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Abstract— Hard, machine-supported formal verifi-
cation of software is at a turning point. Recent years
have seen theorem proving tools maturing with a
number of successful, real-life applications. At the
same time, small high-performance OS kernels, which
can drastically reduce the size of the trusted comput-
ing base, have become more popular. We argue that
the combination of those two trends makes it feasible,
and desirable, to formally verify production-quality
operating systems — now.

I. INTRODUCTION

There is increasing pressure on providing a high
degree of assurance of a computer system’s security
and functionality. This pressure stems from the de-
ployment of computer systems in life- and mission-
critical scenarios, and the need to protect computing
and communication infrastructure against attack.
This calls for end-to-end guarantees of systems
functionality, from applications down to hardware.

While security certification is increasingly re-
quired at higher system levels, the operating sys-
tem is generally trusted to be secure. This clearly
presents a weak link in the armour, given the size
and complexity of modern operating systems.

However, there is a renewed tendency towards
smaller operating system kernels which could help
here. This is mainly motivated by two increasingly
popular scenarios:

Trusted applications and legacy software: The
general trend towards standard APIs and COTS
technology (e.g. Linux) is even reaching safety-
and security-critical embedded systems. Similarly,
emerging applications on personal computers and
home/mobile electronics require digital rights man-
agement and strong protection of cryptographic
keys in electronic commerce. In both cases it is nec-
essary to run large legacy systems alongside highly
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critical components to provide desired functionality,
without the former being able to interfere with the
latter. This requirement is met by de-privileging the
legacy system and using a small kernel or monitor
to securely switch between the trusted and untrusted
subsystems, as in L4Linux, and processor man-
ufacturers are moving towards hardware support
for such partitioning (ARM TrustZone and Intel
LaGrande).

Secure and efficient multiplexing of hardware:
This scenario partitions a system into isolated, de-
privileged peer subsystems, typically several copies
of the same or different full-blown operating sys-
tems. The partitioning may be based on full virtual-
isation (as in VMWare), or para-virtualisation, as in
Xen and Denali. The underlying privileged virtual-
machine monitor or hypervisor is typically of much
smaller size than the operating systems running in
individual partitions.

Both scenarios require an abstraction layer of
software far smaller than a traditional monolithic
OS kernel. For the rest of this paper we refer to
this layer simply as the kernel, since the distinction
between hypervisor, microkernel and protection-
domain management software is not of relevance
here.

The reduction in size, compared to traditional ap-
proaches, already goes a long way towards making
the kernel more trustworthy. Standard methods for
establishing the trustworthiness of software, such
as testing and code review (while they inherently
cannot guarantee absence of faults) work better on
a smaller code base.

Recently, algorithmic techniques, like static anal-
ysis and model checking, have achieved impressive
results in bug hunting in kernel software [8]. How-
ever, they cannot provide confidence in full func-
tional correctness, nor can they give hard security
guarantees.



The only real solution to establishing trustworthi-
ness is formal verification, proving the implemen-
tation correct. This has, until recently, been consid-
ered an intractable proposition — the OS layer was
too large and complex for poorly scaling formal
methods. In this paper we argue that, owing to the
combination of improvements in formal methods
and the trend towards smaller kernels, full formal
verification of real-life kernels is now within reach.

In the next section we give an overview of
formal verification and its application to kernels.
In Section III we examine the challenges encoun-
tered and experience gained in a pilot project that
successfully applied formal verification to the L4
microkernel utilising the Isabelle theorem prover.

II. FORMAL VERIFICATION

Formal verification is about producing strict
mathematical proofs of the correctness of a system.
But what does this mean? From the formal-methods
point of view, it means that a formal model of
the system behaves in a manner that is consistent
with a formal specification of the requirements.
This leaves a significant semantic gap between the
formal verification and the user’s view of correct-
ness [6]. The user (e.g. application programmer)
views the system as “correct” if the behaviour of
its object code on the target hardware is consistent
with the user’s interpretation of the (usually infor-
mally specified) API. Bridging this semantic gap is
called formalisation. This is shown schematically
in Fig. 1.
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Fig. 1. Formal verification process
Verification technology: At present there are
two main verification techniques in use: model
checking and theorem proving. Model checking
works on a model of the system that is typically
reduced to what is relevant to the specific properties
of interest. The model checker then exhaustively

explores the model’s reachable state space to deter-
mine whether the properties hold. This approach is
only feasible for systems with a moderately-sized
state space, which implies dramatic simplification.
As a consequence, model checking is unsuitable
for establishing a kernel’s full compliance with its
API. Instead it is typically used to establish very
specific safety or liveness properties. Furthermore,
the formalisation step from system to model is quite
large, commonly done manually and therefore error
prone. Hence, model checking usually does not give
guarantees about the actual system. Model checking
has been applied to the OS layer [17] and has
shown utility here as a means of bug discovery
in code involving concurrency. However, claims of
implementation verification are disputable due to
the manual abstraction step. Tools like SLAM [2]
can operate directly on the kernel source code and
automatically find safe approximations of system
behaviour. However, they can only verify relatively
simple properties, such as the correct sequencing
of operations on a mutex — necessary but not
sufficient for correct system behaviour.

The theorem proving approach involves describ-
ing the intended properties of the system and its
model in a formal logic, and then deriving a mathe-
matical proof showing that the model satisfies these
properties. The size of the state space is not a
problem, as mathematical proofs can deal with large
or even infinite state spaces. This makes theorem
proving applicable to more complex models and full
functional correctness.

Contrary to model checking, theorem proving is
usually not an automatic procedure, but requires
human interaction. While modern theorem provers
remove some of the tedium from the proof pro-
cess by providing rewriting, decision procedures,
automated search tactics, etc, it is ultimately the
user who guides the proof, provides the struc-
ture, or comes up with a suitably strong induction
statement. While this is often seen as a drawback
of theorem proving, we consider it its greatest
strength: It ensures that verification does not only
tell you that a system is correct, but also why it
is correct. Proofs are developed interactively with
this technique but can be checked automatically
for validity once derived, making the size and
complexity of the proof irrelevant to soundness.

Verifying kernels: What do the specifications
and models look like in kernel verification?



Clearly a kernel needs to implement its API,
so the specification is typically a formalisation of
this API. This is created by a manual process with
a potential for misstatement, as APIs tend to be
specified informally or at best semi-formally using
natural languages, and are typically incomplete and
sometimes inconsistent. It is then desirable to utilise
a formalism such that the correspondence between
the informal and formal specification is relatively
easy to see even for OS developers who are no
experts in formal methods.

The kernel model is ideally the kernel execut-
ing on the hardware. In reality it is preferable
to take advantage of the abstraction provided by
the programming language in which the kernel
is implemented, so the model becomes the ker-
nel’s source-level implementation. This introduces
a reliance on the correctness of the compiler and
linker (in addition to the hardware, boot-loader and
firmware).

Some criticisms are commonly voiced when con-
sidering OS verification. Is there any point if we
have to rely on compiler and hardware correctness?
With source-level verification, compiler and hard-
ware correctness have become orthogonal isues —
when we have the required formal semantics for
the language and hardware, verification of these
system components can be attempted independently
to that of the OS. Both hardware and compiler
verification are currently active areas of research. It
should be noted that the gap between formal model
and implementation will always exist, even in the
presence of a verified processor, since real hardware
is a physical realisation of some model and its
correct operation is beyond the scope of formal
verification [6] — one cannot prove the absence
of manufacturing defects for example. The aim of
OS verification is to significantly reduce the larger
gap between user requirements and implementation
and hence gain increased confidence in system
correctness. Even if the kernel is verified, what has
been gained when user-level applications such as
file-systems are not? In the first scenario described
in the introduction, the question is really that of
what do we need to verify to be able to claim the
trusted applications are correct. The kernel provides
the basic abstraction over the underlying hardware
necessary to enforce the boundary between trusted
and untrusted applications and allows the behaviour
of untrusted applications to be abstracted away or

ignored when verifying the trusted code. Trusted
applications may also have some redeeming char-
acteristics when it comes to verification — they
should be relatively small in a well-designed TCB
and may take advantage of higher-level languages.
For a hypervisor no additional work remains after
OS verification — if the correct resource man-
agement and isolation is provided at the OS level
then there is no possibility of faulty or malicious
code executing in one partition from influencing or
knowing about another.

Proof-based OS verification has been tried in the
past [13,20]. The rudimentary tools available at the
time meant that the proofs had to end at the de-
sign level; full implementation verification was not
feasible. The verification of Kit [4] down to object
code demonstrated the feasibility of this approach
to kernel verification, although on a system that is
far simpler than any real-life OS kernel in use in
secure systems today. There is little published work
from the past 10-15 years on this topic, and we
believe it is time to reconsider this approach.

III. CHALLENGES AND EXPERIENCES

Since the early attempts at kernel verification
there have been dramatic improvements in the
power of available theorem proving tools. Proof
assistants like ACL2, Coq, PVS, HOL and Isabelle
have been used in a number of successful verifi-
cations, ranging from mathematics and logics to
microprocessors [5], compilers [3], and full pro-
gramming platforms like JavaCard [18].

This has led to a significant reduction in the
cost of formal verification, and a lowering of the
feasibility threshold. At the same time the potential
benefits have increased, given e.g. the increased de-
ployment of embedded systems in life- or mission-
critical situations, and the huge stakes created by
the need to protect IP rights valued in the billions.

Consequently, we feel that the time is right to
tackle, once again, the formal verification of OS
kernels. We therefore decided about a year ago
to attempt a verification of a real kernel. We are
among several current efforts with this goal, notably
VFiasco [9], VeriSoft [19] and Coyotos [15]. We
target the L4 microkernel in our work as it is
one of the smallest and best performing general-
purpose kernels around, is deployed industrially and
its design and implementation is well understood in
our lab.



As this is clearly a high-risk project, we first
embarked on a pilot project in the form of a con-
structive feasibility study. Its aim was three-fold: (i)
to formalise the L4 API, (ii) to gain experience by
going though a full verification cycle of a (small)
portion of actual kernel code, and (iii) to develop
a project plan for a verification of the full kernel.
An informal aim was to explore and bridge the
culture gap between kernel hackers and theorists,
groups which have been known to eye each other
with significant suspicion.

The formalisation of the API was performed us-
ing the B Method [1], as there existed a significant
amount of experience with this approach among
our student population. While L4 has an unusually
detailed and very mature (informal) specification
of its API [12], it came as no surprise to us to
find that it was incomplete and ambiguous in many
places, and inconsistent in a few. Furthermore it
was sometimes necessary to extract the intended
and expected kernel behaviour from the designers
themselves and, occasionally, the source code.

In spite of those challenges, this part of the
project turned out not overly difficult, and was
done by a final-year undergraduate student. The
result was a formal API specification that is mostly
complete, describing the architecture-independent
system calls in the IPC and threads subsystem of
L4. Non-determinism was used in places where the
current API was not clear on specific behaviour,
and optimisations present at the API level that
contributed significant complexity yet only pro-
vided disputable performance gains were omitted.
The remaining subsystem (virtual memory) was
formalised separately in the verification part of
the project described below. The B specification
consists of about 2000 lines of code.

The full verification was performed on the most
complex subsystem, the one dealing with mapping
of pages between address spaces and the revocation
of such mappings, corresponding to approximately
5% of the kernel source code. We formalised a
significant part of this API section and derived a
verified implementation based on the existing im-
plementation but with a subset of its functionality.
Its implementation consists of the page tables, the
mapping database (used to keep track of mappings
for revocation purposes), and the code for lookup
and manipulation of those data structures.

Since our view of the system is that of execution

on an abstract machine corresponding to the imple-
mentation language, the lowest-level model must
rely on the formal semantics of the source code
language and hardware. The L4 kernel is written
in a mixture of a (mostly-C-like) subset of C++
with some assembler code. While the complete
formal semantics of systems languages is an active
area of research [9, 14], a complete semantics is
not required. For our purpose it sufficed to have a
semantics for the language subset actually used in
the verified code. The code derived during this work
was based on the data structures and algorithms
in the existing implementation, but we had the
freedom to make changes to remain in a safe subset
of C++. Such changes are acceptable as long as they
have no significant performance impact.

Semantics for the assembler code could be de-
rived from the hardware model. This was not tack-
led in our pilot project, as the slice was imple-
mented without resorting to assembler (our work is
based on ARM processors, which feature hardware-
loaded TLBs). We did, however, formalise some
aspects of the hardware, such as the format of page
table entries. In principle, processor manufacturers
could provide their descriptions of the ISA level
in a HDL to facilitate this, in practise this rarely
happens. Instead one typically uses ISA reference
manuals as a basis for formalisation. Hardware
models of commercial microprocessors such as
x86 and ARM [7] are available. While these are
presently somewhat incomplete for kernel verifica-
tion purposes, they should be extendable without
major problems.

We use higher-order logic (HOL) as our language
for system modelling, specification and refinement,
specifically the instantiation of HOL in the theo-
rem prover Isabelle. HOL is an expressive logic
with standard mathematical notation. Terms in the
logic are typed, and HOL can directly be used as
simple functional programming language. HOL is
consequently unesoteric for programmers with a
computer science background. We are using this
functional language to describe the behaviour of
the kernel at an abstract level. This description is
then refined inside the prover into a program written
in a standard, imperative, C-like language. In a
refinement some part the state space is made more
concrete, substitutions for operations for the new
state space are described and proven to simulate
the abstract operations. For example, an abstract



albeit simplistic view of the page table for an
address space is a function mapping virtual pages to
page table entries. Refinement of this would replace
the function with a page table data structure such
as a multi-level page table and the corresponding
insertion and lookup procedures.

The abstract description is at the level of a
reference manual and relatively easy to understand.
This is the level we use for analysing the behaviour
of the system and for proving additional simple
safety properties, such as the requirement that the
same virtual address can never be translated to two
different physical addresses. The abstract model
is operational, essentially a state machine. This is
close to the intuition that systems implementors
have of kernel behaviour as an extended hardware
machine, and has an associated well-understood
hierarchichal refinement methodology. An opera-
tional model for kernel behaviour in HOL then
helps minimising the gap between requirements and
specification. At the end of the refinement process
stands a formally verified imperative program. A
purely syntactic translation then transforms this
program into ANSI C. A detailed description of
this process can be found elsewhere [11, 16].

We found Isabelle suitable for the task. It is
mature enough for use in large-scale projects and
well-documented, with a reasonably easy-to-use in-
terface. Being actively developed as an open source
tool, we are able to extend it and (working with the
developers) to fix problems should they arise.

During the process of formalising the VM sub-
system we discovered several places in the exist-
ing semi-formal description and reference manual
where significant ambiguities existed, and some
inconsistencies with implementation behaviour. The
ordering of internal operations in the system calls
responsible for establishing and revoking VM map-
pings, map, grant and unmap, was underspecified,
leading to problems when describing a formal se-
mantics. A potential security problem could result
from one of the inconsistencies found.

An interesting experience was that the expected
culture clash between kernel hackers and formal
methods people was a non-issue. The first author of
this paper is a junior PhD student with significant
kernel design and implementation experience. He
obtained the necessary formal methods background
within two months to the degree where he could
productively perform proofs in Isabelle. It took

about the same time for all participants to gain
an appreciation of the other side’s challenges. This
is one of the reasons that we believe that the full
verification of L4 is achievable.

However, we are convinced that some important
requirements must be met for such a project to
have a chance. It is essential that some of the
participants have significant experience with formal
methods and a good understanding of what is
feasible and what is not, and how best to approach
it. On the other hand, it is essential that some of
the participants have a good understanding of the
kernel’s design and implementation, the trade-offs
underlying various design decisions, and the factors
that determine the kernel’s performance. It must be
possible to change the implementation if needed,
and that requires a good understanding of changes
that can be done without undermining performance.

I'V. LOOKING AHEAD

The challenges for formal verification at the ker-
nel level relate to performance, size, and the level
of abstraction. Runtime performance of the verified
code is one of the highest priorities in operating
systems, particularly in the case of a microkernel
or virtual-machine monitor, which is invoked fre-
quently. Software verification has traditionally not
focused on this aspect — getting it verified was
hard enough. Size is a limiting factor as well. Even
a small microkernel like L4 measures about 10,000
lines of code. Larger systems have been verified
before, but only on an abstract description, not on
the implementation level. Compared to application
code, the level of abstraction is lower for kernel
code. Features like direct hardware access, pointer
arithmetic and embedded assembly code are not
usually the subject of mainstream verification re-
search.

Another practically important issue is ensuring
that verified code remains maintainable. In prin-
ciple, every change to the implementation might
invalidate the verification. The extent to which this
occurs will depend on the nature of the change.
Hand optimisation of the IPC path, for example,
may require less work to reestablish correctness
than changes to system call semantics, since in the
optimisation case higher-level abstraction proofs
remain valid. The fact that the proofs are machine-
checked makes it easy to determine which proofs
are broken by the change, and techniques such



as a careful, layered proof structure and improved
automation for simple changes help to make this
problem easier to handle. Whether this is enough
remains an open question.

We believe that full formal specification of the
kernel API prior to kernel implementation is desir-
able. The benefits of having a complete, consistent
and unambiguous reference for kernel implemen-
tors, users and verifiers is clear, and the effort
required is modest when compared with either
implementation or verification.

The investment for the virtual memory part of
the pilot project was about 1.5 person years. All
specifications and proofs together run to about
14,000 lines of proof scripts. This is significantly
more than the effort invested in the virtual memory
subsystem in the first place, but it includes explo-
ration of alternatives, determining the right method-
ology, formalising and proving correct a general
refinement technique, as well as documentation and
publications.

We estimate that the full verification of L4 will
take about 20 person years, including verification
tool development. This sounds a lot, but must be
seen in relation to the cost of developing the kernel
in the first place, and the potential benefits of
verification. The present kernel [12] was written by
a three-person team over a period of 8—12 months,
with significant improvements since. Furthermore,
for most of the developers it was the third in a series
of similar kernels they had written, which meant
that when starting they had a considerable amount
of experience. A realistic estimate of the cost of
developing a high-performance implementation of
L4 is probably at least 5-10 person years.

Under those circumstances, the full verification
no longer seems prohibitive, and we argue that it
is, in fact, highly desirable. The kernel is the lowest
and most critical part of any software stack, and
any assurances on system behaviour are built on
sand as long as the kernel is not shown to behave
as expected. Furthermore, formal verification puts
pressure on kernel designers to simplify their sys-
tems, which has obvious benefits for maintainability
and robustness even when not yet formally verified.

There is a saying that the problem with engineers
is that they cheat in order to get results, the problem
with mathematicians is that they work on toy prob-
lems in order to get results, and the problem with
program verifiers is that they cheat on toy problems

in order to get results. We are ready to tackle the
real problem without cheating.
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