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What consistency does your 
key-value store actually provide?
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Outline

• Key-value stores
• Consistencies
• Checking consistencies
• Algorithms
• Findings



© Copyright 2010 Hewlett-Packard Development Company, L.P.3

KEY-VALUE STORES

Simple Storage Service (S3), Dynamo
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CONSISTENCIES

Eventually consistent

Read-your-writes

Quorum-based, multiple levels 

Read-repair, vector clocks, hinted hand-off

Sequential writes



© Copyright 2010 Hewlett-Packard Development Company, L.P.5

Why not?

DO YOU BELIEVE THEM?
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Verify SLAs that may contain consistency guarantees

WHY DO YOU WANT TO KNOW?
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Choose the one that meets your consistency requirements

WHY DO YOU WANT TO KNOW?
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Choose a proper service level for own workload

WHY DO YOU WANT TO KNOW?

–What you pay is what you get

–What you get depends on your workload

–Tough workloads & failures: Worse than 

expected / promised

–Benign workload & good operating 

conditions: Better than minimal guarantee



© Copyright 2010 Hewlett-Packard Development Company, L.P.9

If we know the internal protocols …

WHAT CAN A USER DO?
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If we don’t know the internal protocols …

WHAT CAN A USER DO?

Key-value store

User machine
get(key)
put(key, value)

User machine

User machine

User machine

User machine

User machine
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CLIENT TRACES

get/putMachine 1

Machine 2

Machine 3

time

request sent reply received
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[Lamport, Distributed Computing, 1986]

REGISTER-BASED CONSISTENCY

–Atomic

–Safe

–Regular
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ATOMIC/REGULAR/SAFE
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For all three: safe, regular, atomic

OVERALL APPROACH

1. Construct a digraph

• Vertices = operations

• Edges = precedence

2. Add edges

• Time

• Data

• Hybrid

3. Check if graph is DAG
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ASSUMPTIONS

–Client timestamps are reasonably synchronized

–Or they are calibrated during merge 
− Chirp [Anderson et al., MASCOTS, 2009]

–All writes write a distinct value

–There is a default value for each key
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ADDING TIME EDGES
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ADDING DATA EDGES
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ADDING HYBRID EDGES
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DFS

DETECTING CYCLES

W(0)

W(1)

R(1)
R(0)
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Number of cyles found in DFS

COUNTING VIOLATIONS

0
1

2 43

5

cycles=1

cycles=2

Feedback arc set
Feedback vertex set
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CHECKING REGULARITY AND SAFETY

Atomicity Regularity Safety

1 Keep all reads 
and writes

Remove reads that 
read a concurrent 
write’s value

Remove all reads 
that are concurrent 
with some writes

2 Add time edges

3 Add data edges

4 Add hybrid edges
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REDUCING NUMBER OF TIME EDGES

W’

RW

Edges m=n2 even in typical cases; all-pair reachability takes mn=n3 time.

Reduced to mn=n2 time in typical cases.
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[Anderson et al., DSN, 2010]

PAHOEHOE

– A key-value store 

prototype

– Erasure-coded

– Multi-datacenter
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EXPERIMENT SETUP

Proxy

get(key)
put(key, value)

KLS

FS

KLS

FS

Emulated wide-area link 
between datacenters
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EXPERIMENT SETUP

– Proxy is in data center and shares NTP w/ servers

– 1000 operations

– Similar to YCSB microbenchmark
• Larger object size: 128KB

• 40% gets + 60% updates = 70% gets + 30% puts

– Varying
− Number of keys

− Number of processes

− Distribution (uniform, Zipfian)
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Concurrency = 128

VIOLATIONS VS. KEYS
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Keys = 8

VIOLATIONS VS. CONCURRENCY
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[Misra, TOPLAS, 1986]

RELATED WORK

–Misra’s algorithm

–Reasons about values

–Only for atomicity

–Probably can be extended 

for safety and regularity

–Harder to quantify violation 

severity
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ONLINE CONSISTENCY CHECKING

failures

time
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CONCLUSIONS

– Independent checking useful

–Algorithms for checking three semantics

–Eventually consistent may perform atomically

–Future work

•Other semantics

• Implement online checking

•Monitor key-value stores


