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Abstract

While object-relational database servers can be
extended with user-defined functions (UDFs), the
security of the server may be compromised by these
extensions. The use of Java to implement the UDFs is
promising because it addresses some security concerns.
However, it still permits interference between different
users through the uncontrolled consumption of
resources. In this paper, we explore the use of a Java
resource management mechanism (JRes) to monitor
resource consumption and enforce usage constraints.
JRes enhances the security of the database server in the
presence of extensions allowing for (i) detection and
neutralization of denial-of-service attacks aimed at
resource monopolization, (ii) monitoring resource
consumption which enables precise billing of users
relying on UDFs, and (iii) obtaining feedback that can
be used for adaptive query optimization.

The feedback can be utilized either by the UDFs
themselves or by the database system to dynamically
modify the query execution plan. Both models have
been prototyped in the Cornell Predator database
system. We describe the implementation techniques,
and present experiments that demonstrate the effects of
the adaptive behavior facilitated by JRes. We conclude
that, minimally, a database system supporting
extensions should have a built-in resource monitoring
and controlling mechanism. Moreover, in order to fully
exploit information provided by the resource control
mechanisms, both the query optimizer and the UDFs
themselves should have access to this information.

1. Introduction

There has been much recent interest in using Java to
implement database extensions. The SQL-J proposal
[SQLJ] describes efforts by database vendors to support
user-defined functions (UDFs) written in Java. Java
UDFs are considered relevant in environments like
internets and intranets, where large numbers of users
extend a database server backend. In earlier work
[GMS+98], we explored some of the security,
portability, and efficiency issues that arise with Java

UDFs. The main observation was that although Java
UDFs are efficient, they do not solve all the security
problems that arise when a server accepts untrusted
extensions. Specifically, short of creating a process per
UDF, there is no suitable mechanism to prevent one
UDF from allocating large amounts of memory or using
a large portion of the CPU time. This allows a
malicious or buggy UDF to effectively deny service to
all the other users of the database system. Another
problem directly and negatively affecting deployment
of Java-UDF-enabled database systems is the lack of an
infrastructure for monitoring resource consumption and
billing users for resources consumed by their UDFs.

In this paper, we describe the application of a Java
resource accounting interface, JRes [CvE98], to address
this issue. JRes has been incorporated into the Cornell
Predator database system [Sesh98a] as part of the
Jaguar project, and we base our observations on this
prototype. To the best of our knowledge the resulting
system is the first database where extensibility based on
a safe language is augmented with an ability to monitor
usage of computational resources (we note that similar
concurrent efforts are being made by vendors of several
relational systems). In particular, our work further
limits the amount of trust that the database server must
have with respect to the behavior of extensions. Due to
using a safe language, our previous work ensured that
the server is protected from extensions and that the
extensions are protected from one another. At the same
time, the benefits of executing all participating entities
in a single address space can be exploited. This paper
demonstrates how a class of UDFs that may execute in
a database server without affecting the execution of the
server or other extensions can be enlarged to contain
UDFs with unknown and potentially malicious or
unbalanced resource requirements.

Furthermore, we question two implicit assumptions
underlying previous work on optimizing queries with
user defined functions: (i) that the costs and completion
time of invoking a UDF will remain constant over the
execution of the entire query, and (ii) that it is possible
to provide realistic estimates on the costs of UDFs. A
query executing on large tables and using costly UDFs
will execute long enough that considerable fluctuations



in resource availability are likely to be observed while
the query is running. Consequently, the relative weights
associated with different types of resources will change.
Expensive UDFs also often execute complex code,
making it difficult to accurately predict their cost.
Finally, database cost estimates are typically not
absolute; rather they simply need to be accurate relative
to each other on some cost scale used by the database
system developers (and usually not quantified in terms
of real time). The user defining a new UDF has no way
to position it on this internal cost scale.

Our work addresses some of these concerns. JRes
provides feedback for adaptive query optimization by
monitoring the use of resources by each UDF.
Depending on the adopted system design, either each
UDF requests information about resource consumption
and adapts its runtime behavior accordingly, or the
database server uses the feedback from the resource
monitor to adapt the query’s execution. Each model is
desirable in certain situations, leading to the conclusion
that a database system needs to support both models of
resource control feedback.

The rest of the paper is structured as follows. An
example-based motivation of our work is contained in
the next section. This is followed by a description of
selected details on Jaguar and JRes - systems used for
experimentation in this study. Section 4 outlines a
design space of applicability of dynamic resource
controlling mechanisms for user defined functions.
Section 5 shows how resource-limiting policies can be
defined for Java UDFs. Taking advantage of resource
availability feedback is discussed in Sections 6 and 7.
This is followed by a discussion of related work and
finally by conclusions.

2. Motivation

In order to justify the need for management of
computational resources in extensible database servers
let us consider the following example. An amateur
investor is planning future stock acquisitions and has
purchased access to a database server that can be
extended with used defined functions coded in Java.
Among other data, users of the server can access the
table Companies, which lists firms whose stock is
currently sold and bought on the New York Stock
Exchange. The table has two columns of interest for the
investor: Name (the name of a company) and
ClosingPrices, which is an array of numbers
corresponding to company’s share prices. The array
contains an entry for every day since the company
entered the stock market.

The investor wants to find companies that meet all the
following requirements: (i) the company is on the

market for at least forty days, (ii) the price of a share
forty days ago is smaller than the price today, and (iii)
on any given day during the last thirty nine days the
price has not changed by more than 2% from the
previous day. This can be expressed as the following
SQL query:

SELECT C.Name
FROM Companies C
WHERE LooksPromising(C.ClosingPrices)

where LooksPromising is a method of an investor-
supplied Java class StockAnalysis. Such a class can
be written by the investor, generated by a tool, or
purchased from a software development house. A
simple implementation is shown below:

public class StockAnalysis {
  private static final int DAYS = 40;
  private static final int VAR = 0.02;

  public static boolean    
  LooksPromising(double[] ts) {
    int size = ts.length;
    if (size < DAYS) return false;
    if (ts[size - DAYS] >= ts[size - 1])
      return false;
    for (int i = 1; i < DAYS; i++) {
      double price = ts[size - i + 1];
      double prevPrice = ts[size - i];
      double v =
        (price - prevPrice)/prevPrice;
      if (Math.abs(v) >= VAR)
        return false;
    }
    return true;
  }
}

This kind of database extensibility has many benefits.
Many complex filters can be coded much easier and
more efficiently when using a programming language
instead of SQL. UDFs can be used to integrate user-
specific algorithms and external data sources. By
controlling the use of the network and the file system,
and by using protection mechanisms of Java, the server
can ensure that its data is not corrupted or
compromised. Cryptography-based protocols like
Secure Socket Layer [SSL97] can be used to guarantee
secure uploading of UDFs to the server. This means
that if investors trust the server they can be assured that
nobody else will see the code of their UDFs, which can
be a concern when substantial effort was expended
towards creating them.

However, at the current state of the art of extensible
database technologies [GMS+98] several important
issues are still not addressed. These problems are
discussed in the subsections below. They include
dealing with denial-of-service attacks, accounting for
resources consumed by a user's particular UDFs, and



supporting system scalability. For extensible databases
where the UDFs are executed in the controlled
environment of a safe language, these problems, to a
large extent, boil down to the ability to monitor
computational resources such as main memory, CPU
usage, and network resources.

2.1. Denial-of-Service Attacks

The code of LooksPromising is not necessarily well
behaved. People make mistakes - for instance, a
programmer could forget to increment i in the for
loop which can lead to a non-terminating execution of
LooksPromising for some inputs. In addition to
making mistakes, some code is developed with
malicious purposes in mind. One could omit
incrementing the loop counter on purpose, or, for
instance, insert into LooksPromising code to allocate
an infinite list so that all available main memory is
monopolized by a single instance of the UDF.
Regardless of whether such programs are created on
purpose or unintentionally, they are equally dangerous
in that they can monopolize vital resources. Except for
a few trivial cases, it is virtually impossible to decide
by means of static code analysis if a Java UDF will use
more resources than a particular limit. Dynamic
mechanisms that constrain resource usage are needed to
prevent denial-of-service attacks. Traditional operating
systems use hardware protection and coarse-grained
process structure to enforce resource limits. Extensible
object-relational database environments, in many ways
subsuming the role of an operating system, need to
provide the same functionality.

2.2. Accounting for Consumed Resources

Some database servers use accounting mechanisms to
charge customers for service. The same will likely
happen to extensible database servers based on Java.
An immediate problem is that no mechanisms exist to
enable accounting for resources consumed by Java
UDFs. For instance, CPU time and heap memory used
by an invocation of LooksPromising are unknown,
since Java provides no support for gauging their usage.

Ideally, one should be able to run a UDF and obtain a
list of all the resources consumed by it. For instance, in
the case of LooksPromising, the CPU time and
maximum amount of memory used during the
invocation should be available. This information can be
used for profiling the code and for charging investors
for resources consumed during the execution of their
queries. Obtaining resource consumption traces from a
running UDF is valuable for query optimizers.

2.3. Scheduling and Scalability

Another problem with deploying extensible database
servers based on safe languages such as Java is the
difficulty of managing large numbers of extensions.
Since virtually no information about resource
consumption can be obtained, the system does not
know what UDFs are particularly resource-hungry and
which resources will be stressed when a large number
of copies of a particular UDFs are executing
simultaneously. This potentially leads to unbalanced
resource consumption patterns. For instance, let us
imagine several thousand CPU-intensive UDFs copies
running (or attempting to run) at the same time. If the
UDFs do not adapt their behavior, they face the
prospect of slow execution, of deadlock, of being
stopped temporarily, or even of being killed by the
system, depending on the local policy. This is likely to
result in wasted resources since queries and/or UDFs
will be aborted halfway through. Providing dynamic
information about resources available to UDFs allows
database systems to implement admission control
policies that minimize the number of aborted UDFs.
The UDFs themselves may be coded in a smart way to
adapt to changing resource demand and supply.
However, in order to be able to perform such coding, an
infrastructure and an interface that allows the UDFs to
learn about the loads during their execution must be
provided.

2.4. An Approach to Manage Resources in
Extensible Database Servers

The objective of this work is to provide mechanisms for
selected components of resource management in an
extensible database where UDFs are executed in a
single running copy of the Java Virtual Machine. This
includes (i) accounting for resource (CPU time, heap
memory, network) usage on a per-UDF basis, (ii)
setting limits on resources available to particular UDFs,
and (iii) providing the ability to define a specific action
to be taken when a resource limit is exceeded. To this
end we have extended Java and consequently the JVM
serving as an extensibility mechanism with a resource
accounting interface, called JRes. The extension does
not require any changes to the underlying JVM and
relies on dynamic bytecode rewriting and a small native
component, coded in the C language. As will be
demonstrated later in the paper, most of the problems
discussed in this section are addressed in our prototype.

3. Selected Details on Jaguar and JRes
Environments

This section contains a brief description of features of
Jaguar and JRes relevant for the work presented in this



paper. Both systems have been described in detail
elsewhere [GMS+98, CvE98].

3.1. Jaguar

The Jaguar project extends the Cornell Predator object-
relational database system [Sesh98a] with portable
query execution. The goals of the project are two-fold:
(a) to migrate client-side query processing into the
database server for reasons of efficiency, (b) to migrate
server-side query processing to any component of the
channel between the server and the ultimate end-user.
In short, the project aims to eliminate the artificial
server-client boundaries with respect to query
execution. The motivation of the project is the next-
generation of database applications that will be
deployed over the Web. In such applications, a large
number of physically distributed end-users working on
diverse and mutually independent applications interact
with the database server. In this context, portable query
execution can translate into greater options for efficient
evaluation and consequently reduced user response
times.

The Predator database server is written in C++, and
permits new extensions (new data types and UDFs, also
written in C++). To explore goal (a) of the Jaguar
project, the database server has been enhanced with the
ability to define UDFs with Java. This provides clients
with a portable mechanism with which to specify client-
side operations and migrate them to the server.  Java
seems to be a good choice as a portable language for
UDFs, because Java bytecode can be run with security
restrictions within the Java Virtual Machine.

In the current implementation, Java functions are
invoked from within the server using either Sun’s Java
Native Interface or Microsoft’s Raw Native Interface.
The first step is to initialize the Java Virtual Machine
(JVM) as a C++ object. Any classes that need to be
used are loaded into the JVM using a custom interface.
When methods of the classes need to be executed, they
are invoked through JNI or RNI, depending which
vendor’s JVM is currently used. Parameters that need to
be passed to Java UDFs must be first mapped to Java
objects.

The creation of the JVM is a heavyweight operation.
Consequently, a single JVM is created when the
database server starts up and is used until server
shutdown. Each Java UDF is packaged as a method
within its own class. If a query involves a Java UDF,
the corresponding class is loaded once for the whole
query execution. The translation of data (arguments and
results) requires the use of further interfaces of the
JVM. Callbacks from the Java UDF to the server occur
through the “native method” feature of Java. There are
a number of details associated with the implementation

of support for Java UDFs. Importantly, security
mechanisms can prevent UDFs from performing
unauthorized functions.

3.2. JRes

Through JRes, the trusted core of Java-based extensible
databases can (i) be informed of all new thread
creations, (ii) state an upper limit on memory used by
all live objects allocated by a particular thread or thread
group, (iii) limit how many bytes of data a thread can
send and receive, (iv) limit how much CPU time a
thread can consume, and (v) register overuse callbacks,
that is, actions to be executed whenever any of the
limits is exceeded. Both trusted core and untrusted
extensions can learn about resource limits and resource
usage.

JRes consists of two Java interfaces, one exception, and
the class ResourceManager.The class defines
constants identifying resources and exports several
methods. The methods can be divided up into two
categories: privileged and general access. The
privileged, authenticated methods can be used only by
the execution environment (server, browser). Setting
and clearing resource limits, setting and invoking
overuse callbacks all fall into this category. In the
context of this work, this ensures that only the database
server itself has privileged access to the resource
management subsystem. UDFs are prevented from
interfering with the resource management policies of a
given system.

The general access JRes methods, available to all
entities in the system, allow for querying the resource
management subsystem about resource usage of a
particular thread or thread group, about resource limits
imposed on a thread or a thread group, and about
system-wide resource availability.

Overuse callbacks can be coded as arbitrary Java code.
Consequently, what they can do is limited by the
control mechanisms that are part of the JVM. For
instance, it is possible to lower a thread’s priority but it
is impossible to change the thread-scheduling
algorithm. Another limitation is the inability to track
memory allocated in the native code. This is due to the
fact that most of JRes is implemented through bytecode
rewriting.

The design and operation of our current prototype,
which combines Jaguar and JRes, is shown in Figure 1.
In this example setup, two remote clients submit their
queries through a Web interface. The UDF code (i.e.
Java classes) is loaded by the Jaguar class loader. The
subsequent execution is controlled by what the standard
Java Security Manager and the JRes Resource Manager
allow.



4. Design Space

Let us take a look at possible dimensions along which a
resource monitoring facility can be taken advantage of
in an extensible object-relational database system. The
first dimension roughly quantifies the UDF
programmer’s involvement in monitoring the resources.
One end of the spectrum is populated by UDFs that
monitor their own resource consumption and the
resource limits to adjust their execution patterns with
respect to changing resource availability. A UDF that
dynamically adapts the accuracy of the produced results

to the availability of resources forms an example. The
other end of the spectrum consists of systems that
monitor the resources available to extensions and apply
this information to change execution of queries
containing UDFs. A database server dynamically
reordering conjunctive predicates depending on their
resource usage would be placed here.

The other, orthogonal dimension is the domain of
application of knowledge about both system-wide and
per-UDF resource consumption. One such domain is
security - detection of malicious UDFs and preventing
denial of service attacks. Another domain is
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Figure 1. The design and operation of Jaguar extended with Resource Manager.
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Figure 2. Dimensions of applicability of resource monitoring.



optimization, where combining knowledge of resource
demands and their availability may lead to improved
execution times of UDFs.

A system may occupy more than one quadrant in the
outlined space. Using information concerning resource
utilization and availability for optimization does not
preclude its usage for enhancing system security.
Similarly, both the UDFs and an object-relational
database itself can independently take advantage of
JRes feedback at the same time. Figure 2 summarizes
the classification introduced above and gives examples
belonging to each of the groups.

5. Enhanced Database Security using JRes

As stated earlier, protection provided by a safe
language is only one component of the necessary
security infrastructure provided by extensible
environments. Another vital part, neglected so far in
available designs, is the ability to control resources
available to extensions and the subsequent ability to
detect and neutralize malicious or otherwise resource-
unstable UDFs. Since the class of database servers

discussed in this paper falls into the extensible
environments category, it is crucial for an unimpeded
development and deployment of this data access
technology to pay attention to resource monitoring
issues.

Figure 3 shows one possible policy that limits each
UDF to one thread only. Moreover, such a thread is
limited to no more than 50kB of memory and less than
10 milliseconds of CPU time out of every 100
milliseconds. The limits are set whenever a thread
creation is detected by JRes. Whenever the memory
limit is exceeded, an appropriate exception is thrown. In
addition to signalling a problem, this effectively
prevents the operation of object creation from
completion. Exceeding the time limit results in
lowering the offending thread’s priority; if the priority
cannot be lowered any more, the thread is stopped. It
must be pointed out that stopping threads should be
dealt with carefully, since threads may own state or
other resources, like open files, which may need to be
saved or cleaned up appropriately before killing the
thread. The underlined code in Figure 3 is a part of JRes
(either as defined methods or interface methods to be

class ExtensibleDBServerRMP
  implements ThreadRegistrationCallback, OveruseCallback {

  private Object cookie;

  private ExtensibleDBServerRMP(Object cookie) { this.cookie = cookie; }

  public static synchronized void initialize() {
    Object cookie = new Object();
    ResourceManager.initialize(cookie);
    ExtensibleDBServerRMP rmp = new ExtensibleDBServerRMP (cookie);
    ResourceManager.setThreadRegistrationCallback(cookie, rmp);
  }

  public void threadRegistrationNotification(Thread t) {
    if (t.getThreadGroup().getName().equals("system")) { return; }
    if (udfHasThreadsAlready(t)) { stopThread(t); }
    ResourceManager.setLimits(cookie, RESOURCE_CPU, t, 10, 100, this);
    ResourceManager.setLimits(cookie, RESOURCE_MEM, t, 50, 0, this);
  }

  public void resourceUseExceeded(int resType, Thread t, long value) {
    if (resType == RESOURCE_CPU) {
      int priority = t.getPriority();
      if (priority == Thread.MIN_PRIORITY) { stopThread(t); }
      else { t.setPriority(priority - 1); }
    } else if (resType == RESOURCE_MEM) {
      throw new JResResourceExceededException(“memory”);
    }
  }
}

Figure 3. An example resource controlling policy for user defined functions.



defined). The code of several methods is not shown.
The details of JRes and its interface have been
presented in [CvE98]; the goal of Figure 3 is to
demonstrate how resource controlling policies for Java
UDFs can be defined.

6. Design of Resource Control Feedback
for Java UDFs

The JRes interface allows for retrieving information
about current system-wide resource availability and
about per-UDF consumption. This information can be
used in several ways to improve either overall system
performance or the performance of “smart” UDFs. In
this section, we describe several scenarios that show
usage and applicability of the Jaguar/JRes resource
monitoring. In the next section, we demonstrate the
performance impact when JRes is used in this fashion.

6.1. Obtaining UDF Costs as a Function of
Input Arguments

[Sesh98b] explores optimizations on the boundary
between relational query execution and the execution of
UDFs and method extensions. The paper identifies four
categories of optimization opportunities and studies
techniques applicable to each of the categories. An
important category requires knowledge of the resource
consumption of the UDFs. Our work provides a
practical framework in which resource utilization
information can be obtained and used for improving
query plans. For instance, let us consider the following
query

SELECT C.Name
FROM Companies C
WHERE
  LooksPromising(C.ClosingPrices) = true
  AND ExternalRating(C.Name) > 0.9
  AND Profitability(C.Name) = “Top”

The three UDF predicates are “black boxes” from the
viewpoint of both the underlying database and the
module managing the extensibility. In order to generate
the optimal plan, the query optimizer must know the
selectivity and cost of each predicate involved. Thus, an
off-line or on-line gathering of performance and
selectivity data is necessary in order to provide the
query optimizer with the required information. In the
example above, some predicates may access the
network (for instance, ExternalRating may have to
communicate with other databases), some may be very
CPU-intensive, and others may use large quantities of
memory.

Applying JRes off-line to generate a table associating
input sizes with execution time, bytes sent and received,
and the maximum amount of memory used is simple.

However, such a table makes sense only if the input
size determines the resource consumption. The process
of generating such tables may sometimes uncover that
there is simply no correlation between the argument
size and the resources consumed by the UDF.

6.2. Dynamic Predicate Reordering Based
on Resource Consumption

It is often not possible to execute a query off-line - for
instance when it has been submitted by a user during an
interactive session with a database server. In such
settings, Jaguar augmented with JRes is used to gather
dynamic resource profiles. The information can then be
fed dynamically to the execution engine, which may
change the order of predicate execution based on
similar criteria as in the static case.

Dynamic resource monitoring has one advantage over
static monitoring - relative values of resources are
known, so localized adjustments can be performed
better. Let us assume that in the example query from
the previous subsection Profitability (very CPU-
intensive) is applied after the equally selective
ExternalRating (which consumes large quantities of
network bandwidth). The order of predicates will
change during the same query execution whenever the
system detects that due to the presence of other queries
and UDFs in the system there is currently contention
for the network while a relatively large amount of CPU
time is available. The predicates with high costs, in
terms of currently scarce resources, are executed later,
benefiting from the selectivity of earlier predicates.

6.3. Dealing with Resource Shortages
without Reduced Quality

As described in detail in [Pang94], queries executing in
a priority scheduling environment face the prospect of
continually having resources taken away and then given
back during their lifetime. The same statement is true
for UDFs as well, especially for those invoked in
queries with long lifetimes; typically, this category
would include UDFs operating on large data inputs. Let
us take a look at UDFs for which the quality of a result
may not suffer but the completion time may worsen.
For instance, let us consider a query that invokes a UDF
in order to determine whether one image contains
another:

SELECT P.Name
FROM Paintings P, Cats C
WHERE Contains(P.Image, C.Image) = true

The images are stored in a compressed format and
Contains has to decompress them in order to run a
pattern-matching algorithm. If memory is scarce, only
parts of images may be decompressed. This will make
the pattern-matching operation more time intensive



while the results will be the same, and, more
importantly, invocations of Contains will not be
prematurely aborted because of lack of memory.

6.4. Adjusting Quality of UDF Results
when Necessary Resources are Scarce

In some scenarios, adapting to resource scarcity may be
accomplished by degrading the quality of output.
Examples include faster image operations resulting in
worse quality of results that are nevertheless useful for
the end user. Another such example can be seen
through the eyes of a user of a financial database. Her
UDFs return approximations of the standard deviation
of an input time series. The CPU time available to any
UDF invocation  can be limited system-wide in order to
make quick response times more likely for a large
population of users. In this setting, the UDF must
complete without using more resources as given -
otherwise, it will be terminated and no result will be
produced. Thus, while there is no bound on the length
of the time series, the time available to the UDF is
bounded. The UDF can query JRes for the CPU time
available to itself. This, in turn, can be used to compute
the number of entries of the input series that can be
processed before using up the quota. If less then the
whole series can be processed, it is up to the UDF to
decide which ones; the most plausible choices include
sampling with a fixed step size or using the most recent
section of the time series. The return value may be less
precise than whatever could be computed with
unlimited resources, but is still a much better alternative
than getting nothing back because the UDF’s execution
has been aborted.

6.5. Exploiting Resource Tradeoffs

In some scenarios, one resource can be traded off for
another in order to mask temporary or recurring
fluctuation in resource availability. One example has
been presented in Section 6.3. Another one is, for
instance, a UDF that sends data back directly to the
client via a network connection may choose to send
compressed results or to send the data “as is”. In the
first case, more CPU time but less bandwidth is needed;
the reverse holds in the second scenario. The most
common form of trading resources off for one another
is caching, where memory (main or disk) is traded off
for whatever resources were consumed to generate
cached data. Let us take a look at the following join,
where the UDF Similar detects a similarity between
two time series, retrieved from some other table or from
a file system:

SELECT D1.name, D2.name
FROM Data D1, Data D2
WHERE Similar(D1.name, D2.name) > 0.7

A naïve way of coding Similar is to retrieve time
series based on the names of arguments, compare
inputs, and return the value describing the similarity.
However, since the UDF is invoked repeatedly in this
query, simple optimizations are possible. If the query is
executed using a nested-loop join algorithm (scanning
D1, and for each tuple, finding a “matching” tuple in
D2), the UDF will be invoked several times with the
same first argument. The UDF code could choose to
cache the first argument, thereby using memory to
reduce CPU and I/O time.

7. Performance Study of Run-Time
Adaptation

While previous sections discussed possible uses of
resource monitoring mechanisms, this section focuses
on quantifying the impact of using JRes in Jaguar. The
experimental results presented below were obtained on
a Pentium II 300 MHz computer with 128 MB of RAM,
running Windows NT Workstation 4.0. The Java
Virtual Machine used by Jaguar was Microsoft Visual
J++, v. 1.1. Each of the experiments uses a table T with
1000 distinct tuples, each holding two integers, one of
which is an identifier for a separately stored time series.
The experiments are simple and it can be argued that
not very realistic, but they indicate potential
performance gains resulting from dynamic monitoring
of resource availability and appropriate adaptive
behavior

To set the stage for our experiments, let us consider
three UDFs: UDF-1, UDF-2 and UDF-3. Each of them
takes as an argument an integer identifying a certain
time series and returns a boolean value. The costs of
these UDFs are considerably larger than the costs of
simple predicates (e.g. integer comparisons). The first
two UDFs use caching to internally store results of their
computations - sorting and computing various statistical
moments of time series. UDF-3 does not cache its
results and thus its execution time  does not depend on
the amount of memory available to it. Figure 4 shows
the average execution time of each of the UDFs as a
function of the amount of memory available per UDF.
There were a hundred distinct time series involved; all
of them fit into an 800kB cache. Two points are worth
stressing here. First, the results of Figure 4 can be easily
obtained and can then be used by a static query
optimizer. Second, UDF-1 and UDF-2 are examples of
user defined functions that utilize a possible resource
tradeoff. In this particular case, the tradeoff was
increased consumption of main memory (caching)
versus reduced need for CPU time.



7.1. Dynamic Predicate Reordering

The three UDFs were coded so that they have the same
selectivity (on the average, each of them returns true
for 30% of its inputs) and in fact always return the same
answer if given the same input argument (i.e. whenever
UDF1 is true, so are UDF2 and UDF3, and vice versa).
Consider the following query:

SELECT T.Timeseries
FROM T
WHERE UDF1(T.Timeseries)
  AND UDF2(T.Timeseries)
  AND UDF3(T.Timeseries)

The execution time depends on the order in which the
predicates are applied and on the amount of memory
available to the UDFs . Every nontrivial predicate is
associated with a certain cost and a certain selectivity.
The latter determines the average ratio of tuples on
which the predicate results in true. Selective and cheap
predicates should be applied before less selective and
more expensive predicates to reduce the overall
execution cost. We picked three different evaluation
orders: 1-2-3, 2-1-3, and 3-1-21, and compared their
costs with the cost of a dynamically adapted order. We
varied the available cache size, changing the relative

                                                          
1 Because all three UDFs return the same values on identical
arguments, it only matters which predicate is evaluated first:
if it returns false, the later two are not evaluated; if it
returns true, all other predicates are evaluated as well. The
three picked permutations are equivalent in their complexity
to 1-3-2, 2-3-1, and 3-2-1, respectively.

costs of the predicates and thus their optimal order.
Figure 5 shows the average per-tuple processing time
for each of the three given evaluation orders and for an
adaptive strategy. The latter monitored available
memory and applied this information to dynamically
optimize the evaluation order. Incurring a small
overhead for the dynamic plan modification, the
adaptive strategy always chooses the best  order for the
predicates.

If the three UDFs were coded as one large UDF
invoking the three tests by itself, the reordering could
be done inside the UDF. In the case of predicates
applied to the same input, it is possible (with a bit of
additional work) to re-code them as a single predicate.

7.2. Reordering Join and Selection
Operations

Let us now consider the following query, operating on a
table T (with 1000 tuples, each of them consisting of
two integers; the first one serves as a reference to a
stored time series) and a table S (containing 10000
tuples, each of them also consisting of two integers):

SELECT *
FROM T, S
WHERE T.a = S.a and UDF1(T.a)

Due to the equality predicate used in the join between T
and S, the join has a certain selectivity with respect to
the table T. The application of UDF-1 can take place
either before or after the join, changing the cost of the
overall query execution. Applying UDF-1 before the
join results in an invocation of UDF-1 on each tuple of
T, but reduces the number of tuples of T that have to be
joined. On the other hand, applying the join first
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requires less invocations of UDF-1, but more tuples are
joined. The total cost of the query is different in both
cases. Our prototype can change the plan dynamically,
during  query execution. Figure 6 shows how the two
static strategies perform under changing memory
availability and contrasts it with the performance of the
dynamically adapted plan. The adaptation - applying
selection before or after the join - is done similarly to
the previous experiment: the resource monitoring
information is used by Jaguar to change the plan while
it is executing. As Figure 6 demonstrates, the
performance gains can be quite substantial when
memory availability changes frequently. As in the

previous experiment, with a small overhead the
adaptive strategy follows the best, hybrid plan. Let us
note that in this particular experiment, unlike in the
previous one, the query plan reordering can only be the
responsibility of the query execution module -- it
cannot be taken over by an adaptive UDF.

7.3. Overheads Introduced by JRes

The benefits of on-line resource monitoring come at a
price of runtime overheads. For the UDFs used in our
experiments, the added execution time overheads are
within 3-6%. The overheads are directly proportional to
the number of objects allocated by UDFs and in some

Figure 6. Execution time of different plans.
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cases can be substantial [CvE98]. The overheads may
be reduced if JRes is integrated into the JVM. Still,
increased system security and the ability to adapt both
execution plans and UDF execution  have to be
weighed against the increased execution time.

8. Related Work
Past work related to our research falls into two broad
categories: (i) predicting and controlling resource
consumption in existing database systems, and (ii)
resource accounting and enforcing resource limits in
traditional and extensible operating systems and
programming languages (a much more detailed
discussion of this area can be found in [CvE98]). In this
section, we summarize the most important work from
these areas influencing our research.

8.1. Database Systems

Several database systems and standards allow the
implementation of functions in C, C++ or Java, either
as predicates or as general functions. The examples
include POSTGRES [SR86], Starburst [HCL+90], Iris
[WLH90], and several commercially available systems
- for instance Informix, DB2, Oracle 8. The issue of
expensive predicate optimization was first raised in the
context of POSTGRES [Sto91] and a practically
applicable theory addressing the issue was developed in
[HS93]. The goal of a recent work of Hellerstein and
Naughton [HN97] is to optimize the execution of
queries with expensive predicates by caching their
arguments and results. The resulting technique, Hybrid
Caching, is promising in the presence of repeated
invocations of a predicate on the same arguments.

Obtaining realistic estimates of the costs of user defined
methods is difficult and quite often imprecise [Hel95].
Typically, it is assumed that, along with estimating
selectivity, the creator or user of a UDF will provide a
cost estimate as well. Assuming that cost estimates are
correct and remain constant throughout the entire
execution of the query, it is possible to efficiently
generate an optimal plan over the desired execution
space [CS96].

Another line of research refines query optimization by
focusing on join reordering where an important
working assumption is that predicates are zero-cost
[IK84, KBZ86, SI92]. A general formulation of query
optimization for various buffer sizes can be found in
[INS+92]. This runtime parameter is typically unknown
before the actual query execution. By constructing
various plans in advance, the most appropriate one can
be chosen at run-time just before the query is executed,
when the available buffer size is known. Another
technique helping with estimation of the query size is
adaptive sampling [LNS90], where statistical methods

are used to predict the result size based on selective
runs of the estimated query. Completing joins and sorts
under fluctuating availability of main memory has been
the subject of recent research by [Pang94].

Dynamic query optimization was incorporated into a
commercially available Rdb/VMS system [Ant93]. The
research suggests that it is cost-effective to run several
local plans simultaneously with proportional speed for a
short time, and then select the “best” plan to be run for
a long time. An optimization model that assigns the
bulk of the optimization effort to compile-time and
delays carefully selected optimization decisions until
runtime is described in [CG94]. Dynamic plans are
constructed at compile-time and the best one is selected
at runtime, when cost calculations and comparisons can
be performed. The approach guarantees plan optimality.
However, none of these approaches deals with
unknown and changing costs of user defined functions.

Our work differs from the research mentioned above in
our focus on UDFs and on monitoring the environment
in which UDFs execute. In addition to providing the
ability to run queries off-line to get estimates of their
cost, our system constantly monitors resource
utilization. This information is available directly both to
the UDFs themselves and the query execution module.
Both the database system and UDFs can utilize this
knowledge directly and dynamically.

8.2. Operating Systems and Programming
Languages

Enforcing resource limits has long been a responsibility
of operating systems. For instance, many UNIX shells
export the limit command, which sets resource
limitations for the current shell and its child processes.
Among others, available CPU time and maximum sizes
of data segment, stack segment, and virtual memory can
be set. Enforcing resource limits in traditional operating
systems is coarse-grained in that the unit of control is
an entire process. The enforcement relies on kernel-
controlled process scheduling and hardware support for
detecting memory overuse.

The architecture of the SPIN extensible operating
system allows applications to safely change the
operating system’s interface and implementation
[BSP+95]. SPIN and its extensions are written in
Modula-3 and rely on a certifying compiler to guarantee
the safety of extensions. The CPU consumption of
untrusted extensions can be limited by introducing a
time-out. Another example of an extensible operating
system concerned with constraining resources
consumed by extensions is the VINO kernel [SES+96].
VINO uses software fault isolation as its safety
mechanism and a lightweight transaction system to
cope with resource hoarding. Timeouts are associated



with time-constrained resources. If an extension holds
such a resource for too long, it is terminated. The
transactional support is used to restore the system to a
consistent state after aborting an extension.

Except for the ability to manipulate thread priorities and
invoke garbage collection, Java programmers are not
given any interface to control resource usage of
programs. Several extensions to Java attempt to
alleviate this problem, but none of them share the goals
of JRes. For instance, the Java Web Server [JWS97]
provides an administrator interface that displays
resource usage in a coarse-grained manner, e.g. the
number of running threads; however, the information
about memory or CPU used by each individual thread is
not accessible. PERC (a real-time implementation of
Java) [Nils96] provides an API for obtaining
guaranteed execution time and assuring resource
availability. While the goal of real-time systems is to
ensure that applications obtain at least as many
resources as necessary, the goal of JRes is to ensure that
programs do not exceed their resource limits.

9. Conclusions

The security and functionality of an extensible database
server can be enhanced by providing resource-
controlling mechanisms in the language used for
creating user-defined functions. Because of the
combination of portability, security, and object-
orientation, Java emerges as a premier language for
creating extensible environments. Our work evaluates,
in the context of extensible database servers, a resource
controlling interface we have developed for general
purpose Java programs. To the best of our knowledge,
no database system supporting UDFs (or, for that
matter, no other extensible server system that does not
rely on hardware protection) currently provides the
functionality we have added to Jaguar. The presented
description of the system design, the evaluation of
resource monitoring, and the provision of mechanisms
for adaptive behavior are important steps towards
practical extensible  servers.

In particular, our work further limits the amount of trust
that the database server must have with respect to the
behavior of extensions. The standard JVM controls
access of UDFs to security-sensitive resources such as
files and network. This paper demonstrates that a class
of UDFs that may execute in a database server without
affecting the execution of the server or other extensions
has been enlarged to contain UDFs with unknown and
potentially malicious or unbalanced resource
requirements. Moreover, the paper shows that the
execution cost of a UDF may depend on the dynamic
supply of computational resources. Thus, changing
query plan dynamically, during the query execution, is

necessary to achieve optimal performance. Jaguar
extended with JRes provides appropriate mechanisms
for achieving this goal.

Even though this work is carried out in the context of
an extensible object-relational database and Java
extensions, the conclusions generalize to any system
where Java code dynamically extends an execution
environment, like a Web browser or an extensible Web
server. The security can be enhanced and performance
concerns can be addressed in such environments in a
similar way to our prototype implementation analyzed
in the paper.
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