
USENIX Association

Proceedings of
HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18–21, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 181

Towards a Semantic-Aware File Store

Zhichen Xu, Magnus Karlsson, Chunqiang Tang∗and Christos Karamanolis
HP Laboratories, 1501 Page Mill Rd., MLS 1177, Palo Alto, CA 94304

{zhichen,karlsson,chunqian,christos}@hpl.hp.com

Abstract—Traditional hierarchical namespaces are not
sufficient for representing and managing the rich seman-
tics of today’s storage systems. In this paper, we discuss
the principles of semantic-aware file stores. We identify
the requirements of applications and end-users and pro-
pose to use a generic data model to capture and repre-
sent file semantics. A distinct challenge that we face is
to handle dynamic evolution of the data schemas. Further,
we outline a framework of basic relations and tools for
generating and using semantic metadata. The proposed
data model and framework are aimed to be more generic
and flexible than what is offered by existing semantic file
systems. We envision a range of applications and tools
that will exploit semantic information, ranging from per-
sonal storage systems with features for advanced search-
ing and roaming access, to enterprise systems supporting
distributed data location or archiving.

1 Motivation

Over the last several years, we have witnessed an unprece-
dented growth of the volume of stored digital data. In
1999, a study estimated the amount of original digital data
generated annually to be in excess of 1,700 petabyte [15].
It is estimated that this number has been nearly doubling
annually since then [22]. This explosive growth is re-
flected on the ever increasing complexity and cost for stor-
age management. One instance of this problem occurs in
file stores. The traditional hierarchical file system is no
longer adequate for systems that need to store billions of
files and capture different types of semantic information
that is required to efficiently access, share, and manage
those files.
Consider, for example, the case of a digital movie produc-
tion studio. Digital movies consist of hundreds of scenes.
Each scene is composed of thousands of different data ob-
jects, including character models, backgrounds, and light-
ing models. These objects are typically implemented as
files that are shared by tens of artists. There is a range of
semantic information that needs to be captured and used
in this environment. When a new version of the hair
of a character is created, it has to be annotated with the
changes done. Further, it is compatible with only certain

∗Chunqiang Tang is with Department of Computer Science, Univer-
sity of Rochester, Rochester, NY.

versions of the head. Such information about versions and
dependencies among files is important when rendering a
scene; it is required to combine objects that are compati-
ble with each other and make sense in some context. When
composing a scene, an artist uses material that other peo-
ple have edited and stored in the system. Content-based
searching (e.g., search for “green lush grass”) as opposed
to searching by file name can greatly simplify collabora-
tion and improve productivity. The view of what data are
stored in the system may potentially be different depend-
ing on application and user. For example, an artist wants
to see only objects that are compatible with the version of
the character she is working on; a backup system only sees
files that are marked as “persistent” by the artists. Further,
tracking context information, such as the files accessed be-
fore, and other statistical information may enable intelli-
gent resource provisioning, data caching and prefetching,
and improve search efficiency and accuracy.
Examples of common types of semantic information that
needs to be captured include: (i) file versioning, (ii)
application-based dependencies, (iii) attribute-based se-
mantics, (iv) content-based semantics, and (v) context-
based information.
Considered individually, some of these types of seman-
tic information are captured and used by existing appli-
cations and tools, such as versioning control systems or
software configuration tools. However, different types of
semantic information often depend on each other and are
related to other functions of a storage system. For exam-
ple, application-based dependencies are defined on ver-
sions of files. Also, dependencies need to be considered
during archiving, to save a consistent snapshot of the ap-
plication state. We argue that it is easier and more efficient
to manage all the above types of semantic information in
a single, general-purpose system, that many applications
can use.
Along these lines, we propose a semantic-aware file store,
named pStore, that extends file systems—a storage ab-
straction assumed by many applications—to support se-
mantic metadata. The paper makes the following contri-
butions.

• Proposes using a generic data model to represent se-
mantic information in file systems. The data model has
two main features. First, it is extensible to cover seman-
tic information other than the types described above.

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association182

Common types of

semantic: versioning,

dependencies,

contents, contexts,

etc.

Security/

access

control

Advanced

search

capability

Event model/

consistency

control

Framework

File Store (e.g., flat or object store)

API (Traditional and Semantic)

Tools/Utilities

Applications

Data model

Version

control/

archival

capability

Figure 1: Architecture of pStore.

Second, handles schema evolution, which is essential
for many data management applications where seman-
tic information is discovered incrementally.

• Introduces a framework with built-in support for repre-
senting and providing access to a set of basic types of
semantic information in file systems.

• Outlines a range of applications and tools that can ex-
ploit rich semantic information.

• Concludes with a list of research challenges that need
to be addressed to realize the vision.

2 Architecture of pStore
The architecture of pStore is illustrated in Figure 1. pStore
makes no particular assumption of the underlying file
repository, except that it provides a flat space of unique
object IDs. The core of pStore is a generic data model that
is used to represent semantic information. On top of the
data model, a set of basic functionality modules are pro-
vided to programmers that wish to develop tools of appli-
cations that use or change the semantic data. We describe
the basic components of pStore in the following sections.

2.1 Semantic data model
pStore proposes using a generic data model to capture dif-
ferent types of semantic information in file stores. The
data model should meet the following requirements.

• Allow to specify well-defined schemata (schema defi-
nition language).

• Support dynamic schema evolution to capture new or
evolving types of semantic information.

• Be simple to use, lightweight, make no assumptions
about the semantics of the metadata.

• Be platform independent and provide interoperability
between applications that manage and exchange meta-
data.

• Facilitate integration with resources outside the file
store and support exporting metadata to the web.

• Leverage existing standards and corresponding tools,
such as query languages.

Database systems do not fulfill the above requirements,
because of two main reasons. First, DBs typically re-
quire a predefined schema and impose strict integrity con-
straints. They cannot effectively deal with incremental and
dynamic schema evolution, which is common in manag-
ing unstructured data. Second, not all applications require
the heavyweight ACID properties and all the features of a
fully-fleshed DB. For example, Unix file systems do not
guarantee the ACID properties in the face of system fail-
ures.
Based on these requirements, we propose using a data
model that is based in the Resource Description Frame-
work (RDF) [23]. RDF has been proposed to encode, ex-
change and reuse metadata on the Web (a fundamental tool
for realizing the Semantic Web vision [21]). RDF has two
main advantages. First, it provides the means to capture
schemata for metadata that are both human-readable and
machine-processable (RDF notations are typically defined
in XML). Second, it is designed to allow reuse and ex-
tensions of existing schemata for an ever evolving set of
semantic metadata.
RDF is a model that describes resources. Relations, in
RDF, are expressed as tuples of the form:

subject property object

In our case, the subject is a file in the file store. The
properties (one or more) that are associated with the sub-
ject capture some type of semantic property of the corre-
sponding file. The object of the relation corresponds to
the value of the property for the subject, which may be
another file or some metadata structure (a literal or com-
posite). Thus, files and metadata structures are both con-
sidered resources. In fact, relations themselves can be used
as resources for constructing more complex metadata rela-
tions.
RDF provides no vocabulary that assumes or refers to
application-specific semantic information, e.g., certain
properties for media files or relations of files that are ac-
cessed by the same user. Instead, such classes of re-
sources and properties are defined in the form of an RDF
schema. The same RDF notation is used to specify RDF
schemata [24]. This is achieved by providing a set of pre-
defined resources, namely Classes and Properties. For ex-
ample, in our case, a Class may refer to files with a cer-
tain type of content or files that are used by a certain ap-
plication. For the model, the specific files are resources
that are instances of a certain Class. A Property is de-
fined in the schema to have a domain and a range. Each of
them can be defined to refer to resources of one or more

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 183

classes. Classes and Properties can be defined in a hierar-
chical fashion resulting in schemata that capture complex
semantic information.
The principles of RDF resemble those of graph-based
data models that have been proposed to handle structural
irregularity and incompleteness of schemata and rapid
schema evolution [1]. In such systems, the schema is non-
mandatory, i.e., it provides some information about the
current type of the data, but it does not constrain the for-
mat of the data. We have chosen RDF, as it is simple and
standardized.
A remaining issue is how to implement a repository of
RDF relations in a system. We intend to use some
lightweight, RISC-style database systems, like the one
proposed by Chaudhui and Weikum [4].

2.2 Basic relations

In the following, we describe a number of relations that
cover the set of common types of semantic information
listed in Section 1. An RDF schema is defined for each
of these relations, but it is not provided here, due to space
restrictions. Neither do we use RDF notation to describe
relations. Instead, we use an informal triplet notation, as
above, using curly brackets to represent composite proper-
ties (constructed by means of blank properties or contain-
ers in RDF).
File versioning. Each file in pStore corresponds to one
file object and multiple file version objects1. Each update
to the file automatically creates a new file version. The
notion of a “file” will be represented by a data object that
captures some of the basic attributes of the file (owner, file
name, etc). For example, it could be the root node in a
hierarchical content-addressable storage system [17]. As
soon as the file has some content, each version of the file
is represented by another object.
There are two types of relations between a file and its ver-
sions. Relation o1 has version{o2, v1} states that ob-
ject with id o2 is version v1 of o1. Similarly, o1 lat-
est version{o2} states that object o2 is the latest ver-
sion of o1. Property has version may have additional
attributes, such as creation time, and comment.
Hierarchical name space. The traditional hierarchi-
cal name space is defined using the is parent of
and in directory properties. E.g., “movie1
is parent of sequence2” represents the file path
“movie1/Sequence2”. File system access control is
represented by the access control property. The
range of this property is a Class that defines, e.g., an ACL
structure.
Dependencies. In addition to the hierarchical relations,
a user can define other types of dependencies among ob-
jects. In fact, is parent of is just one instance of Prop-
erty schema Depend on. Instances of this Property may

1These are data objects, not necessarily related with the object of an
RDF relation.

be application specific. For example, the relation Shrek
char dep Ogre, where char dep is an instance of De-
pend on, means that file Shrek has a dependency on file
Ogre. Another example of dependency is the relationship
between the master copy of the data and its replicas.
Associative semantics. Another common relationship is
that of a metadata object describing an ordinary file. For
instance, Fiona comments text indicates that object text
describes the Fiona character. Such metadata will, in many
cases, be automatically extracted and used for searching,
as explained in the next section.
Context information. The data model can also be
used to track context information from the file system
and user behavior. Examples of related properties in-
clude no reads, no writes, accessed before,
accessed by, and accessed from. For example,
we can use hair accessed before {time=5s, nose}
to record the fact that file hair is accessed 5 seconds be-
fore accessing file nose. This information can be used,
to gather statistics that pStore (or applications) can use to
improve the performance of the system. Examples include
prefetching and caching in distributed environments, data
placement, as well as advanced searching.
An important challenge that needs to be addressed is auto-
matically extracting various types of semantic information
from data. E.g., people use vector space models to ex-
tract features from text documents and images [2, 5]. Sim-
ilarly, they derive frequency, amplitude, and tempo feature
vectors from music data [6]. More recently, Soules and
Ganger [19] proposed methods for capturing file attributes
and inter-file relations, by analyzing user access patterns.

2.3 Dynamic evolution of schema

We expect pStore to provide a set of default schemata, like
the ones above (and possibly more). However, we expect
users to modify these schemata. For example, in many
data management applications, relationships among data
objects are identified after the objects are created and may
change during the lifetime of the objects, as their usage
changes. The usage of data and metadata is often unpre-
dictable and may depend on the actual user or workload.
Incremental elaboration of data object classes and their
properties is often inevitable. We also expect users to de-
fine their own schemata and share them in ad-hoc manners
to cover application or site-specific requirements among
communities of users.
RDF supports dynamic evolution of schema in multiple
ways. First, it supports refinement of schema through
class inheritance and property polymorphism. Second, the
namespace feature of RDF allows for schemata to evolve
differently in different contexts, such as application ver-
sions or user communities. Last, but not least, the fact that
RDF provides a machine-readable notation, facilitates the
design of programmable interfaces and tools that allow for
automatic extraction, manipulation and exchange of rela-
tions and schemata.

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association184

2.4 Framework

The pStore framework offers built-in support for repre-
senting and accessing semantic metadata in file stores.
Event model/consistency control. Inter-file dependen-
cies is an important type of semantic information captured
by pStore. Often, such dependencies imply some consis-
tency requirement users assume between the related files.
Such requirements vary for different instances of a rela-
tion, or even across time.
We capture such consistency requirements by augment-
ing dependency relations with an associated relation of
type Event. An event consists of an ordered list
of 〈precondition: action〉 tuples (implemented as a
rdf:seq container in RDF). When a data object is ac-
cessed (e.g., open, write), the system checks each of these
preconditions and executes the corresponding actions if
the precondition holds. Suppose that object Shrek depends
on object Ogre. One of the events associated with that rela-
tion may look like 〈modified: rebuild(Shrek)〉, specifying
that Shrek needs to be regenerated if Ogre is modified.
Customized name space views. In addition to the conven-
tional hierarchical name space, the data model provides
the basis on which customized per-user or per-application
name spaces can be constructed. We sketch several ways
that this can be done.
One way to construct customized name spaces is by con-
straining the corresponding relations. A special case
is when the customized name space is a sub-graph of
the original file system hierarchy. For instance, Shrek
is parent of {user=Mary, script} states that object
Shrek is a parent directory of object script only for
user Mary. Another possibility is to exploit Prop-
erty inheritance in the schema. For example, Property
land mammal{feet} can be regarded as a super class
of Property elephant{feet, trunk}.
In principle, a virtual directory can be created to include
links to an arbitrary set of files, e.g., searching results [8].
Security and access control. In an enterprise environ-
ment such as a digital movie studio, data is its biggest as-
set. Thus, data dependability is of paramount importance.
They use mechanisms such as encryption and access con-
trol to protect the data and mechanisms such as erasure
coding and replication for high reliability and availability.
We envision that such data dependability mechanisms can
be represented using our data model. RDF Property in-
heritance can be used to fine tune the relations for certain
types of data.
Advanced searching capabilities. One of the open re-
search questions in storage systems today is how to per-
form advanced and efficient searching of content in large
corpuses of data. Our model and framework provide a
uniform platform for integrating content, attribute, and
context-based searching. For example, it can be used in
combination with information retrieval algorithms [2] that
depend on semantic information from the data. Similarly,

our model can capture context information (such as access
patterns) and inter-file relationships that can be used for
advanced context-based searching [19]. We would also
like to provide searching with variable recall and preci-
sion to be able to trade-off this against speed. Especially
for queries where the recall and precision are not 100%,
the ranking of the search results becomes important. This
is an area where context information has been successfully
used, for example in Google.
Archival support. An on-line archival storage system is
one of the main applications we envision for pStore. Com-
pression and versioning are essential given the volume and
complexity of the data [17]. The semantic information that
our model can capture about the data can be used to reduce
storage consumption [11] and facilitate efficient data orga-
nization for fast data storage and retrieval.

3 Application Scenarios

In the following paragraphs, we describe some examples
of applications of pStore other than a digital movie studio
to demonstrate the generality of our proposal.
Online data sharing. In general, it is desirable that each
object can have an arbitrary metadata structure suitable
for describing its contents as well as its relationships with
other objects. Objects can relate to each other in many dif-
ferent ways: an object may overlap with or include other
objects; multiple objects may share descriptive data. In
practice, meaningful objects are often identified and as-
sociated with their descriptive data incrementally and dy-
namically, after the data is stored in the system.
To provide adequate control, users can be given different
access privileges. To facilitate collaboration, in addition
to a shared global view of all the data, there may also be
customized per-user and per-application views. Advanced
searching capabilities are needed to allow people to effec-
tively navigate among the various digital components.
A semantic, deep archival system. It is now practically
affordable to archive each individual version of a file. Such
archival storage system are becoming essential for many
critical applications. We list some desirable features.
First, a user would like the file store to have a “travel-in-
time” capability—every change to an object or to the name
space is recorded, and a user can travel arbitrary back in
time to retrieve any version of a file that ever existed [11].
An important challenge is to maintain the various depen-
dencies among different versions of objects and handle
time as yet another type of semantic information.
Second, to reduce storage space consumption, objects
should be stored efficiently. Various data clustering and
compression techniques are being explored. One way to
do this is to exploit the available semantic information.
E.g., when generating a new version of a file, the semantic
information is used to identify an existing (base) file with
similar contents. Only the differences between the new
and the base file are stored.

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 185

Last, in restoring a backed-up version, the biggest
headache is to find the right document and the right ver-
sion. With pStore’s rich metadata model, the semantic
information of files can be associated with files. In the
restoring operation, the user describes a desired feature
that is known to exist in the recovered version. For ex-
ample, the system may use content extracts to locate the
right version, without requiring the user remembering the
exact name or creation date of the restored file.
Digital content distribution. In addition to search capa-
bilities, a large-scale distributed file system can utilize the
relationships among files to guide data placement, and per-
form caching and prefetching. CDN more efficient. An-
other related application is to support data hoarding for
mobile users. Before disconnected from the network, all
frequently used data for the user are identified through ex-
amining the metadata, and are automatically moved to a
portable device. Systems such as SEER [10] use simple
semantic hints such as user activity and directory member-
ship for hoarding related files. Their effectiveness is lim-
ited by operations such as running the UNIX find utility
across an entire file system.
Personal storage for desktop users. Many of the fea-
tures described above can benefit ordinary desktop users
as well. As desktop users, we would like to keep every
version of important files that we ever created or down-
loaded, add arbitrary annotations to the files, relate them
to the their sources, and create cross links among them.
Automated file hoarding can relieve much of the pain to
manually identify and move files among computers and
mobile devices. Many of us have painful experiences of
not finding files. The advanced searching capability would
make search much easier.

4 Related Work

Contemporary file systems use file type information to as-
sociate files with the appropriate applications to access
them. Further, several systems have experimented with the
idea of attribute-based file naming [7, 8, 13, 16, 18]. The
file system supports searching on the basis of attributes;
the results are reflected on virtual directories that contain
pointers to the actual locations of files.
SFS [7] uses a hierarchical directory structure to organize
refinements to previous query results. HAC [8] attempts to
combine the benefits of hierarchical and content-based ac-
cess to files at the same time. A virtual directory (resulting
from a query) is an actual directory that allows ordinary
file system operations. To maintain the consistency be-
tween links in a virtual directory and the files they point to,
HAC re-executes queries periodically to update the links in
virtual directories.
Several systems allow for more flexible ways to combine
the hierarchical name space with attribute-based file nam-
ing. A file system by Transarc [3] allows each file to
have an associated wrapper, called a synopsis, that con-

tains tag/value attributes and defines methods to manip-
ulate those attributes. Synopses are organized in inheri-
tance hierarchies. Similarly, in a system described in [18],
each query is given a label. Users can impose “ancestor-
descendant” relationship on labels, and consequently can
name files by specifying either the path name that contains
labels, or a list of queries the files satisfy, or both. In the
Prospero system [13], users can program “filters” that cre-
ate personalized views of file systems.
In Presto [16], documents can be organized according to
properties (attributes) that are associated with the docu-
ments, without the limitations of hierarchies. Properties
can be specific to an individual document consumer. Un-
like HAC, Presto does not intend to handle backward com-
patibility to the traditional file system abstraction.
All these systems focus mainly on simple attributes;
queries are limited to ad-hoc attribute match. pStore pro-
vides a generic data model and implementation that cap-
ture a more extensive set of semantics. We anticipate that
these attributed-based file systems can be easily imple-
mented using pStore and pStore’s generality can be ex-
plored to provide new functionalities that do not exist in
these systems.
Several projects study metadata management in a file sys-
tem setting. Roma [20] provides an available, centralized
repository of metadata to “synchronize” a single user’s
files across a diversity of digital storage devices. Roma
metadata include fully-extensible attributes that could be
used for organizing and locating files. However, its cur-
rent prototype does not utilize attributes for searching.
The Inversion file system [14] runs on top of the POST-
GRES database. It allows fine-grained time travel—a user
may ask to see the state of the file system at any time in
the past. Accesses to the file system are transactional. It
is possible to issue ad-hoc queries on the file system meta-
data, or even to file data. IBM’s DataLink [9] project uses
a relational database to capture a wide set of semantic in-
formation in file systems. The database contains refer-
ences to objects in the file system. However, not all ap-
plications require the heavyweight ACID properties and
features of a fully-fleshed database system. Moreover,
database systems cannot effectively handle the incremen-
tal evolution of schema, common when managing unstruc-
tured data.
It is interesting to note that, as early as 1986, Mogul [12]
has proposed a model of files that includes the concept of
file properties. Mogul also agrees that database systems
are too heavyweight, and relationships between files are
important.
Our work complements the semantic Web [21] by concen-
trating on the system aspects and metadata management
in a storage setting. Further, pStore provides additional
functionality, e.g., tunable consistency based on an event-
framework. It is a framework that provides predefined but
customizable components. One example is the predefined

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association186

types of metadata (e.g., content- and context-based seman-
tics) each possibly with predetermined consistency mod-
els.

5 Conclusion and Open Issues

The paper motivates the need to incorporate semantic
metadata in file stores. We identify the basic types of se-
mantic information required by applications and end-users
and propose a generic data model to capture and represent
file semantics. The model provides the basis for a frame-
work of tools and APIs for generating and using semantic
metadata. There is a large number of research problems
that need to be addressed to realize a semantic-aware file
store. We enumerate some of them below.

• The basic semantic relations sketched in section 2.2 are
yet to be evaluated and finalized through the use of real
applications.

• Investigate the design of semantic-aware deep-archival
systems. In particular, what kind of semantic informa-
tion can be used for improved data clustering and com-
pression techniques. Also, how to maintain rich seman-
tics for multiple versions of files; inheritance of seman-
tic relations and their representation and use.

• Use semantic metadata for intelligent data placement
in distributed storage systems. The goal is to satisfy the
QoS requirements of end-users or applications with low
infrastructure cost.

• Design and implement a basic set of tools and APIs for
using the semantic information captured in such sys-
tems. These tools should be extensible and customiz-
able. What these tools will be and how they will inter-
act with each other is an open issue.

• Devise a simple declarative query language that can be
used to specify constraints on both structured and un-
structured data components.

• Investigate how the proposed data model and frame-
work can be implemented in a distributed file system
efficiently. One hard question is how to store RDF re-
lations using a lightweight DB.

We are currently implementing a prototype of pStore to
demonstrate its benefits in an online archival storage sys-
tem.

References
[1] S. Abiteboul. Querying semi-structured data. In 6th International

Conference in Database Theory - ICDT ’97, pages 1–18, Delphi,
Greece, January 1997.

[2] M. Berry, Z. Drmac, and E. Jessup. Matrices, vector spaces, and
information retrieval. SIAM Review, 41(2):335–362, 1999.

[3] M. Bowman. Managing Diversity in Wide-Area File Systems. In
Second IEEE Metadata Conference, September 1997.

[4] S. Chaudhuri and G. Weikum. Rethinking database system archi-
tecture: Towards a self-tuning RISC-style database system. In The
VLDB Journal, pages 1–10, 2000.

[5] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, and W. Equitz. Efficient and effective querying
by image content. Journal of Intelligent Information Systems,
3(3/4):231–262, 1994.

[6] J. Foote. An overview of audio information retrieval. Multimedia
Systems, 7(1):2–10, 1999.

[7] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole. Se-
mantic file systems. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles, 1991.

[8] B. Gopal and U. Manber. Intergrating content-based access macha-
nisms with hierarchical file systems. In the 3rd Symposium on Op-
erating Systems Design and Implementation (OSDI), New Orleans,
Louisiana, USA, 1999.

[9] H.-I. Hsiao and I. Narang. DLFM: A Transactional Resource Man-
ager. In SIGMOD Conference 2000, 2000.

[10] G. H. Kuenning and G. J. Popek. Automated hoarding for mobile
computers. In Symposium on Operating Systems Principles, pages
264–275, 1997.

[11] M. Mahalingam, C. Tang, and Z. Xu. Towards a semantic, deep
archival file system. In The 9th International Workshop on Future
Trends of Distributed Computing Systems (FTDCS), May 2003.

[12] J. C. Mogul. Representing Information About Files. PhD thesis,
Stanford University, March 1986.

[13] B. C. Neuman. The prospero file system: A global file system
based on the virtual system model. Computing Systems, 5(4):407–
432, 1992.

[14] M. A. Olson. The design and implementation of the Inversion file
system. In Proceedings of the USENIX Winter 1993 Technical Con-
ference, pages 205–217, San Diego, CA, USA, 25–29 1993.

[15] P. Lyman, H.R. Varian, J. Dunn, A. Strygin, and K.
Searingen. How much information, October 2000.
http://www.sims.berkeley.edu/research/projects/how-much-info.

[16] A. L. Paul Dourish, W. Keith Edwards and M. Salisbury. Using
properties for uniform interaction in the presto document system.
In The 12th Annual ACM Symposium on User Interface Software
and Technology, Asheville, NC, USA, November 7–10 1999.

[17] S. Quinlan and S. Dorward. Venti: a new approach to archival stor-
age. In First USENIX conference on File and Storage Technologies,
Monterey, CA, USA, 2002.

[18] S. Sechrest and M. McClennen. Blending hierarchical and
attribute-based file naming. In 12th International Conference on
Distributed Computer System, Yokohama, Japan, June 1992.

[19] G. A. N. Soules and G. R. Ganger. Why can’t i find my files? new
methods for automating attribute assignment. In 9th Workshop on
Hot Topics in Operating Systems (HotOS-IX), Lihue, Hawaii, May
18-21 2003.

[20] E. Swierk, E. Kiciman, V. Laviano, and M. Baker. The roma per-
sonal metadata service. In Proceedings of the Third IEEE Work-
shop on Mobile Computing Systems and Applications, Monterey,
CA, USA, December 2000.

[21] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Sci-
entific American, May 2001.

[22] The Enterprise Storage Group. Reference information: The next
wave “the summary of: A snapshot research study by the enterprise
storage group”, 2002. http://www.enterprisestoragegroup.com.

[23] W3C. Resource description framework (rdf) model and syntax
specification, February 22 1999. http://www.w3.org/TR/REC-rdf-
syntax/.

[24] W3C. Resource description framework (rdf) schema specifica-
tion, March 3 1999. http://www.w3.org/TR/1999/PR-rdf-schema-
19990303/.

