What consisten
key-value store actually

Eric Anderson, Xiaozhou (Steve) Li, Mehul Shah, Joseph Tucek, and Jay Wylie
HP Labs

HotDep 2010

October 3, 2010

© Copyright 2010 Hewlett-Packard Development Company, L.P. @

Outline

* Key-value stores
 Consistencies

» Checking consistencies
* Algorithms

* Findings

2 © Copyright 2010 Hewlett-Packard Development Company, L.P. @

KEY-VALUE STORES

ﬁel'll;laz_ogm Simple Storage Service (S3), Dynamo

Googse code } ggolfi Azure

Google Storage for Developers

S * Cassandra
A distributed database.

Tokyo k

Cabinet g9

© Copyright 2010 Hewlett-Packard Development Company, L.P

7

CONSISTENCIES

EeTaz'oI;“ Eventually consistent GOLJSAE code

labs

Read-your-writes

Quorum-based, multiple levels

2w Cassandra
Project Voldemort Read-repair, vector clocks, hinted hand-off
A distnibuted database.

Tokyo o
. equential writes

4 © Copyright 2010 Hewlett-Packard Development Company, L.P.

DO YOU BELIEVE T

Why not?

© Copyright 2010 Hewlett-Packard Development Company, L.P

EM?

WHY DO YOU WANT TO KNOW?

Verity SLAs that may contain consistency guarantees

© Copyright 2010 Hewlett-Packard Development Company, L.P

WHY DO YOU WANT TO KNOW?

Choose the one that meets your consistency requirements

Tokyo k TRERECETe

Cabinet 3192
Googse code amazon,
S » Cassandra

Project Voldemort
A distributed database.

© Copyright 2010 Hewlett-Packard Development Company, L.P

\4%

Y DO YOU WANT TO KNOW?

Choose a proper service level for own workload

—What you pay is what you get

—What you get depends on your workload

—Tough workloads & failures: Worse than

expected / promised

—Benign workload & good operating

conditions: Better than minimal guarantee

WHAT CAN A USER DO?

It we know the internal protocols ...

9 © Copyright 2010 Hewlett-Packard Development Company, L.P.

WHAT CAN A USER DO?

It we don’t know the internal protocols ...

get(key)
put(key, value)

7
(\

10 © Copyright 2010 Hewlett-Packard Development Company, L.P

Key-value store

CLIENT TRACES

Mochine] et/ ut

Machine 2

Machine 3

Vv

time

11 © Copyright 2010 Hewlett-Packard Development Company, L.P. @

REGISTER-BASED CONSISTENCY

[Lamport, Distributed Computing, 1986]

— Atomic
—Safe

—Regular

ATOMIC/REGULAR/SAFE

_wo wi(i)
Atormic RO RO

W) w(1) k
Safe ° * ¢ o o o o °
N R(2) R(O) y
Unsafe [. e o o wi) o o——o
R RO RO)

OVERALL APPROAC

For all three: safe, regular, atomic

1. Construct a digraph
Vertices = operations

Edges = precedence
2. Add edges

Time

Data

Hybrid

3. Check it graph is DAG

ASSUMPTIONS

—Client timestamps are reasonably synchronized

—Or they are calibrated during merge
— Chirp [Anderson et al., MASCOTS, 2009]

—All writes write a distinct value

—There is a default value for each key

15 © Copyright 2010 Hewlett-Packard Development Company, L.P.

ADDING TIME EDGES

R(1)

16 © Copyright 2010 Hewlett-Packard Development Company, L.P.

ADDING DATA EDGES

W(0) W(T)
® R0 o o R0) °
w(1)
o =
() R(O)

17 © Copyright 2010 Hewlett-Packard Development Company, L.P.

ADDING HYBRID EDGES

DETECTING CYCLES

DFS

COUNTING VIOLATIONS

Number of cyles found in DFS

cycles=2
5 SN
0

2 3 4

cycles=1

Feedback arc set
Feedback vertex set

© Copyright 2010 Hewlett-Packard Development Company, L.P

CHECKING REGULARITY AND SAFETY

ety seguoriy

Keep all reads Remove reads that Remove all reads
and writes read a concurrent that are concurrent
write’s value with some writes

2 Add time edges
3 Add data edges

4 Add hybrid edges

21 © Copyright 2010 Hewlett-Packard Development Company, L.P.

REDUCING NUMBER OF TIME EDGES
W R
W

Edges m=n? even in typical cases; all-pair reachability takes mn=n3 time.

Reduced to mn=n? time in typical cases.

22 © Copyright 2010 Hewlett-Packard Development Company, L.P. @

PAHOEHOE

[Anderson et al., DSN, 2010]

— A key-value store
profotype

— Erasure-coded

— Multi-datacenter

23 © Copyright 2010 Hewlett-Packard Development Company, L.P.

4 Data center \ (' ‘\
Key lookup Data center

@ Key lookup
@Fragment N
@Fr&gment
%Pr&xy
Prox
N,

EXPERIMENT SETUP

get(key)
put(key, value)

N

24 © Copyright 2010 Hewlett-Packard Development Company, L.P

Emulated wide-area link
between datacenters

EXPERIMENT SETUP

— Proxy is in data center and shares NTP w/ servers
— 1000 operations

— Similar to YCSB microbenchmark
Larger object size: 128KB
40% gets + 60% updates = 70% gets + 30% puts

— Varying
— Number of keys
— Number of processes
— Distribution (uniform, Zipfian)

VIOLATIONS VS. KEYS

Concurrency = 128

120 ——— .
uni-atomic —+—
a uni-reg
uni-safe —¥—
100 zipf-atomic —H=— -
zipf-reg
zipf-safe —o—
80 |
wn
—
O
< 60
RS,
>
+
40
20
1 10 100

26 © Copyright 2010 Hewlett-Packard Development Company, L.P.

VIOLATIONS VS. CONCURRENCY

Keys = 8
35 — : T
uni-atomic —+—
uni-reg
30 F uni-safe —X—
zipf-atomic ———
zipf-reg
zipf-safe —o—
25 +
é’ 20
©
o)
> R
= 15
10
5 -
0 1 | 1 | 1 1
20 40 60 80 100 120
concurrent processes
27 © Copyright 2010 Hewlett-Packard Development Company, L.P.

140

RELATED WORK

[Misra, TOPLAS, 1986]

—Misra’s algorithm
—Reasons about values
—Only for atomicity

—Probably can be extended
for safety and regularity

—Harder to quantity violation
severity

ONLINE CONSISTENCY C

ECKING

time

CONCLUSIONS

—Independent checking usetul
—Algorithms tor checking three semantics
—Eventually consistent may perform atomically

—Future work
-Other semantics
-Implement online checking

-Monitor key-value stores

30 © Copyright 2010 Hewlett-Packard Development Company, L.P.

