
Reflective Parallel Programming
Extensible and High-Level Control of Runtime, Compiler, and Application Interaction

Nicholas D. Matsakis
ETH Zurich

nmatsaki@inf.ethz.ch

Thomas R. Gross
ETH Zurich

trg@inf.ethz.ch

Abstract

Thread support in most languages is opaque and low-
level. Primitives like wait and signal do not allow users
to determine the relative ordering of statements in differ-
ent threads in advance.

In this paper, we extend the reflection and meta-
programming facilities of object-oriented languages to
cover parallel program schedules. The user can then
access objects representing the extant threads or other
parallel tasks. These objects can be used to modify or
query happens before relations, locks, and other high-
level scheduling information. These high-level models
enable users to design their own parallel abstractions, vi-
sualizers, safety checks, and other tools in ways that are
not possible today.

We discuss one implementation of this technique, the
intervals library, and show how the presence of a first-
class, queryable program schedule allows us to support
a flexible data race protection scheme. The scheme sup-
ports both static and dynamic checks and also permits
users to define their own “pluggable” safety checks based
on the reflective model of the program schedule.

1 Introduction

Although modern object-oriented languages like Java
and C] have included support for threads from the be-
ginning, the integration of threads into the runtime of
these languages is fairly opaque. They provide no means,
for example, to determine whether two threads acquire
a common lock, or whether one thread joins another
thread before executing. Partly this is because the run-
time itself has very little information. The desired pro-
gram schedule and relative timing for different threads
is never stated explicitly by the programmer; rather, it is
constructed imperatively via primitives like signals and
barriers, and as a result there is no way for the runtime to
know what it will be in advance.

In this paper we present a more explicit approach
where programming languages include a high-level
model for the program schedule, and they expose this
model using first-class objects which support reflective
queries and modifications. Programmers can then ex-
press their intended schedule in terms of the model, leav-
ing low-level details to the runtime. This same model can
also serve as the basis for other tools — such as visualiz-
ers, meta-programming frameworks, and safety checkers
— developed by end users.

As a concrete example of the flexibility provided by
such a scheme, we discuss the design of a user-extensible
data-race detector. Checkers use mirrors [11] (reflective
objects) of the program schedule to determine whether
an access is permitted. Users can extend the system with
their own checker implementations.

Our data race detector is designed around the intervals
library. The intervals library models the program sched-
ule using three concepts: intervals, which represent the
span of time to complete a task; points, which represent
individual moments during execution; and locks, which
can be held by an interval for mutual exclusion. Users
can specify and query the happens before relation be-
tween points as well as the locks which an interval will
hold. The runtime is responsible for creating low-level
threads and acquiring locks as needed.

The data race detector is based on guard objects,
which are a generalization of locks. Every field and
array element is associated with a particular guard. A
guard object embodies a particular data race prevention
scheme, which might be based on locks, the happens be-
fore relation, or something else entirely. Guard objects
provide methods which can validate whether a given ac-
cess is “safe” according to the guard’s criteria. This
judgement is generally derived from the abstract model
of the program schedule exposed to them via reflection.

The system supports both static and dynamic checks,
or even a mix of the two. Guards whose state is avail-
able at compile time can be checked statically. For



inter

a

b
c (l)

(time)

Figure 1: A sample interval diagram containing the in-
terval inter and its three subintervals, a, b, and c.

those classes, dynamic checks are not needed, except
for those locations where the compiler cannot prove
static safety (in which case the checks must be provided
explicitly, similar to a checked downcast). For other
classes of guards, static checking is never possible. In
those cases, the compiler will automatically insert safety
checks wherever required.

The outline of the paper is as follows: we begin by
briefly introducing the intervals model and showing how
it can be manipulated and queried using our API. Next
we outline the design for pluggable data race detection
in more detail, and show how it makes use of schedule
reflection. Finally we discuss related parallel models and
other work before concluding the paper.

2 Constructing and Querying the Model

In this section we give a brief introduction to the intervals
model. More in-depth introductions and examples, as
well as a prototype implementation, can be found on our
website [2] or in our previous work [16, 17].

Asynchronous tasks are represented by instances of
the type Interval. Intervals are structured hierarchi-
cally and their parent is specified when they are created.
Each interval executes in two phases. First, a method
run() is executed. If the interval’s task is very simple,
then run() may simply perform it in its entirety. Other-
wise, it can create a number of parallel subintervals. The
second phase executes these subintervals in parallel with
one another once the run() method has returned.

Each Interval has two associated points, start
and end, which are instances of the type Point. The
start point represents the moment when the interval be-
gins to execute, and the end point represents the mo-
ment when the interval and all its subintervals complete.
Points are related through a happens before relation.

Mutual exclusion is supported via instances of the type
Lock. Every interval can be associated with one or more
locks, which are automatically acquired before its start
point occurs and released after its end point has occurred.

The program schedule is made up of all the instances
of these three types and their interconnections. We depict

1 void method(Interval parent, Lock l) {
2 Interval inter = interval (parent) {
3 Interval a = interval { ... };
4 Interval b = interval { ... };
5 Interval c = interval { ... };
6

7 a.end.addHb(c.start);
8 b.end.addHb(c.start);
9 c.addLock(l);

10

11 assert b.end.hb(c.start);
12 assert c.locks(l);
13 }
14 }

Figure 2: Sample code to create the schedule shown in
Figure 1.

schedules graphically using interval diagrams. Figure 1
gives an example containing one parent interval, inter,
with three leaf subintervals, a, b, and c. The solid cir-
cles represent points. The solid lines beginning at an in-
terval’s start point represent the period of time when the
interval’s run() method is executing. The dashed box
indicates the period where the interval’s subintervals are
executing in parallel (if an interval has no subintervals,
the dashed box is omitted). Dashed lines between points,
such as those connecting the end of a and b to the start
of c, indicate happens before edges specified by the user.
The (l) in the label of subinterval c indicates that c ex-
ecutes while holding the lock l.

Figure 2 provides an example of code to create the
schedule from Figure 1. The code is presented in a
Java-like language extended with a keyword interval
which creates a new interval with the given run method.1

The method takes two parameters: an existing interval
parent (not shown in the diagram) and a lock l. It
creates the interval inter on line 2 with parent as
its superinterval. When inter is scheduled, its run()
method will then in turn create the intervals a, b, and c
on lines 3–5 (because no super interval is specified, the
default is the current interval, or inter).

The methods addHb() and addLock(), shown
on lines 7–9, are used to relate existing objects.
p1.addHb(p2) creates a new happens before edge be-
tween p1 and p2, and i.addLock(l) ensures that inter-
val i will acquire lock l.

Similarly, the methods hb() and locks(), shown
on lines 11 and 12, can be used to query the schedule.
p1.hb(p2) returns true if p1 happens before p2, and
i.locks(l) returns true if the interval i will hold
lock l when it executes.

1 In the library implementation, this keyword is replaced with a Java
anonymous class.

2



checkWrite(Interval current)
checkRead(Interval current)

Guard

DynamicGuardStaticGuard

Lock ... ... ...

Figure 3: UML diagram showing the Guard hierarchy.

3 Pluggable Data Race Detection

Our data race detector builds on recent type systems [8,
4, 13] that use annotations to associate each field with a
lock. We generalize the lock for a field into a guard ob-
ject, which defines methods that check whether the field
can be safely read or written. A single guard may pro-
tect fields belonging to multiple objects, and a single ob-
ject can make use of multiple guards. This scheme gives
users complete control over both the granularity of the
data race detector — which helps to avoid high-level data
races [9] — and the degree of data race freedom required.

All guard objects must be derived from the type Guard
shown in Figure 3. The runtime and compiler can use the
two check methods shown to determine whether a par-
ticular access is permitted. Both methods work the same
way: If it is safe for the interval current to perform
the given kind of access, the method returns normally.
Otherwise, it throws an exception: the precise exception
is not specified, but it should contain details that help the
user to debug the problem.

The two subtypes of Guard distinguish guards that
should be checked at compilation time from those that
must be checked dynamically. These subtypes will be
discussed in more detail shortly.

All guards must ensure that once an interval is permit-
ted to read or write, all later checks of the same kind by
that interval will succeed. This requirement implies that
although every read or write access must be preceded by
a check method, there is no need to check twice within a
single interval. It also implies that checks and accesses
do not need to be performed atomically. Of course, to be
useful, the various check methods should also enforce
some coherent data race protection scheme, but this is
not strictly required by the API.

3.1 Statically Checked Guards
Subtyping StaticGuard is a signal to the compiler

that the correctness of the guard is intended to be checked
statically. Such guards have certain special requirements
that enable them to be used within the compiler. First,
their check methods must not rely on external state or
objects which are not available at compile time. Second,

1 class Lock implements StaticGuard {
2

3 void checkRead(Interval current) {
4 checkWrite(current);
5 }
6

7 void checkWrite(Interval current) {
8 if(!current.locks(this))
9 throw new LockRequired(

10 current, this);
11 }
12

13 }

Figure 4: The methods on the Lock class which allow
it to be used as a guard. The lock must be held by an
interval for it to perform any kind of access.

their check methods must be monotonic, meaning that
if a given schedule is judged race free, adding additional
happens before relations or locks will not cause the guard
to report a race. This is needed because the compiler has
only a partial view of the schedule at any given time.

Whenever the compiler finds an access to a field whose
guard is a subtype of StaticGuard, it will invoke the
guard’s methods with whatever subset of the schedule it
can derive from the method containing the access (more
on this below). If this check succeeds, then the compiler
knows that the same check would succeed at runtime,
and the access is permitted.

If the check fails, a compile-time error is generated.
If possible, users should adjust the program as needed
to make the check succeed. In some cases, however, the
type system may simply not be strong enough to show
that the access is safe, even though the user knows for
certain that it is. In that case, users can insert an ex-
plicit invocation of the check method; this serves as an
assertion that the access is indeed safe. If the assertion is
false, then the check method will throw an exception at
runtime.

An example of a statically enforcable guard is a Lock.
The source for such a guard is shown in Figure 4. The
check methods use the reflective method locks() to
check that the current interval holds the lock. This check
is monotonic, as it will not fail if the interval should hold
other locks.

We will now demonstrate how the compiler checks
guards statically, using the method static() in Fig-
ure 5 as an example. The method static() creates an
interval x which will write the field someField. As
someField is guarded by someLock, this access is
only safe if someLock is held. Therefore, line 12 states
that interval x should acquire the lock someLock.

When the compiler checks this method, it is able to

3



1 class SomeClass {
2

3 final Lock someLock;
4

5 @GuardedBy(someLock)
6 String someField;
7

8 void static(Interval parent) {
9 Interval x = interval (parent) {

10 someField = "...";
11 }
12 x.addLock(someLock);
13 }
14

15 void dynamic() {
16 someLock.checkWritable();
17 someField = "..."
18 }
19

20 }

Figure 5: In the first method, the compiler can ascertain
statically that someLock is held when someField is
modified. In the second method, however, a dynamic
check is required.

derive the schedule shown in Figure 6(a), which shows
that x is a subinterval of parent and that it will hold
someLock when executing. It therefore constructs a set
of mirrors — essentially, mock objects implementing the
same interface as real intervals, points, and locks — for
that known schedule, as shown in Figure 6(b). It then in-
stantiates the guard for someField (which in this case
is actually the mocked up version of someLock) and ex-
ecutes its check method. If this check method succeeds,
the access is considered safe.

Should the check method fail, however, the user can
always get the program to compile by manually inserting
an invocation of the check method. This case is shown in
the method dynamic() on line 16 of Figure 5.

3.2 Dynamically Checked Guards

The type DynamicGuard is a supertype for guards
whose correctness is not intended to be checked stati-
cally. Such guards usually maintain state during execu-
tion (such as the interval which last wrote to a field) or
are otherwise dependent on objects that only exist at run-
time. In this case, all accesses to their protected fields
must be preceded by an invocation of the appropriate
check method. To spare users the tedious task of in-
serting these checks by hand, the compiler will automat-
ically insert checks where needed for any guard whose
type descends from DynamicGuard.

(a)

parent

x (someLock)

(b)

parent: Interval

x: Interval someLock: Locklocks
super

Point Point

start end

hb

Figure 6: (a) Interval diagram and (b) mirrors derived by
the compiler for the method static1 from Figure 5.

3.3 Intentionally Racy Guards

It often happens that a particular field can tolerate a cer-
tain amount of “raciness” without affecting the correct-
ness of the algorithm. For example, branch-and-bound
algorithms track upper- and lower-bounds as they search.
When a particular set of data is shown to fall outside of
these bounds, it can be rejected. However, acquiring a
lock merely to read the current bounds is often too ex-
pensive to perform regularly; since the bounds are just a
hint in any case, it is acceptable to read them in a racy
fashion and only guarantee that updates are strongly or-
dered.

This case can be easily accomodated by defining an
appropriate guard which requires a lock for writes but
not reads. Using a distinctive guard also makes it easy
to identify those parts of the program which permit data
races for special auditing or code review.

3.4 Practical Considerations

As the focus of this paper is not the data race check it-
self but rather its use of reflection, we have omitted dis-
cussion of many features that can lighten the annotation
burden and dynamic overhead. The full system ensures
that most classes can remain ignorant of guards or other
synchronization mechanisms.

4 Related Work

The happens before relation was originated by Lam-
port [14] and figures prominently in the Java memory
model [15]. Using happens before relations as the basis
for the high-level schedule ensures a one-to-one corre-
spondence between the memory model and scheduling
constraints, thus avoiding the need for users to relate two
separate concepts.

4



The technique of using mirrors at compilation time to
describe a subset of the program schedule is inspired by
javac’s annotation processing API [3], which uses mir-
rors to expose a subset of the class hierarchy that will
exist at runtime.

The concurrent object-oriented language ABCL/R had
reflective capabilities [21], but they were quite different
from those described in this paper. Rather than abstrac-
tions for describing and controlling the program sched-
ule, ABCL/R provided means for users to monitor and
affect in-flight messages between distributed objects.

Smalltalk and its variants support reflection over the
program stack. This allows Smalltalk to support debug-
gers and a wide variety of meta-tools without recourse to
an alternate API. However, Smalltalk’s parallel program-
ming model lacked a high-level model for the schedule.

Race detection and prevention schemes, both static
and dynamic, have a long history in the literature. The
closest system to the static checks we describe in this pa-
per is rccjava [8], which checks that fields are only
accessed under appropriate locks. Our system is a gener-
alization of theirs to accomodate multiple field protection
schemes as well as checked dynamic assertions.

The use of guards for grouping related fields is similar
to data coloring [12] or atomic field sets [20], two ap-
proaches which aim to eliminate high-level races through
a data-centric approach. One important difference, how-
ever, is that guards in our system correspond to real ob-
jects and are not erased at runtime.

Imperative languages like C and Java have seen many
language extensions [18, 7, 10] and libraries [1, 6, 5, 19]
that aim to provide higher-level models for parallelism,
generally layered on top of threads. Although some of
these systems offer first-class objects that represent tasks,
they do not provide any sort of high-level reflective inter-
face, nor do they allow users to specify their schedule in
terms of the model directly.

5 Conclusion

The presence of a first-class, queryable model for the
program schedule opens the door for a new kind of
meta-programming, one based on the program’s sched-
ule rather than its type structure. The model serves as a
flexible, high-level interface between the application and
the runtime, allowing the application to both constrain
and query the parallel control flow.

In this paper we have focused on one application of
reflection (customizable data race detection) with one
model (the intervals model). However, the idea can also
be applied to other potential uses (visualizers, deadlock
analysis, etc) as well as to models derived from other
parallel languages, such as Cilk [18] or OpenMP [7].

References
[1] Concurrency JSR 166 Interest Site. http://gee.cs.

oswego.edu/dl/concurrency-interest/.

[2] Intervals Web Site. http://intervals.inf.ethz.ch/.

[3] JSR 175. http://www.jcp.org/en/jsr/detail?id=
175.

[4] JSR 308. http://pag.csail.mit.edu/jsr308/.

[5] Managing Concurrency with NSOperation.
http://developer.apple.com/Cocoa/
managingconcurrency.html.

[6] Parallel Extensions to the .NET Framework.
http://msdn.microsoft.com/en-us/
concurrency/default.aspx.

[7] OpenMP Specification 3.0. http://openmp.org/, May
2008.

[8] ABADI, M., FLANAGAN, C., AND FREUND, S. N. Types for
safe locking: Static race detection for Java. ACM Trans. Program.
Lang. Syst. 28, 2 (2006).

[9] ARTHO, C., HAVELUND, K., AND BIERE, A. High-level data
races. Software Testing, Verification and Reliability 13, 4 (2003).

[10] BOCCHINO, JR., R. L., ADVE, V., ADVE, S., AND SNIR, M.
Parallel Programming Must Be Deterministic by Default. In First
USENIX Workshop on Hot Topics in Parallelism (HotPar) (2009).

[11] BRACHA, G., AND UNGAR, D. Mirrors: design principles for
meta-level facilities of object-oriented programming languages.
In OOPSLA (2004), ACM.

[12] CEZE, L., VON PRAUN, C., CAŞCAVAL, C., MONTESINOS, P.,
AND TORRELLAS, J. Concurrency control with data coloring. In
MSPC (2008), ACM.

[13] GROSSMAN, D. Type-safe Multithreading in Cyclone. In TLDI
(2003), ACM.

[14] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21, 7 (1978).

[15] MANSON, J., PUGH, W., AND ADVE, S. V. The java memory
model. In POPL (2005), ACM.

[16] MATSAKIS, N. D., AND GROSS, T. R. Programming with Inter-
vals. In LCPC (2009), Springer.

[17] MATSAKIS, N. D., AND GROSS, T. R. Handling Errors in Par-
allel Programs Based on Happens Before Relations. In HIPS (to
appear) (2010).

[18] RANDALL, K. H. Cilk: Efficient Multithreaded Computing. PhD
thesis, Dept. of EECS, MIT, May 1998.

[19] REINDERS, J. Intel threading building blocks. O’Reilly & Asso-
ciates, Inc., 2007.

[20] VAZIRI, M., TIP, F., AND DOLBY, J. Associating synchro-
nization constraints with data in an object-oriented language. In
POPL (2006), ACM.

[21] WATANABE, T., AND YONEZAWA, A. Reflection in an object-
oriented concurrent language. In OOPSLA (1988), ACM.

5

http://gee.cs.oswego.edu/dl/concurrency-interest/
http://gee.cs.oswego.edu/dl/concurrency-interest/
http://intervals.inf.ethz.ch/
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175
http://pag.csail.mit.edu/jsr308/
http://developer.apple.com/Cocoa/managingconcurrency.html
http://developer.apple.com/Cocoa/managingconcurrency.html
http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://openmp.org/

	Introduction
	Constructing and Querying the Model
	Pluggable Data Race Detection
	Statically Checked Guards
	Dynamically Checked Guards
	Custom Guards
	Intentionally Racy Guards

	Practical Considerations

	Related Work
	Conclusion

