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Large-scale Data Processing

- Need to repeatedly process evolving data-sets
For Web search PageRank is re-computed for every crawl

- Online data-sets evolve slowly
Successive Yahoo! Web crawls change by 0.1% to 10%

- Need for incremental computations
Instead of re-computing from scratch



Incremental Data Processing

- Systems for incremental processing
Google Percolator [OSDI'10]
Yahoo! CBP [SoCC'10]

- Drawbacks of these systems
Adopt a new programming model
Require implementation of dynamic algorithms
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Example of a Static Algorithm
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Compute the maximum element in a list

Scan the list and compute max in O(n)



Static Algorithm with Input Change
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Modify the input and find the max

Static algorithms re-computes from scratch: O(n)



Example of a Dynamic Algorithm
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Example of a Dynamic Algorithm
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Static vs Dynamic

Algorithm Simplicity Efficiency

Linked list
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Goals

Retain the simplicity of static algorithms
- Achieve the efficiency of dynamic algorithms

Can we meet these goals in distributed systems?

This talk : MapReduce



Qur Approach

« Take an unmodified MapReduce program
« Automatically make it incremental

- Basic principle: Self-adjusting computations
Break computation into sub-computations
Memoize the results of sub-computations
Track dependencies between input and computation
Re-compute only the parts affected by changes



MapReduce with Change
Propagation
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Challenges

How to efficiently detect insertion/deletion ¢
How to minimize data movement ¢

How to perform fine-grained updates ¢
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How to control granularity of Reduce ¢
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How to control granularity of Reduce ¢
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Controlling Reduce Granularity

Leverage Combiners: pre-processing of Reduce
Co-located with Map task for local reduction

Use them to break up Reduce work

Combiners

Combiners

Reduce task
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Contraction Phase: Tree of Combiners
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Contraction Phase: Tree of Combiners
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Evaluation: Proof-of-concept

Single-node MapReduce with change propagation
Computing maximum for a list with single modification

Run-time for computing from scratch
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Summary

Goals:

Retain the simplicity of static algorithms
Achieve the efficiency of dynamic algorithms

This talk:
 How to achieve these goals in MapReduce

Future:
« Apply principles to broad class of data processing systems
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