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Abstract securely simply by dropping them into existing sys-
tems. Realizing the full benefits of these platforms

As virtual machines become pervasive users will be able S - .
i T ) S demands a significant re-examination of how security
to create, modify and distribute new “machines” with un-

precedented ease. This flexibility provides tremendous ber Ilm[;)r!emen:t[ed. i ill elaborat h bil
efits for users. Unfortunately, it can also undermine many. N the next section we will elaborate on the capabil-

assumptions that today’s relatively static security architec-'tIeS that virtual machines provide, new usage mod-

tures rely on about the number of hosts in a system, thei?IS they g“_’e _r'se to, and how this can gdversely 'm'
mobility, connectivity, patch cycle, etc. pact security in current systems. In section 3 we will

We examine a variety of security problems virtual com-€Xplore how virtual environments can evolve to meet
puting environments give rise to. We then discuss potentia‘cf1ese challenges._ We review related work in section 4
directions for changing security architectures to adapt toand offer conclusions in section 5.
these demands. 2 Security Problems in Virtual Environ-

1 Introduction ments

A virtual machine monitor (VMM) (e.g. VMware
ﬁNorkstation, Microsoft Virtual Server, Xen), provides
a layer of software between the operating system(s)
gnd hardware of a machine to create the illusion of one

Virtual machines allow users to create, copy, sav
(checkpoint), read and modify, share, migrate and ro
back the execution state of machines with all the eas

of manipulating a file. This flexibility provides signifi- or more virtual machines (VMs) on a single physical

cant value fqr users_and admlnlstrators. Conseguentl}glatform_ A virtual machine entirely encapsulates the
VMs are seeing rapid adoption in many computing en-

vironments. state of theguest operating systeranning inside it.

As virtual machine monitors provide the same in- Encapsulated machine state can be copied and

terface as existing hardware, users can take advas—h ared over networks and removable media like a
9 ' Normal file. It can also be instantiated on existing

tage of the_se I:_>enef|ts with their current operating SYShetworks and requires configuration and management
tems, applications and management tools. This ofte

; . like a physical machine. VM state can be modified
leads to an organic process of adoption, where serve

k o ke a physical machine, by executing over time, or
and_desktops are gradually replaced with their virtua ike a file, through direct modification.
equivalents.

Unfortunately, the ease of this transition is decep-Scaling Growth in physical machines is ultimately
tive. As virtual platforms replace real hardware theylimited by setup time and bounded by an organiza-
can give rise to radically different and more dynamiction’s capital equipment budget. In contrast, creating
usage models than are found in traditional computing new VM is as easy as copying a file. Users will fre-
environments. quently have several or even dozens of special purpose

This can undermine the security architecture ofVMs lying around e.g. for testing or demonstration
many organizations which often assume predictabl@urposes, “sandbox” VMs to try out new applications,
and controlled change in number of hosts, host configer for particular applications not provided by their reg-
uration, host location, etc. Further, some of the usefulilar OS (e.g. a Windows VM running Microsoft Of-
mechanisms that virtual machines provide (e.g. rollfice). Thus, the total number of VMs in an organi-
back) can have unpredictable and harmful interactiongation can grow at an explosive rate, proportional to
with existing security mechanisms. available storage.

Virtual computing platforms cannot be deployed The rapid scaling in virtual environments can tax



the security systems of an organization. Rarely ar&oftware Lifecycle Traditionally, a machine’s life-

all administrative tasks completely automated. Up-+ime can be envisioned as a straight line, where the
grades, patch management, and configuration involveurrent state of the machine is a point that progresses
a combination of automated tools and individual ini- monotonically forward as software executes, configu-
tiative from administrators. Consequently, the fast andation changes are made, software is installed, patches
unpredictable growth that can occur with VMs can ex-are applied, etc. In a virtual environment machine
acerbate management tasks and significantly multiplgtate is more akin to a tree: at any point the execution
the impact of catastrophic events, e.g. worm attacksan fork off into N different branches, where multiple
where all machines should be patched, scanned fanstances of a VM can exist at any point in this tree at
vulnerabilities, and purged of malicious code. a given time.

] - ) . Branches are caused by undo-able disks and check-
Transience In a traditional computing environment nint features, that allow machines to be rolled back
users have one or two machines that are online mos§ previous states in their execution (e.g. to fix con-
of the time. Occasionally users have a special PUrPOS§yuration errors) or re-run from the same point many
machine, or bring a mobile platform into the network, imes e.g. as a means of distributing dynamic content
but this is not the common case. In contrast, collec, circulating a “live” system image.
tions of specialized VMs give rise to a phenomenon  This execution model conflicts with assumptions
in which large numbers of machines appear and disgyade by systems for patch management and main-
appear from the network sporadically. tenance, that rely on monotonic forward progress.
' While conventional net_vvork; can rapidly "‘anneal” For example, rolling back a machine can re-expose
into a known good configuration state, with many yatched vulnerabilities, reactivate vulnerable services,
transient machines getting the network to converge 9q_enaple previously disabled accounts or passwords,
a “known state” can be nearly impossible. use previously retired encryption keys, and change

For example, when worms hit conventional net-irewalls to expose vulnerabilities. It can also rein-

works they will typically infect all vulnerable ma- qquce worms, viruses, and other malicious code that
chines fairly quickly. Once this happens, administra,54 previously been removed.

tors can usually identify which machines are infected A syptler issue can break many existing security
quite easily, then cl(_eanup infecte_d maqhin_es and patcﬁrotocols. Simply put, the problem is that while VMs
them to prevent re-infection, rapidly bringing the net—may be rolled back, an attackers’ memory of what has
work back into a steady state. already been seen cannot.

In an unr_egulated virtual environment, such @ For example, with a one-time password system like
steady state is often never reached. Infected machinggk ey, passwords are transmitted in the clear and se-
appear briefly, infect other machines, and disappeag ity is entirely reliant on the attacker not having

before they can be detected, their owner identifiedgeen previous sessions. If a machine running S/KEY
etc. Vu_InerabIe machines appear briefly and either beg gjled back, an attacker can simply replay previ-
come infected or reappear in a vulnerable state at Busly sniffed passwords.
later time. Also, new and potentially vulnerable vir-  A'mqre subtle problem arises in protocols that rely
tual machines are created on an ongoing basis, due i the “freshness” of their random number source
copying, sharing, etc. _ e.g. for generating session keys or nonces. Consider
As aresult, worm infections tend to persist at & lowg yirtyal machine that has been rolled back to a point
level indefinitely, periodically flaring up again when afier a random number has been chosen, but before it
conditions are right. _ o has been used, then resumes execution. In this case,
The requirement that machines be online in conyandomness that must be “fresh” for security purposes
ventional approaches to patch management, Virug reused.
and vulnerability scanning, and machine configura- jith a stream cipher, two different plaintexts could
tion also creates a conflict between security and usgse encrypted under the same key stream, thus expos-
ability. VMs that have been long dormant can requir€ing the XOR of the two messages. This could in turn
S|gn|f|ca}nt time an_d effort to patch and malnt_aln. Th'sexpose both messages if the messages have sufficient
results in users either forgoing regular mamtenancq;edundancy as is common for English text. Non-
of their VMs, thus increasing the number of vulner- oy hiographic protocols that rely on freshness are also
able machines at a site, or losing the ability to sponytisk; e.g. reuse of TCP initial sequence numbers can
taneously create and use machines, thus eliminating g TCP hijacking attacks [2].

major virtue of VMs. Zero Knowledge Proofs of Knowledge (ZKPK), by



their very nature, are insecure if the same randonbeen compromised, any VM that was on the server
nonces are used multiple times. For example, ZKPKmay have been backdoored by an attacker. Determin-
authentication protocols, such as Fiat-Shamir authering which VMs were exposed, subsequently copied,
tication [5] or Schnorr authentication [12], will leak etc. can be quite challenging.

the user’s private key if the same nonce is used twice. Similar problems arise with worms and viruses. In-
Similarly, signature systems derived from ZKPK pro- fecting a VM is much like infecting a normal exe-
tocols, e.g. the Digital Signature Standard (DSS), willcutable. Further, direct infection provides access to
leak the secret signing key if two signatures are genevery part of a machines state irrespective of protec-
erated using the same randomness [1]. tion in the guest OS.

Finally, cryptographic mechanisms thatrely on pre- Using VMs as a general-purpose solution for mo-
vious execution history being thrown away are clearlybility [10, 11] poses even more significant issues. Mi-
no longer effective, e.g. perfect forward secrecy ingrating a VM running on someone’s home machine of
SSL. Such mechanisms are not only ineffective in vir-unknown configuration into a site’s security perimeter
tual environments, but constitute a significant and unis a risky proposition at best.
necessary overhead. From a theft standpoint, VMs are easy to copy to

a remote machine, or walk off with on a storage de-
Diversity Many IT organizations tackle security vice. Similar issues of proprietary data loss due to
problems by enforcing homogeneity: all machinesjaptop theft are consistently cited as one of the largest
must run the most current patched software. VMssources of financial loss due to computer crime [9].
can facilitate more efficient usage models which de- That VMs are such coarse grain units of mobil-
rive benefit from running unpatched or older versionsiy can also magnify the impact of theft. Facilitat-
of software. This creates a range of problems as ongg easy movement of one’s entire computing envi-
must try and maintain patches or other protection fofonment (e.g. on a USB keychain) makes users more
a wide range of OSes, and deal with the risk posed byxclined to carry around all of their (potentially sensi-

having many unpatched machines on the network.  tjve) files instead of simply the ones they need.
For example, at many sites today users are simply

supplied with VMs running their new operating en- Identity In traditional computing environments
vironment and applications are gradually migrated tdhere is often an ad-hoc identity associated with a ma-
that environment, or conversely, legacy applicationghine. This can be as simple as a list of MAC ad-
are run in a VM. This can mitigate the need for longdresses, employee names, and office numbers. With-
and painful upgrade cycles, but leads to a proliferaout such mechanisms it can be extremely difficult to
tion of OS versions. This makes patch managemergstablish who is responsible for a machine, e.g. who
more difficult, especially in the presence of older, dep{o contact if the machine turns malicious or who is
recated versions of operating systems. responsible for its origin/current state.

Virtual machines have also changed the way that Unfortunately, these static methods are impractical
software testing takes place. Previously one requirefbr VMs. The dynamic creation of VMs makes the use
a large number of usually dedicated test machines tof MAC addresses infeasible. Often VMs just pick a
test out a new piece of software, one for each differentandom MAC address (e.g. in VMware Workstation),
OS, OS version (service pack), patch level, etc. Nown the hope of avoiding collisions.
each developer or tester can simply have their own Identifying machines by location/Ethernet port
collection of virtual test machines. Unfortunately, if number is also problematic since a VM’'s mobility
these machines are not secured they rapidly becomenaakes it difficult to establish who owns a VM running
cesspool of infected machines. on a particular physical host. Further, there are often

multiple VMs on a physical host, thus shutting off the
Mobility  VMs provide mobility similar to a normal port to a machine can end up disabling non-malicious
file; they can easily be copied over a network or car\/Ms as well.
ried on portable storage media. This can give rise to Establishing responsibility is further complicated
host of security problems. as VMs have more complicated “ownership histories”

For a normal platform, the trusted computing basehan normal machines. A specialized virtual machine
(TCB) consists of the hardware and software stack. Iimay be passed around from one user to the next, much
a VM world, the TCB consists of all of the hosts that |ike a popular shell script. This can make it very diffi-

a VM has run on. Combined with a lack of history, cult to establish just who made what changes to get a
this can make it very difficult to figure out how far machine into its present state.
a compromise has extended, e.g. if a file server has



Data Lifetime A fundamental principle for build- mobility and data lifetime. Moving security and man-

ing secure systems is minimizing the amount of timeagement functions (e.g. firewalling, virus scanning,

that sensitive data remains in a system [6]. A VMM backup) from the guest OS to the virtualization layer

can undermine this process. For example, the VMMallows delegation to a central administrator. It also

must log execution state to implement rollback. Thispermits management tasks to be automated and per-

can undermine attempts by the guest to destroy seriermed while VMs are offline, thus aiding issues of

sitive data (e.g. cryptographic keys, medical docu-usability, scale and transience.

ments) since data is never really “dead,” i.e. data can We will briefly outline what such a layer would

always be made available again within the VM. look like and how it can address the challenges raised
Outside the VM, logging can leak sensitive datain the prior section.

to persistent storage, as can VM paging, checkpoint-

ing, and migration, etc. This breaks guest OS mechOutlining a Virtualization Layer  The heart of a

anisms to prevent sensitive data from reaching diskvirtualization layer is a high assurance virtual ma-

e.g. encrypted swap, pinning sensitive memory, an@hine monitor. On tOp of it would run a secure dis-

encrypted file systems. tributed storage system, and components replacing se-
As a result sensitive files, encryption keyS, passcurity and management functions traditionally done in

words, etc. can be left on the platform hosting a VMthe guest OS.

indefinitely. Because of VMs' increased mobility, ~Enforcing policies such as limiting VM mobility

such data could easily be spread across several host8nd connectivity requires that the virtualization layer
on a particular machine be trusted by the infrastruc-

Similar Problems in Traditional Computing Envi- e, Virtualization layer integrity could be veri-
ronments  Some existing platforms exhibit security fieq ejther through normal authentication and access
problems similar to those found in virtual environ- controls, or through dedicated attestation hardware
ments. Laptops are known for making it difficult to e.g. TCPA.
maintain a meaningful network perimeter by trans- pgjicy at this layer could limit replication of sen-
porting worms into internal networks, and sensitivegitive \VMs and control movement of VMs in and out
data (e.g. source code) out, thus making the firewalhf 3 managed infrastructure. Document control style
irrelevant. Undo features like Windows Restore 'ntro‘policies could prevent certain VMs from being placed
duce many of the same difficulties as roI_Iback iNnVMS. onto removable media, limit which physical hosts a
Transience occurs with dual boot machines, and othey could reside on, and limit access to VMs contain-
occasionally used platforms. _ ing sensitive data to within a certain time frame.
These examples can Ier_ld |nS|g_ht into the impact of “yser and machine identities at this layer could be
VMs. However, they differ in a variety of ways. Most yse( to reintroduce a notion of ownership, responsi-
of these technologies are deployed in “_m'ted_ Partsgjlity and machine history. Tracking information such
of IT organizations or see infrequent use; as virtualzs the number of machines in an organization and their
ization is adopted, these dynamic behaviors becomgsage patterns could also help to gauge the impact of
the common case. Similar characteristics manifest bbotential threats.
other platforms (e.g. mobility, transience) tend to be Encryption at this layer could help address data

nally, VMs tend to magnify problems with the rapid (q||pack, etc.

growth and novel uses they facilitate.
Notably, adapting virtual computing environments VMM Assurance A VMM's central role is provid-
to meet these challenges also provides a solution fdng secure isolation. The need to preserve this prop-
mobile platforms. erty is sometimes seen as an argument against moving
. . functionality out of the guest operating system. How-
3 Towards Secure Virtual Environments ever, such arguments overlook the inherent flexibility
The dynamic usage models facilitated by virtualavailable in a VMM. In essence, a virtual machine
platforms demand a dedicated infrastructure for enmonitor is nothing more than a microkernel with a
forcing security policies. We can provide this by in- hardware compatibility layer. As such, it can support
troducing a ubiquitous virtualization layer, and mov- arbitrary protection models for services running at the
ing many of the security and managment functions ofvirtualization layer.
guest operating systems into this layer. For example, firewall functionality running outside
Ubiquity allows administrators to flexibly re- of a guest OS would be hosted in its own protection
introduce the constraints that virtualization relaxes ordomain (e.g. a paravirtualized VM), and could utilize



a special purpose operating system affording better as-
surance, greater efficiency, and a more suitable protec-
tion model than common OSes.

Other requirements for building a high assurance
VMM (e.g. device driver isolation) have been ex-
plored elsewhere [7].

3.1 Benefits

Moving security and management functions out of
the guest OS provides a variety of benefits including:

¢ Delegating Management

A virtual environment provides maximum utility
when users can focus on using their VMs however
they please, without having to worry about manag-
ing them.

Moving security functionality out of guest OSes
makes it easier to delegate management responsi-
bilities to automated services and site administra-
tors. It also obviates the need for homogeneous
systems where every machine runs a common man-
agement suite (e.g. LANDesk), or where an admin-
istrator must have an account on every machine.

As administrators can externally modify VMs,
tasks not moved outside of the VM can still be del-
egated while VMs are offline. Much of the required
scanning, patching, configuration, etc. can be done
by a service running on the virtualization layer
that would periodically scan and maintain archived
VMs.

In a virtualization layer, VMs are first-class ob-
jects, instead of merely a collection of bits (as in
today’s file systems). Thus, operations that today
require reconfiguration could be provided transpar-
ently, e.g. users should be able to copy VMs just
as they would a normal file, without having to
bring them online and reconfigure. The infrastruc-
ture could appropriately update hostname, crypto-
graphic keys, etc. to reflect the new machine iden-
tity.

Suspended VMs could be executed in a “sand-,
boxed” environment to allow certain configuration

changes to anneal and ensure that they do not break

the guest.
Guest OS Independence

Moving security and managment components
to the virtualization layer makes them indepen-
dent of the structure of the guest operating system.

Thus, these components can provide greater assur-

ance, as they can largely specify their own software
stack and protection model and are isolated from
the guest OS. In contrast, today’s host-based fire-
walls, intrusion detection and anti-virus software
are tightly coupled with the fragile monolithic op-

erating systems they try to protect, making them
trivial to bypass.

This flexibility opens the door for the adoption
of more secure and flexible operating systems as a
foundation for infrastructure services. Further, be-
cause the infrastructure can now authenticate and
trust components running at network end-points, it
can now delegate responsibility to these end-points,
thus making policies such as trustworthy network
guarantine (i.e. limiting network access based on
VM contents) feasible.

Lifecycle IndependenceVioving security relevant
state out of the guest OS solves many difficulties
caused by rollback.

This can be accomplished by moving secu-
rity mechanisms out of the guest completely, into
e.g. an external login mechanism, or by modify-
ing guests to store state such as user account in-
formation, virus signatures, firewall rules, etc. in
dedicated storage that would operate independent
of rollback. A combination of both approaches is
likely necessary.

For protocol related issues, making guest soft-
ware lifecycle independant is likely the easiest path
forward, and seems possible without major changes
to today’s systems.

As a first step, lifecycle dependent algorithms
could be replaced with lifecycle independent vari-
ants, e.g. ZKPK based signature schemes (such as
DSS) can be replaced with lifecycle independent
signatures schemes such as RSA.

Guest software must have also some way of be-
ing notified when a VM has been restarted, so that it
can refresh any keys it is currently holding, perhaps
a variation on existing approaches for notifying ap-
plications when a laptop has awakened from hiber-
nation. Finally, randomness (e.g. data from Linux’s
/dev/random ) should be obtained directly from
the VMM instead of relying on state/events within
the VM.

Securely Supporting Diversity

A virtual infrastructure should allow users to
use old unpatched VMs with diverse OSes much
as they would be able to use old or non-standard
files without having to change them. This avoids
problems such as patches breaking VMs and being
unable to secure deprecated versions of software
where patches are no longer available.

Enforcing policy from outside of VMs facilitates
this through the use of vulnerability specific pro-
tection as an alternative to software modification.
For example, vulnerability specific firewall rules,
such as Shields [13], can allow users to run un-



patched versions of applications and operating syso the security risks that accompany this technology
tems while still accessing as much network func-and the development of infrastructure to meet these
tionality as is safely possible. challenges.
F!nally, tpday greate_r diversity requires SuP'ACknOWIedgments
porting N different versions of security software
(e.g. firewall, intrusion detection). While special- We are very greatful for generous feedback given
ized policy is still required for scanning particu- to us by Dan Boneh, Jeff Mogul, Armando Fox, Emre
lar OSes, putting management at the virtualizatiorKiciman, Peter Chen, and Martin Casado. This mate-
layer eliminates this redundant infrastructure. rial is based upon work supported in part by the Na-
tional Science Foundation under Grant No. 0121481.
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