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Abstract

Typically, scientists with computational needs prefer to use
high-level languages such as Python or MATLAB; however,
large computationally-intensive problems must eventually be
recoded in a low level language such as C or Fortran by ex-
pert programmers in order to achieve sufficient performance.
In addition, multiple strategies may exist for mapping a prob-
lem onto parallel hardware depending on the input data size
and the hardware parameters. We show how to preserve the
productivity of high-level languages while obtaining the per-
formance of the best low-level language code variant for a
given hardware platform and problem size using SEJITS, a
set of techniques that leverages just-in-time code generation
and compilation. As a case study, we demonstrate our tech-
nique for Gaussian Mixture Model training using the EM al-
gorithm. With the addition of one line of code to import our
framework, a domain programmer using an existing Python
GMM library can run her program unmodified on a GPU-
equipped computer and achieve performance that meets or
beats GPU code hand-crafted by a human expert. We also
show that despite the overhead of allowing the domain ex-
pert’s program to use Python and the overhead of just-in-time
code generation and compilation, our approach still results in
performance competitive with hand-crafted GPU code.

1 Introduction

Domain experts coding computationally-intensive pro-
grams would prefer to work at a high level of abstraction such
as that afforded by scripting languages like Python or MAT-
LAB. However, it is widely accepted that recoding compute-
intensive “kernels” in lower-level languages to express ex-
plicit parallelism can yield one to three orders of magnitude in
performance improvements, creating a tension between pro-
grammer productivity and high performance.

The advent of multicore CPUs and manycore GPUs ag-
gravates this tension: the best parallel implementation of a
particular algorithm now depends on the target hardware and
the specific input data, as evidenced by the fact that auto-
tuning, the automated search of possible implementation vari-
ants and tuning parameters, often yields code that surpasses
the performance of expert-created low-level code [21]. Yet

even when tuning is complete, running the tuned code on a
different hardware platform or a new problem size may result
in unpredictable performance cliffs [10].

The tedious process of code variant selection and parame-
ter tuning works against domain-programmer productivity (if
it is within the domain programmer’s expertise at all). Auto-
tuning libraries such as OSKI [19] and Spiral [18] attempt to
encapsulate multiple code variants and heuristics for choos-
ing among them, as well as heuristics for selecting tuning pa-
rameters for the chosen variant; however, this machinery is
specific to each library and not generally repurposable.

In this paper we show that the mechanism and policy for
variant selection and tuning can be separated from the appli-
cation logic in a way that increases productivity for both the
application programmer and the performance tuning special-
ist. Our framework allows the programmer to express her ap-
plication in a highly productive language (Python). Adding
a single import statement pulls in a set of just-in-time code
generation mechanisms and hides the variant selection logic
from the domain expert programmer, synthesizing the “best”
variant at runtime and giving performance comparable to or
better than hand-coded implementations by a human expert.

Our case study focuses on a computationally-intensive al-
gorithm for training Gaussian Mixture Models (GMMs), a
particular class of statistical models used in speech recogni-
tion, image segmentation, document classification, and nu-
merous other areas. The iterative and highly data-parallel
algorithm is amenable to execution on GPUs; however, de-
pending on the hardware geometry and dimensionality of the
input data (which varies greatly across application domains),
different implementations of the algorithm will give the best
attainable performance.

We briefly describe our case study problem, present four
strategies for parallelizing it onto GPUs, and demonstrate that
the selection of the best variant and the optimization parame-
ters to use with that variant is nontrivial. We then describe our
framework, ASP, that allows this variant selection and code
generation process to be encapsulated in a way that is hid-
den from the domain expert. Without any variant selection,
there is immediate performance gain of three orders of mag-
nitude for realistic problems compared to executing the com-
putation in pure Python. With even a simple variant selection



algorithm, an average of 32% further performance improve-
ment relative to always using a single baseline parallel code
variant is possible, with the best-performing variant surpass-
ing the performance of human-expert-authored C++/CUDA
code. From the domain programmer’s point of view, a one-
line change to any Python program that uses an existing
GMM library suffices to get these performance benefits.

2 Background: GMMs and the EM Algorithm

Suppose we are given audio of a conversation that is
known to feature M distinct speakers. We could repre-
sent each speaker’s speech characteristics with a probabilistic
model. We could then attempt to model the conversation as a
weighted combination of the M models, without knowing in
advance which speaker made which utterances. This example
is the basic idea of a mixture model. To train a mixture model
is to determine the weights and parameters of each of the M
submodels, such that we maximize the probability that the
observed data (the audio track) corresponds to a prediction of
the overall mixture model.

In the case of Gaussian mixture models (GMMs), each
submodel is represented by a D-dimensional Gaussian dis-
tribution of means p; and a D x D covariance matrix ;.
Given N observed data points, each a D-dimensional feature
vector, we need to learn the parameters p;, ; for each sub-
model and the weight parameters 7; for combining them into
the overall mixture model. A common way to learn these
parameters is to use the Expectation-Maximization (EM) al-
gorithm [7]: given an initial estimate of the parameters, the
E-step computes the expectation of the log-likelihood of the
events (i.e. observations) given those parameters, and the M-
step in turn computes the parameters that maximize the ex-
pected log-likelihood of the observation data. These two steps
repeat until a convergence criterion is reached.

Our specializer emits parallelized code for all substeps of
the EM algorithm. We apply additional effort to the most
compute-intensive part of the algorithm (on our GPUs, the
covariance matrix computation accounted for 50-60% of the
overall runtime of the EM algorithm). We compute the D x D
covariance matrix X for each of the M clusters in the M-step
of the training algorithm. As described in [17], the covari-
ance matrix is the sum of the outer products of the difference
between the observation vectors and the cluster’s mean vector
computed in this iteration:
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where p; ; is the probability of point j belonging to cluster
7 and x; is the observation vector.

3 Benefits of Code Variant Selection

The covariance computation exhibits a large amount of
parallelism due to the mutual independence of each cluster’s

covariance matrix, each cell in the matrix, and each event’s
contribution to a cell in the matrix (Figure 1 shows the pseu-
docode for the computation). The three possible degrees of
freedom in data parallelism suggest different strategies for
parallelizing the algorithm on manylane hardware. We found
the optimal strategy depends on the problem parameters (NN,
D, M) as well as certain hardware parameters (e.g. number
of cores, SIMD vector width, local memory size).

We use the platform-neutral OpenCL [13] terminology to
describe our strategies, which are implemented in NVIDIA’s
CUDA language [15]. There are two levels of parallelism:
workgroups are parallelized across cores on the chip, and a
workgroup’s work-items are executed on a single core, po-
tentially utilizing that core’s SIMD vector unit. Each core
has a scratchpad memory, referred to as a local memory.

Code Variant 1 (V1)—baseline: The EM on CUDA imple-

mentation from Pangborn [17]. Launches M x D x %
workgroups - one for one cell for one cluster’s ma-
trix (shown by the first two for loops in Figure 1(V1)).
Work-items correspond to the loop over events (V). The
mean vector is stored in local memory, however only two
values are used (corresponding to the row and column of

the cell the group is computing).

Code Variant 2 (V2): Modifies V1 by assigning each work-
group to compute one cell for all clusters. Work groups
correspond to the loop over D X % cells in the matrix.
Work-items correspond to events as in V1.

Code Variant 3 (V3): Makes better use of per-core memory
by assigning each work group to compute the entire co-
variance matrix for one cluster (M). Each work-item
in the workgroup is responsible for one cell in the co-
variance matrix (D x % items). Each work-item loops
through all events sequentially.

Code Variant 4 (V4-BXX): Improves upon V3 by making
it more resilient to small M by adding blocking across
the IV dimension. Launches M x B workgroups, where
B is a blocking factor, i.e. the number of desired event
blocks. Each workgroup computes the contribution to
its entire covariance matrix for its block of events (%),
followed by a sum() reduction over the partial matrices
across all event blocks (Figure 1(V4) shows the addi-
tional blocking and reduction loops). In this paper we
use two values of B, 32 and 128.

We test all the variants on NVIDIA GTX285 and GTX480
GPUs using a regular sampling of problem sizes to gain an
understanding of the tradeoffs amongst the variants. The
GTX285 has more cores, but the GTX480 has longer SIMD
vectors and better atomic primitives. Figure 2 shows some
example results. Overall, for the space of problem sizes we
examined (1 < D < 36,1 < M < 128,10,000 < N <
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Figure 1: Four code variants for computing the covariance matrix during M step. The computation loops are reordered and assigned to work
groups and items as shown above. The ”Seq” part of the computation is done sequentially by each work item.

150, 000), the best-performing code variant for a given prob-
lem instance gave a 32% average performance improvement
in covariance matrix calculation time compared to always
running the baseline code variant V1. This performance gap
increases further with larger problem sizes, e.g. for (D = 36,
M = 128, N = 500,000) the difference grows to 75.6%.
Figure 2 plots a slice through the 3D space of possible input
parameters, allowing the average runtimes of different imple-
mentations of the covariance computation to be compared.
V1, V3 and V4 with different B parameters are mutually
competitive and show trade-offs in performance when run on
various problem sizes and on two GPU architectures. V2
shows consistently poor performance compared to the other
code variants. The tradeoff points are different on the two
GPUs. While there are general trends leading to separable
areas where one variant dominates the others (e.g. V1 is best
with small D values), we had difficulty formulating a hier-
archy of rules to predetermine the optimal variant because
each hardware feature affects each variant’s performance dif-
ferently. This finding suggests that variant selection cannot
necessarily be reduced to a compact set of simple rules, even
for a specific problem in a restricted domain of problem sizes.

4 SEJITS for GMMs

We have shown that the EM algorithm can be implemented
in multiple ways, and that the best implementation is depen-
dent on both features of the target hardware and the problem
size. Our goal is now to encapsulate these variations and de-
pendencies such that the domain application developer does
not have to reason about them, and equally importantly, so
that the code variant selection (how to do the computation)
can be kept separate from the actual application (what to do),
allowing the application to be performance-portable [6].

We chose Selective Embedded Just-in-Time Specialization
(SEJITS) [8] as the mechanism to accomplish this separa-
tion of concerns. In the SEJITS approach, the domain pro-
grammer expresses her application entirely in Python using
libraries of domain-appropriate abstractions, in this case ob-
jects representing GMMs and functions that can be invoked
on them, e.g. training via the EM algorithm. However, when

these speciaized functions are called, they do not execute
the computations directly; instead, the ASP framework inter-
poses itself and generates CUDA source code, which is then
JIT-compiled, cached, dynamically linked, and executed via
the GPU’s foreign-function interface, with the results even-
tually returned to Python. From the Python programmer’s
view, this experience is like calling a Python library, except
that performance is potentially several orders of magnitude
faster than calling a pure Python library implementation of
the same computation.

ASP [1] is a particular implementation of the SEJITS ap-
proach for Python!. ASP contains facilities to automate the
process of determining the best variant to use, emit source
code corresponding to that variant, compile and call the op-
timized code, and pass the results of the computation back
to the Python interpreter. A specializer is a piece of Python
code that uses these facilities in combination with code tem-
plates expressing the different code variants hand-coded by a
human expert, in our case a CUDA programmer who serves
a similar role to a library developer. Our specializer imple-
ments the EM algorithm described previously, but ASP’s fa-
cilities are general and could be used for very different spe-
cializers; indeed, it has previously been used to specialize
stencil/structured-grid codes on multicore CPUs [1, 8].

Once ASP has been imported into a Python program, it
transparently and selectively redirects calls of certain func-
tions (in our case, GMM functions in the scikit [5] library
API) to the appropriate specializer. From the domain expert’s
point of view, a one-line change to any of her Python pro-
grams that use the existing GMM library suffices to get the
performance benefits we reported in the previous section.

Our GMM specializer actually emits two kinds of lower-
level source code: C++ host code that implements the outer
(convergence) loop of EM training, and CUDA GPU code
that implements the different parallel kernels used during
each EM substep. Code variant selection occurs for one par-
ticular kernel of the training process — covariance matrix cre-
ation in the M-step. We hand-coded templates for the variants
described previously; ASP transforms these templates into
syntactically correct source code via the templating library

IRecursive acronym: ASP is SEJITS for Python
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Figure 2: Average runtimes in seconds of covariance computation variants on GTX480 (left) and GTX285 (right) across D, for N = 90000
and M = 5 or M = 100. Different markers signify different variants’ runtimes. The best variant depends on both the problem size and the
underlying machine. V1 and V2 have a large amount of work-item parallelism while V2 has limited work-group parallelism if D is small. V3
can be limited in both work-group and work-item parallelism if M and D are small. V1 underutilizes the local memory and requires many
streaming reads, whereas V2 and V3 utilize local memory more efficiently and V2 requires a factor of M fewer event data streaming reads
than V1. V4 mitigates V3’s limited work-group parallelism by blocking over N, but requires a global reduction across B work-groups.

Mako [3], and compiles, caches and links them using the
Python extension CodePy [2]. The templates contain place-
holders that are filled in by our specializer, such as the number
of work items launched, number of event blocks and limits on
the number of main loop iterations of the EM algorithm.

ASP’s most powerful capabilities can be used when code
generation requires higher-order run-time information; using
specialization, tuned code instances can be created based on
algorithmic characteristics of a user-defined function, gener-
ating code that cannot easily be encapsulated in traditional
libraries. While this particular specializer does take advan-
tage of run-time information by choosing the variant to use
based on the dimensionality of the GMM problem, it does
not yet perform analysis of any user-specified functions (e.g.
a training function other than E-M).

In general, the specializer has two jobs: variant selection
and intra-variant code optimizations.

Variant selection. Part of our specializer is the variant se-
lection logic. As explained earlier, the best variant to use de-
pends on properties of the input problem data (the size of M,
N, and D). We select a variant by telling ASP to examine
the values of the parameters passed to the specialized func-
tion, and to treat functions with different parameter values as
different functions. The current ASP implementation tries a
different variant every time a particular function/problem size
is specialized, until all variants have been tested. Thereafter,
the specializer remembers what the best runtime was for that
particular function/problem size, and always reuses the asso-
ciated variant’s cached binary. This variant selection method
is naive; future work will attempt to use performance models
or machine learning to make decisions about what variant to
use without exhaustively searching all options. However, the
important observation for the present work is that the mech-
anism and policy for variant selection are well-encapsulated
and can be replaced without touching the original application
source code or the code variant templates themselves.

Intra-variant performance optimizations. In modern
systems, GPUs and CPUs have separate memories, and the

programmer is resposible for copying any necessary data and
results back and forth between them. Since a common use
case is to use the same dataset to train many GMMs (each
with a different number of mixtures M), flushing and recopy-
ing that data (hundreds of megabytes) would be wasteful.
Therefore, our specializer tracks whether the data stored on
the GPU by one GMM module is being reused by a second,
and only lazily flushes the data and replaces it. This is another
example of an optimization that the application programmer
need not concern herself with. A similar optimization is the
use of the PyUBLAS Python extension [4], which allows nu-
merical data structures to be shared by reference between
C++ and Python, eliminating unnecessary value copies.

Note that the logic implementing the above optimizations
is itself written in Python. It is not only kept separate from the
low-level computation kernels and the high-level application
code, but also easier to modify and experiment with since it
can exploit the full facilities of the Python language.

5 Results

There are two metrics by which our framework should be
evaluated: how productive it is compared to a pure Python
library, and how efficient it is compared to a pure C++/CUDA
implementation. We measure the former by implementing
applications from the scikit.learn [5] library’s example code
package on top of our specializer: because we implement the
same API as the existing library, porting these applications to
use our specializer requires only a single line code change.

To measure the overhead relative to a native C++/CUDA
application, we implement Agglomerative Hierarchical Clus-
tering (AHC), an unsupervised training algorithm for speaker
clustering in a speaker diarization application that uses
GMMs to represent different speakers. AHC iteratively per-
forms GMM training many times, using a different number
of target clusters each time and measuring which clustering
is the best. The number of clusters in the “best” GMM corre-
sponds to the number of speakers in the meeting.

We compare the performance overhead of implementing
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Figure 3: Runtime in seconds of the original C++/CUDA imple-
mentation of the AHC application compared to our Python/SEJITS
version at various stages of the specialization process.

the AHC application loop in Python with specialized GMM
training, as compared to implementing AHC in C++/CUDA.
We determine that for a speaker diarazation data set (D: 19,
N: 150000, M: 16 to 1), while there is intially a 81% over-
head due to compiler invocations, future runs of the applica-
tion using the automatically determined optimal code variant
actually achieve a 17% performance improvement over the
original GPU implementation (V1).

Because ASP currently has a naive code variant selection
strategy, it invokes the compiler repeatedly to test the per-
formance of different variants on a particular problem size.
However, the results of this process are cached, and future
calls to the specializer do not have to invoke the compiler.

Figure 3 compares the performance of the original
C++/CUDA code to our Python/SEJITS implementation. We
measure both the runtime of the SEJITS version when the
best version is not cached (which results in compiler invoca-
tions) and subsequent calls (which do not). Once ASP has se-
lected the optimal version of the algorithm to use (V4-B32 in
this case), its performance actually surpasses the C++/CUDA
code. The benefit of using the best code variant outweighs the
overhead of implementing the AHC application in Python.

6 Related Work

Our code kernels build directly on previous efforts to ac-
celerate the EM algorithm using GPUs [14, 17], but we view
our contribution as the methodology and framework for sep-
arating such concerns from the application programmer. The
general concept of providing portable, high performance ab-
stractions for this purpose was pioneered by autotuning li-
braries such as FFTW [11], Spiral [18], and OSKI [19]. These
libraries specialize individual function calls, but are not em-
bedded into a host language, and their auto-tuning machin-
ery does not generalize to other use cases. In contrast, ASP
allows the domain programmer to stay in the host language
(Python) and variant selection can occur at runtime using a
general set of just-in-time code generation techniques appli-
cable to a wide variety of computational kernels.

SEJITS inherits standard advantages of JIT compilation,
such as the ability to tailor generated code for particular ar-
gument values and sizes. While conventional JIT compilers

such as HotSpot [16] also make runtime decisions about what
to specialize, SEJITS does not require any additional mech-
anism for dealing with non-specialized code, which is just
executed in Python. Even specialized functions can fall back
on a Python-only implementation if the specializer is targeted
for different hardware than is available at runtime. Another
example of the SEJITS approach is Delite [9], which auto-
matically maps Domain-Specific Embedded Languages [12]
implemented in Scala onto parallel hardware platforms.

Cython [20] translates annotated Python code into efficient
C code, but lacks support for platform retargeting and re-
quires changes to application logic. In contrast, ASP requires
a one-line application change to “hijack” certain Python func-
tion calls and redirect them to an appropriate specializer.

7 Conclusion & Future Work

The ASP framework encapsulates and facilitates reuse of
two important kinds of resources: handcrafted code tem-
plates embodying particular parallel execution strategies and
variant-selection heuristics for choosing the best template at
runtime based on hardware configuration and problem in-
stance characteristics. Both kinds of resources are often be-
yond the expertise of domain-expert programmers to create;
encapsulating and hiding the mechanisms necessary to reuse
them allows domain experts to focus on productivity without
sacrificing the performance advantages of expert-tuned code.
In particular, changing a single line in the domain expert’s
Python code triggers our specialization framework. This
small “productivity footprint” exploits metaprogramming and
reflection in Python, and could just as well be adapted to other
modern languages possessing these facilities such as Ruby.

Our current prototype uses a naive variant selection pro-
cess, yet also provides performance competitive with hand-
crafted CUDA code. Indeed, we found that the performance
benefit of specialization outweighed the overhead of Python
and the JIT process, allowing amortization of the selection
overhead. Since we have separated out variant selection as a
first-class concern, the same high-level program can be trans-
parently retargeted to other platforms such as multicore CPUs
or the cloud, making the source code performance-portable.
We are working on code templates for these cases. We
also intend to develop a globally-accessible history database
that “remembers” the performance associated with particular
problem instances on a given hardware platform and suggests
code variant choices and tuning parameters for problems sim-
ilar to ones previously solved on similar hardware.

As hardware platforms become more varied and the space
of tuning parameters becomes more complex, productive pro-
gramming will require segregating application development,
code variant selection and tuning parameter selection, so that
experts in the respective areas can address each of the con-
cerns independently. Our ASP framework, as a concrete im-
plementation of SEJITS (Selective Embedded Just-in-Time
Specialization) is a first step in that direction.
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