Check out the new USENIX Web site. next up previous
Next: Model and Simulation Comparisons Up: Service Time Model Previous: Seek Time Model

Service Time Model

In  Section 4.1.2 and Section 4.1.1 we obtained expressions for the seek and transfer times. We can now substitute these equations (19 and 8) for $ t_{seek}$ and $ t_{transfer}$ in Equation 2. This gives us an expression for the service time as shown in Equation 20:


$\displaystyle {t_{service}(\delta_x, \delta_y,
T_{active}, T_y, r, r_l)
=}$
    $\displaystyle \frac{r}{r_l(\sqrt{\delta_x} + \sqrt{\delta_y} + 8 t_{settle}
\sqrt{\frac{5}{\pi}})}$  
    $\displaystyle \big( (\sqrt{\delta_x} + 8 t_{settle}
\sqrt{\frac{5}{\pi}}) (\frac{1}{8} \sqrt{\frac{\pi \delta_{x}
}{5}} + t_{settle}) +$  
    $\displaystyle \delta_y \frac{1}{8} \sqrt{\frac{\pi}{5}}\big)
+$  
    $\displaystyle \frac{8 r d_b}{T_{active}} (\frac{1}{\delta_y} (t_{TA} +
\frac{t_{XM}}{T_y}) + \frac{1}{v_0})$  
       



Ivan Dramaliev 2003-01-06