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MOTIVATION

» Speech technology has a long history of using up all available
compute resources.

* Many previous attempts with specialized hardware with mixed
results.




| IMPROVING ACCURACY

» Speech Technology works well when:

* Large amounts of training data match application data
* Small vocabulary; simple grammar

« Quiet environment

* Head-worn microphones

@Eicpdicd speech

» Fach change adds |10% error!




FEATURES

» Most state-of-the-art features are loosely based on perceptual
models of the cochlea with a few dozen features.

- Combining multiple representations almost always improves
accuracy, especially in noise.

* lypical systems combine 2-4 representations.

What if we used a LOT more?




MANYS TREAM
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MANYS TREAM

Gabor #1 MLP #1

Gabor #2 MLP &2

Gabor #3 MLP #3

Gabor #N MLP #N

* Each filter feeds an MLP

» Current combination method uses entropy-welighted MLE but
many other possibilities.




MANYS TREAM

It helps!
* 4/% relative improvement over baseline for noisy “numbers”
using 28-stream system.

» | 3.3% relative improvement over baseline for Mandarin
Broadcast News using preliminary 4-stream system.
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MANYS TREAM

- Next steps:
* Fully parallel implementation
» Many more streams

« Other combination methods




2: IMPROVING THROUGHPU T

» Serial state-of-the-art systems can take 100 hours to process
one hour of a meeting.

» Analysis over all available audio I1s generally more accurate
than on-line systems.

» Batch processing per utterance Is “‘embarrassingly’ parallel.
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INFERENCE ENGINE

WFST Recognition Network

» At each time step, compute likelihood for each outgoing arc
using the acoustic model.

* For each incoming arc, track all hypotheses.

» Regularlize data structures to allow efficient implementation.

* [ he entire inference step runs on the GPU.
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INFERENCE ENGINE

* | Ix speed-up over serial implementation.

» | 8x speed-up for compute intensive phase.

* 4x speed-up for communication intensive phase.
aleBlearenitecture

» Audio/visual plugin added by domain expert.
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INFERENCE ENGINE

 Next steps:
» Generate lattices and/or N-best lists.
* Explore other parallel archrtectures.
» Distribute to clusters.

» Explore accuracy/speed trade-offs.




3: IMPROVING LATENCY

* For batch, latency = length of audio + time to process.
» On-line applications require control of latency.

* Parallelization allows lower latency and potentially better
accuracy.




SPEAKER DIARIZATION
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ONLINE SPEAKER
DIARIZATION

* Precompute models for each speaker.
* Run offline diarization on the start of a meeting.

* Train models on first 60 seconds from each resulting
speaker.

» Another approach: stored models per speaker.

* Bvery 2.5 seconds, compute scores for each speaker model
and output the highest.
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DIARIZATION
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HYBRID ONLINE/OFFLINE
DIARIZATION

Online Diarization: DER/Core
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DIARIZATION

 Next steps:
» CPU/GPU hybrid system
* Implement serial optimizations in parallel version

* Integrate with manystream approach
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CONCLUSION

» Speech technology can use all resources that are available.
» Parallelism enables improvements in several areas:

* Accuracy

* [hroughput

» Latency

* Programming parallel systems continues to be challenging.

25



