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Recent deterministic parallel programming models

show promise for their ability to replay computations and

reproduce bugs, but they currently require the program-

mer to adopt restrictive or unfamiliar parallel constructs.

Deterministic OpenMP (DOMP) is a new determinis-

tic parallel environment built on the familiar OpenMP

framework. By leveraging OpenMP’s block-structured

synchronization annotations, which are largely compati-

ble with the constraints of a deterministic model, DOMP

eases the parallelization of legacy serial code and pre-

serves substantial compatibility with OpenMP software.

A few OpenMP constructs, however, such as atomic and

critical, are semantically nondeterministic and unsup-

ported in DOMP. In three well-known parallel bench-

mark suites, we find that most (81%) uses of these non-

deterministic constructs express programming idioms

that are compatible with determinism but not directly

expressible in OpenMP. DOMP therefore adds new

OpenMP constructs to express such idioms determinis-

tically, supporting pipelines and generalized reductions.

1 Introduction

Recent techniques to run parallel programs deterministi-

cally promise to manage race conditions and heisenbugs

and to support exact replay of parallel software. A key

desirable property is race freedom: execution timing or

thread scheduling should not affect a program’s behavior

or results. New programming languages and type sys-

tems can guarantee race freedom [1, 2, 5, 9, 12, 13, 16,

21, 22, 24, 25], but they require programmers to rewrite

legacy code and sometimes to adopt unfamiliar concepts.

Deterministic schedulers [6, 7, 11] accommodate legacy

code and make bugs reproducible, but they do not elim-

inate races from the programming model, as Section 2

explores.

For these reasons, we introduced a working copies

programming model [3], which eliminates race condi-

tions, while remaining compatible with existing lan-

guages such as C/C++. In this model, parallel threads

work on isolated copies of data, then merge these copies

at synchronization points, much as programmers use ver-

sion control systems. Workspace consistency eliminates

traditional read/write races, and transforms write/write

races into conflicts that the runtime detects determinis-

tically and reports as an error. Our first implementation

of this model [4] offered no direct compatibility with ex-

isting parallel APIs, however, and the common pthreads

API is a poor match for deterministic parallelism because

it relies heavily on nondeterministic abstractions such as

mutex locks and condition variables.

To address this compatibility challenge, we introduce

Deterministic OpenMP (DOMP), a deterministic work-

ing copies environment based on the well-established

OpenMP framework [20]. OpenMP is an attractive start-

ing point because its fork-join parallelism and block

structure fit in well with working-copies execution, and

because most of OpenMP’s core synchronization con-

structs, such as parallel, loop, and sections, are naturally

deterministic. That is, programming logic alone deter-

mines which threads are involved and where the synchro-

nization occurs in each thread’s execution sequence.

DOMP does not support a few OpenMP constructs

that are semantically nondeterministic, such as atomic,

critical, and flush. In an analysis of the SPLASH, NPB,

and PARSEC parallel benchmark suites, we find that

nondeterministic constructs (37%) are less used than de-

terministic ones (63%), and that uses of these nondeter-

ministic constructs rarely represent a semantic need for

nondeterminism in the program. In those benchmarks

written in OpenMP, all uses of nondeterministic con-

structs are to express programming idioms that are natu-

rally deterministic in a higher-level sense.

For example, OpenMP’s reduction clause is naturally

deterministic, but only accepts scalar types and simple

arithmetic or logical operators, so it cannot support op-

erations over pointer variables. This limitation tradi-

tionally forces the OpenMP programmer to “escape” to

lower-level nondeterministic synchronization constructs

in order to build a more general reduction idiom. To rem-

edy this lack while preserving the deterministic program-

ming model, DOMP generalizes OpenMP’s reductions to

arbitrary operations and types.

DOMP’s development is still early. One benchmark,

matrix multiplication, shows a moderate 10% perfor-

mance penalty on DOMP over standard OpenMP. On

PARSEC’s blackscholes, DOMP currently exhibits high

overhead—but it also revealed a hitherto uncaught con-

currency bug in the published code, illustrating the ben-

efits of DOMP’s conflict detection. Experience with De-

terminator [4] suggests that further optimizations could



enable DOMP to offer parallel determinism at an accept-

able cost for a wider range of applications.

The contributions of this paper are: (a) the first de-

terministic parallel programming model fully compatible

with existing languages such as C and at least partially

compatible with an existing parallel API; (b) an analy-

sis of the uses of synchronization abstractions in well-

known parallel benchmark programs and their compat-

ibility with deterministic programming models; and (c)

a preliminary implementation and performance results

suggesting that DOMPmay point to a realistic and useful

approach to deterministic parallel programming.

Section 2 traces work leading up to DOMP; Section

3 describes DOMP’s semantics and extensions; Section

4 presents methods and results of our analysis of paral-

lel benchmarks, suggesting that DOMP can make most

nondeterministic abstractions unnecessary; Section 5 de-

scribes our prototype implementation and reports initial

results; and Section 6 concludes.

2 Background and Related Work

A parallel program is deterministic if the input alone de-

termines the output, regardless of extrinsic events such

as the OS’s thread scheduling. By itself, this definition

allows for a range of behaviors, depending on the syn-

chronization and memory consistency models.

Synchronization is deterministic if program logic de-

termines how and at what points different threads inter-

act, depending only on computation state and not on tim-

ing. A fork deterministically creates a child thread at a

program-defined point in the parent’s execution, for ex-

ample. Similarly, a join deterministically combines the

parent’s and child’s flows at program-defined points in

both threads. Other common constructs such as mutex

locks, condition variables, semaphores, monitors, and

OpenMP’s atomic, critical, and flush, are semantically

nondeterministic: they allow a thread to signal or wake

up an unspecified, nondeterministic recipient—e.g., the

next holder of a lock—or to wait for an event from a non-

deterministic source—e.g., any of several threads that

might signal a condition variable.

Classic memory consistency models, including se-

quential consistency [18] and relaxed models [14, 23],

also introduce nondeterminism by leaving memory ac-

cess interleavings underspecified. That is, even if a pro-

gram uses only deterministic synchronization abstrac-

tions (e.g., fork/join) and runs on sequentially consistent

hardware, data races and execution timing can make the

program exhibit any of an exponentially large variety of

sequentially consistent memory access interleavings.

Deterministic schedulers such as DMP [11] and Core-

Det [6] execute a semantically nondeterministic pro-

gram repeatably, by artificially synthesizing one partic-

ular (arbitrary) interleaving of the program’s synchro-

nization and memory access events. Kendo [19] deter-

ministically schedules synchronization but not memory

accesses, yielding lower overheads but ensuring deter-

minism only in programs free of memory access races.

Deterministic scheduling can reproduce races once de-
tected, but it neither eliminates races nor guarantees that
they will be detected. A program’s behavior may still de-
pend on the (deterministic) execution schedule in subtle
ways not explicit in program logic, as in this example:

// Thread A:

{

if (input_is_typical)

do_a_lot();

x++;

}

// Thread B:

{

do_a_little();

x++;

}

Under “typical” program inputs, abstracted here via

‘input_is_typical’, a deterministic scheduler may

always cause thread B to reach its increment of x

while thread A is executing its long-running and non-

conflicting do_a_lot(). But some particular “rare”

input, which unit tests may not have covered, may cause

the threads’ increments to line up in the deterministic ex-

ecution schedule, resulting in a classic data race and an

“input-dependent heisenbug.”

Grace [7] is a deterministic scheduler that emulates se-

quential consistency via speculative execution and trans-

actional memory techniques. Determinator [4] and Revi-

sions [10] avoid the complexity of speculative execution

by straying from sequential consistency. These projects

achieve acceptable overhead for some workloads, but

constrain programs to a minimal set of deterministic syn-

chronization primitives such as fork/join and barrier.

The SHIM language [12, 13, 25] implements a deter-

ministic message passing model, avoiding the challenges

of making shared memory deterministic, but also forego-

ing the programming convenience of the shared memory

abstraction and requiring programmers to marshal data

into explicit messages. Deterministic Parallel Java [9]

offers shared memory, but requires the programmer to

adopt a new Java type system, and to “prove” statically

via typing rules that parallel code is race-free. Array

Building Blocks [15] promise deterministic parallelism,

but their proprietary nature hampers detailed inspection.

DOMP’s approach has most in common with that of

Determinator [4] and Revisions [10], operating in the

workspace consistency model [3], while supporting a

wider range of naturally deterministic synchronization

abstractions to increase compatibility with legacy code.



3 DOMP Semantics

DOMP builds on OpenMP [20] to offer a parallel pro-

gramming model with both an expressive API and race-

free, naturally deterministic semantics. DOMP retains

most OpenMP core constructs, but excludes OpenMP’s

few nondeterministic constructs. DOMP further extends

OpenMP’s API with deterministic constructs that can re-

place the most common uses of its excluded nondeter-

ministic constructs.

3.1 Retained OpenMP Constructs

DOMP keeps OpenMP’s parallel; work-sharing loop,

sections, barrier; and combined parallel work-sharing

directives. In both OpenMP and DOMP, the parallel

directive and its combined work-sharing variants repre-

sent a fork-join pair enclosing a structured block, creat-

ing and then joining a team of concurrent threads. Un-

der DOMP, however, between any two synchronization

points, no two concurrent threads may write a new value

to the same shared variable (whether directly or through

a pointer); the execution runtime treats such a data race

as an error. Moreover, each thread’s writes to shared

variables remains invisible to all concurrent threads until

the next synchronization point—such as a barrier or the

closing join. These rules guarantee the controlled flow of

data from thread to thread.

The master directive is naturally deterministic, since it

appoints a single thread, the “master” (parent of the other

team threads), to execute the code, and since OpenMP’s

implied barrier at the end controls data transfer to the

team. Since single allows the scheduler to appoint an

arbitrary thread to execute the block, which may differ

from run to run, DOMP makes single synonymous with

master. Moreover, if the programmer disables the im-

plicit closing barrier with a nowait clause, the master’s

changes remain invisible to the team until the next ex-

plicit synchronization point.

3.2 Excluded OpenMP Constructs

DOMP’s semantics excludes OpenMP’s atomic, critical,

and flush constructs as naturally nondeterministic, since

they imply that concurrent threads can have conflicting

memory accesses. But how necessary are these abstrac-

tions? As we shall show in the next section, program-

mers often use them as low-level components of higher-

level, deterministic idioms for which the parallel envi-

ronment lacks suitable abstractions. We have identified

two such idioms in particular, reductions and pipelines,

representing 84% and 16%, respectively, of all invoca-

tions of these constructs in OpenMP code in our survey.

3.3 Reduction

Reductions are aggregate operations across threads; the

result is only visible to the parent after the join, mak-

ing data flow deterministic. OpenMP’s reduction clause

only allows scalar types and simple arithmetic or logical

operators. DOMP has a generalized reduction:

reduction(function : list)

The three arguments and return value of function have

the same type as the variables in list. As in merge func-

tions for revision types [10], the arguments to a DOMP

reduction function correspond to a variable’s state before

the fork, after the fork in the master (parent) thread, and

after the fork in a child thread to be joined with the mas-

ter. The DOMP runtime evaluates a reduction at the join,

in a reproducible order—a postorder binary tree walk—

ensuring both a deterministic result and scalable perfor-

mance without assuming the reduction function is asso-

ciative or commutative.

To find the lexicographically first entry in a list of

strings, we could write the following:

char *f(char *o, char *m, char *t)

{ char *tmp=(strcmp(m,t)<0)?m:t;

return (strcmp(o,tmp)<0)?o:tmp); }

/*... */

first=strings[0];

#pragma omp parallel for

reduction(f:strings)

{ for (int i=1;i<num_strings;i++)

if (strcmp(strings[i],first)<0)

first=strings[i]; }

The runtime invokes f at merge time, after which first

points to the globally first string.

3.4 Pipeline

A pipeline is a sequence of repeated tasks, each depen-

dent on the completion of a cycle of the task before it.

With each task assigned to a different thread, data pass

from thread to thread deterministically as each thread

waits for input, processes it, and passes the output on. To

express this, DOMP extends the sections construct with

a pipeline clause and a required loop. The first section’s

thread starts immediately; each later thread runs its sec-

tion each time the previous section has finished, until the

pipeline is empty:

#pragma omp sections pipeline

{ while (more_work()) {

#pragma omp section

{ do_step_a(); }

#pragma omp section

{ do_step_b(); }

/* ... */

#pragma omp section

{ do_step_n(); } } }



Figure 2: Types and uses of synchronization abstractions

in SPLASH, NPB-OMP, and PARSEC programs.

4 Analysis of Parallel Benchmarks

How crucial are nondeterministic synchronization ab-

stractions to the logic of parallel programs? To find out,

we manually counted invocations of synchronization ab-

stractions in the programs of three parallel benchmark

suites—SPLASH [26], NPB-OMP [17], and PARSEC

[8], choosing OpenMP versions of programs whenever

possible and pthreads versions otherwise. We counted

some matching pairs of events as single instances:

• A fork and its corresponding join

• A lock acquisition and its corresponding release

• A condition variable statement and associated lock

acquisition

If a program duplicated a higher-level abstraction (e.g.,

barrier) with a lower-level fallback for compatibility, we

counted only the higher-level abstraction.

We counted the locations where code invoked the nat-

urally deterministic abstractions fork/join and barrier di-

rectly. Invocations of nondeterministic abstractions—

locks and condition variables, as well as OpenMP

atomic, critical, and flush—we grouped by the idioms

in which they were used, for which we identified four

classes (D = deterministic; ND = nondeterministic):

• Work sharing idioms (D), in pthreads code only

since OpenMP offers work sharing constructs

• Reduction idioms (D), in pthreads code, or code vi-

olating the limitations of OpenMP reductions

• Pipeline idioms (D), as described in Section 3.4

• Load balancing idioms (ND), where an application

schedules tasks to available threads in a pool.

Figures 1 and 2 summarize our findings. “Work-

sharing” idioms occur in pthreads programs, which lack

OpenMP’s higher-level constructs; e.g., they lock a

global integer and save its value as a thread ID for later

task assignment, before incrementing and unlocking it.

Likewise, pthreads code has to use locks to update vari-

ables to achieve the equivalent of reductions.

OpenMP’s reduction constrains type and operation.

Both pthreads and OpenMP lack a high-level construct

to represent a pipeline, having instead to resort to spin

loops and the nondeterministic flush construct (NPB LU)

for synchronization. DOMP’s extensions of OpenMP’s

reduction (3.3) and sections (3.4) will make it easier to

avoid such nondeterministic workarounds.

Only user-level scheduling remains as a genuinely

nondeterministic purpose for synchronization, represent-

ing just 19% of all nondeterministic synchronization in-

vocations, or 7% of synchronization invocations over-

all, and none in OpenMP code. Possible extensions

to DOMP to accommodate such needs are beyond our

present scope.

5 Prototype Implementation

Our DOMP prototype is still in early development, thus

far only supporting the parallel and loop constructs,

without the reduction and pipeline extensions. This capa-

bility is sufficient to explore the feasibility of our design,

based on the working-copies execution model, in a user-

level library. In addition, DOMP already uncovered one

concurrency bug in a well-known benchmark.

5.1 Design

DOMP adopts workspace consistency [3], pairing a de-

terministic synchronization model with a weak mem-

ory consistency model to achieve race freedom. In

workspace consistency, each concurrent thread gets its

own copy of shared state at its creation and operates on

that copy in isolation. The runtime merges changes back

into the parent’s copy when the threads rejoin their par-

ent. At join time, if two threads have independently mod-

ified the same memory location, DOMP defines this sit-

uation as a conflict and handles it as an application error,

comparable to a divide by zero or illegal memory access.

We have modified GCC’s OpenMP support library,

libgomp, with the aim of creating a drop-in, deterministic

substitute for OpenMP. Implementing DOMP this way

introduces certain challenges. Since every thread must

have its own private copy of shared variables, yet every

variable must retain the same address for each thread,

a lightweight threading model such as pthreads will not

serve here as it does in libgomp. In a C-like language,

a pointer variable may refer to an arbitrary location in

memory, so the runtime must merge copies of the en-

tire stack, heap, and static variable segments—excluding

variables modified by the C library, as well as thread-

private stacks and unmapped portions of any segment.

Finally, applications may require a child thread to al-

locate heap storage for a shared pointer to which the
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Figure 1: Invocations of synchronization abstractions in source code of SPLASH, NPB, and PARSEC benchmark

programs, including the naturally deterministic fork/join and barrier and nondeterministic primitives, further classified

by the idioms in which they are used (work sharing, reduction, pipeline, load balancing).

parent has access (and which the parent can free) after

the join, further complicating the task of checking for

data races when merging children’s working copies of

the heap back into the parent’s heap.

As in Grace [7], DOMP uses Unix mmap tricks to pro-

vide deterministic memory behavior with reasonable ef-

ficiency. DOMP implements a special malloc to man-

age the application’s heap deterministically. Internally,

a shared file holds heap space for a thread and its de-

scendants. Children inherit valid heap pointer addresses

from their parents, and a child can allocate its own heap

for a parent’s pointer, which remains valid after the run-

time copies the child’s heap back to the parent’s at the

join. For static variables, we linked labels into the appli-

cation’s object code to mark the start and end of linked

segments relevant for conflict checking and merging.

5.2 Preliminary Results

Figure 3: Performance comparison for DOMP (blue) and

GCC’s libgomp (orange) on matrix multiplication (left)

and PARSEC’s blackscholes (right).

We tested DOMP on simple parallel multiplication

of 2048-by-2048 matrices written in ordinary OpenMP

code and on the PARSEC blackscholes benchmark

(OpenMP version), which compiled equally under stan-

dard and DOMP-enabled GCC. DOMP revealed a race

condition on a shared variable assignment in the pub-

lished blackscholes code, requiring modification. As

Figure 3 shows, our current implementation adds about

10% to the running time over standard OpenMP for the

matrix multiplication workload, but suffers from excess

per-thread overhead on blackscholes. Performance re-

sults of comparable deterministic programming environ-

ments [4, 7, 10] make us optimistic that, with optimiza-

tion, DOMP can achieve good performance.

6 Conclusion

The achievement of reliable, race-free parallel programs

that burden the programmer neither with error-prone

management of low-level sychronization nor with exten-

sive code rewriting or refactoring requires a new deter-

ministic parallel programming model, which Determin-

istic OpenMP introduces. Analysis of standard bench-

marks suggests that DOMP’s feature set can accom-

modate most parallel programming requirements while

maintaining naturally deterministic semantics, and initial

tests suggest that DOMP can be implemented efficiently.
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