
Collaborative buffer caches in
data centers

Zhifeng Chen and Yuanyuan Zhou
University of Illinois, Urbana-Champaign

Buffer Cache Hierarchy

IDC

SAN

File system
buffer

Database
buffer

Storage
cache

Web server/
proxy cache

Workstation
buffer

LAN

WAN

Web browser
cache

Multiple heterogeneous systems in data centers:
Storage, database, filesystem, web service, etc.

Gigabytes of memory for buffer caching:
Reduce out-going requests of individual server.

High bandwidth, low latency networks
FC, G Ethernet

Inefficiency of the hierarchy

Upper level buffer filtering effect:
Lower level buffer suffers high miss ratio.
Improved algorithms to achieve exclusive
caching. (MQ, etc.)

Lower level buffer caching effect:
Different response time for hits and misses.
DB/FS buffer reduces network messages
instead of disk I/O.

Content-aware caching

Basic idea: buffer caches knows the content of
the other buffer cache.

Generalize exclusive caching.

Different from cooperative caching [Dahlin94]
Client-client vs. client-server.
Heterogeneous software vs. homogeneous
software.

Tracking buffer content

Message exchange
Updates meta-data periodically with approximation.
Piggyback meta-data delta on replies.
Reduce space overhead using the bloom filter.

Estimation
One buffer cache emulates other buffer caches.
Gray box probing can obtain adequate parameters.
Need internal knowledge of other buffer caches.

Explore neighbor knowledge

Eviction based placement [Chen03]
Storage cache reloads evicted DB/FS pages

Preferential caching
Replacement prefers the block in both level buffer
caches.

a
Next access: d LRU: evict a

LRUCA: evict bHigher level: b

Lower level: b c

Questions:
Which is better? Or, do both?
What is the optimal scheme with global knowledge?

Transparent deployment

CacheLib: Everyone use the same
module

A flexible tool to construct various buffer
caches.
Very small overhead.

Preliminary result

0. 0%

0. 5%

1. 0%

1. 5%

2. 0%

2. 5%

3. 0%

3. 5%

4. 0%

4. 5%

LRU+LRU LRU+ARC LRU+LRU LRU+ARC

L1=L2=64MB L1=L2=128M

Gl
ob

al
 m

is
s

ra
ti

o

BASE

Cont ent - awar e

File system trace simulation: Auspex.
Database buffer pool trace simulation: DB2 TPC-C, 80
warehouse, 2 hours.
10%-20% less disk I/O
More results in the poster.

Related work

Network file systems [Dahlin94, Feeley95,
Sarkar96]
Web caching [Karger99,Fan00]
Database buffer management [Jauhari90]
Storage cache [Zhou01,Wong02,Chen03]

Conclusion

Content-aware caching is potential to
explore the aggregate large buffer cache
in a data center.

Future work:
Application performance effect.
Content aware CLOCK.
Automatic detection of remote buffer for less
tuning effort.

Disk I/O reduction: File system

0. 0%
0. 5%
1. 0%
1. 5%
2. 0%
2. 5%
3. 0%
3. 5%

32M 64M 128M 256M 512M
L1 buf f er cache si ze

Gl
ob

al
mi

ss
ra

ti
o

(%
)

Base
Cont ent - awar e

Fixing storage cache (128MB) with
various file system buffer size.
LRU+LRU vs. LRUCA+LRU

Fixing file system buffer size
(256MB) with various storage
cache size.
LRU+LRU vs. LRUCA+LRU

0. 0%

0. 5%

1. 0%

1. 5%

2. 0%

2. 5%

64M 128M 256M 512M 1G
L2 buf f er cache si ze

Gl
ob

al
mi

ss
ra

ti
o

(%
)

BASE
Cont ent - awar e

Auspex filesystem trace.

Disk I/O reduction: TPC-C

0%

1%

2%

3%

4%

5%

6%

7%

8%

32M 64M 128M 256M 512M
L1 si ze

Gl
ob

al
 m

is
s

ra
ti

o

Base
Cont ent - awar e

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

32M 64M 128M 256M 512M
L2 si ze

Gl
ob

al
 m

is
s

ra
ti

o

BASE

Cont ent - awar e

Fixing DB2 buffer size (64MB)
with various storage cache size.
LRU+LRU vs. LRUCA+LRU

Fixing storage cache (256MB) with
various file system buffer size.
LRU+LRU vs. LRUCA+LRU

DB2 TP-C buffer pool access trace simulation. 80 Warehouse, 2 hours.

Cachelib overhead
Normalized Cachelib Read latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2048 4096 8192 16384
Request size (B)

N
or

m
al

iz
ed

 R
ea

d
la

nt
en

cy

BASE
LRU
FBR
MRU
MQ
MIXED

Cachelib in a storage buffer cache: overhead < 5%

Content-aware caching

Basic idea: buffer caches knows the content of the
other buffer cache.

Generalize exclusive caching.

Example: content-aware LRU (LRUCA)
Replacement prefers the block in both level buffer
caches.
Applicable to other replacement algorithm (CLOCK).

a
Next access: d LRU: evict a

LRUCA: evict bHigher level: b

Lower level: b c

	Collaborative buffer caches in data centers
	Buffer Cache Hierarchy
	Inefficiency of the hierarchy
	Content-aware caching
	Tracking buffer content
	Explore neighbor knowledge
	Transparent deployment
	Preliminary result
	Related work
	Conclusion
	Disk I/O reduction: File system
	Disk I/O reduction: TPC-C
	Cachelib overhead
	Content-aware caching

