Large-scale Incremental Dato

Processing with Change Propagation

Pramod Bhatotia

Alexander Wieder, Istemi Ekin Akkus, Rodrigo Rodrigues, Umut A. Acar

MPI-SWS, Germany

USENIX HotCloud 2011



Large-scale Data Processing

- Need to repeatedly process evolving data-sets
For Web search PageRank is re-computed for every crawl

- Online data-sets evolve slowly
Successive Yahoo! Web crawls change by 0.1% to 10%

- Need for incremental computations
Instead of re-computing from scratch



Incremental Data Processing

- Systems for incremental processing
Google Percolator [OSDI'10]
Yahoo! CBP [SoCC'10]

- Drawbacks of these systems
Adopt a new programming model
Require implementation of dynamic algorithms



Incremental Data Processing

- Systems for incremental processing
Google Percolator [OSDI'10]
Yahoo! CBP [SoCC'10]

- Drawbacks of these systems
Adopt a new programming model

« Require implementation of dynamic algorithms




Example of a Static Algorithm

n—>m—> 3¢ IR |4 IR 5o —»

Compute the maximum element in a list

Scan the list and compute max in O(n)



Static Algorithm with Input Change

coooaa

Modify the input and find the max

Static algorithms re-computes from scratch: O(n)



Example of a Dynamic Algorithm

e
g 00

maintain maximum heap



Example of a Dynamic Algorithm

N
0 00

Incremental updates in O(logn)
Asymptoftically faster than the static algorithm



Example of a Dynamic Algorithm

N
000

Incremental updates in O(logn)
Asymptoftically faster than the static algorithm



Static vs Dynamic

Algorithm Simplicity Efficiency

Linked list

(Static) 2K =

Heap

(Dynamic) Lllogin)




Goals

Retain the simplicity of static algorithms
- Achieve the efficiency of dynamic algorithms

Can we meet these goals in distributed systems?

This talk : MapReduce



Qur Approach

« Take an unmodified MapReduce program
« Automatically make it incremental

- Basic principle: Self-adjusting computations
Break computation into sub-computations
Memoize the results of sub-computations
Track dependencies between input and computation
Re-compute only the parts affected by changes



MapReduce with Change
Propagation

EEE N

®© 00 6
\ N\ <

?

Reduce tasks

v Y
. . . Write output

Changes propagate through dependence graph




MapReduce with Change
Propagation

N N

OO0 O &
\ N\

v

Changes propagate through dependence graph

Reduce tasks

v Y
. . Write output



Challenges

How to efficiently detect insertion/deletion ¢
How to minimize data movement ¢

How to perform fine-grained updates ¢



Challenges

How to efficiently detect insertion/deletion ¢

How to minimize data movement ¢

How to perform fine-grained updates ¢

16




How to control granularity of Reduce ¢

EEE N

_
© 0 6 0~

SN
Reduce tasks

Write output

l
_



How to control granularity of Reduce ¢

HE N N

_
OO O &

NN\ L
Reduce tasks

Write output

|
_ :



Controlling Reduce Granularity

Leverage Combiners: pre-processing of Reduce
Co-located with Map task for local reduction

Use them to break up Reduce work

Combiners

Combiners

Reduce task

19



Contraction Phase: Tree of Combiners

o EE N

~x\..

®
-

OO0 O &

Reduce tasks

Write output 20



Contraction Phase: Tree of Combiners

H N N

6 Map tasks

Contraction

Reduce tasks

Write output 21



Evaluation: Proof-of-concept

Single-node MapReduce with change propagation
Computing maximum for a list with single modification

Run-time for computing from scratch

SpeedUp = . . .
P P~ Run-fime for incremental computation
10000
1000
S
S 100
]
v
Q 10
(s ]
1 T T T 1
100 1000 10000 100000

0.1
Number of elements in list

Asymptotic gains with increase in size of data-set



Summary

Goals:

Retain the simplicity of static algorithms
Achieve the efficiency of dynamic algorithms

This talk:
 How to achieve these goals in MapReduce

Future:
« Apply principles to broad class of data processing systems

23



