
RA: ResearchAssistant for the Computational Sciences

Daniel Ramage
dramage@cs.stanford.edu

Adam J. Oliner
oliner@cs.stanford.edu

Stanford University
Department of Computer Science

Stanford, CA 94305-9025 USA

ABSTRACT
Computational experiments often discard large amounts of
valuable data, such as invocation parameters and the lin-
eage of output. Our goal is to identify, manage, capture,
and organize this information. These data can be used to
make the scientific process simpler and more efficient, and
to increase the value of the research by making it more rig-
orous and reproducible. ResearchAssistant (RA) is an open
source Java programming tool that helps to plug this in-
formation leak. RA ensures that all console output is valid
XML; saves invocation parameters, the random seed, and
code version information; automatically checkpoints inter-
mediate results; creates runnable experiment packages; and
keeps meticulous notes. This paper presents the design and
implementation of RA, and shows how RA easily scales to
make complex experiments repeatable.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information
Systems]: Software Management—software development,
software process; D.2.6 [Software Engineering]: Program-
ming Environments—integrated environments, programmer
workbench

General Terms
Experimentation, Documentation, Reproducibility

Keywords
Reproducible research, programming tool, XML, Java

“A computer lets you make more mistakes faster
than any invention in human history—with the
possible exceptions of handguns and tequila.”
- Mitch Ratcliffe, Technology Review, April 1992

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExpCS, 13–14 June 2007, San Diego, CA.
Copyright 2007 ACM 978-1-59593-751-3/07/06 ...$5.00.

1. INTRODUCTION
As the quantity of data available for analysis increases, sci-

entists turn to computers as a promising and natural plat-
form for research. Most software, however, is designed to
solve problems, not to conduct scientific experiments; exist-
ing software either obscures or discards information that is
pertinent to the scientific method. There must be a funda-
mental shift in the nature of these tools. The key insight
behind the ResearchAssistant (RA) toolkit is to provide a
suite of abstractions, at the level of the programming lan-
guage, that gives scientists suitable control over their com-
putational experiments.

Computational scientists seek to understand properties of
the physical universe, of data sets, of an algorithm or com-
putation, and sometimes of the computer itself. Code and
data serve as the input to a computer, which performs com-
putations on this information to generate output, elucidat-
ing the property of interest. While this process can generate
useful data, there is also much that it discards; this paper
is concerned with identifying, managing, capturing, and or-
ganizing this otherwise-lost information.

The flow of information in a computational experiment
is illustrated in Figure 1. This information is divided into
three classes: input, runtime, and output. The input to an
experiment includes the invocation parameters, data sets,
and random seeds. We also consider the program’s code
to be an input. The runtime factors include circumstances
that may affect the output but which are properties of the
computer (like the scheduling of threads), or environmental
influences (like manual intervention). The last category of
information is output, which includes messages printed to
the console, the display, or files. As with any taxonomy, the
distinctions are gray at the intersections; we have found this
terminology useful and present it here to facilitate discus-
sion.

A computational experiment typically involves the inad-
vertent destruction of data. The exact invocation param-
eters are lost, figures are orphaned from the computations
that produced them, output streams are merged irrevocably
to the terminal, records of when and how experiments were
performed are never written down, random seeds change,
and data sets are lost or altered.

There is value in the lost data. Reproducibility is a key
characteristic of good scientific research. We distinguish be-
tween reproducibility (using the principles from a body of
work to solve a problem with a distinct implementation) and
repeatability (recreating the exact circumstances and results
of an experiment). We assert that repeatable research is

1

Invocation

Parameters

Manual

Intervention

Computer Display

Disk

code and
data

data

Runtime

Factors

INPUT

RUNTIME

OUTPUT

Figure 1: The flow of information in a computational
experiment, divided into three classes.

more amenable to being reproduced. To achieve repeata-
bility, we must record the inputs and runtime factors that
influence the computation; otherwise the output cannot be
recreated. Furthermore, in order to compare experiments,
we must isolate what has changed in the input and, conse-
quently, in the output. For example, did a recent adjustment
to an algorithm improve the results, or does a subtle change
elsewhere deserve credit? Throughout this paper, we focus
our discussion on repeatability, with the implication that
this is an invaluable resource for reproducibility.

The salient capabilities of RA include automatic book-
keeping, checkpointing, XML output formatting, and portable
experiment packaging. It is free and open source [17], and
programs written in Java may begin taking advantage of Re-
searchAssistant by adding a single line of code to their main
function. In the following ways, RA automatically improves
the research process by leveraging existing information that
would otherwise be squandered.

• Records experimental runs along with the version con-
trolled source, invocation parameters, and random seeds.
Maintain the lineage of output data.

• Automatically checkpoints intermediate states; the ex-
periment may then be run piecemeal to save time and
redundant computation. Furthermore, even large data
sets may be recorded in a more manageable, though
partially processed, state.

• Formats output in a way that reveals when and how it
was generated, and that can be readily consumed by
existing tools.

• Collects all experimental code, parameters, and data
sources into portable, runnable packages. A package
is, therefore, a repeatable experiment.

This paper answers the following questions, among oth-
ers. How can RA identify and capture input and runtime
data, and how can it help manage and organize output data?
What are the requirements and costs of RA? How can RA
make research simpler, more efficient, and more pleasant?

2. BACKGROUND
When data was rare and experiments were arduous to con-

duct, scientists would meticulously record whatever might

be relevant to their work in a lab notebook. Now, experi-
ments can be performed with the push of a button, on large
inputs, and with liberal repetition. Scientists turned to com-
puters to solve the problem of data ubiquity that comput-
ers themselves had created. Historically, the challenge was
framed in terms of reproducible research: capture the inputs
and runtime factors with sufficient completeness to generate
the same output.

The history of reproducible computational research can be
traced back at least as early as Donald Knuth’s work on lit-
erate programming [9], which dictates that programs should
be accompanied by literate descriptions and that code exam-
ples should work. Knuth was followed by Jon Claerbout and
his colleagues at the Stanford Exploration Project, who led
the charge for reproducible research in the computational
sciences [19]. The Claerbout Principle [3] states,

An article about computational science in a sci-
entific publication is not the scholarship itself,
it is merely advertising of the scholarship. The
actual scholarship is the complete software de-
velopment environment and the complete set of
instructions which generated the figures.

Inspired in part by Claerbout, Buckheit and Donoho de-
veloped Wavelab [1], a free library of Matlab routines for
wavelet analysis, wavelet-packet analysis, cosine-packet anal-
ysis, and matching pursuit. Wavelab includes tools that
facilitate the reproduction of figures from research publica-
tions, and a collection of common data sets. The documents,
code, and data used to reproduce a set of results may be as-
sembled into what they term a compendium [6].

In principle, computational experiments should be among
the easiest to reproduce. In practice, however, code and
data sets are rarely released [10]. Skepticism about results
and redundant reimplementation are common consequences.
Vlad observes [20] that scientific papers are built on a foun-
dation of ethics and trust. The peer review process should
encourage runnable experiments. Where possible, the proof
that the implementation and measurements are true to the
claims should include, “Here, try it.”

Reproducible research has begun to gain traction in some
computational sciences such as bioinformatics [5], geophysics,
acoustics and signal processing, epidemiology [15], and statis-
tics [18]. Sweave is a tool for statistical research that allows
R code to be embedded directly into a document, where the
analysis may be rerun in place [12]. WEKA, a toolkit for
research in artificial intelligence [4, 7], has tools for saving
experiments and parameters, but these remain confined to
the WEKA infrastructure. The same is true for YALE [13],
a data mining package, and for GATE [2], a natural language
processing environment. Indeed, most existing tools for re-
producible research are tied to special-purpose frameworks
(like WEKA or GATE) or to special-purpose languages (like
R or Matlab). ResearchAssistant, on the other hand, is built
for Java, a widely used and general-purpose programming
language. As described in Section 4, it is only thanks to
features of Java like run-time reflection on metadata and
serialization that many capabilities of RA are possible.

The challenge of capturing input, runtime, and output
data for the scientific process is distinct from replay debug-
ging [11, 14, 21], where a tool is used to isolate misbehavior
in a computation. To be valuable, a solution for the research
environment must be “always on,” rather than imposing a

2

cost that prohibits daily use.
Despite the plethora of related work, the computational

sciences remain dominated by research that cannot be eas-
ily verified, tweaked, or extended. This behavior is deeply
rooted in the culture of computer and computational scien-
tists. Buckheit and Donoho, the authors of Wavelab, call
the current state of affairs “a scandal”.

The information that we wish to salvage from computa-
tional experiments is not new, and we have discussed numer-
ous existing approaches. They each fall short in some way:
the inability to access certain information, implementation
at the wrong level of abstraction, onerous burdens on the
programmer, or limited applicability. The central technical
contribution of ResearchAssistant is to make saving exper-
imental data so simple and pervasive that it qualitatively
changes the process of computational science.

3. PROBLEM DESCRIPTION
If we hope to foster rigorous scientific methodology in the

computational sciences, we must provide tools that enable
research to be conducted efficiently, repeatably, and fastid-
iously. Therefore, in this section, we characterize the chal-
lenges involved with preserving information about compu-
tational experiments. Then, with full understanding that
there are social challenges in this domain as well, we dis-
cuss the design criteria we found valuable in engineering a
technical solution.

3.1 Technical Challenges
We now describe specific technical challenges associated

with capturing input, runtime factors, and output. Follow-
ing these descriptions, we present possible solutions and note
some caveats and limitations. The implementation of Re-
searchAssistant is discussed in Section 4.

3.1.1 Input
The input to an experiment is roughly those data which

provide the following information: what computation to per-
form, what data to perform it on, and how to perform it.
The program code is the computation and the data sets are
the targets. Various input data influence how this proceeds,
including invocation parameters and random seeds.

Data sets can be problematic, especially when the objec-
tive is to share them. Kovačević [10] notes that proprietary
data sets may represent a significant obstacle, and suggests
arranging for portions of those data sets to be released.
Sometimes, releasing even portions of data or code is not
an option; it may contain private or sensitive information,
or be too large for practical distribution. More commonly,
it would be time-consuming to prepare the experiments for
release and it is usually not a requirement for publication.

Research code—particularly complex systems with more
than one author—is perpetually in flux and has a tendency
to degrade over time. Short-term changes driven by a dead-
line tend to become permanent, often at the expense of other
code branches. Regression in performance at an affected
task can go months before being noticed. It is crucial that
the code used for a particular experiment be recognized as
an input and be recorded along with any parameters.

Solutions. Many input data could be saved with more
rigorous automatic bookkeeping, such as in a log or work-
book. This means recording information regarding when an
experiment was run, with what parameters, and the random

seed. For code, there are already ubiquitous tools for book-
keeping, called version control repositories. By interacting
with such repositories, one can record what version number
of the code generated a result, and even save the code “diff”
(record of incremental code changes). A log message can be
annotated with the function that printed it, or with timing
information for later aggregate-scale performance analysis.

A checkpoint is a complete description of the state of an
experiment at some intermediate stage; it is the input to the
remainder of the computation. From this perspective, we
find a partial solution to dealing with large or proprietary
data sets. If the computation distills the initial data into
some acceptable format, the checkpoint can stand in place
of the data. With a checkpoint, the experiment may be
restarted after skipping some initial stages.

Together, bookkeeping and checkpointing capture both
the input at the start of the experiment, and the input to
certain suffixes of the steps in the experiment.

Caveats. Despite attempts to record and deterministi-
cally replay sources of randomness, it is not always possible
to do so faithfully. One such case is when private instances
of pseudo-random number generators (RNGs) are used, in-
stead of the ones watched by the tool. A user might, for
instance, call a procedure that uses a RNG seeded with the
system clock. It can be difficult to detect this covert input
channel and the experiment may yield nondeterministic re-
sults. Instead of a limitation, we see this as an opportunity
for scientists to identify the existence of, and to later iso-
late, changing variables in their experimental setup. If the
user believes that a tool is recording all relevant inputs yet
still observes nondeterministic output, it implies there are
significant external resources that remain unrecognized.

3.1.2 Runtime Factors
Runtime factors are data associated with properties of

the computer, including thread scheduling algorithms, hard-
ware errors, and the duration of the computation. We also
include some environmental influences, like manual inter-
vention. When the computer itself is not the artifact under
study, most runtime factors should not influence the exper-
iment and therefore need not be recorded.

Solutions. While much of this information is inherently
difficult or impossible to capture automatically, some of it
takes almost no time nor space to record and is frequently
useful. For example, RA records invocation and exit times.

3.1.3 Output
Output is the data of interest produced by the experi-

ment. This is generally written to the terminal, to a graph-
ical display, or to one or more files. The central challenge in
this domain is to generate the output while maintaining its
lineage; a result should not be orphaned from the computa-
tions that produced it. Consider the following examples of
information being lost as it is stored.

By default, messages printed to different output streams
(e.g. stdout and stderr) are intermingled without identi-
fying delineations. They may be directed to separate files,
but then information on relative line ordering is lost. Once
figures and files have been created, there is often nothing
tying them back to the experiment, like the code version or
invocation parameters. Multiple sites in the code may write
messages to the output that have a common format; with-
out additional annotation, the origination site remains un-

3

known. Furthermore, output data frequently presents users
with a choice: print everything and sift through it, or print
less and rerun if the data of interest changes.

Solutions. A general-purpose way to annotate struc-
tured output data is to use XML formatting. XML serves
as a generic intermediate format. If the consumer of the
data changes, the code requires no alterations; instead, a
different parsing rule, easily defined for XML, could be con-
structed. For example, a popular tool like xmlstarlet1 can
transform XML into a LATEX table for inclusion directly into
a document. This format also affords flexibility in what data
is presented; a verbose module could be suppressed accord-
ing to its XML tag, or a single type of data (like thrown
exceptions) could be viewed in isolation.

An experiment package consists of all the inputs and out-
puts of a particular run. This runnable package will de-
terministically yield the same results, unless some relevant
inputs are unaccounted for. This is distinct from a com-
pendium [6] in that we require the package to be directly
runnable; it not only includes all the pieces of an experi-
ment, but understands how to put them together.

Experiment packages hold promise in at least three sit-
uations: (1) ensuring repeatability, (2) improving peer re-
view, and (3) assisting remote collaboration. Rather than
discussing a plot or a number, the experiment package be-
comes the artifact of interest: this input produces that out-
put. When doing peer review, it is possible to actually try
out the experimental claims in the paper, rather than rely-
ing solely on trust in the authors and sufficient detail in the
document. When collaborating remotely, experiment pack-
ages may be passed back and forth, in place of the tedious
enumeration of parameters and other inputs.

Caveats. These solutions add overhead to statements
that print information to an output stream. Observe that
only codes that print with conspicuous verbosity will suffer
a meaningful performance penalty. In general, programmers
already understand that printing is expensive and do it only
when necessary; an incremental cost is negligible.

It is occasionally impractical or impossible to package an
experiment for deterministic replay. Data sets may be pro-
prietary or intractably large, the experiment may be inten-
tionally sensitive to computer hardware or other environ-
mental factors, and so on. Under these circumstances, the
research may be unreproducible. At least, a tool could still
provide bookkeeping, checkpointing, and structured output
formatting.

3.2 Design Criteria
For a solution to be widely adopted, it must also meet

a number of social challenges. We enumerate some of the
design criteria that we consider to be crucial for such a tool.

• Accessibility. A valuable tool is easy to find, simple
to learn, and worthwhile to master.

• Part of the Ecosystem. Researchers use many tools
to get their work done. A valuable tool is a good citizen
in that community. Formatting output in XML is one
such behavior, as is compatibility with pervasive tools
like version control repositories.

• Repeatability. A valuable tool encourages good sci-
entific practices, such as making experiments repeat-

1http://xmlstar.sourceforge.net/

able. Experiment packages and checkpoints are steps
in this direction.

• Improved Research Process. A valuable tool leads
not only to higher quality research, but to a scientific
process that is more efficient and enjoyable.

• Regression Testing. Code and data evolve; regres-
sion testing is the standard practice for managing this
change. A valuable tool complements this process.

4. RESEARCHASSISTANT
ResearchAssistant (RA) is a toolkit that provides pro-

gramming language-level abstractions for performing com-
putational research. It is freely available, open source [17]
software consisting of several thousand lines of Java code. As
suggested in Section 3, RA implements bookkeeping, check-
pointing, XML formatting, and experiment packaging. Al-
though the principles behind these abstractions are widely
applicable, RA leverages several Java-specific features like
reflection on metadata and annotations; an analogous tool
could be developed for other sufficiently rich dynamic lan-
guages such as C# or Python.

This section examines the design criteria and features of
RA incrementally from the perspective of a simple example:
pre-processing web pages, based on the words they contain,
for a clustering system. We assume some familiarity with
the Java language and runtime.

Text clustering is a well-studied task in natural language
processing and information retrieval, where many successful
systems start by considering only the counts of word tokens
on each page. We use token to mean the linguistic base
or stem of a character sequence containing no symbols or
numbers; e.g. the input “followed” becomes the token “fol-
low” (by stemming as per Porter’s algorithm [16]), whereas
“20cc” is ignored because it contains numbers.

A useful component in a clustering application is code that
can process an HTML page into tokens and can count them.
The Java program WebCounts, shown in Figure 2, serves that
purpose. It makes an http request for the contents of a
web page, extracts tokens from the HTML, and prints them
to stdout along with the number of times that each token
occurred on the page.

In the following subsections, we present successive ver-
sions of WebCounts, progressively adopting more of the RA
framework. Each subsection describes another kind of in-
formation that we wish to save using RA, explains the steps
necessary to do so, and characterizes the impact for the user.
Where appropriate, we include implementation details. We
found this to be the most natural way to explain the salient
contributions of RA. The sections are ordered to present the
framework incrementally, but it is not necessary to perform
every step listed here to take advantage of RA. Indeed, a sin-
gle line of runnable code is sufficient to gain several benefits.
We conclude the section with a demonstration of WebCounts
being incorporated into a larger research project.

4.1 One-Line Migration
By itself, WebCounts fails to capture many of its inputs in-

cluding command line arguments, time of invocation, source
code, and other information about its environment. Much
of this information could be collected manually, but doing so
without the proper tools is burdensome. For instance, users

4

1 public class WebCounts {
2 public static void main(String argv []) {
3 String text = textFromURL(argv [0]);
4 List <String > tokens = tokensInText(text);
5 Map <String ,Integer > counts
6 = tokenCounts(tokens);
7

8 for (String token : counts.keySet ()) {
9 System.out.println(counts.get(token)

10 + "!" + token);
11 }
12 }
13 }

Figure 2: The WebCounts example program down-
loads the contents of a URL (given in the first com-
mand line argument), outputting counts of word to-
kens contained in its text. This code will be suc-
cessively modified through Section 4. Methods not
shown have obvious behavior based on their names.

Grabbing text from http://www.nytimes.com/
39 a
7 about
1 acquit
...
1 young
4 your
1 zone

Figure 3: Raw console output from the program
in Figure 2. The first output line is sent to stderr
by textFromURL. The remaining lines are counts of
stemmed word tokens on the page. Several hundred
similar lines were elided at the ellipsis.

have a choice between saving the output from a pair of out-
put streams (stdout and stderr) to one file or to two. If
stored together, the single output file potentially loses con-
sistency of formatting. If stored separately, the two files
lose relative ordering information. For example, Figure 3
shows an excerpt of the output from WebCounts, where we
log both stdout and stderr. Unfortunately, the program
calls a “noisy” subroutine textFromURL that prints a sta-
tus message to stderr, breaking the simple tab-delimited
format used consistently on stdout.

Many of the record-keeping pitfalls enumerated above are
avoided by a method call to RA.begin(argv) as the first
line of a program, e.g. immediately before line 3 in Figure 2.
Here RA is the name of the Java class we provide, begin is the
method that causes RA to install itself into the running Java
environment, and argv is the array of strings of provided
command line arguments.

Valid XML output. RA prints output in XML, so sim-
ple parsers can extract, reformat, and pass data to other
tools. The new output of the program, shown in Figure 4, is
guaranteed to be well-formed XML. RA provides a simple,
stateful streaming XML generation API. RA intercepts the
Java built-in System.out stream (corresponding to stdout)
and replaces it with a version that uses the XML API to

output each line in a <stdout> tag. An analogous stream
replaces System.err, writing its lines to stdout wrapped in
a <stderr> tag. Similarly, all lines read on stdin can op-
tionally be echoed to stdout wrapped in a <stdin> tag. RA
ensures that the generated XML is valid by escaping con-
trol characters and by installing a virtual machine shutdown
hook that closes any open XML tags upon termination of
the program.

Basic environment logging. RA records basic informa-
tion about the Java runtime environment at the start of the
XML in an <environment> tag. This information includes
the class whose main method was invoked, the invocation
time, command line arguments, and the default Java envi-
ronmental variables (called properties). RA registers in-
terrupt handlers and exit handlers with the virtual machine
so that, on exit, RA inserts an <exit> tag for recording the
total running time and the reason for termination. The rea-
son might be an exit code with the source code line number
that called System.exit() (when available), the stack trace
of an uncaught exception, or a POSIX-style exit signal such
as SIGINT.

Runtime tracing. In addition to converting print state-
ments to XML tags, RA uses Java’s ability to inspect the
running stack trace to record the source code line number
of the print statement. This type of tracing can be ex-
tremely useful when analyzing logs of experimental systems
for which interactive debugging is infeasible. Each print
statement pays a slight performance penalty for its XML-
redirection and call-stack tracing. Few research applica-
tions, however, are performance-bound by writing their out-
put. Hence, most research applications that print through
RA will see overall runtime performance slowed negligibly.

4.2 RA from the Command Line
The improved recording of the outputs and runtime fac-

tors introduced in the previous section is important, but
the software still lacks a coherent record of all its inputs for
different invocations over time. By providing command line
flags to the program, RA can be instructed to save this data,
as well.

No additional code is required beyond the call to RA.begin
as described previously. At initialization, RA parses the
command line arguments and takes appropriate action be-
fore returning control to the program’s main method. RA
provides helpful usage error messages if the command line
is ill-formed, and suggests sensible defaults for optional pa-
rameters.

Infrastructure. ResearchAssistant takes meticulous
notes in a workbook, as well as notes in the output it-
self. The workbook is a directory on disk for recording and
archiving three types of inputs: resources (external files the
program may read or manipulate), invocation logs (consis-
tently named records of experimental runs), and checkpoints
(saved partial computations). RA accepts the workbook
path as a command line argument, defaulting to the current
directory, and provides an API for accessing its resources.
RA wraps all input and output streams created through the
Workbook API, with a version that transparently computes
the MD5 hash of all bytes read/written. The hash and file
name are logged to the XML when the stream is closed or
at program termination.

Bookkeeping and repeatability. In addition to log-
ging resource accesses made through the workbook, RA can

5

<invoke class="example.WebCountsOneLineMigration"
starttime="Wed!Feb!14!16 :26:20!PST!2007"
seed="8745931257572013">

<environment >
<workbook root="/data/workbook" />
<arguments >

<arg>http://www.nytimes.com/</arg>
</arguments >
<properties >

...
<entry key="java.runtime.name">Java(TM) SE Runtime Environment </entry >
<entry key="java.runtime.version">1.6.0- b105</entry>
...
<entry key="os.arch">amd64 </entry >
<entry key="os.name">Linux </entry >
<entry key="os.version">2.6.17 -10 - generic </entry>
...

</properties >
</environment >
<trace stream="stderr">example.WebUtils.textFromURL(WebUtils.java:111)</trace >
<stderr >Grabbing text from http: //www.nytimes.com/</stderr >
<ReadResource name="http: //www.nytimes.com/" type="EXTERNAL_URL"

hash="453 d1e99248cc5fec2b9cdf2a8a5daed" />
<trace stream="stdout">example.WebCountsOneLineMigration.main(WebCountsOneLineMigration

.java:23)</trace >
<stdout >39 a</stdout >
<stdout >7 about</stdout >
...
<stdout >1 zone</stdout >
<exit code="0" endtime="Wed!Feb!14!16 :26:23!PST!2007" runtime="P0Y0M0DT0H0M3 .421S" />

</invoke >

Figure 4: Output from the same program that generated Figure 3 but prefixed with a call to RA.begin(argv).
RA automatically records the invocation and exit times, duration, environmental parameters, invocation
arguments, workbook location, random seed, and exit conditions. Output is well-formed XML and the
original command line invocation can be reconstructed from the <arguments> sub-tree.

6

be directed to create runnable snapshots of the invoked code.
The --ra-jar command line option directs RA to write
a new Java Archive (JAR) into the workbook’s invocation
folder. The JAR is a nearly complete snapshot of the state
of the experiment’s invocation. RA writes into the JAR
a copy of all classes currently visible in the Java classpath
(thereby recording the executable state), a verbose version
of the XML log written to stdout, and all command line
arguments. If provided, the --ra-source switch directs RA
to additionally snapshot a copy of the source folder into the
JAR; if the source directory is managed by Subversion ver-
sion control, RA will save the status of each file with respect
to the repository, as well as any diffs and new files needed to
fully reconstruct the source tree of the generating program.
The JAR can be distributed and re-run on any system with a
Java Runtime Environment, thereby enabling repeatability.
When run, the experiment JAR can print the saved XML
output; it can re-run the code again with different parame-
ters; or it can re-generate the source tree. Future versions
of RA will include more advanced functionality in JAR con-
struction and re-running, such as optionally saving copies of
input resources at construction time or presenting graphical
diffs of XML output between stored runs.

When an experiment is first run, RA’s initialization time
is proportional to the amount of data that must be logged
into the JAR. For instance, it will take longer to save the
source than to save just the log. In our experience, these
local operations complete in at most a few seconds even on
large source trees containing thousands of files.

4.3 Repeatable Randomness
There are many technical complications to making an

invocation identically repeatable. In the previous levels,
we showed how RA can track explicit program arguments,
source code versions, and properties of the runtime environ-
ment. These inputs do not guarantee repeatability, how-
ever. One major remaining factor is intentional randomness
through pseudo-random number generators (RNGs). RNGs
are common in many research applications as a source of
apparently random numbers, but are actually generated de-
terministically from a starting seed value, which is often a
number computed from the current system time. RA can
record and modify the seed value, so a later run can access
the same pseudo-random numbers in the same order.

Note that RA cannot control other potential sources of
non-determinism, such as external resources and inherent
stochasticity in the Java API. For example, non-determinism
resulting from ordering objects as a function of their address
in memory (as the built-in HashSet does) is beyond RA’s
control.

The call to RA.begin instantiates a global pseudo-
random number generator whose seed can be provided
on the command line (--ra-seed) or can default to
a function of the current system time. Convention-
ally, Java programmers access random numbers through
one of two methods: calling the standard system class’s
Math.random method (returning a double-precision float-
ing point number) or by creating a new instance of the
built-in java.util.Random RNG directly. To access RA’s
repeatable RNG, the programmer need only change code
references from Math.random to RA.random and from new
java.util.Random() to RA.newRandom().

All explicit intentional uses of randomness now derive

from a safe, repeatable seed. If the program successfully
avoids other sources of non-determinism inherent to Java,
then running the same code with the same input, and spec-
ifying the same seed on the command line, should result in
identical output.

4.4 Custom XML
In the previous sections, we considered how RA records

the inputs to an experiment, but have not yet improved the
process of generating outputs. A particular challenge stems
from recording multiple types of output. The programmer
is faced with the choice of writing to multiple files or us-
ing a suitable mechanism of tagging lines on stdout with
their data type. For instance, our WebCounts example prints
counts of tokens, but could just as well also output the list
of all original input character sequences that mapped to a
particular token via stemming.

XML is a flexible and robust language for data manage-
ment and RA uses it to record experimental parameters and
output streams. RA allows programmers to explicitly cre-
ate custom XML to be interspersed into the XML output
stream. In practice, this is as easy as printing to any other
output stream.

Printing a line of text to stdout is accomplished in Java
with a call to System.out.println(lineOfText). After
calling RA.begin, these lines are mapped transparently to
a new call, RA.stream.line("stdout",lineOfText), which
outputs lineOfText wrapped in a <stdout> XML tag to the
XML stream. Invalid characters and XML control charac-
ters are automatically escaped (RA provides a mechanism to
directly output pre-formed XML). If lineOfText is a multi-
line string, it is re-indented to flow naturally in the generated
output. Tags with multiple children (such as <arguments> in
Figure 4) can be opened with RA.stream.begin(tag) and
closed with RA.stream.end(tag). XML attributes to be
stored with the tag may optionally be provided as argu-
ments to RA.stream.line and RA.stream.begin.

Figure 5 shows further modifications to the WebCounts
codebase; calls to print methods on System.out have been
replaced with calls to XML methods on RA.stream. Figure 6
gives the output of this code.

Part of the ecosystem. The change from <stdout>
to <token> may seem trivial, but the implications are not.
A particular run of an experiment may actually generate
many different types of outputs: matrices of correlations,
histograms of counts, status messages, tables of values, etc.
These can co-exist in the same XML output, and each post-
processing tool can be given data only for tags it under-
stands. As an example, we wrote a short shell script that
uses an XPath2 query to select <token> lines, which are re-
formatted and sent to the GNU plotting tool gnuplot3 for
display. The same script will work on the output from any
other experiment using the same tag conventions, regardless
of whether other data is intermixed.

Fine-grained runtime-logging. RA can log output
times and generate source code line numbers for any printed
tag, not just lines sent to stdout and stderr.

4.5 Stage-Wise Experiments
In the previous section, we explored how ResearchAssis-

tant can improve bookkeeping and repeatability with min-
2http://www.w3.org/TR/xpath
3http://www.gnuplot.info/

7

1 public class WebCountsCustomXML {
2 public static void main(String argv []) {
3 RA.begin(argv);
4

5 String text = textFromURL(argv [0]);
6 List <String > tokens = tokensInText(text);
7 Map <String ,Integer > counts = tokenCounts(tokens);
8

9 RA.stream.begin("tokens", "url", argv [0]);
10 for (String token : counts.keySet ()) {
11 RA.stream.line("token", token , "count", counts.get(token));
12 }
13 RA.stream.end("tokens");
14 }
15 }

Figure 5: The WebCounts example, expanded to use custom XML tags by defining new streams. The output
of the for loop will be enclosed in <tokens> tags, and each token will be tagged as <token>. These tag names
may also be dynamically calculated at runtime.

<invoke class="example.WebCountsCustomXML"
starttime="Wed!Feb!14!16 :26:23!PST!2007"
seed="8745934849079013">

<environment >...</environment >
<trace stream="stderr">example.WebUtils.textFromURL(WebUtils.java:111)</trace >
<stderr >Grabbing text from http: //www.nytimes.com/</stderr >
<ReadResource name="http: //www.nytimes.com/" type="EXTERNAL_URL"

hash="c1c33b514e5ccb854d92f65cfd1bf68a" />
<tokens url="http://www.nytimes.com/">

<token count="40">a</token >
...
<token count="1">zone</token >

</tokens >
<exit code="0" endtime="Wed!Feb!14!16 :26:27!PST!2007" runtime="P0Y0M0DT0H0M3 .802S" />

</invoke >

Figure 6: The output of WebCounts with user-defined streams and tags: specifically, the version in Figure 5.

imal modifications. Now, we present how a novel aspect of
RA’s architecture can have a positive impact on research
code quality and its ease of development.

A computational experiment often consists of a series of
stages of data processing tasks, where the outputs from one
stage are used as inputs to another. Generally, the pro-
gram’s main method parses command line arguments, loads
auxiliary inputs, and orchestrates the whole experiment in
one monolithic batch. Correctly tracking the inputs to and
outputs from each stage is difficult, so there is a temptation
to take shortcuts that produce shoddy code.

RA provides a declarative mechanism to succinctly and
robustly identify the inputs, outputs, arguments, and pre-
requisites for each stage of an experiment by use of a Java
language feature called annotations introduced in Java 5.
An annotation is a syntactic marker for associating arbi-
trary meta-data on almost any aspect of a Java program,
including classes and fields. RA provides annotations for
marking source code with its role in a stage-wise experi-
ment as well as utility classes that read those annotations.
Using RA for managing a complex experiment is easier than
taking the shortcuts.

The first step in creating a stage-wise experiment is to
code the set of stages and explicitly annotate their inter-
dependencies. Stages of computation are defined for RA
as classes that implement the Stage interface, which defines
only one method, run (accepting no arguments). RA defines
an annotation, @Stage.Requires, that can be used to record
which other Stage classes are pre-requisites for a given stage.
Other annotations are provided for marking class fields as
outputs whose values RA will record, inputs whose values
RA will provide before running, and arguments whose values
RA will supply from command line arguments.

RA includes a helper class named StageWise for managing
a set of Stage instances throughout their life-cycle. At its
core, StageWise is a dependency-graph scheduling algorithm
that is similar to compilation tools like Ant4 and make5.
When instructed to run a particular stage class, StageWise
instantiates all of its pre-requisites recursively, running them
in topological (depth-first) order. Before each stage is run,
RA ensures that all of its prerequisites are complete and
appropriate values are set for all fields that are marked as

4http://ant.apache.org/
5http://www.gnu.org/software/make/

8

Algorithm 4.1: RunStage(S)

global ARGS, OBJS
for each P ∈ GetPrerequisites(S)
do RunStage(P)

I ← Instantiate(S)
for each F ∈ GetArgumentFields(S)
do I[F]← ARGS[GetName(F)]

for each F ∈ GetImportFields(S)
do I[F]← OBJS[GetName(F)]

Run(I)
for each F ∈ GetExportFields(S)
do OBJS[GetName(F)]← I[F]

Figure 7: Pseudocode for running a stage and its
prerequisites, for the case with no loops in the de-
pendency graph. S is a class implementing Stage.
ARGS and OBJS are dictionaries mapping global
field names to values. In RA, GetPrequisites is im-
plemented by reading the @Stage.Requires annota-
tion and the Get*Fields methods are implemented
by reading the appropriate field annotations.

inputs or arguments. StageWise then calls run() to allow
the stage to execute before finally caching the values of all
the stage’s output fields for possible use as inputs to later
stages. Simplified psuedocode for this algorithm is provided
in Figure 7. Loops in the stage dependency graph trigger
an exception when encountered by RA.

Returning to our WebCounts example, consider the code
in Figure 8, which is equivalent in function to the example
from Section 4.4 but re-written as a series of Stages. The
previous code body of main is exactly reproduced by the
bodies of the two run methods in the refactored example.
At runtime, the call to StageWise in line 4 instructs RA to
build and run a stage dependency graph for the target stage,
Count. In doing so, RA will discover that Load must be
run first because it is marked by Count’s @Stage.Requires
annotation on line 24. RA then executes both stages.

Data is communicated between stages through experiment
fields, which are named fields that RA preserves between
stages. Notice that the String text field is marked with the
@Stage.ExportField annotation in line 16. This annotation
tells RA that after the Load stage completes, the value of
text should be saved into the experiment’s context under
the name "WebCounts:text". Similarly, the Counts stage
marks one of its fields (line 27) with the @Stage.ImportField
annotation, which informs RA that it should populate that
field from the experiment context before calling run(). Be-
fore the experiment begins, RA walks the dependency graph
to ensure that all experiment fields are created by one stage
before being read by another.

Notice also that in line 11 we have marked the custom
@Argument annotation on the url field, which is to contain
the URL that the Load stage will read. The annotation
informs RA that url is a stage argument and that it must
be specified, either via a command line switch (line 12), via
a file containing many such properties, or with its default
(line 13). Any number of arguments can be specified in
any relevant part of the code—RA ensures that they are all

populated appropriately via reflection on the declared field
type.

Improved research process. Explicit decoupling of
stages involves worthwhile reasoning about inputs, outputs,
and relationships between code sections. RA extends the
building-blocks available in Java so that they better align
with how Java is actually used in many research applica-
tions.

Argument parsing is time consuming. Many research
code bases support a large number of command line switches
to control execution flow and to set parameters. RA auto-
matically parses many Java types from command line strings
or from auxiliary properties files, assigning values directly
into appropriately marked fields. This alone is a major im-
provement over the current, fractured nature of argument
parsing in Java, which requires dispersed help messages,
conditional statements, and code branches to stay synchro-
nized. Using Java’s support for annotations, each argument
is self-documenting and self-contained, and RA generates
helpful usage messages and exits if any arguments are miss-
ing or malformed. To our knowledge, RA provides the most
flexible, convenient, and powerful command line argument
processing tool available for Java.

4.6 Checkpointing
Writing an experiment as a directed acyclic graph of stages

makes the dependencies explicit, and enables efficiency gains
through checkpointing. After a schedule of Stages has been
selected, RA can read the checkpoints folder in the work-
book to see if any sub-sequence with compatible arguments
has already been run with its output saved. If so, RA can
reload the saved computation and skip those stages.

A Stage class in RA can be marked with the
@Stage.Serialize annotation. All fields in the stage that
are marked with the @Stage.Export annotation are au-
tomatically written by StageWise into the workbook and
are thus available for loading later. Line 8 in Figure 8
shows an example, where the Load stage is marked with
@Stage.Serialize. In our example, after Load runs, RA
will serialize its WebCounts:text export. On subsequent
runs, if RA sees a Load checkpoint with the same URL argu-
ment, RA will not run Load but will instead deserialize the
checkpoint to retrieve the previously exported page text.
In this way, RA can dramatically improve running times
on more complicated tasks by skipping redundant compu-
tation. Furthermore, checkpointing enables repeatability of
our WebCounts experiment by allowing later stages to be
run from a snapshot of the URL page text, even after the
contents of the live URL have changed.

Regression testing. The completeness and consistency
of output logs between runs simplifies the process of creat-
ing research regression tests. Salient data in the output log
can be tracked over time as the same experiment is re-run
on newer code versions, enabling simple scripts to generate
warnings when performance on a particular task changes
unexpectedly. Because RA gracefully captures outputs into
a single XML stream, comparing even unstructured output
between runs is tractable.

Time-saving. Cumulatively, using RA saves the users
time by automatically organizing the output, rerunning only
necessary stages of experiments, and integrating with the
rest of the research workflow.

9

1 public class WebCountsStageWise {
2 public static void main(String argv []) {
3 RA.begin(argv);
4 new StageWise ().run(Count.class);
5 }
6 }
7

8 @Stage.Serialize
9 class Load implements Stage {

10

11 @Argument("URL!to!be!downloaded")
12 @ArgSwitch("--url")
13 @ArgDefault("http :// www.nytimes.com/")
14 String url;
15

16 @Stage.ExportField("WebCounts:text")
17 String text;
18

19 public void run() {
20 text = textFromURL(url);
21 }
22 }
23

24 @Stage.Requires(Load.class)
25 class Count implements Stage {
26

27 @Stage.ImportField("WebCounts:text")
28 String text;
29

30 public void run() {
31 List <String > tokens = tokensInText(text);
32 Map <String ,Integer > counts = tokenCounts(tokens);
33 for (String token : counts.keySet ()) {
34 RA.stream.line("token", token , "count", counts.get(token));
35 }
36 }
37 }

Figure 8: The same experiment as Figure 2, refactored into stages to take better advantage of RA’s stage-
wise experiment infrastructure. The two inner classes define a Count stage and a Load stage with an explicit
dependency of Count on Load.

10

Parse

DataSet
Summary

SplitDataSet

Test

GenerateFigure

20NewsGroups

Reuters21578

CreateDataSet

CreateCounts

CreateTFIDF

Train
Binomial

NaiveBayes

SVM

Figure 9: Stage dependency graph of a text clas-
sification application. Arrows represent depen-
dency relationships. Sub-boxes represent alterna-
tives for a particular task—e.g. 20NewsGroups and
Reuters21578 are two standard corpora in the text
classification community.

4.7 Scalability
Computer scientists manage complexity with hierarchies.

Coding an experiment as a graph of stages with explicit
dependencies is one way to scale to almost any experimental
design. In this way, the authors have used RA to develop
a text classification experiment platform named TextTickle.
Figure 9 illustrates its dependency structure. The program
performs a set of relatively standard tasks in this problem
domain:

• Parses a corpus of text (Parse) to extract relevant in-
formation. An extension of WebCounts serves as a data
source for classifying live pages from the Web.

• Creates a dataset abstraction of that corpus
(CreateDataSet),

• Outputs summary statistics of that data
(DataSetSummary),

• Splits the dataset into a portion for model training and
another for model testing (SplitDataSet),

• Trains a model on the training data (Train),

• Tests the model on the testing data (Test), and

• Outputs a figure based on the results
(GenerateFigure).

Like much research software, this code started as a single
main method that used helper classes to perform the steps

above. Substantial effort was spent managing the command
line arguments needed for each sub-stage and by the code
required to fork between code branches depending on the
requested task. The result was generally poor record keeping
and an inability to switch tasks without re-reading code and
commenting or uncommenting various code blocks.

The refactored example relies on RA to handle argument
parsing and dependency resolution. When invoked, the user
specifies which stage they would like to run, and RA creates
a dependency graph of the stages marked as requirements.
Note in particular that some stages have more than one
requirement. Test requires both Train and SplitDataSet;
Train also requires SplitDataSet. RA gracefully handles
this case, and SplitDataSet is only run once.

TextTickle supports multiple sub-types of Parse, of
CreateData, and of Train to specify the text corpus, data
processing model, and machine learning algorithm, respec-
tively. RA supports this functionality transparently by
querying which sub-type of these generic stages to instanti-
ate via the arguments infrastructure. Adding data sources
and algorithms is no larger a task than writing a new class
that does exactly what it should. The research programmer
is freed from worrying about code fragmentation and dead
branches, and can easily construct complex experiments that
compare runs across parameters, data sets, algorithms, or
any combination thereof. The stage-wise experiment infras-
tructure enhances the programmer’s ability to rapidly proto-
type, benchmark, and document complex research systems.

Parallelization. Although not currently implemented,
the features of RA extend naturally to the field of parallel
and distributed processing. Stages that don’t share pre-
requisites may be run on different processors. XML tags
may be assigned to outputs based on their local timestamps,
source of origin, or intermediate routing points. Although
such applications are typically obsessed with performance,
recall that printing is reserved for when something is be-
ing actively debugged or when it is actively breaking. In
either case, the overhead is acceptable and the additional
information is welcome. As we noted earlier, however, this
introduces fresh sources of non-determinism that we do not
currently attempt to capture.

Real world usage. RA has already been used in pub-
lished natural language processing research [8] that presents
a model quantifying the relatedness of word pairs. The re-
search software consists of seventeen stages and dozens of
auxiliary classes. The StageWise infrastructure eased the
management of multiple code branches and the handling of
three dozen command line arguments. Checkpointing dra-
matically shortened the code-run-debug cycle because of two
long initialization stages; one stage compacts 349 MB of
dictionary files down to a 132 MB internal representation
and the second pre-processor further compresses this signa-
ture to 86 MB, which is directly used by later experiment
stages. Running times for the most heavily run target stage
was 68 seconds when resuming from the checkpoints, down
from a baseline of 125 seconds when checkpointing was dis-
abled. Custom XML tags were used to manage the different
types of data exported by any single run of the experiment.
The final figures for the paper were automatically gener-
ated by scripts that extracted and plotted the appropriate
data from the generated XML. Qualitatively, we found that
ResearchAssistant substantially improves the process of de-
veloping research code in the ways outlined in this paper.

11

5. CONTRIBUTIONS
Technology has made a tremendous impact on the compu-

tational sciences by generating new data sets, making enor-
mous calculations tractable, and enabling powerful simula-
tions. Unfortunately, software has not realized its potential
to augment the scientific process. Toward that end, this
paper presents the ResearchAssistant (RA) toolkit, a set
of programming abstractions that give computational scien-
tists access to, and control over, information flow in their
experiments. This includes checkpointing intermediate re-
sults, generating structured output in valid XML, and pro-
ducing runnable, packaged experiments.

This work makes the following contributions:

• Characterizes the information that is lost by computa-
tional tools and motivates its value to scientists. (Sec-
tions 1 and 3)

• Discusses the history of literate programming and re-
producible research. (Section 2)

• Presents RA, a toolkit of programming abstractions
for experimental research. (Section 4)

• Illustrates with the WebCounts example how RA gives
scientists superior control over computational experi-
ments. (Section 4)

• Proffers RA and all code discussed in this paper to the
research community [17].

6. ACKNOWLEDGMENTS
The authors would like to thank the following people for

their insightful comments: Christopher D. Manning, Alex
Aiken, Paul Heymann, Jenny Finkel, Peter Hawkins, and
William Morgan. We are also grateful to our anonymous
reviewers for their interest and helpful criticisms. Daniel
Ramage was funded in part by an NDSEG fellowship. Adam
Oliner was funded in part by the U.S. Department of Energy
High Performance Computer Science Fellowship.

7. REFERENCES
[1] J. Buckheit and D. L. Donoho. Wavelab and

reproducible research. Wavelets and Statistics, 1995.
[2] H. Cunningham, D. Maynard, K. Bontcheva, and

V. Tablan. GATE: A framework and graphical
development environment for robust NLP tools and
applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics, 2002.

[3] J. de Leeuw. Reproducible research. The bottom line.
In Department of Statistics Papers, number
2001031101. Department of Statistics, UCLA, March
2001.

[4] E. Frank, M. A. Hall, G. Holmes, R. Kirkby,
B. Pfahringer, I. H. Witten, and L. Trigg. WEKA—A
machine learning workbench for data mining. In
O. Maimon and L. Rokach, editors, The Data Mining
and Knowledge Discovery Handbook, pages 1305–1314.
Springer, 2005.

[5] R. Gentleman. Reproducible research: A
bioinformatics case study. Statistical Applications in
Genetics and Molecular Biology, 4(1), January 2005.

[6] R. Gentleman and D. T. Lang. Statistical analyses
and reproducible research. Bioconductor Project
Working Papers, May 2004.

[7] G. Holmes, A. Donkin, and I. Witten. WEKA: A
machine learning workbench. In Proc Second Australia
and New Zealand Conference on Intelligent
Information Systems, Brisbane, Australia, 1994.

[8] T. Hughes and D. Ramage. Lexical semantic
relatedness with random graph walks. In Proceedings
of EMNLP-07, 2007.

[9] D. Knuth. Literate programming. In CSLI Lecture
Notes, number 27. Center for the Study of Language
and Information, 1992.

[10] J. Kovačević. How to encourage and publish
reproducible research. In Proceedings of the IEEE Intl.
Conf. on Acoustics, Speech and Signal Processing,
April 2007.

[11] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. In IEEE
Transactions on Computers, volume 36, pages
471–482, April 1987.

[12] F. Leisch. Sweave: dynamic generation of statistical
reports using literate data analysis. In Adaptive
Information Systems and Modelling in Economics and
Management Science, number 69. March 2002.

[13] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. YALE: Rapid prototyping for complex data
mining tasks. In Proceedings of the 12th ACM
SIGKDD, International Conference on Knowledge
Discovery and Data Mining, pages 935–940,
Philadelphia, PA, 2006.

[14] R. Netzer and B. Miller. Optimal tracing and replay
for debugging message-passing parallel programs. In
Proceedings of ACM Supercomputing, pages 502–511,
Minneapolis, MN, November 1992.

[15] R. D. Peng, F. Dominici, and S. L. Zeger.
Reproducible epidemiologic research. American
Journal of Epidemiology, 163(9):783–789, 2006.

[16] M. F. Porter. Readings in information retrieval, pages
313–316. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[17] D. Ramage and A. J. Oliner. ResearchAssistant.
http://www.stanford.edu/∼dramage/ra/, February
2007.

[18] L. P. Schumm and R. A. Thisted. Reproducible
research using Stata. North American Stata Users’
Group Meetings 2005 16, Stata Users Group, July
2005. available at
http://ideas.repec.org/p/boc/asug05/16.html.

[19] M. Schwab, N. Karrenbach, and J. Claerbout. Making
scientific computations reproducible. Computing in
Science and Engineering, 2(6):61–67, November 2000.

[20] I. Vlad. Reproducibility in computer-intensive
sciences. Ad Astra, 1(2), 2002.

[21] L. D. Wittie. Debugging distributed C programs by
real time replay. In Proceedings of the ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed
Debugging, volume 24, January 1989.

12

