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Abstract
Modern architectures provide access to many hardware
performance events, which are capable of providing in-
sight into architectural performance bottlenecks through-
out the core and memory hierarchy. These events can
provide programmers with unique and powerful insights
into the causes of performance problems in their pro-
grams, but interpreting these events has been a significant
challenge. We describe a technique that uses data
mining to automatically fingerprint a program’s perfor-
mance problems, permitting programmers to reap the
architectural insights made possible by the events while
shielding them from the onerous task of interpreting raw
events. We use a decision tree algorithm on a set of
micro-benchmarks to construct a model of performance
problems. This extracted model is able to divide a
profiled application into program phases, and label the
phases with the patterns of hardware bottlenecks. Our
framework provides programmers with a detailed map
of what to optimize in their code, sparing them the need
to interpret raw events.

1 Introduction
Broadly speaking, program performance can be neg-
atively affected by two phenomena: poor choice of
algorithms and inefficient or ineffective use of hardware.
Though both algorithmic and hardware-oriented perfor-
mance tuning can be essential to achieve performance
goals, many programmers overlook hardware-oriented
performance tuning. This tendency is encouraged by a
long standing and powerful trend of abstracting hard-
ware: for example, where once programmers had to
be keenly aware of their program’s memory usage or
of the underflow of their computations, now they can
assume practically-unbounded virtual memory and sig-
nificant accuracy even for very small numbers. Many
of the underlying hardware’s resource limitations or
design tradeoffs are opaque by design, which can lead
to suitable programs running correctly but suffering

severe performance degradation from hardware bottle-
necks. As a result of this opacity, identifying and resolv-
ing hardware-based performance pathologies (which we
define as program-level behaviors that abuse bottlenecks
in hardware) can involve a lot of guesswork and ad-hoc
experimentation. The present trend towards multi-core
machines with more elaborate interconnects and memory
hierarchies only exacerbates this problem.

Microprocessor architects have responded to this
problem by providing hardware performance events,
such as those in Intel’s Performance Monitoring
Unit (PMU). These events can provide insights into
how running code is exploiting hardware resources,
and grant opportunities to discover bottlenecks in
key architectural components like the core pipelines,
execution units, memory hierarchy, and interconnects.
Nevertheless, hardware performance events remain only
rarely used by developers interested in performance
tuning. We identify five major reasons for this: (1)
Lack of Standardization. Different manufacturers,
and even different product lines from the same
manufacturer, offer significantly different events. (2)
Poor Validation. Historically, hardware performance
events are not well-validated. (3) Inadequate Tools.
Historically, the tools ecosystem supporting Hardware-
Performance-Monitoring-based performance tuning has
been paltry for all but architectural experts. (4) Poor
Documentation. Performance Monitoring events have
not been well-documented, or have been documented at
a level inaccessible to most users. (5) Lack of Micro-
architectural Knowledge. Most importantly, significant
micro-architectural understanding is generally required
to interpret most events. For these reasons, raw
hardware performance events do not provide an effective
opportunity for performance tuning for most users.

In this paper, we propose a system that can automati-
cally associate patterns of hardware performance events
with program-level performance pathologies. These
micro-benchmarks’ executions are then profiled with



hardware performance events, and the profiles are used
to construct a decision tree. The patterns of specific
hardware performance events during an interval are used
to affix a pathology label to that interval’s execution in
the decision tree. Our mechanism relies on the notion
of hardware performance event fingerprints. Suppose
that during an interval of execution of some application,
there is a hardware-borne performance pathology that
significantly affects performance. This execution will
consequently incur a significant increase of any hardware
performance events associated with the pathology. We
have observed that different executions that suffer from
the same pathologies tend to see a respective increase in
the same set of hardware performance events; we then
call the set of events which thus mark a performance
pathology as its fingerprint. In order to generate these
fingerprints, we employ thirteen expert-generated micro-
benchmarks; each micro-benchmark codifies and repre-
sents a single known pathology.

In order to perform the classification of workloads
based on these fingerprints, we adapt a data-mining
classifier, the decision tree. There are two phases for the
classification: the training phase and the profiling phase.
In the training phase, one decision tree is trained by the
profiled measurements of hardware performance events
generated by our micro-benchmarks. We profile the
micro-benchmarks, collecting the hardware performance
events identified as significant by CFS [6] and gain ratio
[12]. We call the reduced set of the events key events.
In addition, we split the profiled data into segments that
represent durations of execution, which we call time-
slices. We use the time-slices as aggregated points of
data for the decision tree. In the profiling phase, we
use the trained decision tree from the micro-benchmarks
in order to detect performance pathologies exhibited
by target applications. We profile target applications,
collecting the key events, and bin the resulting data into
time-slices. For each time-slice, we then use the decision
tree to classify that time-slice’s behavior against any of
the pathologies which were used to train the decision
tree. The underlying intuition is that similar patterns of
events will occur if both the application and the micro-
benchmark are limited by the same resource bottleneck.

2 Related Works
Modern processors contain hardware to monitor hard-
ware performance events which can be used to provide
detailed information to determine the performance of
applications [4]. Oprofile [10] samples the hardware
performance events, however it has a limited number of
events that can be collected simultaneously. Similar to
the work of Azimi et al. [1], Intel VTune Amplifier XE
[9] supports multiplexing the performance monitoring
hardwares, thus it can simultaneously collect an arbitrary

number of the performance hardware events. Bitirgen
et al. [3] present a framework that manages shared
resources on chip multiprocessors. The framework uses
a machine learning mechanism to formulate a predictive
model of the resource allocation. Curtis-Maury et al. [5]
propose an online performance prediction model via the
identification of parallel application execution phases.
Heath et al. [7] use the hardware performance events
to manage thermal emergencies in server clusters by
emulating temperature. Stoess et al. [16] present a power
management framework using the hardware performance
events in a virtualized environment. Schneider et al. [14]
use the hardware performance events for adaptive opti-
mizations in compilers and runtime systems. Shen et
al. [15] use the hardware performance events to construct
a model of requests of users to a concurrent server
environment. Xu et al. [18] uses data mining to analyze
console logs to detect anomalies in large-scale system.
In this paper, we propose an automated system that
fingerprints the pathological patterns of the hardware
performance events and identifies the pathologies in
applications. The automated discovery of pathologies
will compliment previous research.

3 Design
3.1 Training Phase

Micro-
Benchmarks Pathology Description

Array / LL
Inefficient accesses on array / linked
list incurring heavy cache misses over
L2/L3/Memory resident-working set

Pointer
Pointer chasing accesses incurring
heavy sequential cache misses over
L2/L3/Memory-resident working set

BranchMis Heavy branch misprediction
RS Heavy usage in Reservation Station

FPU Heavy software emulation of floating
point instructions

Table 1: Description of Performance Pathologies Mod-
eled by Micro-benchmarks

Micro-benchmarks
The training phase begins with the construction of

pathological micro-benchmarks. Architecture experts
are responsible for generating the micro-benchmarks that
will be used to characterize known performance patholo-
gies in the decision tree. Once the micro-benchmarks
are constructed, we collect all the hardware performance
events from a run of the micro-benchmarks. Since
the hardware performance event collection mechanisms
are separate from the main execution hardware, the
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Figure 1: The procedural flow. (a) The micro-benchmarks are profiled to determine the most relevant events (key
events). (b) They are profiled again, collecting only the key events. (c) The profiled results are divided into time-
slices. (d) The time-slices are used to construct a decision tree. (b�) To identify those pathologies in application
code, the application code is also profiled with the set of relevant events. (c�) The measured events are divided into
time-slices. (d�) Each time-slice is compared in the decision tree to identify the most relevant pathology.

events can be collected at nearly full execution speed,
without the heavy overhead found in instrumentation
mechanisms such as Pin [11].

Table 1 describes the micro-benchmarks. Each micro-
benchmark features an initialization phase and an exe-
cution phase. The initialization phase sets up any data
the execution may require and it is filtered out because
of irrelevance to the pathology. The execution phase
actually exhibits the pathology, and can be executed
repetitively in order to provide needed execution dura-
tion. Each micro-benchmark is designed to codify at
least one representative pathology as well as the lack
of that pathology, while keeping execution as similar
as possible. In the discussion below, we prepend P to
the bound of the micro-benchmarks (either CPU or Mem)
configured to exhibit their pathology, and prepend N to
the bound configured not to exhibit the pathology. For
example, the micro-benchmark, Array can be config-
ured either to iterate over the working set in a random
order (pathological) or a strided sequential order (non-
pathological).
Array, LL, and Pointer are memory-bound

micro-benchmarks representing pathologies in the
memory hierarchy. By combining the pathologies from
the memory-bound micro-benchmarks, P Mem can
model heavy cache misses on array data or linked-list
data that are characterized by Array and LL. In
addition, P Mem models sequential cache misses raised
by pointer chasing access patterns that are characterized
by Pointer. Since applications may have varying
memory footprints, even the same pathology can show
different patterns of the hardware performance events
depending on the data size. Thus, we collect a range
of different pathologies from memory-bound micro-
benchmarks by adjusting their parametrized working set
size. For instance, Array can characterize at least three
kinds of pathologies, each with its complement. We add
a suffix, L2, L3, or M after the label Mem to indicate a
working set resident in L2, L3, or Memory respectively;
i.e., P Mem L3 for the memory-hierarchy pathology on
L3-resident data.
BranchMis, RS, and FPU are CPU-bound micro-

benchmarks representing the pathologies in core-
pipeline or execution units of CPU. P CPU models



low prediction from branch predictor that characterized
from BranchMis. In addition, P CPU models heavy
stalls from Reservation Station (RS) and heavy software
emulation of floating point instructions instead of
using Floating Point Units (FPU). Since CPU-bound
micro-benchmarks are independent on the working
set size, these micro-benchmarks do not have those
additional labels about the working set size. Note that
the labels given to pathologies (or non-pathologies) here
will be used as classes of the classifications made by the
decision tree; that is, execution of a profiled workload
will be described as P Mem L3 or N CPU.

Key Events Selection
The dimension of the data space consists of hundreds

of hardware performance events, most of which may
be weakly correlated with the performance pathologies,
thus irrelevant to classify the pathologies. Furthermore,
some of the events may be highly inter-correlated with
each other, thus they are redundant. Using all the events
to train a decision tree might result in performance
degradation due to either over-fitting the problem from
redundant events or noise effects from irrelevant events.
For this reason, we can yield a more accurate decision
tree and decrease its training and classification time by
only sampling the set of the events that are strongly
correlated with the performance pathologies and weakly
inter-correlated with each other.

We use CFS [6] and gain ratio [12] in order to select
a set of the hardware performance events that achieves
this goals. If we only pick the events with high gain
ratio, we sometimes have highly inter-correlated events
in the selected set of the events. Thus, we rank the
events according to the heuristics of CFS to filter out
the highly inter-correlated events. First, we choose the
number of events that we want to reduce to. Using
CFS, we select a subset of the events and calculate the
ranking of the events in the subset. If there exist events
not in the subset, they will be assigned the same lowest
ranking. In addition, we also calculate rankings of the
events according to gain ratio. We iteratively remove the
event with the lowest average ranking of both analyses
until we reach the threshold number of the events. In
each iteration, we only need to use CFS to reselect the
subset of the attributes and rank them as the gain ratio of
the events remains the same.

Time Slicing
The performance monitoring hardware triggers an

event when the number of the events overflow a cer-
tain threshold. Thus, the hardware performance events
are easy to represent as aggregated count values. We
aggregate all the measured events into separate time-
slices that are the smallest units representing a phase in
an application. This is important because applications

sometimes consist of multiple phases that exhibit wildly
varying behaviors. In order to detect changes in the
phases, and to classify each phase into a pathology
category, we aggregate the hardware performance events
within time-slices instead of a single interval over the
entire run. The time slicing mechanism increases the
accuracy of the decision tree, not only by splitting the run
into phases but also by providing more training points
per phase. The aggregated events within a time-slice are
normalized by dividing by the number of clock cycles in
the time-slice. With this normalization, the event data
collected from different time-slices can be treated as the
same manner in the decision tree. It should be noted that
not all instructions have lengths of one cycle, but because
we are comparing ratios, multi-cycle instructions should
have no effect on our results.

Our current implementation uses equal duration time-
slices with equally spaced division points. We drop the
last time-slice since it usually has a shorter duration than
the other time-slices. The hardware performance events
that are strongly correlated with a pathology will affect
the aggregated events within the time slices. Thus, there
is high probability that a dominant pathology makes
noticeable patterns of the events and can be identified by
our framework.

Decision Tree

We use the decision tree algorithm to identify the
performance pathologies in applications. The decision
tree algorithm constructs an analytic model that can
fingerprint and classify the performance pathologies.
Each leaf node is labeled as one of the pathology labels.
Compared with other classification algorithms e.g., Sup-
port Vector Machine (SVM) [17] and Neural Network
[13], the decision tree algorithm has two merits: (1) The
model constructed from the decision tree algorithm is
easy to understand, which helps analyze the identified
performance pathologies. (2) The decision tree has
shorter classification times as well as shorter training
times than the above classification algorithms. In our
framework, the decision tree will not be changed, once
it is constructed from the training set. End-users will
not experience the offline training process of the clas-
sification algorithms, therefore long training times are
irrelevant to end-users. However, end-users will use the
constructed classifiers, the low classification times of the
decision tree are preferable.

As shown in Figure 2, our framework constructs a de-
cision tree that can classify the modeled pathologies. We
reduce the number of the pathology classes by combining
the time-slices from separate micro-programs. This
helps to avoid the loss of accuracy of the decision tree by
having too many classes. In addition, it is more resistant
to the over-fitting problem. If we do not remove the
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Figure 2: Abstract View of the Decision Tree.

names of the micro-programs in the pathology label, the
decision tree identifies whether a time-slice resembles
the time-slices from a specific micro-program instead
of identifying a generalized pathology model. Our set
of micro-benchmarks do not represent a complete set
of pathologies. However, we believe that the identifi-
cation coverage and accuracy of our decision tree can
be improved by adding more expert-generated micro-
benchmarks. For our experiments, we apply a popular
decision tree algorithm: C4.5 [12].

3.2 Profiling Phase
The procedures of the profiling phase are shown in

Figure 1.(b�)∼(d�). Users use the key events and the
decision tree constructed in the training phase. Users
collect the key events during profiling runs of a target
application. The resulting profiles are divided into time-
slices. The decision tree can classify the pathological
patterns of the events in time-slices of target applications
as one of the pathology labels. Classification of the
time-slices is done by traversing a path of the decision
tree from the root node to one of the leaf nodes. This
leaf node has been assigned to one of pathology labels
and it will assign the same label to the time-slice. The
traversal of non-leaf nodes is determined by comparing
a splitting value with one of the key events. Once the
performance pathology is identified, the programmer can
make adjustments in the code to mitigate the problem.

4 Evaluation
Our experiments are conducted on a machine with two
2.4 Ghz quad-core Intel Xeon E5620 CPUs, 12G of
memory, 12M of shared L3 cache, and 1M of L2 cache.
The hardware performance events (PMU events) are
captured by Intel VTune Amplifier XE [9] as a kernel
module compiled with Linux 2.6.35. The kernel module
collects the user-level PMU events of the applications
including the execution of the library modules. We
use gcc, g++, and gfortran to compile the micro-
benchmarks and the applications with optimization op-

tion “-O2”. We select 40 of the PMU events as the
key events by the ranking analysis in Section 3.1. The
interval of a time-slice containing all the multiplexing
groups is 400ms unless the CPU changes the base fre-
quency. The working set sizes of the micro-benchmarks
described in Table 1 range from 128KB to 256KB for
L2-resident data, from 4MB to 8MB for L3-resident
data, and from 128MB to 256MB for Memory-resident
data. We experiment with the SPEC CPU2006 integer
and floating-point benchmarks [8] and the PARSEC
benchmarks [2] as target applications.

We perform 10-fold cross-validation to estimate the
classification accuracy of the decision tree constructed
in the training phase. Cross-validation is a broadly ac-
cepted technique used to estimate the classification accu-
racy of a decision tree. It can evaluate the accuracy of the
decision tree which classifies the time-slices from micro-
programs as the pathology labels. We also perform 10-
fold cross-validation to estimate whether the time-slices
from target applications embody sufficient information
to identify unique characteristics of the applications.
Note that this experiment is not used in either the training
phase or the profiling phase in our framework, however
this is useful to understand the characteristics of the
target applications. First, we construct a decision tree
with all the time-slices labeled as the application name
from SPEC CPU2006 applications. Then, we conduct
10-fold cross-validation against the classifications of this
decision tree to determine whether it can discriminate
time-slices from the separate applications. This cross-
validation result can help to understand the consistency
of the patterns in the PMU events among time-slices
which share the same label. If the accuracy of the
decision tree is particularly low on a label, this may
imply the existence of inconsistencies between the time-
slices with that label. That application may include
multiple patterns or phases that cause poor prediction
from the decision tree.

Benchmarks Accuracy CC IC
Micro-benchmarks 99.96% 30939 13

SPEC 97.74% 45932 1049
PARSEC 99.40% 52213 317

Table 2: 10-fold Cross Validation against a Decision Tree

Table 2 shows the classification accuracy of the trained
decision tree trained from the micro-benchmarks, SPEC,
and PARSEC. We denote CC to be the number of
correctly classified time-slices, IC to be the number of
incorrectly classified time-slices, and the accuracy to
be CC

CC+IC . Note that these decision trees are different
from those built during the profiling phase. The classi-
fication accuracy of the micro-benchmarks are slightly
better than that of the applications of SPEC CPU2006



and PARSEC. This result is expected since the micro-
benchmarks are designed to have consistent program
phases. The accuracy result from the applications of
SPEC CPU2006 and PARSEC shows that our mecha-
nism extracts sufficient information to classify the time-
slices from separate applications.

We identified one following pathology using the
classified results. 1917 out of 2822 time-slices
from the canneal benchmark are classified as pM.
The canneal application was shown to exhibit the
pathologies associated with inefficient pointer accesses.
Investigation showed that when canneal read in data
elements from the input data set, it called a function
create elem if necessary() that searched
a map for an element sharing the same name. If
no element existed, it would create a new element
and add that element’s name to the map. It called
create elem if necessary() for every element
in the input data set.

5 Conclusion
In order to identify performance pathologies, we propose
an automated framework that uses micro-benchmarks
developed by architecture experts to model the per-
formance pathologies by exhibiting event patterns for
resource bottlenecks. Our framework selects a refined set
of the hardware performance events that are highly corre-
lated with the performance pathologies. A decision tree
trained with the selected events models fingerprints of
the characteristics of the performance pathologies. The
decision tree is able to identify the performance patholo-
gies in a target application from these fingerprints. With
the PMU multiplexing support and a sufficient set of
hardware performance events, our mechanisms are ap-
plicable to any architectures. We envision future work
encompassing more architectures with different ISA.
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