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Abstract

IDS are regularly evaluated by comparing their false pos-
itive and false negative rates on ROC curves. However,
this mechanism generally ignores both the context within
which the IDS operates and the attacker’s own ability to
adapt to IDS behavior. In this paper, we propose an alter-
native strategy for evaluating IDS based around multiple
strategies. Each strategy defines how an attacker profits
from attacking a target, and describes victory conditions
for the attacker and defender. By mapping the results
of ROC analysis to these strategies, we produce results
which evaluate defensive mechanisms by their capacity
to frustrate an attacker.

1 Introduction

Since the original LARIAT IDS comparisons, the stan-
dard practice for evaluating IDS efficiency has been to
compare ROC curves [8]. ROC curves describe the effi-
cacy of an IDS via false positive (FPR) and false negative
(FNR) rates, which are described as a function of a third
operating characteristic and then compared using a va-
riety of metrics such as the equal error rate or the area
under the curve.

The use of ROC curves for IDS evaluation has been
criticized since the original LARIAT work [10, 1]. Of
particular note is Axelsson’s analysis of the base-rate
fallacy, which notes that even if a false positive rate is
subjectively small, when a test is executed continuously,
the number of actual alarms can be intolerably high. This
argument was also extended by Gates and Taylor [7] who
argue that the false positive rates given in the existing lit-
erature are generally far higher than will be accepted by
IDS operators.

We argue that, in the IDS domain, the primary weak-
ness of ROC analysis is the lack of real, dimensional, val-
ues for comparison. Since the FNR and FPR are dimen-
sionless, they have no relation to operational concerns

such as the number of alerts. In particular, researchers
have historically been unable to determine whether our
defensive mechanisms actually inhibit attackers — a
scan detector may have a low false positive rate, but if
it can’t detect the attack until after the entire network is
scanned, it serves little purpose.

The technical contribution of this work is an alter-
native approach to evaluating IDS efficacy that extends
ROC analysis into a profit and loss model. In partic-
ular, our mechanism treats the IDS as a design speci-
fication for the attacker — as a rational entity, the at-
tacker has goals in attacking a network, and we attempt
to model those goals in such a fashion that we can deter-
mine whether defenses will frustrate an attacker.

To do so, we model different forms of attacks as zero-
sum games between attackers and defenders. For each
game, the attacker has a specific strategy and payoff. By
calculating a fixed probability of detection (a function of
the FNR in ROC analysis), we can evaluate, for example,
the likelihood that an attacker can successfully DDoS a
target with a botnet of particular size. We demonstrate
this mechanism using a simple DDoS scenario and a hy-
pothetical detection function. Using our approach, we
estimate how many bots an attacker would need to suc-
cessfully conduct an attack, and given sufficient defender
vigilance, how many additional bots would need to be
committed, or how long the attack would succeed. As
an exploratory work, we emphasize that the numbers ex-
pressed in these tests should be considered qualitative,
rather than quantitative — the results provide a founda-
tion for comparison between IDS rather than tolerances.

The remainder of this paper is structured as follows:§2
is a survey of previous work in this field. §3 describes our
evaluation mechanism. §4 describes the four strategies
presented in this paper and their derivation. §5 provides
an example scenario using DDoS. §6 concludes the work.



Strategy Payoff Unit k-Round Payoff Limit Examples
Acquisition Bots kP(a)(1−D(a))k Network Size Scan-to-own

Reconnaissance Unknown sites kP(a)
Pk

i=0(1−D(a))i Network Size Scan-to-identify
Saturation Bandwidth |H|(1−

Pk
i=1D(a)i) Overwhelm Defender DDoS

Backchannel Duration kP(a)(1−D(a))k Reach Transmission Limit Exfiltration

Table 1: Evaluation Games, Payoffs and Example Attacks

2 Previous Work

Lippmann et al.’s work on IDS evaluation [8] is the stan-
dard for IDS evaluation, and established the practice of
using ROC curves to evaluate IDS efficacy. A general
history of ROC analysis, explaining the choice and weak-
ness of the methodology was given by McHugh [10]. Of
particular relevance is Axelsson’s analysis of False Posi-
tive Rates and the base-rate fallacy [1].

This paper refines ideas we have proposed in the past
about IDS evaluation [4]. This paper extends upon our
previous work to reformulate anomaly detection mech-
anisms in a paradigm of tolerances and payoffs. Cost-
based models have also been proposed by Cárdenas et
al. [3], Stolfo et al. [12] and Gaffney and Ulvila [5]. Our
approach differs from these in treating the attacker as a
rational entity and evaluating his approach in that con-
text.

Other game-theoretic approaches include Cai et al. [2]
use of game-theoretic model to honeynets, evaluating
various strategies for lying to an attacker in order to draw
out the maximum intelligence. Our approach differs in
intent, in that we are focused on converting ROC re-
sults into some form of concrete value, while Cai et al.’s
work is focused on quantifying an attacker’s skepticism
about a honeynet. More germane is Marchang and Tri-
pathi’s [9] model of IDS activity in MANETs. However,
their work is focused on when an IDS should be active (a
concern in MANETs), whereas our work focuses on IDS
response to different attacker methods.

3 Evaluation Process

In this section, we describe our methodology for evaluat-
ing IDS. To do so, we evaluate the payoff an attacker re-
ceives over an observable attack space. The payoff is the
utility that the attacker receives for conducting a partic-
ular attack, and the observable attack space is the space
of behaviors that an IDS can observe which describe the
attack. We compare IDS by examining the payoff that an
attacker gets over the same OAS in the same time — an
IDS which provides a lower payoff to the attacker should
be preferable.

Since our approach models attacks as a zero-sum
game, it is worth noting that an attacker could theoreti-

cally use the same approach to optimize his own attacks.
However, in order to do so, the attacker would need to
know the FNR and FPR of the defender’s IDS.

The remainder of this section describes the construc-
tion of OAS and the problem of timing. §3.1 describes
the observable attack space and how we model reaction
time. §3.2 addresses the problem of timing and the false
positive rate. §3.3 describes payoff and probability of
detection.

3.1 Observable Attack Space

An IDS analyzes some form of log data, such as ser-
vice logs (as is the case with host-based IDS) or cap-
tured packets (as is the case with Bro [11], Snort1 or
NetFlow analysis systems [6]). The choice of log data
limits the inferences that an IDS can make. For example,
since flow analysis systems have no access to payload,
they cannot determine with certainty whether a packet is
crafted to use a particular buffer overflow or a password
attack.

To model the limitations of log analysis systems, we
refer to the space of attacker activity as observed by the
IDS as the Observable Attack Space (OAS). The OAS is a
multidimensional space of attributes derived from traffic
log data. The OAS relates the attacker’s payoff to the
defensive mechanism being used. As a result, OAS will
vary as a function of the log data collected, the attack
strategy (see §4) and the IDS.

The dimensions of the OAS are a subset of the at-
tributes found within the log data, and may be aggre-
gates or permutations of those attributes. At the min-
imum, the OAS’ dimensions should consist of whatever
attributes the attacker uses to determine payoff and what-
ever attributes the IDS uses to infer behavior. For exam-
ple, NetFlow data contains among its fields the source
and destination IP addresses of a flow, the protocol used
and the time that the flow occurred. An OAS generated
from flow data may use the number of unique flows ob-
served per IP address, or the number of bytes and pack-
ets observed. An IDS which is monitoring scanning may
be evaluated using an OAS whose dimensions consist of
the number of IP addresses contacted by a single IP, and
the number of addresses where a legitimate session was
recorded.



3.2 Reaction Time And False Positive Rate

We now address the problem of timing. An IDS requires
some time to respond to an attack. To simplify evalua-
tion, we model response time using discrete periods. In
this model, attacks take place in rounds: discrete, fixed-
length periods after each of which the defensive system
can judge traffic and respond to attacker behavior.

The defender chooses the length of the round; how-
ever, round length bounds the FPR. We assume that any
IDS is being manned by some operator who judges or
validates the results. Given this constraint, we set an ac-
ceptable limit of one false positive per 8 hour operator
shift, and then calculate the FPR correspondingly. For
example, if the round length is one minute, then the max-
imum allowable FPR is 0.2%.

3.3 Detection Probability and Payoff

Once an OAS and round length have been determined,
we map attacks to the OAS as discrete attack points. For
any attack point, a, we define the payoff P(a) as the util-
ity to the attacker of conducting that particular attack.
The dimensions of the payoff vary based on the strategy
the attacker executes and are discussed in §3. Each strat-
egy defines attacker utility differently, and can include
acquiring bots, gaining intelligence about an unknown
network, or simply keeping a connection open as long as
possible.

The complement to payoff is probability of detection.
D(a) is the probability that a defender detects the at-
tacker, and responds at the end of a round. The defender
estimates the FNR rate using a ROC curve, and then cal-
culates the probability of detection 1− FNR. Recall that
the round length fixes the FPR to a small value; we treat
the FNR as fixed at its highest value within that range
(i.e., if the FPR is 0.001 and the FNR ranges between
0.1 and 0.3, we treat it as 0.3 and use a corresponding D
of 0.7).

4 Strategies

A strategy is a model of an attack consisting of a pay-
off function and a limit. The payoff function is the at-
tacker’s gain over a sequence of discrete rounds, and
the limit is the aggregate payoff defining attacker vic-
tory. For each strategy x, we define an aggregate payoff
function Ax(D(a), k), which is the total payoff after k
rounds. The attacker wins in any round where Ax ex-
ceeds the limit, and may depending on the strategy in
question, opt at that point to quit. For example, when
scanning a network, the attacker’s payoff is the number
of hosts contacted and the limit is the number of hosts

on the network. After scanning the entire network, the
attacker quits.

The aggregate payoff function is defined by the at-
tacker and the defender’s interaction. Defenders react
to each attack slightly differently, but we assume that
defenders have a limited set of options: they can only
block attacking hosts or restore a compromised host on
their network. Defenders have no impact on any network
except their own.

In this paper, we define four strategies, which are sum-
marized in Table 1. The four strategies are acquisition
(the takeover of a host via scanning), reconnaissance
(simple scanning), saturation (DDoS), and backchan-
nel communications (covert channel communication or
DDoS from the attacking side). Table 1 summarizes
these strategies, an example payoff unit, their aggregate
function and limits. The strategies described in this doc-
ument are simple, and are not intended as a comprehen-
sive set, but as an initial collection of descriptors.

4.1 Acquisition

The acquisition strategy models the takeover of multiple
remote hosts by an attacker using some form of exploit,
such as a buffer overflow or a password list. In this strat-
egy, the attacker controls a single host which commu-
nicates with the defender’s network. In each round, he
communicates with some number of hosts in the targeted
network, and receives a payoff for each host he success-
fully contacts.

In the acquisition strategy, the defender will block the
attacker if detected, and restore any hosts the attacker
compromised. As a result, the aggregate payoff for ac-
quisition is a function of whether, in the k rounds the
attacker operates, the defender ever detects him. If de-
tected, the attacker’s payoff is zero, if undetected the pay-
off is kP(a). Equation 1 formalizes this value.

Aacq = kP(a)(1−D(a))k (1)

The limit for acquisition is the size of the network the
defender is protecting.

4.2 Reconnaissance

The reconnaissance strategy models scanning and other
attempts to gather intelligence on a network’s structure.
Reconnaissance differs from acquisition in that the at-
tacker is interested only in communicating with hosts,
not compromising them. Because of this, the attacker
does not modify the network and all the defender can
do to impact payoff is block further communications.
If detected, the attacker keeps the payoff from previous
rounds. As such, for k rounds, the aggregate payoff for



reconnaissance is simply a function of whether the de-
fender was detected:

Arec = kP(a)
k∑

i=0

(1−D(a))i (2)

Note that since the attacker can only be blocked, it gets
the first round (before the defender has a chance to react).
The reconnaissance strategy succeeds if the attacker is
able to communicate with the entire observed network
without being detected.

4.3 Saturation
The saturation strategy models DDoS and other mecha-
nisms where the attacker’s goal is to swamp a connection
with traffic. In saturation, the attacker begins with a set
of hosts, H . In each round, each host attacks at attack
point a, and the attacker payoff is the product of his pay-
off for an individual host across the entire set.

In each round of the saturation strategy, the defender
identifies |H| ·D(a) hosts and progressively blocks them
at the end of the round. As a result, the k-th round aggre-
gate payoff for the attacker is a function of the number
of hosts the defender has been able to block, and is ex-
pressed as:

Asat = |H|(1−
k∑

i=1

D(a)i) (3)

The limit for saturation is a function of the target and
its tolerance. For example, if the target is a webserver,
the limit may be a function of the number of requests that
are processed in a round. If the target is a router, the limit
may be the bandwidth of an interface on the router. In ad-
dition, unlike the acquisition and reconnaissance strate-
gies, saturation can continue indefinitely — reaching the
limit in saturation is an indicator that the attacker is able
to block communications for the next round.

4.4 Backchannel
In the backchannel strategy, the attacker owns a compro-
mised host within the defender’s network and is using it
for its own purposes. Backchannel communications may
include dialing home to a botnet command and control
server, or downloading and uploading files.

In the backchannel scenario, the attacker’s goal is to
maintain sufficient control of the host to transfer a file
of specific size (the limit in the scenario) without being
detected. If the communication is detected, then the de-
fender identifies the host and restores it, yielding an ef-
fective payoff of zero. The aggregate payoff is therefore
identical to the acquisition scenario in that if the attacker
is ever detected, the payoff is zero:

Abkc = kP(a)(1−D(a))k (4)

5 Evaluating an IDS

In this section, we apply our methodology to explore at-
tack and defense options during a DDoS. We stress that
the models of traffic used in this section are synthetic —
the focus of the work in this paper is not on developing
a defensive mechanism, but evaluating how those mech-
anisms can be applied. Our approach works evaluating
the impact that defensive mechanisms have on attacker
goals. When evaluating a single system, we evaluate how
different attacker choices (represented as different attack
points) impact his goal of reaching the limit for whatever
strategy he is applying.

For brevity, we demonstrate how a single defense can
be used to evaluate its impact on attacks; our earlier
work [4] gives an example of comparison. We consider a
simple DDoS scenario where an attacker controls a small
botnet consisting of 10,000 bots. We consider DDoS be-
cause it can be modeled as an endurance contest — the
defender wins if he can continue to operate in the pres-
ence of the attacker’s attacks. For our model, the de-
fender is defending a single HTTP server with a capacity
of 500 requests/s2. To evaluate the impact of an IDS on
an attack, we must define an OAS, generate D and P ,
and then evaluate their impact using Equation 3.

For the purposes of this example, we choose a sim-
ple 1-dimensional OAS — a is the number of requests
originating from the host in a 1 second round. We model
attacker payoff as P(a) = a; that is, the attacker’s pay-
off is the number of requests fired off by a host in a sec-
ond. We model the probability of detection, D(a) as:
D(a) = tan−1((a−2)/2)

π/2 . This function is chosen to yield
the curve in Figure 1(a), which tends asymptotically to-
wards 1 as a (measured in requests/s) tends towards ∞.
Figure 1(b) shows the expected 1-round, 1-host payoff
(D(a) · P(a)) for an attack as a function of the number
of requests/s generated by the bots. We get a maximum
integral payoff if an attacking host sends 3 requests/s.

Using equation 3, we can now evaluate various ap-
proaches to DDoS by the attacker. Figure 2(a) calculates
the effective lifetime of the 10,000 host botnet by assum-
ing that the attacker commits all 10,000 hosts initially
and then applying Equation 3 directly. Figure 2(a) calcu-
lates the largest value of k for which, given |H| = 10000,
the aggregate payoff is greater than 500 Requests/s. The
longest lifetimes are achieved by subtlety, and the at-
tacker gains more by conducting short requests.

An alternate scenario is one where the attacker re-
places hosts as they are blocked. The efficiency of this
approach is shown in Figure 2(b), which plots the ex-
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Figure 1: Metrics describing the performance of the attacker botnet in the DDoS scenario.
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Figure 2: Expected botnet lifetimes using different replacement strategies.

haustion of his pool of bots as he conducts this attack.
In this case, we use the optimal individual payoff from
Figure 1(b), 3 Requests/s/host, and a steady stream of
167 hosts. At the end of each round, the attacker adds
as many hosts are required by calculating the loss using
Equation 3 with k = 1.

Finally, we consider the situation where the attacker is
unaware of the defensive capacities of the network and
will therefore vary his offense. To do so, we plot the
attacker’s replacement rate as function of the bots com-
mitted and their aggressiveness over a space of values.
Figure 3 shows an example of this approach. In this case,
only successful attacks (ones where the total payoff ex-
ceeds the limit) are plotted.

The results of Figures 2 and 3 provide an alternative
means of evaluating the efficiency of detection mecha-
nisms. The payoff and limit values can be applied in
multiple ways to evaluate defensive efficiency. If a de-
fense prevents the attacker from reaching his limit, then
it could be considered objectively successful in that the
defender will survive attacks of that form; however, we
expect such a situation to be rare. Alternatively, when
comparing multiple systems, system A is more success-
ful than system B when it produces a lower payoff than B
at the same attack point. Another approach is to evaluate

how well an attacker can achieve a particular payoff —
that is, how long it takes, or whether a particular payoff
can be maintained indefinitely.

6 Conclusions

In this paper, we have introduced an alternative method
of evaluating the efficacy of detection and defensive
mechanisms based around payoff functions. In compari-
son to ROC-based evaluation, this approach expands the
false positive and false negative rates to dimensional val-
ues to measure the impact that a defensive mechanism
has on attacker goals.

As exploratory work, the results of this evaluation
strategy are rough, and best considered as qualitative,
rather than quantitative — they are viable for describing
whether one defensive approach is notably better than
another, but the resulting numbers are not yet realistically
connected with real-world phenomena. Future work will
focus on refining these scenarios to more accurately mea-
sure real-world behavior such as server exhaustion.
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