
© Copyright 2010 Hewlett-Packard Development Company, L.P.1© Copyright 2010 Hewlett-Packard Development Company, L.P.

Eric Anderson, Xiaozhou (Steve) Li, Mehul Shah, Joseph Tucek, and Jay Wylie

HP Labs

HotDep 2010

October 3, 2010

What consistency does your 
key-value store actually provide?



© Copyright 2010 Hewlett-Packard Development Company, L.P.2 © Copyright 2010 Hewlett-Packard Development Company, L.P.2

Outline

• Key-value stores
• Consistencies
• Checking consistencies
• Algorithms
• Findings



© Copyright 2010 Hewlett-Packard Development Company, L.P.3

KEY-VALUE STORES

Simple Storage Service (S3), Dynamo



© Copyright 2010 Hewlett-Packard Development Company, L.P.4

CONSISTENCIES

Eventually consistent

Read-your-writes

Quorum-based, multiple levels 

Read-repair, vector clocks, hinted hand-off

Sequential writes



© Copyright 2010 Hewlett-Packard Development Company, L.P.5

Why not?

DO YOU BELIEVE THEM?



© Copyright 2010 Hewlett-Packard Development Company, L.P.6

Verify SLAs that may contain consistency guarantees

WHY DO YOU WANT TO KNOW?



© Copyright 2010 Hewlett-Packard Development Company, L.P.7

Choose the one that meets your consistency requirements

WHY DO YOU WANT TO KNOW?



© Copyright 2010 Hewlett-Packard Development Company, L.P.8

Choose a proper service level for own workload

WHY DO YOU WANT TO KNOW?

–What you pay is what you get

–What you get depends on your workload

–Tough workloads & failures: Worse than 

expected / promised

–Benign workload & good operating 

conditions: Better than minimal guarantee



© Copyright 2010 Hewlett-Packard Development Company, L.P.9

If we know the internal protocols …

WHAT CAN A USER DO?



© Copyright 2010 Hewlett-Packard Development Company, L.P.10

If we don’t know the internal protocols …

WHAT CAN A USER DO?

Key-value store

User machine
get(key)
put(key, value)

User machine

User machine

User machine

User machine

User machine



© Copyright 2010 Hewlett-Packard Development Company, L.P.11

CLIENT TRACES

get/putMachine 1

Machine 2

Machine 3

time

request sent reply received



© Copyright 2010 Hewlett-Packard Development Company, L.P.12

[Lamport, Distributed Computing, 1986]

REGISTER-BASED CONSISTENCY

–Atomic

–Safe

–Regular



© Copyright 2010 Hewlett-Packard Development Company, L.P.13

ATOMIC/REGULAR/SAFE

W(0)

R(0)

W(1)

R(1)

R(0)

Atomic

Regular

Safe

W(0)

R(1)

W(1)

R(0)

W(0)

R(2)

W(1)

R(0)

Unsafe
W(0)

R(2)

W(1)

R(0)



© Copyright 2010 Hewlett-Packard Development Company, L.P.14

For all three: safe, regular, atomic

OVERALL APPROACH

1. Construct a digraph

• Vertices = operations

• Edges = precedence

2. Add edges

• Time

• Data

• Hybrid

3. Check if graph is DAG



© Copyright 2010 Hewlett-Packard Development Company, L.P.15

ASSUMPTIONS

–Client timestamps are reasonably synchronized

–Or they are calibrated during merge 
− Chirp [Anderson et al., MASCOTS, 2009]

–All writes write a distinct value

–There is a default value for each key



© Copyright 2010 Hewlett-Packard Development Company, L.P.16

ADDING TIME EDGES

W(0) W(1)

R(1) R(0)

W(0)

W(1)

R(1)
R(0)



© Copyright 2010 Hewlett-Packard Development Company, L.P.17

ADDING DATA EDGES

W(0) W(1)

R(1) R(0)

W(0)

W(1)

R(1)
R(0)



© Copyright 2010 Hewlett-Packard Development Company, L.P.18

ADDING HYBRID EDGES

W(0) W(1)

R(1) R(0)

W(0)

W(1)

R(1)
R(0)

W’

RW



© Copyright 2010 Hewlett-Packard Development Company, L.P.19

DFS

DETECTING CYCLES

W(0)

W(1)

R(1)
R(0)



© Copyright 2010 Hewlett-Packard Development Company, L.P.20

Number of cyles found in DFS

COUNTING VIOLATIONS

0
1

2 43

5

cycles=1

cycles=2

Feedback arc set
Feedback vertex set



© Copyright 2010 Hewlett-Packard Development Company, L.P.21

CHECKING REGULARITY AND SAFETY

Atomicity Regularity Safety

1 Keep all reads 
and writes

Remove reads that 
read a concurrent 
write’s value

Remove all reads 
that are concurrent 
with some writes

2 Add time edges

3 Add data edges

4 Add hybrid edges



© Copyright 2010 Hewlett-Packard Development Company, L.P.22

REDUCING NUMBER OF TIME EDGES

W’

RW

Edges m=n2 even in typical cases; all-pair reachability takes mn=n3 time.

Reduced to mn=n2 time in typical cases.



© Copyright 2010 Hewlett-Packard Development Company, L.P.23

[Anderson et al., DSN, 2010]

PAHOEHOE

– A key-value store 

prototype

– Erasure-coded

– Multi-datacenter



© Copyright 2010 Hewlett-Packard Development Company, L.P.24

EXPERIMENT SETUP

Proxy

get(key)
put(key, value)

KLS

FS

KLS

FS

Emulated wide-area link 
between datacenters



© Copyright 2010 Hewlett-Packard Development Company, L.P.25

EXPERIMENT SETUP

– Proxy is in data center and shares NTP w/ servers

– 1000 operations

– Similar to YCSB microbenchmark
• Larger object size: 128KB

• 40% gets + 60% updates = 70% gets + 30% puts

– Varying
− Number of keys

− Number of processes

− Distribution (uniform, Zipfian)



© Copyright 2010 Hewlett-Packard Development Company, L.P.26

Concurrency = 128

VIOLATIONS VS. KEYS



© Copyright 2010 Hewlett-Packard Development Company, L.P.27

Keys = 8

VIOLATIONS VS. CONCURRENCY



© Copyright 2010 Hewlett-Packard Development Company, L.P.28

[Misra, TOPLAS, 1986]

RELATED WORK

–Misra’s algorithm

–Reasons about values

–Only for atomicity

–Probably can be extended 

for safety and regularity

–Harder to quantify violation 

severity



© Copyright 2010 Hewlett-Packard Development Company, L.P.29

ONLINE CONSISTENCY CHECKING

failures

time



© Copyright 2010 Hewlett-Packard Development Company, L.P.30

CONCLUSIONS

– Independent checking useful

–Algorithms for checking three semantics

–Eventually consistent may perform atomically

–Future work

•Other semantics

• Implement online checking

•Monitor key-value stores


