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Abstract 
 
Many authors have proposed using byte code rewriting as a way of adapting or extending the behaviour of Java 
classes. There are toolkits available that simplify this process and raise the level of abstraction above byte code. 
However, to the best of our knowledge, none of these toolkits provide a complete model of behavioural reflection 
for Java. In this paper, we describe how we have used load-time byte code rewriting techniques to construct a run-
time metaobject protocol for Java that can be used to adapt and customise the behaviour of Java classes in a more 
flexible and abstract way. Apart from providing a better semantic basis for byte code rewriting techniques, our ap-
proach also has the advantage over other reflective Java implementations that it doesn't require a modified com-
piler or JVM, can operate on byte code rather than source code and cannot be bypassed. In this paper we describe 
the implementation of Kava, our reflective implementation of Java, and discuss some of the linguistic issues and 
technical challenges involved in implementing such a tool on top of a standard JVM. Kava is available from 
http://www.cs.ncl.ac.uk/research/dependability/reflection. 

 
1. Introduction 

Many authors have considered the problem of reusing 
third party code in environments the developers did not 
originally consider [1, 2, 3]. For example, some pro-
posals suggest ways to apply access control policies to 
code that has been developed without any thought for 
security [3]. Wrapping was originally proposed as a 
technique to enable adaptation of the code but it suffers 
from a number of problems such as identity confusion, 
or the self problem [1] etc. A solution to the problem is 
transform the code at the binary level [4]. This has 
proved to be a practical technique in the context of 
Java because the Java byte code retains a large amount 
of semantic information.  

A number of byte code rewriting tools have been de-
veloped to ease the process of code rewriting. These 
include JOIE [5], Byte Code Engineering Library [6] 
and more recently Javassist [7]. Each toolkit provides 
object oriented representations of the structure of 
classes that can be used to rewrite classes on-the-fly. 

The focus of these toolkits is on implementing changes 
to the behaviour of classes through programs that re-
write the class implementations. Users typically have to 
write programs that walk class structures and locate the 
appropriate places to make changes to the structure in 
order to implement some change to runtime behaviour. 
The actual implementation of changes this way is diffi-
cult for most programmers and highly error prone. 

We argue that for applications where non-functional 
concerns are being implemented (security, transac-
tions, debugging etc.) it would be more natural to spec-
ify changes to the behaviour of classes in terms of run-
time abstractions.  

For example, in order to trace state changes it would be 
more natural to redefine the runtime state access opera-
tion rather than manually write a program that walks 
all the methods of a class file and instruments pertinent 
field access operations.  

Metaobject protocols and reflection are a good model 
for expressing such changes. Metaobject protocols pro-
vide abstractions of the runtime environment, and ex-
pose the protocols governing the execution in the run-
time environment. Reflection means that changes to 
the implementation of these metaobject protocols will 
change the way in which code is executed at runtime. 

We have implemented a highly portable implementa-
tion of a behavioural reflection for Java called Kava 
[8]. It provides a metaobject protocol for specifying 
changes to runtime behaviour and implements these 
changes through the use of structural rewriting toolkits 
such as JOIE, Byte Code Engineering Library, or 
Javassist. It is portable, is written entirely in Java, and 
unlike a number  of other reflective Java implementa-
tions doesn't require a specialised Java Virtual Ma-
chine. Kava also provides support for properties such 
as strong non-bypassability and



 
 

publ i c  c l ass Tr aceMet hod i mpl ement s Const ant s  {  
  pr i vat e st at i c  St r i ng          c l ass_name;  
  pr i vat e st at i c  Const ant Pool Gen cp;  
  pr i vat e st at i c  i nt              out ;      / /  r ef er ence t o Syst em. out  
  pr i vat e st at i c  i nt              pr i nt l n;  / /  r ef er ence t o Pr i nt St r eam. pr i nt l n 
 
  pr i vat e st at i c  Met hod t r aceMet hod( Met hod m)  {  
    Code   code  = m. get Code( ) ;  
    i nt     f l ags = m. get AccessFl ags( ) ;  
    St r i ng name  = m. get Name( ) ;  
  
    / /  Cr eat e i nst r uct i on l i s t  t o be i nser t ed at  met hod st ar t .  
    St r i ng mesg = " t r ac i ng "  + m. get Met hodName( ) ;  
    I nst r uct i onLi st  pat ch  = new I nst r uct i onLi st ( ) ;  
    pat ch. append( new GETSTATI C( out ) ) ;  
    pat ch. append( new PUSH( cp,  mesg) ) ;  
    pat ch. append( new I NVOKEVI RTUAL( pr i nt l n) ) ;  
  
    Met hodGen           mg  = new Met hodGen( m,  c l ass_name,  cp) ;  
    I nst r uct i onLi st      i l   = mg. get I nst r uct i onLi st ( ) ;  
    I nst r uct i onHandl e[ ]  i hs = i l . get I nst r uct i onHandl es( ) ;  
 
    / /  Fi r s t  l et  t he super  or  ot her  const r uct or  be cal l ed 
    i f ( name. equal s( " <i ni t >" ) )  {  
      f or ( i nt  j =1;  j  < i hs. l engt h;  j ++)  {  
  i f ( i hs[ j ] . get I nst r uct i on( )  i nst anceof  I NVOKESPECI AL)  {  
    i l . append( i hs[ j ] ,  pat ch) ;   / /  Shoul d check:  met hod name == " <i ni t >"  
    br eak;  
  }  
      }  
    }  
    el se 
      i l . i nser t ( i hs[ 0] ,  pat ch) ;  
 
    / /  updat e st ack s i ze 
    i f ( code. get MaxSt ack( )  < 2)  
   mg. set MaxSt ack( 2) ;  
  
    r et ur n mg. get Met hod( ) ;  
  }   
      
  publ i c  s t at i c  voi d mai n( St r i ng[ ]  ar gv)  {   
    JavaCl ass       j ava_cl ass = new Cl assPar ser ( ar gv[ i ] ) . par se( ) ;  
    Const ant Pool     const ant s   = j ava_cl ass. get Const ant Pool ( ) ;  
    cp = new Const ant Pool Gen( const ant s) ;  
    out      = cp. addFi el dr ef ( " j ava. l ang. Syst em" ,  " out " ,  
       " Lj ava/ i o/ Pr i nt St r eam; " ) ;  
    pr i nt l n = cp. addMet hodr ef ( " j ava. i o. Pr i nt St r eam" ,  
        " pr i nt l n" ,  
        " ( Lj ava/ l ang/ St r i ng; ) V" ) ;  
 
    Met hod[ ]  met hods = j ava_cl ass. get Met hods( ) ;  
    f or ( i nt  j =0;  j  < met hods. l engt h;  j ++)  
      met hods[ j ]  = t r aceMet hod( met hods[ j ] ) ;  
 
    j ava_cl ass. set Const ant Pool ( cp. get Fi nal Const ant Pool ( ) ) ;  
    j ava_cl ass. dump( cl ass. get Cl assName( ) +" . c l ass" ) ;  
  }  
}  
 

Figure 1 – Tracing Method Execution 



reflection on inherited methods that other reflective 
Java implementations do not address. 

In section 2 we discuss byte code rewriting and its 
shortcomings, in section 3 we introduce the Kava sys-
tem, in section 4 we provide some examples of its ap-
plication, in section 5 we discuss the implementation of 
Kava, in section 6 we provide an overview of related 
work and finally in section 7 we give our conclusions 
and outline future work. 

2. Bytecode Rewriting 
 
There are three main toolkits for rewriting bytecodes: 
Joie, Byte Code Engineering Library and Javassist. The 
first two toolkits provide object oriented frameworks 
for writing programs that manipulate the structure of 
class files. They provide loadtime representations of 
elements of class files such as methods, types, instruc-
tions etc. Java programs can then be written that de-
scribe how class files can be rewritten as late as load 
time. The main drawback with this approach is that the 
programmer has to have a detailed understanding of 
both the structure of class files and Java virtual ma-
chine programming. As the authors of Joie have ob-
served, this makes it difficult for programmers to write 
reliable and easily understandable transformer pro-
grams. Javassist attempts to address this problem by 
providing a metaobject protocol for the rewriting of 
byte codes. It allows a programmer to work at a more 
abstract level. However, it sacrifices some of the power 
of the other toolkits without gaining a high enough 
level of abstraction. Also, it still requires the pro-
grammer to think in terms of reprogramming an exist-
ing implementation.  

Figure 1 shows how the Byte Code Engineering Li-
brary can be used to trace method execution of a class. 

This code adds a print statement at the start of each 
method. The t r aceMet hod method generates the 
appropriate byte code for a print statement. While the 
main method traverses the structure of the class to lo-
cate the appropriate place to insert the instructions and 
finally ensure that the stack size after insertion is cor-
rect. 

This process is obviously difficult for novice program-
mers to learn and is error prone. It is difficult as the 
code to be inserted is developed by hand and the pro-
grammer must manually add the appropriate entries to 
the constant pool. It is error prone because there is no 
separate type checking available for the code to be in-
serted. In addition to writing the code to be inserted the 

code for performing the insertion also has to be written 
from scratch every time and issues such as ensuring 
that the stack size is maintained correctly have to be 
addressed by the programmer.  

To address these concerns, two improvements are 
needed: 

• The ability to write the behavioural modifications 
in Java, and to be able to compile and verify these 
modifications as you would a normal class. 

• The ability to declaratively specify where the be-
havioural modifications should be applied. 

Kava provides these improvements. Behavioural adap-
tations are implemented using metaobject classes that 
can be compiled and verified, and the application of 
the metaobjects is driven by a binding specification 
that uses a declarative binding language. 

3. Using K ava 
 
In this section we introduce the basic concepts of be-
havioural reflection, and describe how Kava is actually 
used. 

3.1. Behavioural Reflection 
 
Reflection [9] is the process by which a system can 
reason about and act upon itself. A reflective system is 
composed of a base level and a meta level. The base 
level is the system being reasoned about, and the meta 
level has access to representations of the base level. 
Reification is the process by which the abstract repre-
sentations of the base level are generated. A reflective 
system has the property that the meta level is causally 
connected to the base level. This means that changes at 
the meta level cause changes to the behaviour of the 
base level. 

These notions of reflection have been extended to in-
clude the concept of the metaobject protocol [10] 
where an abstraction of the computation process and 
the protocols governing the execution of the program 
are exposed. A metaobject is bound to an object and 
controls the execution of the object. By changing the 
implementation of the metaobject the object's execution 
can be adjusted in a principled way. The protocols are 
implemented as methods of the metaobject. 

Reflection and metaobject protocols have been success-
fully used to implement non-functional properties such  



 

as concurrent programming [11], atomic data types 
[12], fault tolerance [13], and security [14]. 

The Java programming language [15] includes a 
reflection package. This provides the ability to reify 
some aspects of the Java runtime environment such as 
methods, classes, fields, etc. and allows dynamic 
construction of proxies and dynamic method 
invocation. However, it does not provide the ability to 
modify the behaviour of an application through 
changes at a meta level. Kava provides powerful 
behavioural reflection without requiring changes to the 
Java Virtual Machine or requiring the use of source 
code preprocessing. It implements behavioural 
reflection through the principled rewriting of Java class 
files. 
 
The Kava system allows each object or class to be 
bound to a metaobject. At the meta level runtime be-
haviours such as method invocation, method execution, 
field access, etc. can be redefined by the metaobject 
implementation. The metaobject implementation is 
constructed using reified aspects of the runtime object 
model. For example, a method is reified as an instance 
of a Met hod class.  

The binding itself is described by a binding specifica-
tion. This is written using a declarative binding lan-
guage. Separating the binding information from the 
metaobjects increases the reusability of metaobjects as 
the bindings effectively parameterise the metaobjects. 
For example, a binding specification may bind a 
metaobject to different fields on different classes. 

 

3.2 Using K ava 
Each metaobject is an implementation of the interface 
I Met aObj ect . This defines a series of methods for 
intercepting and customising various aspects of the 
runtime behaviour of an object. See Figure 2 for the 
interface. 

Each method has a before and after variant. The before 
methods are invoked before the behaviour, and the 
after methods are invoked after the behaviour. Each 
time a metaobject’s method is invoked the behaviour’s 
context is reified as an instance of a context object and 
passed as an argument. This makes the context acces-
sible to the metaobject implementation. Some aspects 
of the context can be changed at the metalevel, such as 
the actual arguments passed to a method. On return to 
the base level the context object is converted back to 
the actual context of the behaviour. 

Each before method can set the context such that the 
base level behaviour is overriden. This means that the 
base level behaviour will be suppressed. For example 
setting an override in a bef or eExecut eMet hod 
will result in the body of the method not being exe-
cuted.  

An example of a metaobject that implements the trac-
ing of method executions similar to the example given 
in section 2 is: 

publ i c  i nt er f ace I Met aObj ect  {  
 
  publ i c  voi d bef or eExecut eMet hod( I Execut i onCont ext  cont ext )   
  publ i c  voi d af t er Execut eMet hod( I Execut i onCont ext  cont ext ) ;  
   / *  cal l ed when a met hod i s  execut ed ( i nc l udi ng const r uct or / f i nal i zer )  * /  
 
  publ i c  voi d bef or ePut Fi el d( I Fi el dCont ext  cont ext ) ;  
  publ i c  voi d af t er Put Fi el d( I Fi el dCont ext  cont ext ) ;  
   / *  cal l ed when a f i el d i s  accessed * /  
 
  publ i c  voi d bef or eGet Fi el d( I Fi el dCont ext  cont ext ) ;  
  publ i c  voi d af t er Get Fi el d( I Fi el dCont ext  cont ext ) ;  
   / *  cal l ed when a f i el d i s  r ead * /  
 
  publ i c  voi d bef or eI nvoke( I I nvocat i onCont ext  cont ext ) ;  
  publ i c  voi d af t er I nvoke( I I nvocat i onCont ext  cont ext ) ;  
   / *  cal l ed when a met hod i s  i nvoked ( i nc l udi ng i ni t i al ser  * /  
 
  publ i c  voi d bef or eExcept i on( I Except i onCont ext  cont ext ) ;  
  publ i c  voi d af t er Except i on( I Except i onCont ext  cont ext ) ;  
  / *  cal l ed when an except i on i s  t hr own and caught  * /  
 
}  

Figure 2 – Inter face for  Kava MetaObject 



publ i c  c l ass Met aTr ace  
              i mpl ement s I Met aObj ect  {  
  publ i c  voi d  
     bef or eExecut eMet hod(  
       I Execut i onCont ext  cont ext )  {  
         Syst em. out . pr i nt l n(  
            " t r ac i ng "  +    
             cont ext . get Met hodName( ) ) ;  
  }  
}  
In order to trace the methods of a particular class, it is 
necessary to establish a binding between instances of 
the class and instances of the Met aTr ace class. 
These bindings are described using the Kava binding 
language in a special metaconfiguration file that drives 
the processing of a class by Kava. The binding specifi-
cation shown below means that Met aTr ace inter-
cepts the execution of any method of the class Test .  

<bi ndi ng> 
  <c l ass> 
    <c l assname>Test </ c l assname> 
    <met acl ass>Met aTr ace</ met acl ass> 
    <i nt er cept > 
      <execut e> 
        <met hod>* </ met hod> 
        <par amet er s>* </ par amet er s> 
      </ execut e> 
    </ i nt er cept > 
   </ c l ass> 
</ bi ndi ng> 
     
If the implementation of Test  is: 

publ i c  c l ass Test  {  
  publ i c  s t at i c   
    voi d mai n( St r i ng[ ]  ar gs) {   
      ( new Test ) . r un( ar gs[ 0] ) ;   
    }  
  publ i c  voi d r un( St r i ng s)  {   
      Syst em. out . pr i nt l n( “ hel l o ”  + s) ;    
  }  
}  
 
Then output of invoking the r un method of Test  with 
the actual parameter Wor l d is: 

t r ac i ng r un 
hel l o Wor l d 

 
Note that the code necessary to implement tracing be-
haviour is significantly more concise than the equiva-
lent byte code transformation code. The metaobject that 
specifies the code to be invoked when a method is exe-
cuted can also be compiled and verified therefore re-
ducing the possibility of coding errors. The binding 
specification is significantly shorter than the code that 
traverses the class and inserts instructions at the ap-
propriate place. Also, since it is a declarative specifica-
tion it is easier to code and less likely to contain errors. 

Kava is well suited to modifying the behaviour of 
classes where the interface of the class is not to be 
changed, or new keywords to be added to the language. 
As this example shows it is far more concise than an 
equivalent byte code transformation program, and it 
separates out the adaptation code (the metaobject) and 
the specification of where to apply the adaptation (the 
binding). 

4. Examples 
This section shows applications of Kava that highlight 
some of the more unusual features of the Kava metaob-
ject protocol. Many implementations of reflective Java 
concentrate on intercepting method calls and tracing 
method calls is the standard example used to demon-
strate a reflective system. Kava provides the ability to 
intercept the sending of method calls (invocation), field 
access, and exception handling in addition to the inter-
ception of method calls. The first example given here 
is of fine grained access control, this illustrates Kava's 
ability to control field access. The second example 
given here is how to prevent a particular type of denial 
of service attack, this illustrates Kava's ability to inter-
cept the sending of method calls. 

4.1 Fine grained access control 
The Java programming language provides the follow-
ing language level mechanisms for controlling access 
to class members such as methods or fields: 

• Public access where code belonging to any class is 
allowed to access the member. 

• Package access where access to the member is 
permitted only to code belonging to classes in the 
same package. 

• Protected access where access to the member is 
permitted only to code that inherits from the func-
tionality of the class. 

• Private access where access to the member is per-
mitted only to code that occurs in the body of the 
top level class that encloses the declaration of the 
member. 

While this is adequate for a number of situations there 
is still the possibility that a more fine grained access 
control may be required for security purposes. For ex-
ample, we may only want a certain field to be accessed 
by a limited number of classes that are spread across 
multiple packages. 



Using Kava it is relatively simple to implement such a 
fine-grained scheme. In this example we focus on pre-
venting access to fields by any but a small number of 
classes. 

We implement the following protection metaobject 
Met aChkAccess  that restricts access to a field to 
instances of two known classes GoodGuyA and 
GoodGuyB: 

publ i c  Met aChkAccess i mpl ement s 
   I Met aObj ect  {  
 
  publ i c  voi d  
    bef or ePut Fi el d( I Fi el dCont ext  c)  {  
      checkAccess( c. get Base( ) ) ;  
    }   
    / *  check any wr i t es t o t he f i el d * /  
 
  publ i c  voi d  
    bef or eGet Fi el d( I Fi el dCont ext  c)  {  
      checkAccess( c. get Base ( ) ) ;  
    }   
    / *  check any r eads f r om t he f i el d * /  
 
  publ i c  voi d  
    checkAccess( Obj ect  who)  {  
      i f  ( who i nst anceof  GoodGuy1 | |  
        who i nst anceof  GoodGuy2)  {  
        r et ur n;  
      }  
    el se {  
      / /  wr ong c l ass   
      t hr ow new  
        Secur i t yExcept i on(  
          " i l l egal  access by  "  + 
          who. get Cl ass( ) . get Name( ) ) ;  
    }  
  }  
  / *  check whet her  access i s  al l owed * /  
}  
 
The checkAccess  method checks any access to a 
field. If a class other than one of the allowed classes 
attempts to access a field then a Secur i t yExcep-
t i on is thrown. As Secur i t yExcept i on is a 
subclass of Runt i meExcept i on it does not have to 
be included in the declaration of the method. 

The Met aChkAccess  metaobject is then bound to 
any class that reads from or writes to the field pr o-
t ect edFi el d of the class Pr ot ect edCl ass  by 
including the following in the binding specification: 

<bi ndi ng> 
  <c l ass> 
    <c l assname>* </ c l assname> 
    <met acl ass>Met aChkAccess</ met acl ass> 
    <i nt er cept > 
      <get f i el d> 
        <c l ass>Pr ot ect edCl ass</ c l ass> 
        <f i el d>Pr ot ect edFi el d</ f i el d> 

      </ get f i el d> 
      <put f i el d> 
        <c l ass>Pr ot ect edCl ass</ c l ass> 
        <f i el d>Pr ot ect edFi el d</ f i el d> 
      </ put f i el d> 
    </ i nt er cept > 
   </ c l ass> 
</ bi ndi ng> 
 
4.2 Denial of Service 
Denial of service attacks are trivial to implement in 
Java. The simplest attacks consume resources by gen-
erating infinite numbers of objects such as windows 
that fill up the user's screen and occupy CPU time. 
Trivially this could be dealt with by defining a 
Met aRsr ceLmt  that watches how many instances of 
windows (all subclasses of j ava. awt . Fr ame) are 
created and limiting the number that can be created to 
a maximum: 

publ i c  Met aRsr ceLmt  i mpl ement s   
  I Met aObj ect  
{  
  publ i c  voi d  
    bef or eI nvoke( I I nvocat i onCont ext  c)  
  {  
    i f  ( c . get Tar get ( )  i nst anceof   
         j ava. awt . Wi ndow && 
        c . get Met hod ( ) . equal s( " <i ni t >" ) )  
    {  
       maxCount ++;  
       i f  ( maxCount  > ARBI TARY_MAX)  
       {  
          t hr ow new  
             Runt i meExcept i on(  
     " exceeded max number  of  f r ames" ) ;  
       }  
    }  
   }  
}  
 
This metaobject then would be bound to all method 
invocations by any method of any class: 

<bi ndi ng> 
  <c l ass> 
    <c l assname>* </ c l assname> 
    <met acl ass>Met aRsr ceLmt </ met acl ass> 
    <i nt er cept > 
      <i nvoke> 
        <met hod>* </ met hod> 
        <par amet er s>* </ par amet er s> 
        <c l ass>* </ c l ass> 
        <t ar get met hod> 
          <i ni t / > 
        </ t ar get met hod> 
      </ i nvoke> 
    </ i nt er cept > 
   </ c l ass> 
</ bi ndi ng> 
A more sophisticated metaobject will allow the block-
ing of windows until one was destroyed, and would 
maintain a global count of windows and detect when 
windows were destroyed as well as created. However, 



this example shows that resource creation can be easily 
controlled using a reflective approach. 

5. K ava Implementation 
 
5.1 Architecture 
Kava is written purely in Java, it does not require any 
special Java Virtual Machine to work. The link be-
tween metaobjects and objects is realised by the rewrit-
ing of classes and addition of hooks into the class code. 
Figure 3 shows the Kava architecture. A classloader 
reads the class file as a stream of bytes. These can be 
retrieved from any source, normally from a file or from 
across the network. The classloader parses the byte 
stream and creates a JVM specific representation of a 
class. Normally this is passed to the verifier before it is 
instantiated by the JVM. However, Kava is used to 
intercept the byte stream before the classloader con-
structs the JVM specific class and applies the standard 
code transformations that realise control by metaob-
jects. As stated earlier Kava uses a binding specifica-
tion file to determine what behaviours of what classes 
are to be brought under the control of particular 
metaobjects. It then adds traps into the code of the 
class to switch control when from the base level to the 
meta level (the associated metaobject) when the byte 
code base level objects carry out certain behaviours. 
After rewriting the class to include these traps, the 
classloader passes an internal representation of the 
class to the byte code verifier as before. This means 
that properties such as type safety are still honoured as 
before. 

Note that the metaobjects are loaded by the classloader 
in exactly the same way as any other class, which 
means that they must satisfy the same security proper-
ties as any ordinary Java class.  Metaobjects are ordi-
nary Java classes and can be compiled which means 
that errors can be caught at an early stage. 

Kava can be invoked either after a class is compiled or 
at the time the class is loaded into the JVM. In order to 
invoke Kava at loadtime a user-defined classloader 
must be used. In either case the traps that are added to 
the class are non-bypassable. 

5.2 Instrumentation 
The Kava metaobject protocol is implemented using 
the technique of byte code rewriting. Kava makes use 
of the Byte Code Engineering Library [6] toolkit to 
implement the standard transformations that add the 
hooks necessary to switch control from the base level to 
the meta level at runtime. Using a standard byte code 
rewriting toolkit frees us from dealing with technical 

details such as maintaining relative addressing when 
new byte codes are inserted into a method, or determin-
ing the number of arguments a method supports before 
it has been instantiated as part of a class. 

Class File

Class loader

Kava

Verifier

Interpreter JIT

Runtime system

Metaobject Class File

Binding Specification
File

byte stream

class file structure

class file structure

 

Figure 3 - Kava Architecture 

Standard byte code rewritings are used to add hooks for 
individual methods and individual byte code instruc-
tions. These hooks reify the context of a behaviour that 
is being trapped, invoke the metaobject associated with 
an object and reflect any changes to the context back to 
the base level. The metaobjects that are invoked are 
completely separate from the byte code hooks and are 
developed entirely in Java. This separation means that 
the runtime meta level can be adjusted dynamically at 
runtime although which behaviours are trapped is de-
termined at loadtime. 

For example, returning to the example of section 3.2 
the class Test  included the following r un method: 

publ i c  voi d r un( St r i ng s)  {   
  Syst em. out . pr i nt l n( " hel l o "  + s) ;  }  
After the metaobject Met aTr ace is bound to Test  
using the binding specification presented earlier, the 
r un method is effectively rewritten by Kava as: 

publ i c  voi d r un( St r i ng s)  {  
  Cont ext  c  = new Cont ext  
    ( t hi s ,  " r un" ,  " voi d" ,   
     " j ava. l ang. St r i ng" ,  new Obj ect [ ]    
     { s} ) ;  
  get Met a( ) . bef or eExecut eMet hod( c) ;  
  i f  ( ! c . over r i de( ) )  {  
  Syst em. out . pr i nt l n( " hel l o "  + 
     ( St r i ng) c. get Ar g( 0) ) ;  



    get Met a( ) . af t er Execut eMet hod( c) ;  
  }  
}  
 
The code in bold has been added by Kava.  

First, at the beginning of the method block a context 
object that represents the invocation frame is created. It 
contains a pointer to the base level object itself, the 
name of the method being executed, the return type, 
the types of the parameters, and the actual parameters 
marshalled into an array of objects. Then the metaob-
ject associated with the base level object is retrieved 
using a method added earlier by Kava and the be-
f or eExecut eMet hod method invoked. In this case 
get Met a( )  returns a pointer to an instance of a 
Met aTr ace so the method name is printed out. Fol-
lowing the invocation of bef or eExecut eMet hod 
the arguments passed within the context object are un-
packed, and the base level code is invoked. Finally, at 
the end of the method block the af t er Execut e-
Met hod method of the associated metaobject is in-
voked. In this case there was no implementation of the 
method so nothing occurs at the meta level. 

Since a metaobject method may override the corre-
sponding base level behaviour we add an if ... then 
clause. This ensures that when an override is indicated 
then the base level behaviour is suppressed. 

This is an example of standard transformation for a 
block of code. The transformation for intercepting be-
haviour such as setting the value of a field is very simi-
lar but finer-grained with the hook code being around a 
single instruction. 

5.3 Binding language 
As explained in section 5.1 the binding specification 
file determines where Kava introduces the hooks into 
the base level code. The concept is that to make 
metaobjects more reusable the binding should be speci-
fied completely separately of both the base and meta 
level.  

The binding specification contains multiple base object 
and metaobject class bindings. Each binding is between 
one class and a metaobject class. For that binding the 
particular behaviours to be brought under the control of 
the metaobject are specified, for example the execution 
of methods, or the setting of fields. These are param-
eterised by information such as the name of the field or 
method, the type of the target (in the case of setting a 
field, or invoking a method) etc. 

5.4 Special Features 
In this section we give an overview of some of the spe-
cial features supported by Kava: strong encapsulation, 
reflection on inherited methods, exception handling 
and context objects. 

5.4.1 Strong encapsulation 
One of the benefits of the Kava implementation is its 
support for strong encapsulation. Strong encapsulation 
is the property that it is difficult to bypass the metaob-
ject bound to the base level object. This has been 
achieved by avoiding the use of a separate wrapper 
class. Since hooks are added directly into method bod-
ies we greatly reduce the possibility that the hooks 
could be bypassed. This is because there is no way to 
express in the Java language a branching to an arbi-
trary point in a method body.  

It is true that if a malicious code transformer rewrote a 
class file that was pre-processed by Kava then our 
hooks could be removed. However, this can be easily 
guarded against through the use of a mixture of operat-
ing system protection and the use of code signing tech-
niques. 

5.4.2 Inherited M ethods 
When a Java class inherits a method from its super-
class the bytecode implementing the method is not re-
produced in the implementation of the class. For ex-
ample, if class C inherits the r un method from class D 
then the byte code for r un is still to be found in D's 
class file not C's class file. If we bind C to a metaobject 
metaclass MC, and try and bring the execution of r un 
under the control of MC, Kava will fail because it can-
not find the byte code implementation of run. The ob-
vious answer is to bind MC to D as well and add the 
hooks into D's run method. However, we may not want 
D to be brought under the control of MC, indeed we 
may even want it to be bound to an entirely different 
metaclass. 

The answer to this problem is to add a method get -
Met a to each base level class that returns a pointer to 
the metaobject bound to the base level object. We then 
ensure that superclass methods inherited by classes that 
are bound to a metaobject have hooks added to them 
that use the get Met a method to determine which 
metaobject to invoke.  

When an instance of C has its inherited method r un 
invoked the JVM's dynamic resolution of method calls 
will mean that the get Met a method appropriate to C 
will be invoked. This means that the metaobject bound 
to C will be returned.  



When an instance of D had its method r un invoked, 
the JVM's dynamic resolution of method calls will 
mean that the get Met a method appropriate to D will 
be invoked. This means that the metaobject bound to D 
will be returned. 

This approach ensures that the correct metaobject is 
invoked in both cases. The approach taken here is 
similar to that found in [3]. 

5.4.3 Exception Handling 
Kava allows the raising and throwing of exceptions to 
be intercepted and handled by the metaobject bound to 
an object. The bef or eExcept i on method is in-
voked before an exception is thrown at the base level. It 
allows the exception throwing to be overridden, this 
might be necessary where the metaobject is implement-
ing distribution at the meta level and the exception has 
to be propagated to a remote client. The af t er Ex-
cept i on method is invoked after an exception has 
been thrown or raised at the base level. It doesn't allow 
overriding of this behaviour but does allow additional 
processing to take place such as the propagation of the 
exception to related objects if a number of objects are 
co-operating and need to be aware of each other's 
status. 

5.5 Context Objects 
Kava uses the concept of Cont ext  objects to simplify 
the metaobject protocol and also allow the possibility of 
lazy reification. The metaobject sometimes will need 
access to runtime instances of Met hod, Cl ass  or 
Fi el d. However, generating these is a relatively ex-
pensive process so we defer their creation by passing 
the minimum information needed to derive them in a 
Cont ext  object. As part of the Cont ext  interface 
we provide methods for generating the reified in-
stances. The standard Java reflective API is used to 
generate these instances. In the future we would like to 
apply the same technique to the actual parameters 
passed to the metaobject.  

5.6 Performance 
We have made some preliminary measurements of the 
performance of Kava. They indicate that the most ex-
pensive operation is the generation of the context. 
Presently, this expense is more than doubling the exe-

cution speed of a number of instructions. We are cur-
rently exploring two main approaches to improving 
performance. The first approach is to use caching of 
context information, and the second is to allow selec-
tive reification.  

6. Related Work 
In this section we briefly review a number of other re-
flective Java implementations and attempt to categorise 
them according to the point in the Java class lifecycle 
that reflection is implemented. 

The Java class lifecycle is as follows. A Java class 
starts as source code that is compiled into byte code, it 
is then loaded by a class loader into the Java Virtual 
Machine (JVM) for execution, where the byte code is 
further compiled by a Just-In-Time compiler into plat-
form specific machine code for efficient execution. 

Different reflective Java implementations introduce 
reflection at different points in the lifecycle. The point 
at which they introduce reflection tends to characterise 
the scope of their capabilities. In order to bring the 
base level under the control of the meta level the base 
level system is modified through the addition of traps. 
These traps are known as meta level interceptions [16]. 
For example, in Reflective Java method calls sent to 
the base object are brought under control of an associ-
ated metaobject by trapping each method call to the 
baseobject. This is done by pre-processing the source 
code of the base level class. A contrasting example is 
MetaXa where the traps are in the implementation of 
the dispatch mechanism of the Virtual Machine. As the 
traps exist in the Virtual Machine itself, the source 
code of classes to be made reflective is not required. 
However, unlike Reflective Java, a specialised JVM 
must be used. 

Table 1 summarises the features of various reflective 
Java implementations. All these implementations have 
drawbacks that make them unsuitable for use with 
compiled components or in a standard Java environ-
ment where the purpose is to add security. Some re-
quire access to source code, and others are non-
standard because they make use of a modified Java 
platform. 



In contrast, Kava does not require access to source 
code because it is based on byte code rewriting, doesn't 
require a non-standard Java environment and provides 
a rich set of capabilities. It also provides what we refer 
to as strong encapsulation. Most implementations add 
traps through renaming of classes, or renaming meth-
ods, which means that it may be possible to call the 
original methods and therefore bypass the meta layer. 
Kava actually adds the traps directly into the method 
bodies avoiding this problem. Dalang was an earlier 
implementation of a loadtime reflective Java we im-

plemented that suffered from this problem. See [20] for 
an account of the evolution of Kava from Dalang. 

The closest reflective Java to Kava is a behavioural 
reflection add-on implemented as a demonstration of 
the capabilities of JavaAssist, a byte code rewriting tool 
based on structural reflection. Like Kava, this add-on 
adds hooks to the classes using byte code rewriting and 
has a similar meta level architecture of a binding be-
tween an object and a metaobject. However, it does not 
provide reflection on static members, on method invo-
cation, or exception raising. Also it doesn't support 

Point in 
Lifecycle 

Reflective 
Java 

Description Capabilities Restrictions 

Source 
Code 

Reflective 
Java [17] 

Preprocessor. Dynamic switching of 
metaobjects. Intercept 
method invocations. 

Can’ t make a compiled 
class reflective, requires 
access to source code. 

Compile 
Time 

OpenJava 
[18] 

Compile-time metaobject 
protocol. 

Can intercept wide range 
of operations, and extends 
language syntax. 

Requires access to source 
code. 

Byte 
Code 

Bean Ex-
tender 
[19],  
Dalang 
[20], 
JavaAssist 
[7] 

 

Byte code preprocessor 
(Bean Extender), byte code 
rewriting as late as load 
time (Dalang, JavaAssist). 

No need to have access to 
source code. 

Bean Extender – re-
stricted to Java Beans. 
Dalang, and Javassist – 
limited capabilities.  re-
quires offline preprocess-
ing. 

Runtime MetaXa 
[21],  
Rjava [22], 
Guarana 
[23] 

Reflective JVMs. Can intercept wide range 
of operations. Can be dy-
namically applied. 

Custom JVM. 

 java.lang. 
reflect [15] 

Reflective capabilities part 
of the standard Java devel-
opment kit. 

Runtime introspection, 
dynamic dispatch and on-
the-fly generation of prox-
ies. 

Overall introspection 
rather than behavioural or 
structural reflection. 

Just-in-
time 
Compila-
tion 

OpenJIT 
[24] 

Compile-time metaobject 
protocol for compilation to 
machine language. 

Can take advantage of fa-
cilities present in the native 
platform. No need for ac-
cess to source code. Dy-
namic adaptation. 

Custom Just-in-time com-
piler. 

Table 1 - Reflective Java Implementations 

 



reflection on methods that have been inherited from a 
superclass, nor does it support the concept of a binding 
specification. 

7. Conclusions and Future Work 
Kava focuses on the behavioural changes programmers 
want to impose on third-party code instead of the 
messy structural changes that byte code transformation 
tools deal with. Kava allows adaptations to be devel-
oped, compiled and tested independently of the target 
code, then declaratively combined with the target code. 
This reduces the chance of error and makes that task of 
adapting the behaviour of third-party code more tracta-
ble. 

Kava implements behavioural reflection in Java using 
byte code transformation as the underlying technique. 
This approach has allowed the creation of a tool unlike 
other reflective Java implementations is portable and 
can bring reflect on a wide range of runtime behav-
iours. 

Kava is available for download from 
http://www.cs.ncl.ac.uk/research/dependability/ 
reflection. We are currently in the process of tuning the 
implementation to support lazy reification of context 
objects. We are also investigating the application of 
Kava to a case study based on flexible security for an 
enterprise modelling system. 
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