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Abstract

We present the design, prototype implementation and
initial evaluation of FedF'S - a novel cluster file system
architecture that provides a global file space by aggre-
gating the local file systems of the cluster nodes into
a loose federation. The federated file system (FedFS)
is created ad-hoc for a distributed application that
runs on the cluster, and its lifetime is limited by the
lifetime of the distributed application. FedFS pro-
vides location-independent global file naming, load
balancing, and file migration and replication. It re-
lies on the local file systems to perform the file I/O
operations.

The local file systems retain their autonomy, in the
sense that their structure and content do not change
to support the federated file system. Other applica-
tions may run on the local file systems without realiz-
ing that the same file system is part of one or multiple
FedFS. If the distributed application permits, nodes
can dynamically join or leave the federation anytime,
with no modifications required to the local file system
organization.

FedFS is implemented as an I/O library over VIA,
which supports remote memory operations. The
applicability and performance of the federated file
system architecture is evaluated by building a dis-
tributed NFS file server.

1 Introduction

There has been an increasing demand for better per-
formance and availability in storage systems. As the
amount of available storage becomes larger, and the
access pattern more dynamic and diverse, the main-
tenance properties of the storage system have also

become as important as performance and availabil-
ity. The problem is that storage systems which re-
spond well to all these criteria are hard to build, and
therefore the solutions are always trailing instead of
anticipating the demand. One approach, that has
been proven beneficial in the past, both in terms of
flexibility and development time, is to leverage previ-
ous development effort, by using existing solutions as
building blocks of new ones. So far, the distributed
file system research has exploited this idea only in
part [1, 2].

We propose a loose clustering of the local file sys-
tems of the cluster nodes as an ad-hoc global file
space to be used by a distributed application. We call
this distributed file system architecture, a federated
file system(FedFS). The simplest way to describe
a federated file system is as a per-application global
file naming facility that the application can use to
access files in the cluster in a location-independent
manner. By contrast, the NFS [3] solution of cross-
mounting remote file systems into local file sys-
tems will allow applications to access files through
a location-transparent, but not location-independent
manner (files have their location implicitly embed-
ded in the pathname through the mounting direc-
tory). Using the proposed federated architecture,
a distributed NFS server, where files can be trans-
parently migrated among cluster nodes can be built
across a cluster.

In addition to global file naming, the description of
a federated file system must include dynamic recon-
figuration, dynamic load balancing through migra-
tion and recovery through replication. The proposed
FedF'S should provide all these features on top of au-
tonomous local file systems. Autonomy means that
local file systems are not changed in order to partici-
pate in a federation, and no federation specific meta-
data is stored in the local file systems. To achieve



this FedFS I/O operations translate into local file
system operations and the global file space metadata
becomes soft state that can be stored in volatile mem-
ory of the cluster nodes. As a result, a local file sys-
tem can join or leave a federation anytime, without
requiring any preparation, and without carrying out
persistent global state operations. In this way, local
file systems can simultaneously operate in a stand-
alone fashion, and as part of one or more federations.

A federated file system is created ad-hoc, by each ap-
plication, and its lifetime is limited to the lifetime of
the distributed application. In fact, a federated file
system is a convenience provided to a distributed ap-
plication to access files of multiple local file systems
across a cluster through a location-independent file
naming. Interestingly, a location-independent global
file naming enables FedF'S to implement load balanc-
ing, migration and replication for increased availabil-
ity and performance.

Figure 1 shows examples of federated file system con-
figurations on a four node cluster. Al, A2 and A3
are three different applications running on the clus-
ter. Application A2 is distributed across nodes 1 and
2 and uses FedFS1 to merge the local file systems of
these nodes in a single global file space. Similarly,
A3 is distributed across nodes 2, 3 and 4 and uses
FedFS2. In this example, the local file system of node
2 is part of two federated file systems. Al runs only
on node 1 and uses the local file system directly.

There is a significant body of research related to dis-
tributed file systems [4, 5, 3, 6, 7, 8,9, 10, 1, 2, 11, 12].
Some recent projects include [13], the emerging indus-
try standard DAFS [14] and wide area systems like
(15, 16, 17, 18].

In our project, we combine two technologies: the fed-
erated file system idea, and the remote memory com-
munication support. Remote memory communica-
tion is the key ingredient of the recently proposed sys-
tem area networks such as the Virtual Interface Ar-
chitecture (VIA) [19] and the new I/O interconnects
such as InfiniBand [20]. FedFS is implemented as an
I/O library over VIA and exploits the non-intrusive
remote memory operations. Preliminary performance
of the federated file system architecture is evaluated
on a distributed NFS built with the FedFS library.
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Figure 2: Virtual Directory /usr is formed by merging
the /usr directories from the two nodes.(Section 2.1)

2 Federated File System Archi-
tecture

A federated file system is a distributed file system
built on top of local file systems that retain their au-
tonomy. Local file systems can simultaneously func-
tion, as stand-alone file systems or as part of FedFS.
As in any federation, in FedF'S, the file system func-
tionality is split between the federal layer (FL) and
the local layer(LL). The LL is responsible for per-
forming the file I/O operations on the local files as
directed by the FL. Any local file system can be used
as the local layer. The FL is responsible for global file
naming and file lookup as well as supporting global
operations such as load balancing, replication, coher-
ence and migration.

2.1 Virtual Directories

FedFS aggregates the local file systems by merging
the local directory tree into a single global file tree.
A virtual directory (VD) in FedF'S represents the
union of all the local directories from the participat-
ing nodes with the same pathname. For instance, if a
directory /usr exists in each local file system, the vir-
tual directory /usr of the resulting FedF'S will contain
the union of all the /usr directories. Figure 2 shows
a virtual directory created by merging the two local
file systems.
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Figure 1: FedFS configuration example (Section 1)

One prominent advantage of this aggregation strat-
egy is location-independent naming. Because the vir-
tual directory is the union of the local directories with
the same pathname, the pathname of a file indicates
the virtual directory but does not provide any in-
formation about where it is located. Therefore, in
FedFS, files can naturally migrate from one node (lo-
cal directory) to another without changing their path-
name (virtual directory).

The content of a virtual directory is discovered on de-
mand (whenever it is necessary to solve a lookup) by
performing a directory merging or dirmerge opera-
tion. To amortize the dirmerge operation over mul-
tiple directory accesses, the virtual directory content
calculated by a dirmerge is cached in volatile memory
of the manager. The manager may however discard
a VD if it runs low in memory in which case its con-
tent will be regenerated by another dirmerge when
the next access occurs.

To allow file migration without requiring vir-
tual directory modification, we associate with each
pathname (virtual directory or file), a manager.
The nodes where the corresponding pathnames are
present in the local file system are called homes. The
manager will be determined by applying a consistent
hash function to the pathname. For a file, the man-
ager is responsible for keeping the home information.

For a virtual directory, the manager is responsible for
the VD content which can be either cached or calcu-
lated using the dirmerge operation.

2.2 Dirmerge and Directory Tree

Summaries

The dirmerge operation is initiated by the manager
to calculate the content of a virtual directory. To per-
form a dirmerge, the manager has to send a readdir
request to all the nodes of the cluster that may have
that directory in their local file systems. Obviously,
this is not a scalable solution, although we expect to
perform it quite rarely.

To make the dirmerge operation scalable, we propose
each node to generate a summary of the directory tree
and pass it to every other node when the cluster is
first established or when the node joins the cluster.
The directory tree summary will be calculated using
the Bloom filters [21] and will include only the direc-
tory tree without the files.

If a dirmerge is necessary, the manager node will use
the summaries to determine which nodes may have
that directory in their local file systems and direct
the readdir request only to those nodes. Since Bloom
filters generate only false positives, dirmerge is guar-



anteed not to miss any node which has the directory.

Updating the directory tree summary is an expensive
operation but it is possible to perform this opera-
tion infrequently (for instance, only when a number
of changes to the local directory tree have been per-
formed). Whenever a new directory is created, only
the summary of the manager of the corresponding vir-
tual directory must be updated. Therefore, instead
of recalculating the summary and sending it to every
other node, a simple update to the manager of the
newly created directory suffices. Directory deletions
will only create additional false positives.

We did some preliminary analysis of bloom filters to
confirm the feasibility of using them for summaries.
The tests yielded extremely good results. The per-
formance of bloom filters depend on the number of
bits used for the summary as well as the number of
hash functions used.

We did experiments with a summary size of 220 bits
(128KB) and with 185060 valid keys and 109526
invalid keys (keys representing unique pathnames).
With 3 hash functions, there were 208/185060 col-
lisions and 477/109526 false positives. With 5 hash
functions, we got almost zero collision (1/185060) and
very low false positives (8/109526).

The cost of each hash function is approximately
6xlen+35 instructions, where len is the number of
bits in the key. Thus, with average pathname length
of 40 characters (320bits), each hash takes approxi-
mately 2000 instructions, 5 hash functions will take
10000 instructions. This corresponds to an actual
time of around 10 microsecs on a 1 GHz processor
and 1 instr/cycle, which is at least 50% faster than
the fastest round-trip time over the current VIA im-
plementation to check for the directory on the remote
node.

2.3 Directory Table

Under the FedFS architecture (see figure 3), file
lookup always requires an extra access to the file man-
ager to determine the home of the file. To eliminate
this extra step in the common case, we propose to add
a directory table(DT) to each node which will act as a
cache of virtual directory entries for the most recent
file lookup accesses.

In the DT, an entry must contain the full pathname
of the file and not just the local name as it is stored
in the virtual directories. (This is analogous to the
TLB, which caches entries for multiple page tables

Directory Table  Virtual Directories
Jusr Juserl
FedFS Layer
lusiffilel N1 | |filel | N1 || fil2 |N2
lusfuserlfile2  |N2 | |userlNLN2| | file3 |N1
A
Local FSLayer  |yger1l filel| |userl
file3 file2

Figure 3: FedFS Architecture (Section 2.3)

and hence virtual page numbers must be accompa-
nied by the process id.) The access to the directory
table will be performed using a hash on the full path-
name. However, the open file table may contain an
index in the directory table of the local node or di-
rectly of the home node of the open file to avoid hash
function calculation on each file access.

3 Federal Layer Operations

In this section, we describe the operations performed
by the federal layer namely file lookups, file migration
and replication and dynamic reconfiguration.

3.1 File Lookup Operation

The lookup operation is performed to locate a file i.e.
determine the home for the file from its pathname.
Figure 4 illustrates the four possible paths a lookup
operation can take.

1. Any node performing a lookup will first search
its local directory table for a previously cached
entry. If there is a hit in the DT (likely if
file accesses exhibit good temporal locality), the
lookup completes at the local node.

2. If there is a miss in the local DT, the lookup
operation will contact the manager of the file.
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Figure 4: Various Lookup cases (Section 3.1)

The manager is determined by a hash on the
pathname. The manager refers to its DT to find
the home of the file and if found, the lookup
terminates.

If there is a miss in the DT at the file manager,
the lookup operation contacts the manager of the
file’s parent directory. The parent directory is
easily obtained from the pathname and the par-
ent’s manager is located by using the hash func-
tion. If the manager of the parent has the virtual
directory cached, the lookup completes and the
home of the file is returned.

Finally, if the virtual directory is not cached, the
parent directory calls for a dirmerge operation to
construct the virtual directory. As explained in
the previous section, we use bloom filters to con-
tact only the subset of the nodes that are likely
to have that directory in the local file system.

Lookup operations are expected to be fast in the com-
mon case. The cost of querying the file’s manager,
querying the parent’s manager and doing a dirmerge
at the parent’s manager are one time costs, easily
amortized over multiple lookups.

3.2 File Migration and Replication

File migration and replication are enabled by the lo-
cation independent file naming using the virtual di-
rectory architecture and additional level of indirec-
tion involving managers in the lookup path.

Whenever the migration policy decides to move a file,
the file is added to a list at the target node. For each
file in the list, the file is transferred and the file’s
manager and parent’s manager are updated with the
information about the new location. This mechanism
ensures that migrating a file does not disrupt service
of that file. When the home of a file changes due
to migration, some of the cached DT entries in other
nodes become stale. They are not invalidated these
eagerly, rather the nodes use the stale information
and discover that the file is no longer present. Then,
the manager is queried again to find the new home.
This lazy mechanism presents additional overhead if
a lookup happens on a file that was deleted, but this
is not a common case.

Under our replication policy, for each file, two co-
herent replicas (primary and secondary) are main-
tained. On a lookup, the manager returns the pri-
mary node as the home of the file. If the primary
becomes unavailable, the manager can redirect sub-
sequent lookups to the secondary. When one of the
copies become unavailable (node leaves or crashes),
the manager create another copy.



3.3 Dynamic Reconfiguration

In FedFS, nodes can join the federation to increase
the file set and storage, as well as leave the federa-
tion. When a node joins FedFS, manager responsibil-
ities for some files and directories are transferred to
it. The hashing mechanism to locate managers is able
to accommodate this change, because we incorporate
the number of nodes in the hash function. The new
node will also send its summary information to all the
nodes. When a file lookup occurs at the new node,
the query will reach the manager of the parent. If
a new node summary arrives after the last dirmerge,
the parent will perform incremental dirmerge involv-
ing only the new node and the file becomes visible as
part of the global space.

When a node leaves, the files and directories for which
this node was the manager, are handed off to other
nodes. Files for which the leaving node was one of the
consistent replica locations now have to be replicated
on another node.

4 Prototype implementation

A prototype implementation of the FedF'S has been
built as a user level library in Linux that exports
the standard file system interface. The FedFS com-
munication library is built using VIA. The Bloom
summary (4Kb per node) is generated using 4 hash
functions.

The first application used to test FedFS with is a
user level NFS server (NFSv2) on Linux. An NFS
server can serve only local files, below the exported
mount point. An NFS server linked with FedF'S,
called DNFS (Distributed NFS), can distribute its
files on all the nodes in the cluster, and serve them
out of any of the nodes. All the results presented are
based on this DNFS server. The file placement policy
used in the implementation is to collocate a file or di-
rectory with its manager. File migration mechanism
has been implemented, but a policy is not in place
yet.

All experiments were performed in a cluster of 8 Pen-
tium IT 300MHz dual-processors, each with 512KB
cache, 512MB memory and 2 SCSI disks each (one
3.6GB IBM disk and one 8.3GB Quantum disk) and
running Linux 2.2.14 kernel (smp version). Each node
has a SMC EpiclO0 Ethernet card and a Giganet
VIA card used only for intra-cluster communication.
Client-server communication uses the Ethernet, the

Operation | Percentage (%)
Lookup 46

Read 34

Write 17

Create 2

Remove 1

Table 1: SPEC97 operation mix used in the experi-
ments (Section 4)

server-server communication uses the Giganet. The
cache maintained at each server is 128MB.

Except for the micro benchmarks, the SPEC97 SFS
or LADDIS NFS benchmark [22] was used as the driv-
ing client to test the performance of DNFS. The mix
of file operations used in our experiments is shown in

Table 1.

4.1 Micro-benchmarks

Table 2 lists some micro benchmarks that show the
cost of FedF'S operations. The first column is the la-
tency of calls made to local file system (ext2). FedFS
70 hop” column shows the latency of calls made
through FedFS, where all operations are local. The
other columns show the latency of calls when the files
are created on a remote node or when the managers
are located remotely and messages need to be ex-
changed. The worst case is when up to 6 messages
are exchanged for an operation (file is created on a
remote node, its manager is on another node and the
parent directory’s manager is on a different node).
The blank entries are situations that did not happen
in the test runs.

The cost for remote operations has three components.
First is the latency due to network communication.
On a Gigabit network, this latency is of the order
of tens of microseconds. Second is the queuing de-
lay in the remote node. To avoid serializing parallel
requests, request messages are first queued by a net-
work polling thread and then picked up by the pro-
tocol thread. The network and queuing delay for a
message exchange is roughly 200 us. The final com-
ponent is the operation latency at the remote node.

For creat, first a lookup is done, and the operation is
performed only if the file is not found. After creating,
the parent directory has to be updated and this might
result in a message if the parent’s manager is on a
remote node. For mkdir, an additional message may
be required to update the summary if the manager



Call Local (us) FedF'S (us)

0 hop 1 hop 2 hops | 3 hops 5 hops | 6 hops
Creat 89 140 - 522 - 1179 -
Mkdir 164 175 - - 820 - 1420
Read || 105 (14) 105 (11) | 452 - - - -
Write 19 75(16) 305 - - - -
Unlink || 25 90 (62) - (339) | 570 792 (664) | - -

Table 2: Latency of operations from micro-benchmarks.

Local is the local ext2 file system. A FedFS

operation may involve multiple messages depending on the location of the managers of the file/dir or it’s

parent. (Section 4.1)

Call NFS (ms) | DNFS (ms)
Lookup | 0.50 0.52
Read 1.62 1.62
Write 1.28 1.51
Creat 1.16 1.33
Remove | 0.65 0.72
Average | 1.03 1.08

Table 3: Latency of some operations from macro-
benchmark (SPEC97). NFS is a regular user level
NFS server, DNFS (Distributed NFS) is the NFS
server linked with FedFS.(Section 4.1)

of the new directory is on a remote node. For reads
and writes, the cases of cache miss and hit are shown.
For unlink, the numbers in parentheses show the case
where lookup had a hit in the local Directory Table.

Table 3 shows the overhead of FedFS running macro-
benchmarks with DNF'S server and SPEC97 client. In
this test configuration, there is only one server and
one client. The client requested load is 500ps/sec,
for a duration of 300 secs, resulting in 15000 oper-
ations. Around 19500 files are created in 650 direc-
tories, and the total data set size is 495MB. After
discounting the client/server communication latency
(which uses UDP over the Ethernet), the latency is
only marginally higher on DNFS compared to NFS.

4.2 DNFS Performance

The next experiment compares the performance of
DNFS against NFS. First, the SPEC97 benchmark
is set up with a single node running the regular NFS
server and four clients mounting a single volume from
the server. Next, with DNFS, the clients mounted
the same volume from four different servers, while
accessing the same file set. The file set is now dis-
tributed across the nodes, but they are all accessible
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Figure 5: DNFS Performance: The graph shows
average operation latency against load offered by
the clients. NFS is the regular NFS server,
DNFS is NFS linked with FedFS, running on four
nodes. (Section 4.2)



from a single mount point due to FedFS. The file
set and data set size created and accessed are sim-
ilar to the previous experiment, but proportional to
the requested load. Figure 5 shows that, as expected,
DNEFS scales better than regular NFS; since the same
load is now spread across multiple servers, while serv-
ing the same file set.

The above shows the scaling with respect to clients
and client loads. FedFS scales with respect to server
configurations also. Adding more nodes to FedFS
only increases the aggregate storage and bandwidth it
can deliver, without additional communication costs.
This is because almost all FedFS operations involve
communication between two nodes - a requesting
node and the home or the manager. The only op-
eration that involves more than three nodes is the
dirmerge operation, which is performed only once per
directory in the entire FedFS run time.

5 Current issues

The initial proof-of-concept prototype has a few
drawbacks that we are currenty addressing. The mes-
saging cost of 200 us is quite large compared to what
is achievable using Giganet VIA. We have since then
redesigned the communication layer and significantly
reduced this cost. Another factor affecting the server
performance is the ”double buffering” phenomenon.
File data is cached in the FedFS layer as well as in
the kernel buffer cache. This causes contention for
memory and to avoid swapping, the cache size has
to be quite small. We are currently making changes
to use the direct I/O feature available in the latest
kernels to avoid the double buffering.
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