USENIX Association

Proceedings of the
6" USENIX Conference on Object-Oriented
Technologies and Systems
(COOTS'01)

San Antonio, Texas, USA
January 29 - February 2, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The Design and Perfor mance of M eta-Programming
Mechanismsfor Object Request Broker Middleware

Nanbor Wang Kirthika Parameswaran Douglas Schmidt Ossama Othman

{nanbor, kirthikd @cs.wustl.edu
Department of Computer Science
Washington University, St.Louis

Abstract

Distributed object computing (DOC) middleware shields de-
velopers from many tedious and error-prone aspects of pro-
gramming distributed applications. Wthout proper support
from the middleware, however, it can be hard to evolve dis-
tributed applications after they are deployed. Therefore, DOC
middleware should support meta-programming mechanisms,
such assmart proxies and interceptors, that improve the adapt-
ability of distributed applications by allowing their behavior
to be modified without changing existing software drastically.

This paper presentsthree contributionsto the study of meta-
programming mechanisms for DOC middleware. Firgt, it il-
lustrates, compares, and contrasts several meta-programming
mechanisms from an application devel oper’ s perspective. Sec-
ond, it outlines the key design and implementation challenges
associated with developing smart proxies and portable inter-
ceptors features for CORBA. Third, it presents empirical re-
sults that pinpoint the performance impact of smart proxies
and interceptors. Our goal isto help researchers and devel op-
ers determine which meta-programming mechanisms best suit
their application requirements.

1 Introduction

{schmidt, ossamj@uci.edu
Electrical & Computer Engineering
University of California, Irvine

management, data transfer, parameter (de)marshaling, end-
point and request demultiplexing, error handling, multi-
threading, and synchronization; and

3. Amortizing software lifecycle costs by leveraging pre-
vious development expertise and capturing implementations of
key patterns in reusable middleware frameworks and common
services.

In the case of standards-based DOC middleware, such as
CORBA [1], these capabilities are realized via an open specifi-
cation process. The resulting products can interoperate across
many OS/network platforms and programming languages [2].

To date, CORBA middleware has been used successfully to
enable developers to create applications rapidly that can meet a
particular set of requirements with a reasonable amount of ef-
fort. CORBA has been less successful, however, at shielding
developers from the effects of requirement or environmental
changes that occur late in an application’s life-cyclke, dur-
ing deployment and/or at run-time. To address this problem,
this paper describes and evaluatesa-programming mecha-
nisms, which improve the adaptability of distributed applica-
tions by allowing their behavior to be modified with little or
not change to existing application software.

The two meta-programming mechanisms we focus on in
this paper are:

Motivation: Developers of distributed applications face ® Smart proxies, which are application-provided stub im-

many challenges stemming from inherent and accidental cdiementations that tranqurently override Fhe default ;tubs cre-
plexities, such as latency, partial failure, and non-portatiiEed Py an ORB to customize client behavior on a per-interface
low-level OS APIs. The magnitude of these complexitie®2Sis-

combined with increasing time-to-market pressures—make i |nterceptors, which are objects that an ORB invokes in
increasingly impractical to develop distributed applicationse path of an operation invocation to monitor or modify the
manually from scratch. Commercial-off-the-shelf (COTS) di$ehavior of the invocation transparently.

tributed object computing (DOC) middleware helps addre$fease two meta-programming mechanisms can be used to
these challenges by: configure new or enhanced functionality into CORBA appli-
1. Defining standard higher-level programming abstragations with minimal impact on existing software. The mate-
tions, such as distributed object interfaces, that provide logd presented in this paper is based on our experience imple-
tion transparency to clients and server components; menting and using smart proxies and interceptors in TAO [3],

2. Shielding application developers from low-level conwhich is a open-source, CORBA-complaint ORB designed to

current network programming details, such as connectidPport applications with demanding quality-of-service (QoS)
requirements.

Paper organization: The remainder of this paper is struc- In applications based on CORBA middleware with conven-
tured as follows: Section 2 presents an overview ofsthart tional fixed stubs/skeletons, these types of changes often re-
proxy andinterceptor meta-programming mechanisms; Seauire re-engineering and re-structuring of existing application
tion 3 describe the patterns that guided the developmentsoftware. One way to minimize the impact of these changes
TAO'’s smart proxy and interceptor mechanisms and resohisdo devisemeta-programming mechanisms that allow appli-
key design challenges; Section 4 illustrates the performaedions to adapt to various types of changes with little or no
characteristics of TAO's smart proxy and interceptor mechaodifications to existing software. For example, stubs, skele-
nisms; Section 5 compares our work with related research; aods, and certain points in the end-to-end operation invocation
Section 6 presents concluding remarks. path can be treated a%ta-objects [6], which are objects that
refine the capability of base-level objects, which are the ob-

. . jects comprising the bulk of application programs.
2 Overview of Smart Proxies and In- As shown in Figure 1, CORBA ORBs are responsible

terceptors for transmitting client operation invocations to target objects.

When a client invokes an operation, a stub implemented as
DOC middleware providestub andskel eton mechanisms that

serve as a “glue” between the client and servants, respec
tively, and the ORB. For example, CORBA stubs implement Client inags Object
the Proxy pattern [4] and marshal operation information and oparation (Servant)
data type parameters into a standardized request format. Like- T f
wise, CORBA skeletons implement thalapter pattern [4]
and demarshal the operation information and typed parame- | ™&u (Skeleton)
ters stored in the standardized request format. ORB

CORBA stubs and skeletons can be generated automati- , A
cally from schemas defined using the OMG Interface Defi- [PO J
nition Language (IDL). A CORBA IDL compiler transforms L}
application-supplied OMG IDL definitions into stubs andJ ORB Core ‘
skeletons written using a particular programming languag
such as C++ or Java. In addition to providing program-
ming language and platform transparency, an IDL compilgjgure 1: Interactions Between Requests and Meta-objects
eliminates common sources of network programming errgtgd-to-End
and provides opportunities for automated compiler optimiza-
tions [5].

Traditionally, the stubs and skeletons generated by an Iﬁl_rm:"t""'(_)bJeCt can act in conjunction with transport-protogol
compiler ardfixed, i.e., the code emitted by the IDL compilermeta'ObJeCtS to access and/or transform a client operation in-

is determined at translation time. This design shields appli¥gCalion into a message and transmit it to a server. Corre-
tion developers from the tedious and error-prone network pl%)—ond' ng meta-objects on the server'srequest processing path
gramming details needed to transmit client operation invod&!! 3CeSS and/or perform Inverse transformations on the op-
tions to server object implementations. Fixed stubs and skéfgtion invocation message and dispatch the messagerto its ser-
tons make it hard, however, for applications to adapt reaﬂ%’t' An invocation result is delivered in a similar fashion in

to certain types of changes in requirement or environmeritaf reversedirection.
conditions, such as: Asall operation invocations pass through meta-objects, cer-
e The need to monitor system resource utilization may nt&n aspects of application and mlddIeque behavior can b.e
be recognized until after an application has been q%c,_apted transpgrgntly when system requwer_nerjts and envi-
ployed. ronmental condm_ons change. by simply mod|fy| ng the meta-
objects. To modify meta-objects, the DOC middleware can
o Certain remote operations may require additional paragyner (1) provide mechanisms for developersto installed cus-
eters in order to execute securely in a particular envirogm;zed meta-objects for the client or (2) embed hooksimple-
ment. menting a meta-object protocol (MOP)[6] in the meta-objects
e The priority at which clients invoke or servers handle and provide mechanisms to install objects implementing the
request may vary according to environmental conditior’d,0P to strategize these meta-object behaviors. In the context
such as the amount of CPU or network bandwidth avaiif CORBA, smart proxies are customized meta-objects and
able at run-time. interceptors are objects that implement the MOP.

Server-side
meta-object

Client-side

2.1 Overview of Smart Proxies

Most CORBA application devel opers use the fixed stubs gen-
erated by an IDL compiler without concern for how the stubs
areimplemented. There are situations, however, where the de-
fault stub behavior is inadequate. For example, an application
developer may wish to change stub code transparently in order
to:

e Perform application-specific functionality, such as log-
ging;
e Add parametersto arequest;

e Cacherequestsor replies to enable batch transfer or min-
imize calls to aremote target object, respectively;

e Support advanced quality-of-service (QoS) features, such
as load balancing and fault-tolerance; or

e Enforce security mechanisms, such as authentication of
credentials.

To support these capabilities without modifying existing client
code, applications must be able to override the default stub
implementations selectively. These application-defined stubs
are called smart proxies, which are customizable meta-objects
that can mediate access to target objects moreflexibly than the
default stubs generated by an IDL compiler. Smart proxies
allow developersto modify the behavior of interfaces without
re-implementing client applications or target objects.

The two main entities in smart proxy designs are (1) the
smart proxy factory and (2) the smart proxy meta-object,
which are shown in Figure 2. When using a smart proxy

CLIENT in args
creztes operation()
FACTORY | [SMART OBJECT
PROXY out args +return value (BLZn)
- o) 3
p .
/
SKELETON
DEFAULT ORB R%ABI;'E I;H‘T’[E
proxy || INTERFACE ADAPTER
ORB CORE)

Figure 2: TAO's Smart Proxy Model

to modify the behavior of an interface, the developer imple-
ments the smart proxy class and registers it with the ORB.
After installing the smart proxy factory, the ORB automati-
cally uses the application-supplied factory to create object ref-
erences when a client invokes the _nar r ow operation of an
interface. Thus, if smart proxies are installed before a client

accesses these interfaces, the client application can transpar-
ently use the new behavior of the proxy returned by the fac-
tory.

Smart proxies are not yet standardized in CORBA, though
many ORBs support this feature as a proprietary extension.

2.2 Overview of Interceptors

The smart proxies feature outlined above is a meta
programming mechanism that increases theflexibility of client
applications. Interceptors are another meta-programming
mechanism used in DOC middlewareto increase the flexibility
of both client and server applications. In CORBA, intercep-
tors are standard meta-objectsthat stubs, skeletons, and certain
points in the end-to-end operation invocation path can invoke
at predefined “interception points.”

Prior to CORBA 2.3.1 interceptors were under-specified
and therefore non-portable. In contrast, the interceptors dis-
cussed in this paper are based on the so-called “ Portable I nter-
ceptors’ specification [7], which isbeing ratified by the OMG.
Two types of interceptors are defined in the CORBA Portable
I nterceptor specification:

¢ Request interceptors, which deal with operation invoca
tions;

¢ |OR interceptors, which insert information into interop-
erable object references (IORs).

Both types of interceptor are described below.

221 Request Interceptors

Request interceptors can be decomposed into client request in-
terceptors and server request interceptors, which are designed
to intercept the flow of a request/reply sequence through the
ORSB at specific pointson clientsand servers, respectively. De-
veloperscaninstall instances of theseinterceptorsinto an ORB
viaan IDL interface defined by the Portable | nterceptor speci-
fication. Regardless of what interface or operation is invoked,
after request interceptors are installed they will be called on
every operation invocation at the pre-determined ORB inter-
ception points shown in Figure 3.

As shown in this figure, request interception points occur
in multiple parts of the end-to-end invocation path when a
client sends a request, when a server receives a request, when
a server sends areply, and when aclient receives areply. Dif-
ferent hook methods will be called at different pointsin this
interceptor chain. For example, the send_r equest hook is
called on the client before the request is marshaled and the
recei ve_r equest hook iscalled onthe server after the re-
guest is demarshaled.

Compared to a client invocation path, a server invo-
cation path has an additional interception point called

CLIENT REQUEST
INFO

inargs

operation ()

out args+ return value
+—O0

OBJECT
(SERVANT)

A
IDL

L d
|SERVANT
SKELETON

CLIENT

A SERVER REQUEST
INFO

MANAGER |

PORTABLE OBJECT ADAPTER

PORTABLE INTERCEPTOR API .
1) send_request()/send_poll ()
2) receive_request_service_contexts ()
3) receive_request()/receive_poll ()
4) send_reply()/send_exception()/send_other()
5) receive_reply()/receive_exception()/
recei ve_ot her ()

Figure 3: Request Interception Points in the CORBA Portable
Interceptor Specification

recei ve_request _servi ce_cont exts, which is in-
voked before the POA dispatches a servant manager. This
interception point prevents unnecessary upcalls to a servant.
For example, in the CORBA Security Service [8] framework
this interception point can be used to inspect security-related
credentials piggybacked in a service context list entry. If the
credentials are valid the upcall can proceed to other intercep-
tors (if they exist) or to the servant; if not, an exception will be
returned to the client.

The behavior of an interceptor can be defined by an ap-
plication developer. An interceptor can examine the state of
the request that it is associated with and perform various ac-
tions based on the state. For example, interceptors can invoke
other CORBA operations, access information in arequest, in-
sert/extract piggybacked messages in a request’s service con-
text list, redirect requests to other target objects, and/or throw
exceptions based on the object the original request is invoked
upon and the type of the operation. Each of these capabilities
is described below:

Nested invocations: A request interceptor can invoke oper-
ations on other CORBA objects before the current invocation
it is intercepting completes. For example, monitoring and de-
bugging utilities can use this feature to log information associ-
ated with each operation invocation. To avoid causing infinite
recursion, devel opers must be careful to act only on targeting
interfaces and operations they intend to affect when perform-
ing nested invocationsin an interceptor.

Accessing request information: Reguest interceptors can
access various information associated with an invoca
tion, such as the operation name, parameters, exception
lists, return values, and the request id via the MOP in-
terface as defined in the Portable Interceptor specifica-
tion. Interceptors cannot, however, modify parameters
or return values. This request/reply information is en-
capsulated in an instance of Cl i ent Request|nfo or
Server Request | nf o classes, which derive from the
Request | nf o classand contain theinformationlisted above
for each invocation.

For example, client request interceptors are passed
d i ent Request | nf 0 and server request interceptors are
passed Server Request | nfo. These Request | nf o-
derived objects can use features provided by the CORBA
Dynani ¢ module. This module is a combination of pseudo-
IDL types, such as Request Cont ext and Par anet er,
declared in earlier CORBA specifications. These types fa-
cilitate on-demand access of request information from the
Request | nf o to avoid unnecessary overhead if an inter-
ceptor does not need all the information available with the
Request I nf o.

Service context manipulation: As mentioned earlier, re-
guest interceptors cannot change parameters or the return
value of an operation. They can, however, manipulate ser-
vice contexts that are piggybacked in operation requests and
replies exchanged between the clients and servers. A service
context isasequencefield in a GIOP message that can transmit
“out-of-band” information, such as authentication credentials,
transaction contexts, operation priorities, or policies associ-
ated with requests.

For example, the CORBA Security Service uses request in-
terceptors to insert user identity via service contexts. Like-
wise, the CORBA Transaction Service uses request inter-
ceptors to insert transaction-related information into service
contexts so it can perform extra operations, such as com-
mit/rollback, based on the operation results in a transaction.
Each service context entry has a unique service context iden-
tifier that applications and CORBA components can useto ex-
tract the appropriate service context.

Location forwarding: Request interceptors can be used to
forward a request to a different location, which may or may
not be known to the ORB a priori. This can be done via
the Port abl el nt ercept or: : For war dRequest ex-
ception, which allows an interceptor to inform the ORB that
a retry should occur upon the new object indicated in the ex-
ception. The exception can also indicate whether the new ob-
ject should be used for all future invocations or just for the
forwarded request.

Since the For war dRequest exception can be raised at
most interception points, it can be used to provide fault tol-

erance and load balancing [9]. For example, the IOR of a
replicated object can be used as the forward object in this ex-
ception. When the object dies for some reason—and this situa-
tionis conveyed to the interceptor—this exception can be raised
even before the POA tries to make an upcall.

Multipleinterceptors: Multiple request interceptors can be
registered with an ORB, which will then iterate through them
and invoke the appropriate interception operation at every in-
terception point according to the following rules:

e For each request interceptor, only one starting inter-
ception point can be called for a given invocation. A
starting interception point is the first point invoked in
a request/reply sequence. For instance, the starting
points for a client ORB include send_r equest and
send_pol | . Likewise, the starting point for a server
ORB isrecei ve_request _servi ce_cont exts.

o For eachrequest interceptor, only oneending interception
point can be called for agiven invocation. The ending in-
terception point is the last juncture where an interception
may occur in the request/reply sequence. The ending in-
terception pointson aclient ORB arer ecei ve_r epl vy,
recei ve_exception,andr ecei ve_ot her andthe
ending interception points for a server ORB consist of
send_repl y,send_excepti on,andsend_ot her.

e There can be multiple intermediate interception points.

¢ |ntermediate interception points cannot be invoked in the
case of an exception.

e The ending interception point for a given interceptor will
be caled only if the starting interception point runs to
completion.

Multiple interceptors are invoked using a flow-stack model.
When initiating an operation invocation, an interceptor is
pushed onto the stack after its starting interception point com-
pletes successfully. When an invocation completes, the inter-
ceptors are popped off the stack and invoked in reverse order.
The flow-stack model ensures that only interceptors executed
successfully for an operation can process the reply/exceptions.

Exception handling: Reguest interceptors can affect the
outcome of a request by raising exceptions in the in-
bound or outbound invocation path. In such cases, the
send_except i on operation of a server request intercep-
tor is invoked on the reply path and is received at the
clientinther ecei ve_except i on interceptor hook. When
asend_exception or recei ve_excepti on operation
raisesaFor war dRequest exception, the other interceptors
have their send_ot her andr ecei ve_ot her interception
points invoked, respectively.

2.2.2 10R Interceptors

[IOPversion 1.1 introduced an attribute called conponent s,
which contains a list of tagged components to be embedded
within an IOR. When an IOR is created, tagged components
provide a placeholder for an ORB to store extra information
pertinent to the object. This information can contain various
types of QoS information related to security, server thread
priorities, network connections, CORBA policies, or other
domain-specific information.

The origina [1OP 1.0 specification provided no standard
way for applications or services to add new tagged compo-
nents into an IOR. Services that require this field were there-
fore forced to use proprietary ORB interfaces, which impeded
their portability. The Portable Interceptors specification re-
solves this problem by defining IOR interceptors.

IOR interceptors are objects invoked by the ORB when it
creates|ORs. They allow an|OR to be customized, e.g., by ap-
pending tagged components. Whereas request interceptors ac-
cess operation-related information via Request | nf os, IOR
interceptors access |OR-related information via | ORI nf os.
Figure 4 illustrates the behavior of IOR interceptors. A server

1. Creste object

reference J

Server ORB

Component

IOR
Interceptor
Repository

contains

Builder

@on

NS
m&rp

4. add
component

contains

| ORI nf o

Effective Policies

Figure 4: IOR Interceptors

3.add ior_

| ORI nt er cept or
component

ORB responsible for creating an IOR contains an IOR in-
terceptor repository. In turn, this repository contains a se-
ries of IOR interceptors that have been registered with the
ORB. When the server process requests the ORB to cre-
ate an I0OR, the ORB iterates through the IOR intercep-
tors in the repository using the est abl i sh_conponent s
operation. The IOR interceptors then add tagged com-
ponents to the IOR being generated by refering to the
| ORI nf o passed in by calling add_i or conponent or
add_i or conponent to_profile.

2.3 Evaluating Alternative M eta-Programming
M echanismsfor ORB Middleware

We presented an overview of smart proxies and interceptors
above. We now evaluate these two mechanisms, and then

compare and contrast them with two other meta-programming
mechani sms—pluggable protocols and servant managers-that
are provided by most CORBA implementations.

2.3.1 Smart Proxiesvs. Interceptors

Smart proxies and interceptors are similar in that they extend
ORB-mediated invocations and functions. They differ, how-
ever, in their architecture and have their own pros and cons, as
described bel ow.

Intent: A smart proxy can be used for avariety of purposes,
such as improving performance via caching, whereas inter-
ceptors are used primarily to (1) audit and verify information
along theinvocation path and (2) redirect the operation if nec-
essary. For instance, aserver request interceptor can determine
whether the server should handle certain operation invocations
by inspecting the incoming requests and forwarding some re-
guests to other servers that can handle them.

Scope of control: A different smart proxy can be config-
ured for each interface, whereas the same set of interceptors
will be invoked at all the ORB mediated points of an invoca-
tion. Moreover, a smart proxy is solely a client mechanism,
whereas request interceptors are invoked on the request path
from client-to-server and on the reply path from server-to-
client.t

Invocation points. A smart proxy invocation point occurs
whenever an operation is invoked through a stub. In contrast,
interceptors are invoked at many points, including IOR cre-
ation time and/or before a call is sent by the POA to the ser-
vant.

Cardinality: A client can have only asingle smart proxy for
each interface, whereas multiple interceptors can be registered
with the ORB.

Modifiability: Since smart proxies replace default ORB
generated stubs completely, smart proxies can modify the pa
rameters or results of an operation. In contrast, the Portable
Interceptor specification does not allow request interceptorsto
change operation parameters or return values.

Overhead: A smart proxy mechanism incurs minimal over-
head, i.e., asingle extramethod call per-operation invocation.
In contrast, request interceptors can incur additional overhead
to access request information because information related to
the request is bundled into any's, which have higher overhead
for their insertion and extraction operations.

Standardization: Smart proxies have not yet been standard-
ized inthe CORBA specification. CORBA interceptorswill be
standardized after the Portable | nterceptor specification is rat-
ified.

1IOR interceptors are just invoked during object reference creation.

In general, design problems that require pre-invocation or
per-interface extensions are well-suited for smart proxies.
Portable interceptors, in contrast, provide a suitable solution
for applicationsthat requireasemantically richer—albeit some-
what more expensive-meta-programming abstraction.

2.3.2 Servant Managers

The CORBA POA specification [1] allows server applications
to register servant manager objects that activate servants on-
demand, rather than creating all servants before listening for
requests. There are two types of servant managersin CORBA:

e Servant activators, which provide a hook method called
i ncar nat e that creates a servant the first time an object is
accessed by aclient.

e Servant locators, which provide a hook method called
pr ei nvoke that areinvoked by a POA to create a servant for
every request on an object. Figure 5 illustrates how servant
locators are used in a CORBA application to perform various
resource management activities before dispatching an opera

tion to a servant.
o,
(2) create sarvant| ServantLocator

[Server ORB j

(1) upcall

Figure 5: Managing Resources with a Servant L ocator

A servant locator is similar to an interceptor in several re-
spects. For example, both are implementations of the Inter-
ceptor pattern [10]. Moreover, both can (1) intercept requests
before they are dispatched to servants, (2) invoke extra opera-
tions, and (3) affect the outcome of request invocations, e.g.,
by throwing exceptions. Unlike interceptors, however, servant
locators only affect the POASs that install them and can only
provide access to alimited subset of the request-related infor-
mation. As aconsequence, they are more tightly coupled with
POAs and servant implementations than are interceptors.

2.3.3 Pluggable Protocols Frameworks

Another type of meta-programming mechanisms provided
by some DOC middleware is pluggable protocols frame-
works [11, 12], which is in the process of being standardized
by the OMG in the Extensible Transport Framework [13] spec-
ification effort. These frameworks decouple the ORB’s trans-
port protocols from its component architecture. Developers

can therefore add new protocols without requiring changes to
existing application software.

Figure 6 illustrates TAO's pluggable protocols framework,
which allows developers to install new protocols into the
ORB by implementing customized pluggabl e protocol objects.
Higher-level application components and CORBA services

IN ARGS

CLIENT operation (args) OBJECT (SERVANT)
+—O

OBJECT ADAPTER

OTHER
ORB core
SERVICES

ORB MESSAGING COMPONENT

REAL-TIME | [MULTICAST | | EMBEDDED
0P 0P 0P

[=]]

RELIABLE,
BYTE-STREAM

ATM

PoLICY
CONTROL

GIOPLITE

ORB MESSAGE
FACTORY
ORB TRANSPORT
ADAPTER FACTORY

CONNECTION
MANAGEMENT

PROFILE
MANAGEMENT

TCP UDP

CCONCURRENCY

PLUGGABLE PROTOCOLS FRAMEWORK

MEMORY
MANAGEMENT

ORB TRANSPORT ADAPTER COMPONENT

ADAPTIVE Communication Environment (ACE)

COMMUNICATION INFRASTRUCTURE

Figure 6: TAO's Pluggable Protocols Framework Architecture

use the Component Configurator pattern [10] to dynamically
configure custom protocols into TAO's pluggable protocols
framework without requiring obtrusive changes to themselves
or the ORB.

As with interceptors and smart proxies, pluggable proto-
cols frameworks are meta-programming mechanisms that add
functionality to ORBs. However, whereas other two mecha-
nisms alter the semantic of objects, pluggable protocolsframe-
works alter the underlying ORB transport mechanism. Thus,
they do not permit fine-grained control over objects since they
affect all objectsinan ORB and it is hard to vary the transport
mechanism at the level of object references. Moreover, since
pluggable protocols deal directly with the communication in-
frastructure, they are usually more complex to program than
interceptors or smart proxies.

Figure 7 compares the various meta-programming mech-
anisms aong a number of dimensions described above.
Portable interceptors have the highest overhead since they are
the most flexible meta-programming mechanism. Although
other mechanisms have less overhead compared to portable
interceptors, they are targeted at more specific system mech-
anisms. When combined with patterns, such as Component
Configurator [10] and OS features, such as explicit dynamic
linking [14], these meta-programming mechanisms can all be
configured dynamically into CORBA clients and servers.

High 4
Portable
Interceptors
Overhead
Pluggable
Smart Proxies Protocols,
ServantL ocators
Low -~
~ Scope: gpecific interface All interfaces
Arg. manipulation: Read-write Read-only

Figure 7: Comparing Alternative Meta-programming Mecha-
nisms

3 Key Design Challenges and Pattern-
based Resolutions

In this section, we explore how smart proxies and intercep-
tors are implemented in TAO. To clarify and generalize our
approach, the discussion below focuses on the patterns [4] we
applied to resolve the key design challenges faced during our
development process.

3.1 Smart Proxy Design Challenges and Reso-
lutions

As mentioned in Section 2.1, the goal of using smart proxies
is to change/add behaviors to existing programs with minimal
modificationsto client applications. Below, we discussthe key
design challenges we faced while refactoring TAO's existing
stub architecture to support smart proxies.

3.1.1 Challenge: Providing Flexible Support for Smart
Proxies

Context: The proxy framework generated by TAO's IDL
compiler should allow applications to use customized prox-
ies transparently. For example, changesto client applications
that use customized proxies must be localized. In particular,
developers should be able to install customized proxies with
little or no change to client application code.

Problem: TAO'soriginal IDL compiler generated only fixed
default proxies. In particular, the _nar r ow operation it gen-
erated for each interface returned a default proxy. If develop-
ers require more flexibility, however, the _nar r ow operation
must be able to return either an IDL-generated default proxy
or acustom smart proxy.

Since the _nar r ow operation is generated by TAO’s IDL
compiler as part of the client’s stub it is not possible to mod-

ify this method externally from a client application. More-
over, since fixed default stubs were generated any changes re-
quired manually modifying the IDL-generated code. Clearly,
this solution was inflexible and had to be solved at the stub-
generation level.

Solution — Apply the Factory Method, Adapter, and Sin-
gleton patterns. We applied these design patterns [4] in
TAQO's smart proxy framework to provide the necessary flex-
ibility to create different types of proxies transparently in
TAO's IDL-generated code, as follows:

e The Factory Method pattern defers instantiation of vari-
ous types of meta-objects to subclasses.

e The Adapter pattern provides a higher level of abstrac-
tion for TAO's proxy factories and to delegate creation
requests to the appropriate factory.

e The Singleton pattern makes the proxy factory adapter a
global access point for factory registration from program
initialization to termination.

Figure 8 illustrates how we applied these three patterns in
TAO to provide flexible support for smart proxies. By using

Proxy Factory Adapter
{Singleton}

Default Proxy Facotry

+create_proxy ()
pf: Default_Proxy_Factory

1

+register_factory (Default_Proxy_Factory df);
+unregister_factory (); Smart Proxy Factory
+create_proxy ();

+create_proxy ()

E Users defined classes

Figure 8: Applying Patterns to Provide Flexible Support for
Smart Proxies

E TAO IDL compiler generated classes

these patterns, applications can obtain either the default IDL-
generated proxy or a smart proxy without changing existing
code manualy. For example, after an application registers a
per-interface smart proxy factory, the _nar r ow operation call
will create the appropriate proxy automatically.

3.1.2 Challenge: Treating Remote and Collocated Smart
Proxies Uniformly

Context: A target object can be either remote or it can be
collocated in the client’s address space [15]. TAO provides
customized meta-objects called collocated proxiesto optimize
performancefor collocated objects. Smart proxies should pro-
vide similar functionality to collocated and remote proxies
since the ability to differentiate remote and collocated smart
proxies provides developers with greater flexibility.

Problem: Depending on where atarget object resides, a de-
veloper may or may not wish to invoke the smart proxy in-
stalled for the object. For example, a developer may not
want to cache operation resultsin a coll ocated smart proxy be-
cause these calls are already resolved locally. Originally, TAO
treated the generation of collocated stubs as a special case and
if smart proxies were installed they would supercede the de-
fault stubs, even if the stubs were collocated.

Ignoring collocation optimi zations, however, may cause un-
necessary waste by trying to optimize a bottleneck that does
not exist. Therefore, it is necessary to distinguish the remote
and collocated case to take full advantage of this construct and
avoid unnecessary waste of system resources, such as memory
and CPU cycles. In addition, smart proxies must (1) provide
applications with the same interface as default proxies and (2)
be able to call down to the default proxy to communicate with
remote target objects.

Solution — Apply the Composite pattern: The Composite
pattern [4] supports part/wholerelationshipsand allows all ob-
jects in such composite structures to be processed uniformly.
We applied the Composite pattern to TAO to provideauniform
view among different proxies availableto clients. Asshownin
Figure9, inthisdesign (1) smart proxy classesinherit fromthe

srv->authenticate ();)
base_proxy->get_quote (stockname);

base_proxy

Default Proxy

+long get_quote (in string stockname);

| . | |

Remote Proxy Local Proxy

Smart Proxy
svc: Authentication Service
+long get_quote (in string [®)
stockname);

+long get_quote (in string
stockname);

+long get_quote (in string
stockname);

Figure 9: Applying the Composite Pettern to TAO's Smart
Proxy Design

default proxy and (2) also store a pointer to the default proxy
to make invocations to target object. Collocated and remote
proxies are children of the default proxy. Thus, smart proxies
can make callsto the remote or collocated proxy transparently,
while providing the same application interface as the default
proxies.

3.2 Interceptor Design Challenges and Resolu-

tions

Asdiscussedin Section 2.2, interceptors can extend the behav-
ior of CORBA operations with minimal changesto client and
server applications. In this section, we discuss the key design
challenges faced while enhancing TAO's existing invocation
architecture to support interceptors.

3.21 Challenge: Making Information Retrieval Possible
Per-Operation

Context: Request interceptor hook methods are invoked at
different interception points along the invocation path. These
interceptors must be able to (1) verify and audit information
being passed to the target object as the invocation continues
and (2) potentially terminate the invocation before it reaches
the target object.

Problem: An ORB must provide information in response
to interceptor queries. This information may be operation-
specific and even temporal. For example, the result of an op-
eration may be available only after the POA makes an upcall
to a servant and the operation executes.

An ORB must therefore have a generic way to access
operation-level information and disclose this information to
interceptors that are invoked at ORB-mediated interception
points. Originally, TAO did not maintain this information to
avoid degrading the normal execution of theinvocation in situ-
ationswhere thisinformationwas not required by applications.
However, TAO's original design made it hard for applications
to influence invocation behavior.

Solution — Generation of nested Requestinfo classes for
each interface operation: To provide invocation informa-
tion dynamically and efficiently, we modified TAO’s IDL com-
piler to generate Request | nf o classes for each operation.
Request | nf o classes areinstantiated for each operation in-
vocation and passed to the interceptors during the invocation.
Thus, interceptors can access operation-related information,
as shown in Figure 10. Every operation in an IDL interface

il

1

REQUEST INFO

GET QUOTE

QUOTER
INTERFACE

long get_quote(
in string

“+reply_status ()
+arguments ()
+exceptions ()

update_result ();
update_exception ();

stockname);

T
| << yses >>
L 2

log_quote(long
€);

quote) MODULE DYNAMIC

LOG QUOTE
REQUEST INFO

void shutdown (); ParameterList

"e:long

ContextList

ExceptionList

RequestContext

Figure 10: TAO's Portable Interceptor Design

may have different formal parameters, result types, and user
exceptions. To minimize the overhead of copying multiple ar-
guments and the return value of the upcall, we only store a
reference, rather than a copy of the parameters, results, and
exceptions.

We added TAO-specific methods to each Request | nf o
class and used these methods internally to update the re-
sult and the exception thrown, rather than instantiating a
new Request | nf o class before every interception point
is called. For instance, the result of an operation is ob-
tained only after the POA makes the upcall and the client
receives a reply. At this point, the client can verify the re-
sultinther ecei ve_r epl y interceptor hook by querying the
Request | nf o object, making it necessary to update the re-
sult before this interception point is invoked. Thus, temporal
information can also be propagated to interceptors.

3.2.2 Challenge: Avoiding Gratuitous Waste Construct-
ing RequestInfos

Context: Interceptors can access any request-related infor-
mation. Their interface must therefore be sufficiently general
to incorporate any type of data. In CORBA, any isageneric
type that can hold information of any other types, which are
stored using type/value tuples.

Problem: Ingenerd, not al interceptorsinstalledin an ORB
are interested in handling al information, or even al opera-
tions. For example, security-related interceptors may not be
interested in what operation is being invoked, but only want
to know the contents of the service context list. Likewise, an
auditing interceptor may only be interested in the parameters
of certain operations of certain objects, while ignoring others
altogether.

Although CORBA's any typeisflexible, it is less efficient

and more resource consumptive than other common CORBA
data types, such as| ong or st ruct . We need to avoid the
overhead of any insertion operators if installed interceptors
are not interested in certain operation information. Thereisno
way, however, to predict what interceptors will be interested
inapriori.
Solution — On-demand creation of oper ation infor mation:
To avoid unnecessary waste of resources, we applied the Lazy
Initialization pattern [16] to make sure the operation informa-
tion is only inserted into any objects the first time a related
interfaceis accessed by an interceptor viaitsRequest | nf o-
derived interface. This design ensures that pertinent informa-
tion in Request | nf o-derived objects will only be created
if an interceptor is interested in the information. In TAO,
we retrieve this information via types defined in the CORBA
Dynam ¢ module.

The Dynani ¢ module defines the collocation of request
parameters, results, and exceptions in any in a sequence of
structures that an application interceptor can extract and use.
In TAO, methods returning Dynamic objects are implemented
to minimize the gratuitous waste of storing all information de
fact o into lists of anys as shown in Figure 11. In particu-

Portablel nterceptor: : Requestinfo

Dynamic::ParameterList holder arguments;
Dynamic::ExceptionList holder exceptions;

Dynamic::ParameterList get_arguments ();
Dynamic::ExceptionList get_exceptions ();

%

Operation_specific_Requestinfo T

create new arguments contents

if argument contains nothing
Dynamic::ParameterList get_arguments ();Qf-——— T e

Dynamic::ExceptionList get_exceptions ();

Figure 11: TAO applies Lazy Initialization building Dynamic
objectsin Requestinfo

lar, this information is inserted into any s only when queried,
which occurs just once. Subsequent queries simply return the
any variables created previoudly. Thus, unless an interceptor
needs to query a particular piece of request information, it in-
curs no additional overhead. This optimization is targeted for
the common case where interceptors are used to pass service
contexts.

3.2.3 Challenge: Implementing Time and Space Efficient
Flow Stacks

Context: The Portable Interceptor specification defines gen-
eral flow rulesto which a portable interceptor implementation
should adhere. These rules ensure that only interceptors in-
voked successfully from a starting interception point will ever
be invoked at an ending interception point. Conceptually, in-
terceptors are pushed on to a stack if invoked successfully ina
starting interception point and popped off that stack when they
invoked at ending interception points.

Problem: Toimplement the semanticsdictated by CORBA's
genera flow rules, some type of stack implementation is
needed. However, implementing a flow stack with a general-
purpose stack container class, such as the one in the standard
C++ library [17], has the following problems:

e Time overhead: The stack implementation may incur
non-trivial performance overhead if it allocates space off of
the heap dynamically for each interceptor or interceptor refer-
ence pushed onto the stack. Dynamic memory is particularly
problematic for real-time applications.

e Spaceoverhead: The stack implementation itself adds
to the ORB footprint since atemplate must be instantiated for
each type of request interceptor, i.e., client or server request
interceptors. Moreover, other auxiliary templates may need
to be instantiated for internal stack support code. Not only
does this increase the static footprint of the ORB, but it also
increases run-time ORB memory requirements, which may be
unacceptable for embedded applications.

In addition to inherent problems with real stack implemen-
tations detailed above, another common problem can occur.
Sinceinterceptors are invoked during arequest, they arein the
critical path. This meansthat interceptor support code, such as
aflow stack, can have an adverse affect on performanceif that
support is not implemented efficiently. In particular, adding
locking mechanisms in the flow of arequest can degrade per-
formance since threadswaiting for alock can block. The act of
acquiring and releasing the lock also imposes further delays.

Solution — Apply optimization principle patterns. Opti-
mization principle patterns [18] define a set of principles that
can be applied to improve performance in various ways. To
implement time and space efficient flow stacks, heap alloca
tions must be minimized to avoid degrading performance and
increasing footprint. Both can be avoided by taking advantage
of pre-computed resources and the properties associated with
them.

As dictated by the Portable Interceptor specification, inter-
ceptors are registered with the ORB when the ORB is boot-
strapped, i.e., during the initiadl CORBA: : ORB. nit call.
This means that storage for the interceptors will aready have
been all ocated by the timetheinterceptorsareinvoked so there
should ideally be no need for additional alocations at a later
point in time.

By keeping the order with which the interceptors are stored
unchanged for the lifetime of the ORB, it is possible to im-
plement highly efficient stack push and pop operations. Inter-
ceptors will always be pushed on to the stack with the same
relative ordering they are stored in the ORB. This property en-
sures that the number of elements on the stack will be equal
to the ORB storage location of the last interceptor pushed on
to the stack. Hence, the general flow rule semantics can be
implemented using alogical flow stack.

Applying the solution to TAO: TAO stores pointers to reg-
istered interceptors in a pre-alocated array, which avoids in-
creased footprint and run-time memory requirements. Rather
than having to instantiate a stack for each type of intercep-
tor (i.e., client and server request interceptors), a single array
for each type of request interceptor is created. The order in
which interceptors are stored in the array remains unchanged
for thelifetime of the ORB. Thus, push and pop operationscan
be implemented by simply incrementing and decrementing a
variable, respectively, asillustrated in Figure 12.

The following example presents a scenario that illustrates
how TAO's logical flow stacks are implemented:

1. Threereguest interceptorsare registered when the ORB
isinitialized. Specifically, the CORBA: : ORB.i ni t method
invokes all ORB initializers registered by the application.
Those ORB initiaizers then register the interceptors by us-
ing the appropriate methods in the ORBI ni t | nf o argument
passed to the ORB initializer by the CORBA: : ORB.i ni t

: Request : Client Request Interceptor Logical Flow Stack : Server

L

1.send_request() ! !

2. incr_stack_size()

3. operation()

4. decr_stack_size()

5. receive_reply()

Figure 12: An Efficient Flow Stack Implementation

method. An example of this interceptor registration code fol-
lows:

/1 Code that would reside in a

/1 concrete inplenmentation of an

/1 ORBInitializer::post_init() method,
/'l exanpl e.

for

/Il Create and install a client interceptor.
Portabl el nterceptor::
Cli ent Request | nt ercept or _var
interceptor = new
Secure_Cl i ent _Request _I nterceptor;

/1 "info" is the ORBInitlnfo argunent.
i nfo->add_cl i ent_request _i nterceptor
(interceptor.in ());

2. Two interceptors are successfully invoked at a starting
interception point during arequest. This correspondsto step 1
in Figure 12.

3. Each successful request interceptor invocation incre-
ments the stack size by one, which results in a stack size of
two. Stack element one corresponds to request interceptor
one as stored in the ORB's interceptor array. Similarly, stack
element t wo correspondsto interceptor t wo inthe ORB’sin-
terceptor array. Again, alogical stack is in use here. This
correspondsto step 2 in Figure 12.

4. Anending interception point is invoked.

5. Within the ending interception point, each of the inter-
ceptorsin the logical stack isinvoked. Prior to invoking each
interceptor, the stack size is decreased by one (step 4 in Fig-
ure 12), effectively popping an interceptor off of the logical
flow stack. Since only the first two interceptors were pushed
on to the stack, only the first two of the three interceptors will
be invoked (step 5 in Figure 12) in the ending interception
point and the third interceptor will never be invoked.

TAO's logica flow stack implementation allows the
CORBA general flow rule semantics to be implemented ef-
ficiently and with minimal impact on ORB footprint. These

benefits arise from the fact that flow stack storage is pre-
allocated prior to the first use of the flow stack. In addition,
the TAO implementation ensures the order of the interceptors
stored in the ORB's interceptor array remains unchanged for
the lifetime of the ORB.

One other aspect of this implementationis the fact that it is
not necessary to acquire a lock to prevent other threads from
modifying the logical stack. Only one thread ever services a
request at agiven time. Thus, thereis no need to implement a
locking mechanism for the logical stack, in which case addi-
tional overhead is not incurred.

4 Empirical Benchmarking Results

Developers of distributed applications must often make trade-
offs between time/space overhead and flexibility. Selecting
which meta-programming mechanism to use, e.g., smart prox-
ies or interceptors, is an example of thistradeoff. This section
presents benchmarking results that quantify the time/space
overhead and tradeoffs of using smart proxies and portablein-
terceptors.

4.1 Overview of the Testbed Environment and
Benchmarks

The experiments were conducted using a Bay Networks L at-
tisCell 10114 ATM switch connected to two dual-processor
UltraSPARC-2s running SunOS 5.7. Each UltraSPARC-2
contains 2 168 MHz CPUs with a 1 Megabyte cache per-CPU,
256 Mbytes of RAM, and an ENI-155s-MF ATM adapter card
that supports 155 Megabits per-sec (Mbps) SONET multi-
mode fiber. The experimental testbed is shown in Figure 13.
The benchmarking programs were compiled using the Sun CC

06O o o
c, C, ..C i =
QR uests E ﬁ =
& ORB Core —
Client Server
E—]x—B
= =
) ATM Switch DRy
Ultra2 Ultra2
Figure 13: Testbed for Meta-programming Mechanism

Benchmarks

5.0 compiler with all optimizations enabled. We conducted

two different benchmarks: one measured the performance of
smart proxies and the other the performance of interceptors.

411 Smart Proxy Results

The overhead of calling an operation via a smart proxy is
equivalent to calling the default proxy, i.e, it is the cost of
alocal virtual method call. Therefore, we designed our smart
proxy benchmark to show how performance can be improved
if smart proxies are used as a cache to minimize the number of
remote operations. Here is the IDL interface we used for this
test:

interface Broadway_Show

{
/1 Get the prices for the box

/] seats of the Broadway show.
short box_prices ();

/1 Order tickets.
long order_tickets (in short number);

h

The servant in the test is a virtual box office that alows
clients to purchase tickets to Broadway shows. A client can
query the prices of box seats and if they are within a price
range, it buys them. Thus, the client normally makes two in-
vocations: (1) box _pri ces and (2) or der ti cket s if the
prices are reasonable. By default, every time aclient enquires
about ticket prices, aremote invocation occurs.

We can minimize overhead significantly by using a smart
proxy that makes just one remote invocation and then caches
the result and reuses it when subsequent enquiries occur. This
caching improves the performance significantly, as shown in
Figure 14. This figure illustrates that omitting unnecessary

700

599.83
600

g
8

8
8

298.32

Throughput (events/sec)
8
8

8

8

0

Smart proxy

Figure 14: Performance Improvement Using a Smart Proxy to
Cache Information

Default proxy

remote operation calls improve the performance by ~130%,
even over a high-speed ATM network.

4.1.2 PortableInterceptor Results

Our portableinterceptor benchmarks quantify the cost of sup-
porting and using interceptors in TAO. Moreover, these tests
quantified the costs of individua interceptor features, such as
accessing a parameter list and accessing a service context list.
In the benchmark program, the following three IDL operations
were defined in the Secur e_Vaul t interface:

interface Secure_Vault

{

exception Invalid {};
struct Record { long check_num |ong anmount; };

/1 No args/exceptions operation.
short ready ();

/1l Throws a user exception.
voi d authenticate (in string user)
rai ses (lnvalid);

/] updates a struct and returns a count.
| ong update_records (in long id,
in Record val);
H

Each operation takes a different number and different
length of parameters and return values. Moreover, the
aut hent i cat e operation throws a user exception, whereas
the other two do not. This diversity allowed us to measure
the cost of preparing different types of generic information re-
quired by interceptors.

The interceptor benchmarks were run using the five differ-
ent configurations summarized below:

1. No interceptor support: In this configuration, inter-
ceptor support was disabled completely in the ORB, which
measured TAQO's baseline performance.

2. Nointerceptor installed: Thistimethe ORB was com-
piled with interceptor support, athough the test was performed
without installing an interceptor into the ORB. This configura-
tion measures the performance penalty applications must pay
for the potential of flexibility.

3. No-op interceptor installed: Thisconfiguration uses a
no-op interceptor to measure the cost of invoking interceptors.

4. Accessing the service context list: The interceptor in-
stalled in this configuration manipulates the GIOP request’'s
Servi ceCont ext Li st. On the client, a request inter-
ceptor creates a new Ser vi ceCont ext containing an en-
capsulated password string of 7 bytes and inserts the ser-
vice context object into the Servi ceCont ext Li st of
the invocation using the Request | nf o interface. On the
server, a different request interceptor performs the reverse
operation by (1) extracting the password string from the
Ser vi ceCont ext Li st using the Request | nf o inter-
face and (2) examining the password via a string comparison.

5. Accessing Dynamic information: TAO implements
the Dynani ¢ module types in request/reply operations, such
as parameters, results and exception list of an invocation, by
creating these information on-demand. The interceptor in-
stalled in this configuration accesses the dynamic information
of the operations by checking their parameters and return val-
ues.

Figure 15 shows the cost of supporting and using these vari-
ousfeaturesand configurationsin interceptors. Inthefirst con-
600

500

400

Oready
Bauthenticate
DOupdate_records

300

Throughput (events/sec)

200

update_records

authenticate
No Operations
ready
interceptor
support

No-op
nterceptor

o
interceptor
installed '

Accessing
Context

Accessing
Dynamic

Interceptor Types

Figure 15: Cost of Using Various Interceptor Features

figuration (no interceptor support), al three measured opera-
tions perform similarly because there is no significant differ-
ence between the information these operations exchange. The
results are similar for the second configuration, which added
interceptor support to the ORB but without installing any in-
terceptors. Thereisonly a~9% performance penalty for using
the ORB with interceptor support.

The no-op interceptor provide the baseline cost of invoking
an interceptor. Thereis ~26% of performance penalty com-
pared to not installing the interceptor due to invocations of
interception points on every operation invocation. As shown
in Figure 15, however, all three operations reveal similar per-
formance characteristics, regardless of the number and size of
their parameters and return values.

Similar performance degradation is also observed for inter-
ceptors that access the Ser vi ceCont ext Li st. This con-
figuration measures the cost of adding and extracting a short
string from the Ser vi ceCont ext . Again, all three opera-
tions experience ~8% degradation in performance compared
to using the no-op interceptor.

The interceptor that access the Dynani ¢ module types,
however, demonstrates more diversity in performance degra-
dation among the three operations we tested. There are
~T7%, ~19%, ~and 40% performance hits to the r eady,

aut hent i cat e, and updat e_r ecor d operations, respec-
tively, compared with no-op interceptor configuration. The
performance penalty comes not only from the accessing pa-
rameters using the Dynam ¢ module types, but also from the
on-demand creation of the dynamic information. The results
show that the preparation of Dynani ¢ module types are ex-
pensive, which justifies our decision not to create them if they
are not accessed by interceptors.

4.2 Memory Footprint Results

TAOQ isan open-source ORB that is used for real-time and em-
bedded systems with memory constraints. Therefore, smart
proxies and interceptors can be conditionally compiled in or
out at ORB compile-time. To measure the memory increment
necessary to support smart proxies and interceptors, we com-
piled the Secur e_Vaul t IDL interface shown above with
three different operations using the following configurations:

1. Interceptorsand smart proxies disabled.

2. Interceptors and the smart proxies both enabled;

3. Interceptors enabled but smart proxies disabled, whichis
the default configurationin TAO; and

4. Interceptors disabled and smart proxies enabled.

Table 1 shows the resulting sizes for different configura-
tions. Not counting the application-specific proxy and factory

Supporting Stub | % Inc. | Skeleton | % Inc.
Config. size (KB) size (KB)

Neither 1,288 0 1,277 0
Smart proxies 1,321 25 1,277 0
Interceptors 1,479 14.8 1,485 16.3
Both 1,517 17.8 1,489 16.6

Table 1: Footprint Comparison for Smart Proxies and Inter-
ceptors

method, smart proxiesincrease TAO's client memory footprint
by ~2.5%. In contrast, interceptors require ~15% extra foot-
print to handle on-demand creation of parameters lists, excep-
tionslist, etc.

We also performed the same test using the OMG Minimum
CORBA configuration [19], which defines a subset of the com-
plete ORB CORBA gpecification to reduce embedded system
memory footprints. By default, TAO's Minimum CORBA
footprint isless than 1 MB. To determine the footprint growth
when smart proxies and/or interceptors are used, we measured
the size of the ORB again using the same IDL interface, as
shown in Table 2: The footprint increase for TAO'sS smart

Supporting Stub | % Inc. | Skeleton | % Inc.
Config. size (KB) size (KB)

Neither 923 0 896 0
Smart proxies 974 55 896 0
I nterceptors 1,115 20.7 1,104 231
Both 1,148 24.3 1,105 23.2

Table 2: Footprint Comparison for Smart Proxies and Inter-
ceptorsin TAO's Minimum CORBA Configuration

proxiesin this configurationis 5.55% and the support for inter-
ceptors causes a significant 20-23% increment. These results
are not surprising since both these meta-programming features
are new and have not yet been optimized for TAO’s Minimum
CORBA configuration.

In general, the results in this section show that CORBA
meta-programming mechanisms can provide devel opers with
significant improvements in functionality, performance, and
convenience without drastic changes to existing application
software. Depending on which features are used, however,
developers need to consider the affect of time and space over-
head.

5 Reated Work

CORBA is increasingly being adopted as the middleware of
choice for a wide-range of distributed applications and sys-
tems. As systems evolve, new features/services will be added
to the system. Smart proxies and interceptors are good ways
to adapt existing applications to take advantage of these new
features. The following work on middleware technologies is
related to our research.

QuO: The Quality Objects (QuO) distributed object mid-
dieware is developed at BBN Technologies [20] by apply-
ing Aspect-Oriented Programming (AOP) [21] techniques to
adaptive network applications. QuO is based on CORBA and
supports:

1. Run-time performance tuning and configuration
through the specification of operating regions, behavior
alternatives, and reconfiguration strategies that allows the
QuO run-time to adaptively trigger reconfiguration as sys-
tem conditions change, represented by transitions between
operating regions, and

2. Feedback across software and distribution boundaries
based on a control loop in which client applications and server
objects request levels of service and are notified of changesin
service.

QuO achieves this functionality via customized smart prox-
ies, caled delegates, and embedded MOP interfaces within

the proxies. However, their framework does not allow usersto
install user-defined proxies and the MOP interfaces are specif-
ically designed for QoS purpose.

Orbix filters: Orbix defines the concept of filters, which are
an interceptor mechanism based on the concept of “flexible
bindings’ [22]. By deriving from a predefined base class, de-
velopers can intercept events. Common events include client-
initiated transmission and arrival of remote operations, aswell
as the object implementation-initiated transmission and arrival
of replies. Developers can choose whether to intercept the
request or result before or after marshaling. Orbix program-
mers can leverage the same filtering mechanism to build multi-
threaded servers[23, 24, 25].

dynamicTAO: The dynamicTAO reflective ORB [26] sup-
ports interceptors for monitoring and security. Particular in-
terceptor implementations are loaded into dynamicTAQ using
the Component Configurator pattern [10]. Using component
configuratorsto install interceptorsin dynamicTAO allows ap-
plications to exchange monitoring and security strategies at
run-time. Moreover, there are extensive use of reflective pro-
gramming techniquein dynamicTAO to determine the module
the ORB requires.

Fault-tolerant ORB frameworks: Interceptors have been
applied in anumber of fault-tolerant ORB frameworks such as
the Eterna system [27]. Eternal intercepts system calls made
by clients through the lower-level 1/0O subsystem and maps
these system calls to a reliable multicast subsystem. Eternal
does not modify the ORB or the CORBA language mapping,
thereby ensuring the transparency of fault tolerance from ap-
plications.

COM interceptors: Hunt and Scott [28] describe how to
implement interceptors in COM. The concept they use to im-
plement interceptors is similar to TAO's collocated stub [15].
This technique uses alternative wrappers around the object im-
plementation to masquerade as operation targets, which are
similar to TAO's smart proxies.

6 Concluding Remarks

Distributed object computing (DOC) middleware has been ap-
plied widely to domains ranging from telecommunications to
aerospace, process automation, and e-commerce. DOC mid-
dlieware shields developers from many distribution challenges
and allows applications to invoke operations on target objects
efficiently without concern for their location, programming
language, OS platform, communication protocols and inter-
connects, and hardware [29]. Historicaly, however, many
DOC middleware solutions havetightly coupled interfacesand
implementations, which makesit hard to adapt to requirement

or environment changesthat occur late in an application’slife-
cycle, i.e., during deployment and/or at run-time.

Meta-programming mechanismsaretechniquesthat helpin-
crease the flexibility and adaptability of applications, with-
out degrading performance significantly. This paper de-
scribes two meta-programming mechanisms—-smart proxies
and interceptors— that we added recently to TAO, is an im-
plementation of CORBA that is targeted for applications with
high-performance and real-time QoS requirements. These two
mechanisms allow CORBA applications to adapt to changing
requirements or environmental conditionsthat occur late in an
application’slife-cycle without requiring obtrusive changesin
existing software.

Based on our experience using smart proxies and intercep-
tors to develop TAO applications, we have observed the fol-
lowing tradeoffs and limitations with smart proxies and inter-
ceptors:

Performance: Interceptors incur more overhead than smart
proxies because they influence the processing of operations at
multiple points along the invocation path. The portable inter-
ceptor results in Section 4.1.2 illustrate the overhead of sup-
porting interceptors and the run-time costs of specific inter-
ceptor features.

In general, smart proxies perform better and consume less
memory than interceptors. The smart proxy results in Sec-
tion 4.1.1 show the circumstances where using smart proxies
can improve performance. Even thought thereis an extralayer
of indirection, the overall performance can be improved by
removing the gratuitous overhead of unnecessary remote in-
vocations.

Generality: Interceptors can be applied to either servers or
clients and can access operation-specific information. There-
fore, they provide an effective meta-programming mechanism
to handle advanced features, such as authentication and autho-
rization, transparently end-to-end. In contrast, smart proxies
only apply to specific interfaces accessed by clients. In par-
ticular, smart proxies can only influence the behavior at the
beginning of an invocation.

Portability: Smart proxies are not currently part of the
CORBA standard. Although many ORBs provide smart prox-
ies as extensions, this feature is not portable. Thereis, how-
ever, a Portable | nterceptors specification [7] that is being rat-
ified by the OMG.

All the source code, documentation, and tests for
TAO are open-source and can be downloaded from
www. ¢s. wust | . edu/ ~schni dt/ TAO ht i .

Acknowledgements

Thanks to Brian Wallis <brian.wallis@ot.com.au> for help-
ing with the design of TAO’s smart proxy interface.

References

[1] Object Management Group, The Common Object Request Broker: Ar-
chitecture and Specification, 2.3 ed., June 1999.

[2] M. Henning and S. Vinoski, Advanced CORBA Programming Wth
C++. Addison-Wesley Longman, 1999.

[3] D.C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,” Computer Communica-
tions, vol. 21, pp. 294-324, Apr. 1998.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[5] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom, “Flick: A
Flexible, Optimizing IDL Compiler,” in Proceedings of ACM SIGPLAN
'97 Conference on Programming Language Design and Implementation
(PLDI), (Las Vegas, NV), ACM, June 1997.

[6] C.Zimmermann, “Metalevels, MOPs and What the Fuzz is All About,”
in Advances in Object-Oriented Metalevel Architectures and Reflection
(C. Zimmermann, ed.), Boca Raton, FL: CRC Press, 1996.

[7] Adiron, LLC, et al., Portable Interceptor Working Draft — Joint Revised
Submission. Object Management Group, OMG Document orbos/99-10-
01 ed., October 1999.

[8] Object Management Group, Security Service 1.8 Specification, OMG
Document security/00-11-03 ed., November 2000.

[9] O. Othman, C. O’'Ryan, and D. C. Schmidt, “The Design and Perfor-
mance of an Adaptive CORBA Load Balancing Service,” |EEE Dis-
tributed Systems Online, vol. 1, December 2000.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrency and Dis-
tributed Objects, Volume 2. New York, NY: Wiley & Sons, 2000.

C. O'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for Real-
time Distributed Object Computing Middleware,” in Proceedings of the
Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

T. Nakgima, “Dynamic Transport Protocol Selection in a CORBA
System,” in Proceedings of the International Symposium on Object-
Oriented Real-time Distributed Computing (ISORC), (Newport Beach,
CA), IEEE/IFIP, Mar. 2000.

Object Management Group, Extensible Transport Framework for Real-
Time CORBA, Request for Proposal. Object Management Group, OMG
Document orbos/2000-09-12 ed., Feb. 2000.

W. W. Ho and R. Olsson, “An Approach to Genuine Dynamic Linking,”
Software: Practice and Experience, vol. 21, pp. 375-390, Apr. 1991.

N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Optimizations
for CORBA,"” C++ Report, vol. 11, November/December 1999.

K. Beck, Smalltalk Best Practice Patterns. Englewood Cliffs, NJ:
Prentice-Hall, 1997.

M. H. Austern, Generic Programming and the STL. Reading, MA:
Addison-Wesley, 1999.

I. Pyardli, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Using Principle Patterns to Optimize Real-time ORBS,”
Concurrency Magazine, vol. 8, no. 1, 2000.

Object Management Group, Minimum CORBA - Joint Revised Submis-
sion, OMG Document orbos/98-08-04 ed., August 1998.

J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,” Theory and Practice of Object
Systems, vol. 3, no. 1, 1997.

(1]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

(28]

[29]

G. Kiczaes, “Aspect-Oriented Programming,” in Proceedings of the
11th European Conference on Object-Oriented Programming, June
1997.

M. Shapiro, “Flexible Bindings for Fine-Grain, Distributed Objects,”
Tech. Rep. Rapport de recherche INRIA 2007, INRIA, Aug. 1993.

D. Schmidt and S. Vinoski, “ Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers. Thread-per-Object,” C++
Report, vol. 8, July 1996.

D. Schmidt and S. Vinoski, “ Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers: Thread Pool,” C++ Report,
vol. 8, April 1996.

D. Schmidt and S. Vinoski, “ Comparing Alternative Programming Tech-
niques for Multi-threaded CORBA Servers: Thread-per-Request,” C++
Report, vol. 8, February 1996.

F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magahaes, and
R. Campbell, “Monitoring, Security, and Dynamic Configuration with
the dynamicTAO Reflective ORB,” in Proceedings of the Middleware
2000 Conference, ACM/IFIP, Apr. 2000.

P. Narasimhan, L. E. Moser, and P. M. Méelliar-Smith, “Using Intercep-
tors to Enhance CORBA,” |EEE Computer, vol. 32, pp. 64-68, July
1999.

G. C. Hunt and M. L. Scott, “Intercepting and Instrumenting COM Ap-
plication,” in Proceedings of the 5" Conference on Object-Oriented
Technologies and Systems, (San Diego, CA), USENIX, May 1999.

S. Vinoski, “New Features for CORBA 3.0, Communications of the
ACM, vol. 41, pp. 44-52, October 1998.

