote objects like in
CORBA [19], DCOM [8], and Java RMI [24] envi-
ronments. Such a proxy implementation fully hides
the technicity related to the serialization process:
marshalling of parameters into a network message,
care taking of heterogeneity, network layer and er-
ror management, and �nally unmarshalling the net-
work reply to application data. These proxies are
generated based on communication contracts writ-
ten using an interface de�nition language (IDL).
These IDL descriptions simplify and bring automa-
tion to produce the implementation of communica-
tion means, increasing the reliability of applications.
In the context of TORBA, the communication con-
tract concept, the IDL language, and communica-
tion proxies are transposed to trading contracts, the
TDL language, and trading proxies. Thus, TDL de-
scriptions simplify and bring automation to produce

code related to trading, increasing application reli-
ability.

Compared to smart proxies used in the Quality
of Objects (QuO) middleware [30], or as imple-
mentation of meta-programming mechanism [29],
TORBA proxies cannot be labeled as smart. In
these two examples, smart proxies are proxies that
potentially perform more processing|like logging,
caching, QoS control, or meta-programming|in a
transparent way from the client point of view. Ex-
tra processing is added to the standard one, with-
out modifying the proxy interface. In the context of
TORBA, proxies have an explicit interface which is
di�erent from the classical interface of the CosTrad-
ing. Moreover, smart proxies tend to o�er dynamic
mechanism for recon�guration while TORBA prox-
ies are quite static, and could not be changed dy-
namically at runtime.

TORBA is close to CORBA. The OMG IDL lan-
guage permits designers to describe interface con-
tracts for CORBA objects, while the TDL lan-
guage permits them to de�ne trading contracts. The
OMG IDL language is compiled to produce commu-
nication stubs, or to feed the Interface Repository.
Similarly, the TDL language is compiled to gener-
ate trading proxies, or to feed the trading contract

repository. CORBA stubs rely on an ORB run-
time, encapsulating the GIOP/IIOP protocol, while
TORBA proxies rely on the TORBA runtime hiding
the CosTrading service, as well as the ORB.

The component-oriented approach is the last source
of inspiration of the TORBA proposal. As an ex-
ample, the CORBA Component Model [18] de�nes
a component as being a software entity providing
multiple interfaces (or facets). Each facet is a point
of view on the component, which logically de�nes a
set of operations. In that, TORBA provides access
to the generic ODP/OMG trading service through
facets dedicated to application requirements. Each
lookup proxy generated is a dedicated facet being a
point of view on the trading service as depicted in
Figure 13.

TradingTrading

Trading Facet
Scanner

Facet

DevicePrinter

Facet

Generic
Trading
Service

Figure 13: TORBA, towards a `componentized'
trading service.

6 Conclusion

First, this paper has reviewed the ODP/OMG
CosTrading service. This review has presented the
use of the service as being very technical and com-
plex due to the lack of a structured approach. The
various drawbacks brought up by the lack of type-
checking at compilation time have been underlined.
Then, the lack of formalism to de�ne o�er types and
search operations has been presented as being one
of the reasons of the service complexity.

Then, TORBA has been presented as a frame-
work structuring the ODP/OMG trading service
use. The conceptual contribution of this paper re-
lies on the de�nition of the trading contract concept
as a paradigm to structure the trading activity. The
bene�ts of the TDL formalism use and its associated
tools have been discussed. Using an example, the
bene�ts of TORBA have been illustrated in terms
of type checking, simplicity, productivity, and relia-

bility of applications.

All the elements depicted in this paper have been
prototyped and experiments have been performed
using IDLscript and Java languages, as well as the
ORBacus trading service [20]: TDL compilers (BNF
and XML versions), proxy generators (OMG IDL,
OMG IDLscript, and Java), runtime environments
for IDLscript and Java, the trading contract reposi-
tory, as well as the TORBA explorer are already op-
erational. The next step is to �nalize the TORBA
environment in order to release it, and to obtain
experiment/use feedback from end-users.

From now on, we have lots of work in view around
TORBA: (1) support of C++ applications, (2) ex-
periments over other CosTrading implementations,
(3) measure of the overhead implied by TORBA
proxies, (4) experiments of iterators, dynamic prop-
erties, and lookup strategies, (5) extension towards
asynchronous trading (noti�cation to applications of
newly exported o�ers), and (6) use of the TORBA
approach in the context of Jini, trading serialized
objects and not only references.

In the meantime, TORBA is part of our actual re-
search work. We intend to use TORBA in order to
experiment the concept of Component Oriented

Trading (COT) [27]. In that, TORBA would be-
come the basis of TOSCA (Trading Oriented System
for Component-based Applications), whose goal is
to provide an environment to deploy and to adminis-
trate distributed component based applications [12].

Finally, in a more ambitious vision, we intend
to consider the bene�ts of a language to perform
queries and to act upon distributed objects. The
goal would be to unify search operations on trad-
ing services, object-oriented databases, and object
environments �a la JavaSpaces [25]. This language
could be named TORBA Query Language, rely-
ing upon the following equation:

TQL = TDL+OCL+OQL+ IDLscript

References

[1] K. Arnorld and al. The Jini Speci�cation.
Addison-Westley, �rst edition, June 1999.
ISBN: 0-201-61634-3.

[2] D. Belaid, N. Provenzano, and C. Taconet. Dy-
namic Management of CORBA Trader Feder-

ation. In Proceedings of the 4th USENIX Con-
ference on Object Oriented Technologies and
Systems (COOTS'98), Santa Fee, New Mexico,
USA, April 1998. USENIX.

[3] A. Birrell and B. Nelson. Implementing Remote
Procedure Call. Technical Report CSL-83-7,
Xerox, October 1983.

[4] CorbaWeb. CorbaScript Home Page. URL:
http://corbaweb.li
.fr.

[5] G. Craske and Z. Tari. A Property-based Clus-
tering Approach for the CORBA Trading Ser-
vice. In Proceedings of the International Con-
ference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'98), Las
Vegas, 1998.

[6] G. Craske, Z. Tari, and K. Kumar. DOK-
Trader: A CORBA Persistent Trader with
Query Routing Facilities. In International
Symposium on Distributed Objects and Ap-
plications (DOA'99), Edinburgh, September
1999.

[7] J.-P. Deschrevel. The ANSA Model for Trading
and Federation. Technical report, ANSA, July
1993.

[8] R. Grimes. Professional DCOM Programming.
Wrox Press ltd., Birmingham, Canada, 1997.

[9] M. Henning and S. Vinoski. Advanced CORBA
Programming with C++. Addison-Westley,
1999. ISBN: 0-201-37927-9.

[10] J. Indulska, M. Bearman, and K. Ray-
mond. A Type Management System for an
ODP Trader. In Proc. of the International
Conference on Open Distributed Processing
(ICODP'93), pages 141{152, Berlin, Germany,
September 1993.

[11] IS0. Open Distributed Processing Reference
Model { parts 1-4. International Standard Or-
ganization, 1995. ISO 10746-1..4.

[12] R. Marvie, P. Merle, and J.-M. Geib. To-
wards a Dynamic CORBA Component Plat-
form. In Proceedings of the 2nd International
Symposium on Distributed Object Applications
(DOA'2000), Antwerp, Belgium, September
2000. IEEE.

[13] P. Merle, C. Gransart, and J.-M Geib. Cor-
baScript and CorbaWeb: A Generic Ob-
ject Oriented Dynamic Environment upon

CORBA. In Proceedings of TOOLS Europe 96,
Paris, June 1996.

[14] P. Merle, C. Gransart, and J.-M. Geib. Us-
ing and Implementing CORBA Objects with
CorbaScript. Object-Oriented Parallel and Dis-
tributed Programming, 2000. Ed. Hermes.

[15] Metamata. Java Com-
piler Compiler User Guide.
http://www.metamata.com/javacc/index.html.

[16] Y. Ni and A. Goscinski. Trader Cooperation to
Enable Object Sharing among Users of Homo-
geneous Distributed Systems. Technical report,
RHODOS Project, 1993.

[17] OMG. CORBAServices: Common Object Ser-
vices Speci�cation. Object Management Group,
November 1997.

[18] OMG. CORBA Components: Joint Revised
Submission. Object Management Group, Au-
gust 1999. OMG TC Document orbos/99-07-
f01..03,05g orbos/99-08f05..07,12,13g.

[19] OMG. CORBA/IIOP 2.3.1 Speci�cation. Ob-
ject Management Group, October 1999.

[20] OOC. ORBacus Trader. http://www.ooc.com.

[21] OOC and LIFL. CORBA Scripting - Joint Re-
vised Submission. Object Management Group,
August 1999.

[22] A. Parhar. TINA Object De�nition Language
Manual v2.3. Technical report, TINA-C, 1996.

[23] M. Shapiro. Structure and Encapsulation in
Distributed Systems: The Proxy Principle. In
Proceedings of the 6th International Conference
on Distributed Computing Systems (ICDCS
86), pages 198{204, Cambridge, Mass., USA,
May 1986. IEEE.

[24] Sun. Java Remote Method Invocation Speci�-
cation. Sun Microsystems, October 1998.

[25] Sun. JavaSpaces Service Speci�cation. Sun Mi-
crosystems, May 2000.

[26] Z. Tari and G. Craske. A Query Propagation
Approach to Improve CORBA Trading Service
Scalability. In Proceedings of the 20th Inter-
national Conference on Distributed Computing
Systems (ICDCS 2000), Taiwan, April 2000.
IEEE.

[27] S. Terzis and P. Nixon. Component Trad-
ing: The Basis for a Component-Oriented De-
velopment Framework. In WCOP'99 Proceed-
ings of the Fourth International Workshop on
Component-Oriented Programming, 1999.

[28] A. Vogel, M. Bearman, and A. Beitz. En-
abling Interworking of Traders. In Proceedings
of the 3rd International IFIP TC6 Conference
on Open Distributed Processing (ICODP'95),
Brisbane, Australia, February 1995. ChapMan
and Hall.

[29] N. Wang, K. Parameswaran, and D. Schmidt.
The Design and Performance of Meta-
Programming Mechanism for Object Request
Broker Middleware. In Proceedings of the 6th
USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS'01), San Anto-
nio TX, USA, January 2001. USENIX.

[30] J. Zinky, D. Bakken, and R. Schantz. Ar-
chitectural Support for Quality of Service for
CORBA Objects. Theory and Practice of Ob-
ject Systems, 3(1), April 1997.

