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KEY-VALUE STORES

ﬁel'll;laz_ogm Simple Storage Service (S3), Dynamo

Googse code } ggolfi Azure

Google Storage for Developers

S * Cassandra
A distributed database.
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CONSISTENCIES

EeTaz'oI;“ Eventually consistent GOLJSAE code

labs

Read-your-writes

Quorum-based, multiple levels

2w Cassandra
Project Voldemort Read-repair, vector clocks, hinted hand-off
A distnibuted database.

Tokyo o
. equential writes
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DO YOU BELIEVE T

Why not?
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WHY DO YOU WANT TO KNOW?

Verity SLAs that may contain consistency guarantees
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WHY DO YOU WANT TO KNOW?

Choose the one that meets your consistency requirements

Tokyo k TRERECETe

Cabinet 3192
Googse code amazon,
S » Cassandra

Project Voldemort
A distributed database.
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Y DO YOU WANT TO KNOW?

Choose a proper service level for own workload

—What you pay is what you get

—What you get depends on your workload

—Tough workloads & failures: Worse than

expected / promised

—Benign workload & good operating

conditions: Better than minimal guarantee



WHAT CAN A USER DO?

It we know the internal protocols ...
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WHAT CAN A USER DO?

It we don’t know the internal protocols ...

get(key)
put(key, value)

7
( \
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CLIENT TRACES

Mochine] et/ ut

Machine 2

Machine 3

Vv

time
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REGISTER-BASED CONSISTENCY

[Lamport, Distributed Computing, 1986]

— Atomic
—Safe

—Regular



ATOMIC/REGULAR/SAFE
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OVERALL APPROAC

For all three: safe, regular, atomic

1. Construct a digraph
Vertices = operations

Edges = precedence
2. Add edges

Time

Data

Hybrid

3. Check it graph is DAG



ASSUMPTIONS

—Client timestamps are reasonably synchronized

—Or they are calibrated during merge
— Chirp [Anderson et al., MASCOTS, 2009]

—All writes write a distinct value

—There is a default value for each key

15  © Copyright 2010 Hewlett-Packard Development Company, L.P.



ADDING TIME EDGES

R(1)
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ADDING DATA EDGES

W(0) W(T)
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ADDING HYBRID EDGES




DETECTING CYCLES

DFS




COUNTING VIOLATIONS

Number of cyles found in DFS

cycles=2
5 SN
0

2 3 4

cycles=1

Feedback arc set
Feedback vertex set

© Copyright 2010 Hewlett-Packard Development Company, L.P



CHECKING REGULARITY AND SAFETY

ety seguoriy

Keep all reads Remove reads that  Remove all reads
and writes read a concurrent  that are concurrent
write’s value with some writes

2 Add time edges
3 Add data edges

4 Add hybrid edges
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REDUCING NUMBER OF TIME EDGES
W R
W

Edges m=n? even in typical cases; all-pair reachability takes mn=n3 time.

Reduced to mn=n? time in typical cases.
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PAHOEHOE

[Anderson et al., DSN, 2010]

— A key-value store
profotype

— Erasure-coded

— Multi-datacenter
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EXPERIMENT SETUP

get(key)
put(key, value)

N
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Emulated wide-area link
between datacenters




EXPERIMENT SETUP

— Proxy is in data center and shares NTP w/ servers
— 1000 operations

— Similar to YCSB microbenchmark
Larger object size: 128KB
40% gets + 60% updates = 70% gets + 30% puts

— Varying
—  Number of keys
— Number of processes
— Distribution (uniform, Zipfian)




VIOLATIONS VS. KEYS
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VIOLATIONS VS. CONCURRENCY
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RELATED WORK

[Misra, TOPLAS, 1986]

—Misra’s algorithm
—Reasons about values
—Only for atomicity

—Probably can be extended
for safety and regularity

—Harder to quantity violation
severity



ONLINE CONSISTENCY C

ECKING

time



CONCLUSIONS

—Independent checking usetul
—Algorithms tor checking three semantics
—Eventually consistent may perform atomically

—Future work
-Other semantics
-Implement online checking

-Monitor key-value stores

30  © Copyright 2010 Hewlett-Packard Development Company, L.P.



