

WiDS: an Integrated Toolkit
for Distributed System Development

Shiding Lin, Aimin Pan and Zheng Zhang

Microsoft Research Asia
{t-slin, t-aiminp, zzhang}@microsoft.com

Rui Guo†
Beijing University of Aeronautics and Astronautics

guorui@sei.buaa.edu.cn
Zhenyu Guo†

Tsinghua University
guozy03@mails.tsinghua.edu.cn

Abstract

Faced with a proliferation of distributed systems in research and production groups, we have devised the WiDS eco-
system of technologies to optimize the development and testing process for such systems. WiDS optimizes the
process of developing an algorithm, testing its correctness in a debuggable environment, and testing its behavior at
large scales in a distributed simulation. We have developed many distributed protocols and systems using WiDS,
including a large-scale backup service that is robust enough to be deployed. We have also used WiDS to perform
ultra-large scale (>1million instances) simulation of a production protocol. In this paper, we describe the principles
and design of WiDS, share the lessons that we learned, and discuss on-going research that will further reduce pro-
gramming and debugging difficulties of distributed systems.

† Work is done as intern in Microsoft Research Asia.

1. Introduction

Research and development of distributed system has
always been a tricky business. The process has many
different stages, and each interdependent stage carries
different requirements. The protocols must first be fully
specified and proved. A correct implementation that
follows is no trivial matter, as debugging a distributed
system is a known hard problem. For the purpose of
developing Internet-scale P2P systems [1][2][3], per-
haps the most challenging is to fully understand any
performance issues before the system is deployed.

To mitigate some of these difficulties, we find that a
systematic approach is helpful. While the protocol
specification, modeling, and proof remain too difficult
to be incorporated in an integrated toolkit, we have
united the rest of the processes in a single integrated
toolkit called WiDS (WiDS implements Distributed
System).

The general philosophy of WiDS can be summarized as
“code once and run many ways”. WiDS adopts an ob-
ject-oriented and event-driven programming model,
and provides a small and straightforward set of APIs to
support message exchanges and timers. Once a distrib-
uted protocol is developed, it can be simulated within a
single address space on a single machine for debugging

purposes, simulated on a cluster of machines to under-
stand its macro-behavior, or deployed and run in the
real. Users work with the same code base across differ-
ent development stages and link it to appropriate librar-
ies accordingly.

We have researched and developed many of our proto-
cols and systems using WiDS, including a large scale,
distributed backup service [4] that is robust enough to
be deployed in MSR-Asia this year. We have also done
extensive testing for production code of a P2P protocol
[5] of more than one million instances, using hundreds
of clustered PCs. To our knowledge, this is the largest
P2P simulation that has ever been attempted. While all
these exercises have demonstrated the value of such an
integrated toolkit, our experiences also point out more
challenging research directions to further reduce pro-
gramming difficulties as well as to improve the debug-
ging process.

Section 2 gives an overview of WiDS. We summarize
our experience of performing complete system devel-
opment and large-scale testing in Section 3. We discuss
several new research focuses in Section 4. Section 5
discusses related work, and we conclude in Section 6.

2. The WiDS Ecosystem

To serve as a generic ecosystem for distributed system
development, WiDS needs to achieve several specific
goals. First, there should be one single code base that is
easily shared across different development stages. It is
hazardous to maintain one code for simulation and an-
other for real deployment, and try to sync up as pro-
gress is made. Second, while a distributed application is
inherently difficult to debug, we would like the users to
spend their debugging energy in one address space as
much as possible. Finally, when required, WiDS
should support large-scale performance study for sys-
tem scales approaching that of the real deployment.

Since a distributed system is essentially a collection of
autonomous state machines, WiDS adopts an event-
driven and object-oriented programming model, and is
implemented using C++. A WiDS object represents a
protocol instance or a service, and is identified by the
tuple <WIDSNODE, WIDSSTUB>, analogous to how a
networked service is addressed in the real world. WiDS
objects exchange asynchronous messages to each other.
Each message is dispatched to the target object’s corre-
sponding handler, which was declared using a macro.
WiDS also provides periodic and one-time timers so
that users can implement various failure detection
mechanisms.

WiDS-Mod

WiDS-Par

Implementation

WiDS-Dev

WiDS-Comm

WiDS-Replay

Real deployment

Simulation

Verification
Perf. evaluation

Log Log

Refinement Protocol model

Guidance

Figure 1. The ecosystem of WiDS-based protocol devel-
opment and its five major components. The shaded ones
(WiDS-Mod and WiDS-Replay) are under development.

These APIs isolate a WiDS-programmed protocol from
any particular runtime that users want to employ. The
WiDS runtimes fall into two general categories. The
first is the simulation mode, where the runtime inserts
and dispatches events through event wheel(s). Simula-
tion mode supports pluggable topology models, allow-
ing users to exercise different code paths in the protocol.
The timestamp of a message is the source object’s vir-
tual clock plus the delay specified by the topology
model. Eventwheel(s) ensure the chronological order of
message execution, which in turn advances the simula-
tion time. The simulation can be run on a single ma-
chine (linked with WiDS-Dev), enabling debugging of
multiple instances of a protocol in the same address

space. Alternatively, the simulation can be run in paral-
lel on a cluster of machines to investigate performance
issues for very large scales (linked with WiDS-Par). In
the network execution mode, WiDS provides a socket-
based library (WiDS-Comm), yielding a system ready
to run in the real network environment. WiDS users
always work with the same code base, invoking differ-
ent runtimes by simply re-linking to different libraries
according to their needs. Figure 1 summarizes these
components of the WiDS development lifecycle. Two
new members of the WiDS package, WiDS-Mod and
WiDS-Replay, will be introduced in Section 4.

Latency, loss,
failure

Signal Messages

Protocol

Event wheel

Timer Msg Sync. Event

A
sync.

S
ync.

Topology model Networking System
timer

D
river

Continuation Callback Handler

Event wrapping

Instantiation

Configuration

Trace loading
Event injection

Watchdog

M
onitor Hardware WiDS

Hardware WiDS
Hardware WiDS

…

WiDS Runtime

WiDS Platform
Figure 2. The WiDS architecture. Different runtimes are
shaped by integrating some of the four modules: topology

model, networking, system timer and event wheel.

Figure 2 depicts the WiDS runtimes. It contains topol-
ogy models that generate latency and state for links
between two simulated nodes, a crystal to trigger physi-
cal time signals, networking support based on native
sockets to transport messages across physical machine
boundaries, and an event wheel that stores all the events
encapsulating messages, timers, and synchronous calls.
Different WiDS runtimes are shaped by integrating
some of these functionalities and, more importantly,
different scheduling mechanism in the event wheel.
There is a watchdog facility to check the progress of
events, which is especially important to deal with strag-
glers in large-scale simulation. The monitor offers in-
teractive simulation ability so that the user can break or
step at event granularity. Along with the protocol, the
user must also supply a driver program to instantiate
the protocol instances, feed inputs, and inject events. In
the simulation mode, the driver also specifies the topol-
ogy model and node behavior (e.g., crash or create).

The WiDS parallel simulation is master-slave archi-
tected and proceeds in rounds. During each round, the
master calculates a safe window (of simulation time) by
looking at the head events of the slaves, and then in-
forms the slaves to execute any events within that win-
dow. This barrier model becomes increasingly ineffi-
cient with more machines. To improve simulation per-
formance, we have developed an optimization called

Slow Message Relaxation (SMR) that simulates a win-
dow of ticks per round. This raises the possibility that a
slave machine has already advanced its simulation
clock when an event with a smaller timestamp arrives.
We call such a message a Slow Message, and simply set
its timestamp to the node’s current clock value before
passing it to its handler. The rationale is that this is as if
the message had suffered some extra delay in the net-
work. A correctly designed distributed protocol should
have already handled any network-jitter generated ab-
normality. However, slow messages may lead to prob-
lems that otherwise would not have appeared such as
false time-outs, and may change the statistics that the
simulation is measuring as well. Our analysis shows
that as long as the window width is kept under some
value (automatically derived from the timer APIs),
there will be negligible impact. Furthermore, the win-
dow width can be adaptively adjusted to achieve the
optimal performance at runtime. We have verified that
this optimization achieves an order of magnitude per-
formance improvement simulating several large scale
P2P protocols, without compromising the statistical
accuracy of the simulation results.

3. Experience with WiDS

3.1 Complete system development

One of the complete distributed systems we have de-
veloped is the BitVault data retention platform [4].
BitVault employs commodity PCs as building blocks to
construct a distributed backup service that is scalable,
highly reliable, and highly available. Topology-wise,
nodes are arranged in a ring. At the bottom layer, there
is a voting-based failure detector to monitor the health
of each node by a constant number of its neighbors. A
failure or new node join event is then broadcasted in
O(logN) steps to all other members, and anti-entropy is
employed to ensure the eventual convergence of mem-
bership. These protocols comprise an eventual consis-
tent membership protocol. Above that, a placement
policy places multiple replicas on a constant number of
nodes, and a distributed indexing mechanism tracks the
location of an object. We use massively parallel repair
to deliver order-of-minutes repair time for a failed disk
upon the notification of membership change. There is a
scalable monitoring infrastructure embedded in the
system to trigger load balancing automatically. BitVault
is entirely developed and maintained using WiDS.
Each BitVault node comprises several objects that
implement different functions (e.g., membership, moni-
toring, index, data etc.), and these objects communicate
with each other using WiDS messages. BitVault is ro-
bust enough that we plan to roll out a 32-node installa-

tion as an interactive backup service in the first half of
this year.

Although WiDS significantly improved the develop-
ment process of BitVault, during the course we have
learned several important lessons that lead to the further
development and research focuses for WiDS. First,
while the event-based programming model is a natural
fit to implement state machines, it is still difficult to
program and debug. This is especially true for protocols
that have multiple phases. For those protocols, the
event model will spread the protocol logic in multiple
event handlers, and the program must therefore explic-
itly handle the context moving from one handler to the
other. A protocol that is multi-phased but deals with a
single remote party is most easily programmed using a
single thread with remote procedure calls (RPC). How-
ever, the thread model falls short if the protocol has a
concurrent phase that involves multiple parties, since it
must spawn separate threads to deal with these parties
and then sync-up later on. The thread model must also
carefully guard critical sections, which is non-trivial
and something that the event model does not need to
handle. Many distributed protocols, however, are in
fact both multi-phase and multi-partied (e.g., two-phase
commit). A good number of BitVault protocols fall into
this category. Therefore, in terms of programming ef-
fort, neither the event nor the thread model is an ideal
fit. These experiences motivate us to develop both new
APIs and architecture to further mitigate the program
burden (c.f. Section-4.1).

Second, the WiDS runtime schedules at event granular-
ity. This implies that events are handled in turn, and
one’s execution can not be preempted by others. It is
usually not a problem. However, consider an event that
is sandwiched by two heartbeat events. If the middle
event takes an exceptionally long time to complete (e.g.,
a blocking disk I/O) then the timer logic can be violated.
In the case of BitVault, it is possible for the failure de-
tector to wrongly signal the crash of a node, allowing
the repair mechanism to kick in, which can only make
things worse. This particular issue can be resolved by
offering a failure detection service inside the WiDS
runtime so that one can register the interested endpoints
and be notified when an endpoint fails to respond. By
decoupling the dependency, the probe and response can
run in parallel with the execution of events, fulfilled by
the WiDS runtime. However, at its core, the issue is the
handling of time-critical events and the provisioning of
some level of real-time guarantee. Since objects typi-
cally implement a service (e.g., the membership proto-
col), and the WiDS objects communicate only through
messages, one thing we plan to do is to allow events of
more time-critical objects to preempt other events. The
other possibility is to develop a Yield API so that the
user can chop a long-running event.

Third, related to the above two issues, many of the bugs
did not manifest until the system was run in network
execution mode, no matter how hard we tried to stress
the code path in simulation mode. One reason is that
event handling can take arbitrarily long in network exe-
cution mode, as opposed to one (simulated) clock tick
in simulation. Thus the sequence of events can differ in
unexpected ways, making it difficult to discover those
bugs in the simulation environment. This experience
propels us to develop WiDS-Replay (Section 4.2),
which logs events and deterministically replays them in
simulation mode. That is to say, we’d like to build a
two-way street between WiDS-Dev and WiDS-Comm.

3.2 Large-scale testing

PNRP [5] is a P2P name resolution protocol with a tar-
get scale of tens of millions of nodes. Working with our
product division partners, we ported PNRP to run on
WiDS, and used WiDS-par to understand its macro-
behavior. We have successfully completed many simu-
lation runs of more than a million PNRP instances us-
ing hundreds of PCs. Some of the simulations took
weeks to complete. This work has allowed us to gain
insights into the system behavior, identify performance
and network overhead, and remove design limitations
that become apparent only under stress and at such a
large scale.

Running a large-scale program on a cluster of machines
almost inevitably brings up the same set of (mundane)
issues. These include deploying and version-controlling
the code, monitoring the health of the runs, managing
the cluster, dealing with stragglers, and gathering statis-
tics for final analysis. Moreover, heterogeneity in both
software and hardware is much more than a perform-
ance (and hence configuration) issue. We ran into cases
where some machines were equipped with mobile NICs
or had stale network drivers and therefore could not
handle bulk traffic. In both cases we ran micro-
benchmark with a binary search strategy to isolate them.
Clearly this process needs to be automated. Finally, we
also realized that the master-slave architecture of
WiDS-par needs to be changed if we are to attempt
scales beyond a few million protocol instances.

Another approach we are considering is to swap states
to disk and use intelligent prefetching policies to over-
lap the time of loading state from disk with simulation
computation. By boosting per-machine simulation scale,
we hope to reduce the number of total machines needed
and thus the barrier overhead.

4. Research in Progress

4.1 WiDS-Mod

A typical development process starts with some pseu-
do-code that bridges protocol logic with the real im-
plementation. Currently WiDS covers the development
process starting from the implementation stage. The
problem is that there is a large gap between the protocol
logic and the final codes, resulting in coding as well as
maintenance difficulties. This is especially problematic
when there are many complicated and intertwined pro-
tocols involved in a system (as in BitVault).

WiDS-Mod borrows the principle of Intentional Pro-
gramming [6] and adopts a hybrid approach. Taking
advantage of temporal logic [7] and UML [8], our de-
scription language allows users to specify protocol
logic in an abstract level and in the GUI (e.g. Figure
3(a)). The protocol logic is then automatically turned
into skeleton code (c.f. Figure 3(c)). The users then fill
in the rest of implementation, such as the code that
examines the field of the AckBuf returned from the
slaves to set the all_ready flag that decides whether
to proceed to the commit phase of a two-phase commit
protocol.

CoordinatorSubordinate
Log(“Prepare”)

Prepare

Commit

Log(“Ready”)

Commit_Ack
Log(“Commit”)

Log(“Commit”)

<Barrier,-1>

Collect all acks

Prepare_Ack
Collect all acks

<Barrier,-1>

All Ready? N …

Figure 3. WiDS-Mod: (a) the model of the 2PC protocol;
(b) codes using event-driven programming (coordinator

side); (c) Sample code generated from the model.

This approach shrinks the gap between the high-level
protocol specification and implementation, which is
itself broken down into the logic level and the detailed
handler level. Our point is that, for distributed system,
these two levels already have inherently different na-
tures and complexities (e.g., logical versus implementa-

c. Sample code
generated from the
model in a.

LOG(“Prepare”);
PAR_BEGIN(-1)
 for_each(p, SubodinateSet) {
 SendMsg(p, PREPARE, AckBuf[p]);
 }
PAR_END
if (all_ready) {
 LOG(“Commit”);
 PAR_BEGIN(-1)
 for_each(p, SubodinateSet) {
 SendMsg(p, COMMIT, AckBuf[p]);
 }
 PAR_END
}

Start:
 Send PREPARE to all

OnPrepareAck:

 if all ack returned and
all ready then

Send COMMIT to all

OnCommitAck:
b. Three code blocks when
writing 2PC protocol in a
pure event-driven fashion.

a. The model of 2PC protocol.

tion correctness), so we might as well program them in
different ways.

As we discussed in Section 3.1, many distributed proto-
cols work in phases, each of which may involve multi-
ple remote entities. A number of BitVault protocols fall
into this category. For these protocols, a purely event-
driven programming model quickly becomes awkward.
Figure 3(a) shows the classic two-phase commit proto-
col, and the three separate code blocks (Figure 3(b)).

Independent of the modeling effort, therefore, we need
to extend both the WiDS APIs and the runtime. For
instance, SendMsg() is a synchronous call which will
block the caller until the destination has processed the
message and sent back acknowledgement, and
PAR_BEGIN/PAR_END closure offers a barrier seman-
tic, which will parallelize all synchronous messaging
operations inside and resume execution when all of
them are finished. With user-level threading [9], we
will be able to wrap the synchronous calls in the con-
tinuation events and offer thread-like semantics, and
can additionally accommodate multi-party semantics,
something that the pure thread model has difficulty to
do. All these attempts are to further reduce program-
ming difficulties while leveraging the strengths of both
the event and thread model.

4.2 WiDS-Replay

By exercising different network models, a good portion
of protocol bugs can be rooted out. Unfortunately the
remaining bugs, which will only surface in the network
execution mode, are also the more difficult ones to find.
In comparison, the cyclic debugging process [10] we
are so used to in analyzing bugs in sequential applica-
tions, in which one sets a debugging point and repeats
the execution, quickly becomes too much to afford.
And yet writing out and then analyzing logs is also a
grueling exercise. WiDS-Replay is a set of utilities
aimed at analyzing bugs that occur only during the
network execution by bridging with the simulation
mode.

The general methodology of WiDS-Replay is straight-
forward. When running in the network execution mode,
checkpoints are executed at each machine for all impor-
tant states, and logs are also kept for any inputs be-
tween the checkpoints that may change the state of a
running protocol instance (file I/O, wall-clock, random
number generators, etc.). Finally, user-defined logs are
coalesced and dumped into the same log file. We then
start the protocol in the simulation mode, reloading the
checkpoint and log traces to reconstruct context. Notice
that in the network mode every instance is running as a
separate process, whereas in the simulation mode each
instance is a WiDS object. Therefore we carefully per-

form data marshalling and de-marshaling to make sure
that the object states are loaded correctly. In the replay
phase, we navigate the traces at the granularity of log
entries while bringing up the code alongside as the
navigation context. We then use deterministic forward
and backward replay to examine the program state,
doing this across different objects (and hence protocol
instances running on different machines) when neces-
sary.

The object-oriented programming model of WiDS
makes it possible to replay a distributed protocol within
a single address space and on a single machine. There-
fore, WiDS-Replay provides the capability of virtualiz-
ing the distributed system debugging process. A proto-
type of WiDS-Replay has already been built, but much
more needs to be researched and developed before it
can be put into practice.

WiDS-Replay can also work within the simulation
mode. Here, periodic checkpoint is sufficient for de-
terministic replay, assuming that the simulation envi-
ronment is also checkpointed. One may argue that since
simulation is deterministic anyways, why bother with
checkpointing. The truth is that for a complex protocol,
it often takes a long time to reach a faulty point. Check-
pointing segments the debugging process and allows
the user to invoke different debugging details when
appropriate.

5. Related Work

As observed in [11], sharing the same code base for the
purpose of development, simulation, and deployment is
a popular notion. There have been some attempts along
the same line. For instance, Neko [12] is a java plat-
form that allows the same algorithm to run both in
simulation and in real network. Though we do share the
same philosophy, their interfaces and architecture are
quite different from ours. Neko does not offer parallel
simulation capability, and it is not clear whether it has
been used to build a complete system. While WiDS
offers native C/C++ support, MACEDON [13] takes a
different approach by offering a domain-specific lan-
guage for FSM (finite state machine) based protocols.
The MACEDON approach is geared towards quick
prototyping overlay applications. Large-scale perform-
ance study requires an emulation approach (discussed
below), though it should be possible to add PDES (Par-
allel Discrete Event Simulation [14]) support as well.
One thing that MACEDON does very well is to abstract
many common services of overlay systems into generic
packages. WiDS can take the same approach for ser-
vices such as failure detector and membership protocols,
which are common building blocks for distributed sys-
tem.

One contribution of the current WiDS package is its
capability of performing large-scale simulation and
testing on clustered machines. While there have been
many works on PDES, our Slow Message Relaxation
optimization is unique in that it takes advantages of the
time slacks that all distributed protocols use to cope
with unreliable network transmission. A related ap-
proach to large scale testing is emulation, which is ex-
actly the same as the network execution mode of WiDS
except that many (typically thousands of) instances of
protocols run on each testing node, and the packets are
routed through a cluster of machines modeling the
Internet topology and (therefore) packet delays [15][16].
There are pros and cons in these two approaches, and it
will be an interesting research topic to identify synergy.

The versatility of WiDS extends to cover other impor-
tant aspects of the development process. WiDS-Mod
borrows principles from Intentional Programming [6]
to abstract high level logic (intention) from implemen-
tation. WiDS-Mod provides a natural and formal model,
and yet reserves sufficient flexibility for developers to
describe their implementation details.

The idea of using checkpoint and logging at runtime to
discover difficult bugs using deterministic replay is an
old one [17]. WiDS-Replay checkpoints and logs dis-
tributed protocols as they are run in the real environ-
ment, but deterministically replays and debugs the pro-
tocols on a single machine within one address space.
As far as we know, this is a novel approach.

6. Conclusion

WiDS was born in response to many early lessons we
learned when researching and developing several P2P
protocols. As an integrated toolkit that covers rapid
prototyping, large-scale simulation, and deployment, it
has already significantly improved our productivity.
Still, to become truly holistic, WiDS must evolve fur-
ther to address the difficulties of programming as well
as debugging distributed systems.

Acknowledgement

We would like to thank Noah Horton, Geogy Samuel,
Brian Lieuallen and Sandeep Singhal for the support of
running large-scale simulation of the PNRP protocols
using WiDS. We also thank the anonymous reviewers
and Richard Draves and Kurt Akeley for their valuable
inputs.

Reference:

[1] P. Druschel and A. Rowstron, “PAST: A large-scale,
persistent peer-to-peer storage utility”, in Proc. HotOS
VIII, Schloss Elmau, Germany, May 2001

[2] John Kubiatowicz, David Bindel etc., “OceanStore: An
Architecture for Global-Scale Persistent Storage”, in
Proceedings of the Ninth international Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000), November 2000

[3] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen,
“Ivy: A Read/Write Peer-to-peer File System”, in OSDI,
December 2002

[4] Zheng Zhang, Qiao Lian, Shiding Lin, Wei Chen, Yu
Chen, Chao Jin, “BitVault: a Highly Reliable Distrib-
uted Data Retention Platform”, under submission

[5] Microsoft TechNet, “Introduction to Windows Peer-to-
Peer Networking”, http://www.microsoft.com
/technet/prodtechnol/winxppro/deploy/p2pintro.mspx

[6] C. Simonyi. “The Death of Computer Languages, The
Birth of Intentional Programming”, Technical Report
MSR-TR-95-52, Microsoft Research, 1995

[7] Leslie Lamport, “Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engineers”.
Addision-Wesley (2002).

[8] Unified Modeling Language 1.5, OMG,
http://www.omg.org/technology/documents/formal/uml
.htm

[9] Rob von Behren, Jeremy Condit, Feng Zhou, George C.
Necula, and Eric Brewer, “Capriccio: Scalable Threads
for Internet Services”, In Proc. of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP), 2003.

[10] Joel Huselius. “Debugging parallel systems: A state of
the art report”. Technical Report 63, Mlardalen Univer-
sity, Department of Computer Science and Engineering,
September 2002

[11] Michael Jones and John Dunagan, “Engineering Reali-
ties of Building a Working Peer-to-Peer System”, MSR
Technical Report MSR-TR-2004-54. June 2004.

[12] P. Urban, X. Defago, and A. Schiper, “Neko: A single
environment to simulate and prototype distributed algo-
rithms”, in Proc. of the 15th Int'l Conf. on Information
Networking (ICOIN-15), (Beppu City, Japan), Feb.
2001.

[13] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A.
Vahdat, “MACEDON: Methodology for Automatically
Creating, Evaluating, and Designing Overlay Net-
works”, in Proc. of the USENIX/ACM Symposium on
Networked Systems Design and Implementation
(NSDI), 2004.

[14] A. Ferscha, and S.K. Tripathi, “Parallel and distributed
simulation of discrete event systems”. Technical report,
University of Maryland, August 1994.

[15] Amin Vahdat, Ken Yocum, Kevin Walsh, etc., “Scal-
ability and Accuracy in a Large-Scale Network Emula-
tor”, in OSDI, December 2002

[16] Emulab project, the Utah network testbed (Web site).
http://www.emulab.net/.

[17] E. N. M. Elnozahy, L. Alvisi, Y. Wang, and D. B.
Johnson, “A survey of rollback-recovery protocols in
message-passing systems”, ACM Computing Surveys
(CSUR), 34(3):375-408, 2002

