
Making Programs Forget:
Enforcing Lifetime for Sensitive Data

Jayanthkumar Kannan (Google Inc), Gautam Altekar (UC Berkeley),
Petros Maniatis (Intel Labs), Byung-Gon Chun (Intel Labs)

1

The Problem: Lingering Data

Sensitive Data

• How long is your data around? (Chow et. al. '04)
o Where in memory?

o Maybe on disk?

2

Hard to Provide Sensitive Data Lifetime

• Shutdown the application?

• Reboot?

• Rely on application support?

• Memory scrubbing? (Chow et al '05: Data shredding)

• Time-based data access control? (Perlman '05)

• Change user behavior? (Borders et al '09: Capsules)

3

Existing approaches fall short

Goal: Guaranteed Data Lifetime

• Guarantee: Data indicated as sensitive is not retrievable
from system beyond specified time limit

• Requirements
• No application support

• Non-disruptive : shouldn’t crash, interrupt your normal

workflow

• Contribution: Promising start, much further to go

4

Observation: State Equivalence

• For any program state computed from sensitive data, there
usually exists an equivalent state not derived from the
sensitive data

• Example:

o You get a sensitive email, read it, and then send and
read some other emails

o Equivalent State: Send and read other emails

5

Approach: State Reincarnation

6

 • Replace current sensitive state with equivalent
non-sensitive state

• Challenge: How do we derive equivalent non-

sensitive state?

Deriving an Equivalent State

7

 • Key idea: deterministic replay with perturbed input

1. Original execution

(record all inputs)

S

sys_read(buf)

Sensitive input
(user-designated)

Sensitive
state

2. Replay execution

(replace sensitive inputs)

S’

sys_read(buf)

Substitute w/ Non-
sensitive input

Non-sensitive
state

Challenges

• Picking the sensitive-input replacements

• Completeness: Eliminating all sensitive data

• Overhead: Run-time cost

8

Picking sensitive-input replacements

• Given sensitive input I, and subsequent input I1, I2, we
compute I' which leads to same execution path

o Using tainting and constraint solving (Altekar '09)

• Replay with I'

• Hard-cases: Spell-checker, Hashing

9

Completeness

• Sensitive data can linger in various areas (OS buffers);

how can we remove all of it?

• Technique: Implement perturbed replay in VM

• Need to trust VM not to retain data

10

Overhead

• We implemented recording at user-level

• Slowdown: ~1.2X on bash

11

Conclusion

• Contributions:
o Guaranteed Lifetime Property
o State Reincarnation

• Future work:

o Picking right inputs for replay
o Measuring overhead for consistent substitution

12

