
USENIX Association

Proceedings of the
6th USENIX Conference on Object-Oriented

Technologies and Systems
(COOTS '01)

San Antonio, Texas, USA
January 29 - February 2, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Kava - Using Byte code Rewr iting to add Behavioural Reflection to Java

Ian Welch and Robert J. Stroud
Department of Computing

University of Newcastle upon Tyne

Abstract

Many authors have proposed using byte code rewriting as a way of adapting or extending the behaviour of Java
classes. There are toolkits available that simplify this process and raise the level of abstraction above byte code.
However, to the best of our knowledge, none of these toolkits provide a complete model of behavioural reflection
for Java. In this paper, we describe how we have used load-time byte code rewriting techniques to construct a run-
time metaobject protocol for Java that can be used to adapt and customise the behaviour of Java classes in a more
flexible and abstract way. Apart from providing a better semantic basis for byte code rewriting techniques, our ap-
proach also has the advantage over other reflective Java implementations that it doesn't require a modified com-
piler or JVM, can operate on byte code rather than source code and cannot be bypassed. In this paper we describe
the implementation of Kava, our reflective implementation of Java, and discuss some of the linguistic issues and
technical challenges involved in implementing such a tool on top of a standard JVM. Kava is available from
http://www.cs.ncl.ac.uk/research/dependability/reflection.

1. Introduction

Many authors have considered the problem of reusing
third party code in environments the developers did not
originally consider [1, 2, 3]. For example, some pro-
posals suggest ways to apply access control policies to
code that has been developed without any thought for
security [3]. Wrapping was originally proposed as a
technique to enable adaptation of the code but it suffers
from a number of problems such as identity confusion,
or the self problem [1] etc. A solution to the problem is
transform the code at the binary level [4]. This has
proved to be a practical technique in the context of
Java because the Java byte code retains a large amount
of semantic information.

A number of byte code rewriting tools have been de-
veloped to ease the process of code rewriting. These
include JOIE [5], Byte Code Engineering Library [6]
and more recently Javassist [7]. Each toolkit provides
object oriented representations of the structure of
classes that can be used to rewrite classes on-the-fly.

The focus of these toolkits is on implementing changes
to the behaviour of classes through programs that re-
write the class implementations. Users typically have to
write programs that walk class structures and locate the
appropriate places to make changes to the structure in
order to implement some change to runtime behaviour.
The actual implementation of changes this way is diffi-
cult for most programmers and highly error prone.

We argue that for applications where non-functional
concerns are being implemented (security, transac-
tions, debugging etc.) it would be more natural to spec-
ify changes to the behaviour of classes in terms of run-
time abstractions.

For example, in order to trace state changes it would be
more natural to redefine the runtime state access opera-
tion rather than manually write a program that walks
all the methods of a class file and instruments pertinent
field access operations.

Metaobject protocols and reflection are a good model
for expressing such changes. Metaobject protocols pro-
vide abstractions of the runtime environment, and ex-
pose the protocols governing the execution in the run-
time environment. Reflection means that changes to
the implementation of these metaobject protocols will
change the way in which code is executed at runtime.

We have implemented a highly portable implementa-
tion of a behavioural reflection for Java called Kava
[8]. It provides a metaobject protocol for specifying
changes to runtime behaviour and implements these
changes through the use of structural rewriting toolkits
such as JOIE, Byte Code Engineering Library, or
Javassist. It is portable, is written entirely in Java, and
unlike a number of other reflective Java implementa-
tions doesn't require a specialised Java Virtual Ma-
chine. Kava also provides support for properties such
as strong non-bypassability and

publ i c c l ass Tr aceMet hod i mpl ement s Const ant s {
 pr i vat e st at i c St r i ng c l ass_name;
 pr i vat e st at i c Const ant Pool Gen cp;
 pr i vat e st at i c i nt out ; / / r ef er ence t o Syst em. out
 pr i vat e st at i c i nt pr i nt l n; / / r ef er ence t o Pr i nt St r eam. pr i nt l n

 pr i vat e st at i c Met hod t r aceMet hod(Met hod m) {
 Code code = m. get Code() ;
 i nt f l ags = m. get AccessFl ags() ;
 St r i ng name = m. get Name() ;

 / / Cr eat e i nst r uct i on l i s t t o be i nser t ed at met hod st ar t .
 St r i ng mesg = " t r ac i ng " + m. get Met hodName() ;
 I nst r uct i onLi st pat ch = new I nst r uct i onLi st () ;
 pat ch. append(new GETSTATI C(out)) ;
 pat ch. append(new PUSH(cp, mesg)) ;
 pat ch. append(new I NVOKEVI RTUAL(pr i nt l n)) ;

 Met hodGen mg = new Met hodGen(m, c l ass_name, cp) ;
 I nst r uct i onLi st i l = mg. get I nst r uct i onLi st () ;
 I nst r uct i onHandl e[] i hs = i l . get I nst r uct i onHandl es() ;

 / / Fi r s t l et t he super or ot her const r uct or be cal l ed
 i f (name. equal s(" <i ni t >")) {
 f or (i nt j =1; j < i hs. l engt h; j ++) {
 i f (i hs[j] . get I nst r uct i on() i nst anceof I NVOKESPECI AL) {
 i l . append(i hs[j] , pat ch) ; / / Shoul d check: met hod name == " <i ni t >"
 br eak;
 }
 }
 }
 el se
 i l . i nser t (i hs[0] , pat ch) ;

 / / updat e st ack s i ze
 i f (code. get MaxSt ack() < 2)
 mg. set MaxSt ack(2) ;

 r et ur n mg. get Met hod() ;
 }

 publ i c s t at i c voi d mai n(St r i ng[] ar gv) {
 JavaCl ass j ava_cl ass = new Cl assPar ser (ar gv[i]) . par se() ;
 Const ant Pool const ant s = j ava_cl ass. get Const ant Pool () ;
 cp = new Const ant Pool Gen(const ant s) ;
 out = cp. addFi el dr ef (" j ava. l ang. Syst em" , " out " ,
 " Lj ava/ i o/ Pr i nt St r eam; ") ;
 pr i nt l n = cp. addMet hodr ef (" j ava. i o. Pr i nt St r eam" ,
 " pr i nt l n" ,
 " (Lj ava/ l ang/ St r i ng;) V") ;

 Met hod[] met hods = j ava_cl ass. get Met hods() ;
 f or (i nt j =0; j < met hods. l engt h; j ++)
 met hods[j] = t r aceMet hod(met hods[j]) ;

 j ava_cl ass. set Const ant Pool (cp. get Fi nal Const ant Pool ()) ;
 j ava_cl ass. dump(cl ass. get Cl assName() +" . c l ass") ;
 }
}

Figure 1 – Tracing Method Execution

reflection on inherited methods that other reflective
Java implementations do not address.

In section 2 we discuss byte code rewriting and its
shortcomings, in section 3 we introduce the Kava sys-
tem, in section 4 we provide some examples of its ap-
plication, in section 5 we discuss the implementation of
Kava, in section 6 we provide an overview of related
work and finally in section 7 we give our conclusions
and outline future work.

2. Bytecode Rewriting

There are three main toolkits for rewriting bytecodes:
Joie, Byte Code Engineering Library and Javassist. The
first two toolkits provide object oriented frameworks
for writing programs that manipulate the structure of
class files. They provide loadtime representations of
elements of class files such as methods, types, instruc-
tions etc. Java programs can then be written that de-
scribe how class files can be rewritten as late as load
time. The main drawback with this approach is that the
programmer has to have a detailed understanding of
both the structure of class files and Java virtual ma-
chine programming. As the authors of Joie have ob-
served, this makes it difficult for programmers to write
reliable and easily understandable transformer pro-
grams. Javassist attempts to address this problem by
providing a metaobject protocol for the rewriting of
byte codes. It allows a programmer to work at a more
abstract level. However, it sacrifices some of the power
of the other toolkits without gaining a high enough
level of abstraction. Also, it still requires the pro-
grammer to think in terms of reprogramming an exist-
ing implementation.

Figure 1 shows how the Byte Code Engineering Li-
brary can be used to trace method execution of a class.

This code adds a print statement at the start of each
method. The t r aceMet hod method generates the
appropriate byte code for a print statement. While the
main method traverses the structure of the class to lo-
cate the appropriate place to insert the instructions and
finally ensure that the stack size after insertion is cor-
rect.

This process is obviously difficult for novice program-
mers to learn and is error prone. It is difficult as the
code to be inserted is developed by hand and the pro-
grammer must manually add the appropriate entries to
the constant pool. It is error prone because there is no
separate type checking available for the code to be in-
serted. In addition to writing the code to be inserted the

code for performing the insertion also has to be written
from scratch every time and issues such as ensuring
that the stack size is maintained correctly have to be
addressed by the programmer.

To address these concerns, two improvements are
needed:

• The ability to write the behavioural modifications
in Java, and to be able to compile and verify these
modifications as you would a normal class.

• The ability to declaratively specify where the be-
havioural modifications should be applied.

Kava provides these improvements. Behavioural adap-
tations are implemented using metaobject classes that
can be compiled and verified, and the application of
the metaobjects is driven by a binding specification
that uses a declarative binding language.

3. Using K ava

In this section we introduce the basic concepts of be-
havioural reflection, and describe how Kava is actually
used.

3.1. Behavioural Reflection

Reflection [9] is the process by which a system can
reason about and act upon itself. A reflective system is
composed of a base level and a meta level. The base
level is the system being reasoned about, and the meta
level has access to representations of the base level.
Reification is the process by which the abstract repre-
sentations of the base level are generated. A reflective
system has the property that the meta level is causally
connected to the base level. This means that changes at
the meta level cause changes to the behaviour of the
base level.

These notions of reflection have been extended to in-
clude the concept of the metaobject protocol [10]
where an abstraction of the computation process and
the protocols governing the execution of the program
are exposed. A metaobject is bound to an object and
controls the execution of the object. By changing the
implementation of the metaobject the object's execution
can be adjusted in a principled way. The protocols are
implemented as methods of the metaobject.

Reflection and metaobject protocols have been success-
fully used to implement non-functional properties such

as concurrent programming [11], atomic data types
[12], fault tolerance [13], and security [14].

The Java programming language [15] includes a
reflection package. This provides the ability to reify
some aspects of the Java runtime environment such as
methods, classes, fields, etc. and allows dynamic
construction of proxies and dynamic method
invocation. However, it does not provide the ability to
modify the behaviour of an application through
changes at a meta level. Kava provides powerful
behavioural reflection without requiring changes to the
Java Virtual Machine or requiring the use of source
code preprocessing. It implements behavioural
reflection through the principled rewriting of Java class
files.

The Kava system allows each object or class to be
bound to a metaobject. At the meta level runtime be-
haviours such as method invocation, method execution,
field access, etc. can be redefined by the metaobject
implementation. The metaobject implementation is
constructed using reified aspects of the runtime object
model. For example, a method is reified as an instance
of a Met hod class.

The binding itself is described by a binding specifica-
tion. This is written using a declarative binding lan-
guage. Separating the binding information from the
metaobjects increases the reusability of metaobjects as
the bindings effectively parameterise the metaobjects.
For example, a binding specification may bind a
metaobject to different fields on different classes.

3.2 Using K ava
Each metaobject is an implementation of the interface
I Met aObj ect . This defines a series of methods for
intercepting and customising various aspects of the
runtime behaviour of an object. See Figure 2 for the
interface.

Each method has a before and after variant. The before
methods are invoked before the behaviour, and the
after methods are invoked after the behaviour. Each
time a metaobject’s method is invoked the behaviour’s
context is reified as an instance of a context object and
passed as an argument. This makes the context acces-
sible to the metaobject implementation. Some aspects
of the context can be changed at the metalevel, such as
the actual arguments passed to a method. On return to
the base level the context object is converted back to
the actual context of the behaviour.

Each before method can set the context such that the
base level behaviour is overriden. This means that the
base level behaviour will be suppressed. For example
setting an override in a bef or eExecut eMet hod
will result in the body of the method not being exe-
cuted.

An example of a metaobject that implements the trac-
ing of method executions similar to the example given
in section 2 is:

publ i c i nt er f ace I Met aObj ect {

 publ i c voi d bef or eExecut eMet hod(I Execut i onCont ext cont ext)
 publ i c voi d af t er Execut eMet hod(I Execut i onCont ext cont ext) ;
 / * cal l ed when a met hod i s execut ed (i nc l udi ng const r uct or / f i nal i zer) * /

 publ i c voi d bef or ePut Fi el d(I Fi el dCont ext cont ext) ;
 publ i c voi d af t er Put Fi el d(I Fi el dCont ext cont ext) ;
 / * cal l ed when a f i el d i s accessed * /

 publ i c voi d bef or eGet Fi el d(I Fi el dCont ext cont ext) ;
 publ i c voi d af t er Get Fi el d(I Fi el dCont ext cont ext) ;
 / * cal l ed when a f i el d i s r ead * /

 publ i c voi d bef or eI nvoke(I I nvocat i onCont ext cont ext) ;
 publ i c voi d af t er I nvoke(I I nvocat i onCont ext cont ext) ;
 / * cal l ed when a met hod i s i nvoked (i nc l udi ng i ni t i al ser * /

 publ i c voi d bef or eExcept i on(I Except i onCont ext cont ext) ;
 publ i c voi d af t er Except i on(I Except i onCont ext cont ext) ;
 / * cal l ed when an except i on i s t hr own and caught * /

}

Figure 2 – Inter face for Kava MetaObject

publ i c c l ass Met aTr ace
 i mpl ement s I Met aObj ect {
 publ i c voi d
 bef or eExecut eMet hod(
 I Execut i onCont ext cont ext) {
 Syst em. out . pr i nt l n(
 " t r ac i ng " +
 cont ext . get Met hodName()) ;
 }
}
In order to trace the methods of a particular class, it is
necessary to establish a binding between instances of
the class and instances of the Met aTr ace class.
These bindings are described using the Kava binding
language in a special metaconfiguration file that drives
the processing of a class by Kava. The binding specifi-
cation shown below means that Met aTr ace inter-
cepts the execution of any method of the class Test .

<bi ndi ng>
 <c l ass>
 <c l assname>Test </ c l assname>
 <met acl ass>Met aTr ace</ met acl ass>
 <i nt er cept >
 <execut e>
 <met hod>* </ met hod>
 <par amet er s>* </ par amet er s>
 </ execut e>
 </ i nt er cept >
 </ c l ass>
</ bi ndi ng>

If the implementation of Test is:

publ i c c l ass Test {
 publ i c s t at i c
 voi d mai n(St r i ng[] ar gs) {
 (new Test) . r un(ar gs[0]) ;
 }
 publ i c voi d r un(St r i ng s) {
 Syst em. out . pr i nt l n(“ hel l o ” + s) ;
 }
}

Then output of invoking the r un method of Test with
the actual parameter Wor l d is:

t r ac i ng r un
hel l o Wor l d

Note that the code necessary to implement tracing be-
haviour is significantly more concise than the equiva-
lent byte code transformation code. The metaobject that
specifies the code to be invoked when a method is exe-
cuted can also be compiled and verified therefore re-
ducing the possibility of coding errors. The binding
specification is significantly shorter than the code that
traverses the class and inserts instructions at the ap-
propriate place. Also, since it is a declarative specifica-
tion it is easier to code and less likely to contain errors.

Kava is well suited to modifying the behaviour of
classes where the interface of the class is not to be
changed, or new keywords to be added to the language.
As this example shows it is far more concise than an
equivalent byte code transformation program, and it
separates out the adaptation code (the metaobject) and
the specification of where to apply the adaptation (the
binding).

4. Examples
This section shows applications of Kava that highlight
some of the more unusual features of the Kava metaob-
ject protocol. Many implementations of reflective Java
concentrate on intercepting method calls and tracing
method calls is the standard example used to demon-
strate a reflective system. Kava provides the ability to
intercept the sending of method calls (invocation), field
access, and exception handling in addition to the inter-
ception of method calls. The first example given here
is of fine grained access control, this illustrates Kava's
ability to control field access. The second example
given here is how to prevent a particular type of denial
of service attack, this illustrates Kava's ability to inter-
cept the sending of method calls.

4.1 Fine grained access control
The Java programming language provides the follow-
ing language level mechanisms for controlling access
to class members such as methods or fields:

• Public access where code belonging to any class is
allowed to access the member.

• Package access where access to the member is
permitted only to code belonging to classes in the
same package.

• Protected access where access to the member is
permitted only to code that inherits from the func-
tionality of the class.

• Private access where access to the member is per-
mitted only to code that occurs in the body of the
top level class that encloses the declaration of the
member.

While this is adequate for a number of situations there
is still the possibility that a more fine grained access
control may be required for security purposes. For ex-
ample, we may only want a certain field to be accessed
by a limited number of classes that are spread across
multiple packages.

Using Kava it is relatively simple to implement such a
fine-grained scheme. In this example we focus on pre-
venting access to fields by any but a small number of
classes.

We implement the following protection metaobject
Met aChkAccess that restricts access to a field to
instances of two known classes GoodGuyA and
GoodGuyB:

publ i c Met aChkAccess i mpl ement s
 I Met aObj ect {

 publ i c voi d
 bef or ePut Fi el d(I Fi el dCont ext c) {
 checkAccess(c. get Base()) ;
 }
 / * check any wr i t es t o t he f i el d * /

 publ i c voi d
 bef or eGet Fi el d(I Fi el dCont ext c) {
 checkAccess(c. get Base ()) ;
 }
 / * check any r eads f r om t he f i el d * /

 publ i c voi d
 checkAccess(Obj ect who) {
 i f (who i nst anceof GoodGuy1 | |
 who i nst anceof GoodGuy2) {
 r et ur n;
 }
 el se {
 / / wr ong c l ass
 t hr ow new
 Secur i t yExcept i on(
 " i l l egal access by " +
 who. get Cl ass() . get Name()) ;
 }
 }
 / * check whet her access i s al l owed * /
}

The checkAccess method checks any access to a
field. If a class other than one of the allowed classes
attempts to access a field then a Secur i t yExcep-
t i on is thrown. As Secur i t yExcept i on is a
subclass of Runt i meExcept i on it does not have to
be included in the declaration of the method.

The Met aChkAccess metaobject is then bound to
any class that reads from or writes to the field pr o-
t ect edFi el d of the class Pr ot ect edCl ass by
including the following in the binding specification:

<bi ndi ng>
 <c l ass>
 <c l assname>* </ c l assname>
 <met acl ass>Met aChkAccess</ met acl ass>
 <i nt er cept >
 <get f i el d>
 <c l ass>Pr ot ect edCl ass</ c l ass>
 <f i el d>Pr ot ect edFi el d</ f i el d>

 </ get f i el d>
 <put f i el d>
 <c l ass>Pr ot ect edCl ass</ c l ass>
 <f i el d>Pr ot ect edFi el d</ f i el d>
 </ put f i el d>
 </ i nt er cept >
 </ c l ass>
</ bi ndi ng>

4.2 Denial of Service
Denial of service attacks are trivial to implement in
Java. The simplest attacks consume resources by gen-
erating infinite numbers of objects such as windows
that fill up the user's screen and occupy CPU time.
Trivially this could be dealt with by defining a
Met aRsr ceLmt that watches how many instances of
windows (all subclasses of j ava. awt . Fr ame) are
created and limiting the number that can be created to
a maximum:

publ i c Met aRsr ceLmt i mpl ement s
 I Met aObj ect
{
 publ i c voi d
 bef or eI nvoke(I I nvocat i onCont ext c)
 {
 i f (c . get Tar get () i nst anceof
 j ava. awt . Wi ndow &&
 c . get Met hod () . equal s(" <i ni t >"))
 {
 maxCount ++;
 i f (maxCount > ARBI TARY_MAX)
 {
 t hr ow new
 Runt i meExcept i on(
 " exceeded max number of f r ames") ;
 }
 }
 }
}

This metaobject then would be bound to all method
invocations by any method of any class:

<bi ndi ng>
 <c l ass>
 <c l assname>* </ c l assname>
 <met acl ass>Met aRsr ceLmt </ met acl ass>
 <i nt er cept >
 <i nvoke>
 <met hod>* </ met hod>
 <par amet er s>* </ par amet er s>
 <c l ass>* </ c l ass>
 <t ar get met hod>
 <i ni t / >
 </ t ar get met hod>
 </ i nvoke>
 </ i nt er cept >
 </ c l ass>
</ bi ndi ng>
A more sophisticated metaobject will allow the block-
ing of windows until one was destroyed, and would
maintain a global count of windows and detect when
windows were destroyed as well as created. However,

this example shows that resource creation can be easily
controlled using a reflective approach.

5. K ava Implementation

5.1 Architecture
Kava is written purely in Java, it does not require any
special Java Virtual Machine to work. The link be-
tween metaobjects and objects is realised by the rewrit-
ing of classes and addition of hooks into the class code.
Figure 3 shows the Kava architecture. A classloader
reads the class file as a stream of bytes. These can be
retrieved from any source, normally from a file or from
across the network. The classloader parses the byte
stream and creates a JVM specific representation of a
class. Normally this is passed to the verifier before it is
instantiated by the JVM. However, Kava is used to
intercept the byte stream before the classloader con-
structs the JVM specific class and applies the standard
code transformations that realise control by metaob-
jects. As stated earlier Kava uses a binding specifica-
tion file to determine what behaviours of what classes
are to be brought under the control of particular
metaobjects. It then adds traps into the code of the
class to switch control when from the base level to the
meta level (the associated metaobject) when the byte
code base level objects carry out certain behaviours.
After rewriting the class to include these traps, the
classloader passes an internal representation of the
class to the byte code verifier as before. This means
that properties such as type safety are still honoured as
before.

Note that the metaobjects are loaded by the classloader
in exactly the same way as any other class, which
means that they must satisfy the same security proper-
ties as any ordinary Java class. Metaobjects are ordi-
nary Java classes and can be compiled which means
that errors can be caught at an early stage.

Kava can be invoked either after a class is compiled or
at the time the class is loaded into the JVM. In order to
invoke Kava at loadtime a user-defined classloader
must be used. In either case the traps that are added to
the class are non-bypassable.

5.2 Instrumentation
The Kava metaobject protocol is implemented using
the technique of byte code rewriting. Kava makes use
of the Byte Code Engineering Library [6] toolkit to
implement the standard transformations that add the
hooks necessary to switch control from the base level to
the meta level at runtime. Using a standard byte code
rewriting toolkit frees us from dealing with technical

details such as maintaining relative addressing when
new byte codes are inserted into a method, or determin-
ing the number of arguments a method supports before
it has been instantiated as part of a class.

Class File

Class loader

Kava

Verifier

Interpreter JIT

Runtime system

Metaobject Class File

Binding Specification
File

byte stream

class file structure

class file structure

Figure 3 - Kava Architecture

Standard byte code rewritings are used to add hooks for
individual methods and individual byte code instruc-
tions. These hooks reify the context of a behaviour that
is being trapped, invoke the metaobject associated with
an object and reflect any changes to the context back to
the base level. The metaobjects that are invoked are
completely separate from the byte code hooks and are
developed entirely in Java. This separation means that
the runtime meta level can be adjusted dynamically at
runtime although which behaviours are trapped is de-
termined at loadtime.

For example, returning to the example of section 3.2
the class Test included the following r un method:

publ i c voi d r un(St r i ng s) {
 Syst em. out . pr i nt l n(" hel l o " + s) ; }
After the metaobject Met aTr ace is bound to Test
using the binding specification presented earlier, the
r un method is effectively rewritten by Kava as:

publ i c voi d r un(St r i ng s) {
 Cont ext c = new Cont ext
 (t hi s , " r un" , " voi d" ,
 " j ava. l ang. St r i ng" , new Obj ect []
 { s}) ;
 get Met a() . bef or eExecut eMet hod(c) ;
 i f (! c . over r i de()) {
 Syst em. out . pr i nt l n(" hel l o " +
 (St r i ng) c. get Ar g(0)) ;

 get Met a() . af t er Execut eMet hod(c) ;
 }
}

The code in bold has been added by Kava.

First, at the beginning of the method block a context
object that represents the invocation frame is created. It
contains a pointer to the base level object itself, the
name of the method being executed, the return type,
the types of the parameters, and the actual parameters
marshalled into an array of objects. Then the metaob-
ject associated with the base level object is retrieved
using a method added earlier by Kava and the be-
f or eExecut eMet hod method invoked. In this case
get Met a() returns a pointer to an instance of a
Met aTr ace so the method name is printed out. Fol-
lowing the invocation of bef or eExecut eMet hod
the arguments passed within the context object are un-
packed, and the base level code is invoked. Finally, at
the end of the method block the af t er Execut e-
Met hod method of the associated metaobject is in-
voked. In this case there was no implementation of the
method so nothing occurs at the meta level.

Since a metaobject method may override the corre-
sponding base level behaviour we add an if ... then
clause. This ensures that when an override is indicated
then the base level behaviour is suppressed.

This is an example of standard transformation for a
block of code. The transformation for intercepting be-
haviour such as setting the value of a field is very simi-
lar but finer-grained with the hook code being around a
single instruction.

5.3 Binding language
As explained in section 5.1 the binding specification
file determines where Kava introduces the hooks into
the base level code. The concept is that to make
metaobjects more reusable the binding should be speci-
fied completely separately of both the base and meta
level.

The binding specification contains multiple base object
and metaobject class bindings. Each binding is between
one class and a metaobject class. For that binding the
particular behaviours to be brought under the control of
the metaobject are specified, for example the execution
of methods, or the setting of fields. These are param-
eterised by information such as the name of the field or
method, the type of the target (in the case of setting a
field, or invoking a method) etc.

5.4 Special Features
In this section we give an overview of some of the spe-
cial features supported by Kava: strong encapsulation,
reflection on inherited methods, exception handling
and context objects.

5.4.1 Strong encapsulation
One of the benefits of the Kava implementation is its
support for strong encapsulation. Strong encapsulation
is the property that it is difficult to bypass the metaob-
ject bound to the base level object. This has been
achieved by avoiding the use of a separate wrapper
class. Since hooks are added directly into method bod-
ies we greatly reduce the possibility that the hooks
could be bypassed. This is because there is no way to
express in the Java language a branching to an arbi-
trary point in a method body.

It is true that if a malicious code transformer rewrote a
class file that was pre-processed by Kava then our
hooks could be removed. However, this can be easily
guarded against through the use of a mixture of operat-
ing system protection and the use of code signing tech-
niques.

5.4.2 Inherited M ethods
When a Java class inherits a method from its super-
class the bytecode implementing the method is not re-
produced in the implementation of the class. For ex-
ample, if class C inherits the r un method from class D
then the byte code for r un is still to be found in D's
class file not C's class file. If we bind C to a metaobject
metaclass MC, and try and bring the execution of r un
under the control of MC, Kava will fail because it can-
not find the byte code implementation of run. The ob-
vious answer is to bind MC to D as well and add the
hooks into D's run method. However, we may not want
D to be brought under the control of MC, indeed we
may even want it to be bound to an entirely different
metaclass.

The answer to this problem is to add a method get -
Met a to each base level class that returns a pointer to
the metaobject bound to the base level object. We then
ensure that superclass methods inherited by classes that
are bound to a metaobject have hooks added to them
that use the get Met a method to determine which
metaobject to invoke.

When an instance of C has its inherited method r un
invoked the JVM's dynamic resolution of method calls
will mean that the get Met a method appropriate to C
will be invoked. This means that the metaobject bound
to C will be returned.

When an instance of D had its method r un invoked,
the JVM's dynamic resolution of method calls will
mean that the get Met a method appropriate to D will
be invoked. This means that the metaobject bound to D
will be returned.

This approach ensures that the correct metaobject is
invoked in both cases. The approach taken here is
similar to that found in [3].

5.4.3 Exception Handling
Kava allows the raising and throwing of exceptions to
be intercepted and handled by the metaobject bound to
an object. The bef or eExcept i on method is in-
voked before an exception is thrown at the base level. It
allows the exception throwing to be overridden, this
might be necessary where the metaobject is implement-
ing distribution at the meta level and the exception has
to be propagated to a remote client. The af t er Ex-
cept i on method is invoked after an exception has
been thrown or raised at the base level. It doesn't allow
overriding of this behaviour but does allow additional
processing to take place such as the propagation of the
exception to related objects if a number of objects are
co-operating and need to be aware of each other's
status.

5.5 Context Objects
Kava uses the concept of Cont ext objects to simplify
the metaobject protocol and also allow the possibility of
lazy reification. The metaobject sometimes will need
access to runtime instances of Met hod, Cl ass or
Fi el d. However, generating these is a relatively ex-
pensive process so we defer their creation by passing
the minimum information needed to derive them in a
Cont ext object. As part of the Cont ext interface
we provide methods for generating the reified in-
stances. The standard Java reflective API is used to
generate these instances. In the future we would like to
apply the same technique to the actual parameters
passed to the metaobject.

5.6 Performance
We have made some preliminary measurements of the
performance of Kava. They indicate that the most ex-
pensive operation is the generation of the context.
Presently, this expense is more than doubling the exe-

cution speed of a number of instructions. We are cur-
rently exploring two main approaches to improving
performance. The first approach is to use caching of
context information, and the second is to allow selec-
tive reification.

6. Related Work
In this section we briefly review a number of other re-
flective Java implementations and attempt to categorise
them according to the point in the Java class lifecycle
that reflection is implemented.

The Java class lifecycle is as follows. A Java class
starts as source code that is compiled into byte code, it
is then loaded by a class loader into the Java Virtual
Machine (JVM) for execution, where the byte code is
further compiled by a Just-In-Time compiler into plat-
form specific machine code for efficient execution.

Different reflective Java implementations introduce
reflection at different points in the lifecycle. The point
at which they introduce reflection tends to characterise
the scope of their capabilities. In order to bring the
base level under the control of the meta level the base
level system is modified through the addition of traps.
These traps are known as meta level interceptions [16].
For example, in Reflective Java method calls sent to
the base object are brought under control of an associ-
ated metaobject by trapping each method call to the
baseobject. This is done by pre-processing the source
code of the base level class. A contrasting example is
MetaXa where the traps are in the implementation of
the dispatch mechanism of the Virtual Machine. As the
traps exist in the Virtual Machine itself, the source
code of classes to be made reflective is not required.
However, unlike Reflective Java, a specialised JVM
must be used.

Table 1 summarises the features of various reflective
Java implementations. All these implementations have
drawbacks that make them unsuitable for use with
compiled components or in a standard Java environ-
ment where the purpose is to add security. Some re-
quire access to source code, and others are non-
standard because they make use of a modified Java
platform.

In contrast, Kava does not require access to source
code because it is based on byte code rewriting, doesn't
require a non-standard Java environment and provides
a rich set of capabilities. It also provides what we refer
to as strong encapsulation. Most implementations add
traps through renaming of classes, or renaming meth-
ods, which means that it may be possible to call the
original methods and therefore bypass the meta layer.
Kava actually adds the traps directly into the method
bodies avoiding this problem. Dalang was an earlier
implementation of a loadtime reflective Java we im-

plemented that suffered from this problem. See [20] for
an account of the evolution of Kava from Dalang.

The closest reflective Java to Kava is a behavioural
reflection add-on implemented as a demonstration of
the capabilities of JavaAssist, a byte code rewriting tool
based on structural reflection. Like Kava, this add-on
adds hooks to the classes using byte code rewriting and
has a similar meta level architecture of a binding be-
tween an object and a metaobject. However, it does not
provide reflection on static members, on method invo-
cation, or exception raising. Also it doesn't support

Point in
Lifecycle

Reflective
Java

Description Capabilities Restrictions

Source
Code

Reflective
Java [17]

Preprocessor. Dynamic switching of
metaobjects. Intercept
method invocations.

Can’ t make a compiled
class reflective, requires
access to source code.

Compile
Time

OpenJava
[18]

Compile-time metaobject
protocol.

Can intercept wide range
of operations, and extends
language syntax.

Requires access to source
code.

Byte
Code

Bean Ex-
tender
[19],
Dalang
[20],
JavaAssist
[7]

Byte code preprocessor
(Bean Extender), byte code
rewriting as late as load
time (Dalang, JavaAssist).

No need to have access to
source code.

Bean Extender – re-
stricted to Java Beans.
Dalang, and Javassist –
limited capabilities. re-
quires offline preprocess-
ing.

Runtime MetaXa
[21],
Rjava [22],
Guarana
[23]

Reflective JVMs. Can intercept wide range
of operations. Can be dy-
namically applied.

Custom JVM.

 java.lang.
reflect [15]

Reflective capabilities part
of the standard Java devel-
opment kit.

Runtime introspection,
dynamic dispatch and on-
the-fly generation of prox-
ies.

Overall introspection
rather than behavioural or
structural reflection.

Just-in-
time
Compila-
tion

OpenJIT
[24]

Compile-time metaobject
protocol for compilation to
machine language.

Can take advantage of fa-
cilities present in the native
platform. No need for ac-
cess to source code. Dy-
namic adaptation.

Custom Just-in-time com-
piler.

Table 1 - Reflective Java Implementations

reflection on methods that have been inherited from a
superclass, nor does it support the concept of a binding
specification.

7. Conclusions and Future Work
Kava focuses on the behavioural changes programmers
want to impose on third-party code instead of the
messy structural changes that byte code transformation
tools deal with. Kava allows adaptations to be devel-
oped, compiled and tested independently of the target
code, then declaratively combined with the target code.
This reduces the chance of error and makes that task of
adapting the behaviour of third-party code more tracta-
ble.

Kava implements behavioural reflection in Java using
byte code transformation as the underlying technique.
This approach has allowed the creation of a tool unlike
other reflective Java implementations is portable and
can bring reflect on a wide range of runtime behav-
iours.

Kava is available for download from
http://www.cs.ncl.ac.uk/research/dependability/
reflection. We are currently in the process of tuning the
implementation to support lazy reification of context
objects. We are also investigating the application of
Kava to a case study based on flexible security for an
enterprise modelling system.

Acknowledgements

This work has been supported by the UK Defence
Evaluation Research Agency, grant number
CSM/547/UA and also the ESPIRIT LTR project
MAFTIA.

References

[1] U. Holzle, “ Integrating Independently-
Developed Components in Object-Oriented Lan-
guages,” ECOOP'93, Kaiserslautern, Germany, 1993.

[2] G. Czaijkowski and T. v. Eicken, “JRes : A
Resource Accounting Interface for Java” , OOPSLA'98,
1998.

[3] R. Pandey and B. Hashii, “Providing Fine-
Grained Access Control for Java Programs,”
ECOOP'99, Lisbon, Portugal, 1999.

[4] R. Keller and U. Holzle, “Binary Component
Adaptation,” ECOOP'98, 1998.

[5] G. A. Cohen and J. S. Chase, “Automatic
Program Transformation with JOIE,” USENIX Annual
Technical Symposium, New Orleans, Louisiana, 1998.

[6] M. Dahm, “Byte Code Engineering with the
JavaClass API,” Friei Universitat, Berlin, Technical
Report B-17-98, 1998.

[7] S. Chiba, “Load-time Structural Reflection in
Java,” European Conference on Object-Oriented Pro-
gramming, 2000.

[8] I. Welch and R. J. Stroud, “Kava - A Reflec-
tive Java Based on Bytecode Rewriting,” in Reflection
and Software Engineering, vol. 1826, W. Cazzola, R.
J. Stroud, and F. Tisato, Eds. Heidelberg, Germany:
Springer-Verlag, 2000, pp. 157-169.

[9] P. Maes, “Concepts and Experiments in Com-
putational Reflection,” OOPSLA'87, Orlando, Florida,
1987.

[10] G. Kiczales, J. des Rivieres, and D. G. Bo-
brow, The Art of the Metaobject Protocol: Massachu-
setts Institute of Technology, 1991.

[11] S. Matsuoka, T. Watanabe, and A. Yonezawa,
“Hybrid Group Reflective Architecture for Object-
Oriented Concurrent Reflective Programming,”
ECOOP'91, 1991.

[12] R. J. Stroud and Z. Wu, “Using Metaobject
Protocols to Implement Atomic Data Types,”
ECOOP'95, Aarhus, Denmark, 1995.

[13] J.-C. Fabre, V. Nicomette, T. Perennou, Z.
Wu, and R. J. Stroud, “ Implementing Fault-tolerant
Applications using Reflective Object-Oriented Pro-
gramming,” FTCS-25, Pasadena, USA, 1996.

[14] M. Benantar, B. Blakley, and A. J. Nadain,
“Approach to Object Security in Distributed SOM,”
IBM Systems Journal, vol. 35, 1996.

[15] Sun Microsystems Inc., “Java Development
Kit 1.3.0 Documentation,” , 2000.

[16] C. Zimmerman, “Metalevels, MOPs and What
all the Fuzz is All About,” in Advances in Object-
Oriented Metalevel Architectures and Reflection, C.
Zimmermann, Ed.: CRC Press, 1996.

[17] Z. Wu and S. Schwiderski, “Reflective Java :
The Design, Implementation and Applications,” ,
1996.

[18] M. Tatsubori and S. Chiba, “Programming
Support of Design Patterns with Compile-time Reflec-
tion,” Workshop on Reflective Programming in C++
and Java, 1998.

[19] IBM, “Bean Extender Documentation, version
2.0” , 1997.

[20] I. S. Welch and R. J. Stroud, “From Dalang to
Kava - the Evolution of a Reflective Java Extension,”
Second International Conference on Meta-Level Archi-
tectures and Reflection, Saint-Malo, France, 1999.

[21] M. Golm, “Design and Implementation of a
Meta Architecture for Java” , M.Sc. Erlangen, 1997.

[22] J. de. O. Guimarães, “Reflection for Statically
Typed Languages” ECOOP'98, 1998.

[23] A. Oliva, and L. E. Bizato, “The Design and
Implementation of Guaraná,” , COOTS'99, 1999

[24] H. Ogawa, K. Shimura, S. Matsuoka, F. Ma-
ruyama, Y. Sohda, and Y. Kimura, “OpenJIT: An
Open-Ended, Reflective JIT Compiler Framework for
Java,” ECOOP'2000, 2000.

