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Abstract

We introduce a dynamic prioritization scheme for par-
allel traversal of an irregularly structured spatio-temporal
graph by multiple collaborative agents. We are con-
cerned in particular with parallel execution of a sparse or
fast algorithm for, but not limited to, an all-to-all trans-
formation by multiple threads on a multi-core or many-
core processor. Such fast algorithms play an escalating
role as the basic modules to constitute, at increasingly
large scale, computational solutions and simulations in
scientific inquiries and engineering designs. We describe
certain typical features of a spatio-temporal graph, not
necessarily a tree, that describes a sparse or fast algo-
rithm in execution. We show how the proposed dynamic
prioritization scheme utilizes available but insufficient
computing resources in practical and dynamic execution.
We present experimental results with the application of
this scheme to the celebrated fast multipole method.

1 Description of ST-DAGs

The execution of a large-scale computation in the sci-
entific or engineering studies [4, 5, 15, 17, 20] can of-
ten be analyzed and orchestrated as traversing a spatio-
temporal directed graph. Typically, a node in the graph
represents the computation associated with a particular
spatial location, and a directed edge indicates the depen-
dency from a predecessor node to a successor node. A
spatial node at location ri may be visited multiple times
during the course of the computation, such as in an itera-
tive or time-marching procedure. In analysis, we unfold
such a spatial node into multiple spatio-temporal nodes
vik = (ri, k), where the temporal index k is local to
the spatial index i, specifying the kth visit at the same
location ri. This temporal unfolding process results in
a spatio-temporal directed acyclic graph (ST-DAG). We
may further assume that the computation at each node of
a ST-DAG takes equal and hence one-unit time. A node

requiring multi-unit time is expanded into multiple unit-
time nodes. We refer to the nodes without predecessors
or successors as the frontier or terminal nodes, respec-
tively, and to the rest as the interior nodes.

The ST-DAGs we are concerned with include rooted
trees but are not typically or necessarily trees. Specifi-
cally, while the out-degree of nodes in a tree equals to 1
uniformly, we consider the multiple out-degree at a non-
terminal node v, deg+(v) > 1, as a typical character-
ization of many computation problems. A simple and
common example is the pairwise interactions between
a source ensemble, S = {sj}, and a target ensemble,
T = {ti}. Such interactions may be represented by a
matrix-vector product, or a system of linear equations,
y = Ax, where yi, for instance, is the potential at tar-
get ti and xj is the density at source sj . The interac-
tion between sj and ti is specified by Aij = A(ti, sj).
This computation can be represented by a bipartite graph
GB = (S, T , E), where (sj , ti) ∈ E is a directed edge
from sj to ti if Aij "= 0. The number of nonzero en-
tries in the jth column of A is the out-degree of node sj ,
deg+(sj). If deg+(sj) = 1, sj interacts with only one
target, which is not a typical situation.

The ST-DAGs of our interest are mostly evolved from
an initially simple bipartite graph, representing algo-
rithms with reduced arithmetic complexity in terms of
the total number of nodes. The low arithmetic complex-
ity is essential, and in strong demand, for enabling sci-
entific computations or simulations at physically or bi-
ologically relevant scales. Such ST-DAGs encompass
on the one hand sparse computations with introduced
supernodes [12, 14] and on the other hand fast algo-
rithms for dense computations based on various sparse
factorizations or compressive representations. The lat-
ter, with increased and increasing applications, includes
the fast Fourier transform (FFT) [6, 8], the Barnes-
and-Hut (BH) algorithm [1, 2], and the fast multipole
method (FMM) [3, 10, 11].

The fast algorithms, with provably minimal or sub-
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Figure 1: Example of ST-DAGs for the FFT (left, taken from [7]) and the FMM (right).

minimal arithmetic complexity, leave parallelization as
the last resort for further acceleration in computation, but
impose new challenges as well. They have emerged with
complex structures. We illustrate one simple graph for
the FFT in Figure 1a, and another one for the FMM in
Figure 1b. Each consists of multi-layered bipartite sub-
graphs. Neither is a tree. In graph representation, each
can be seen as an aggregation of multiple sparse graphs
stacked and stitched together. In the FMM, the input and
output at an interior node are vector-valued. The FMM
graph becomes highly irregular when it adapts to the spa-
tial geometry and sampling distribution. This irregular-
ity makes it hard to effectively employ parallelization
schemes with regular or stationary patterns in space and
time. And it prompts various structures to study.

We introduce a dynamic prioritization scheme for par-
allel traversing of a ST-DAG, permitting irregular struc-
tures, with multiple threads on a multi-core processor.
We use the FMM as a non-trivial and comprehensive test
of the general strategy (along with other parallelization
schemes specific to the FMM). The dynamic prioritiza-
tion scheme renders the minimal or sub-minimal traver-
sal time with limited resources, not only in the static cir-
cumstance where the resource and computation time per
node do not vary, but also in a dynamic circumstance as
in a practical computation environment. We provide ex-
perimental results to show the effect of the strategy on
parallel FMM performance.

2 The FMM graph

We attempt a graphical description of the FMM in its
combinatorial aspect, pertinent to parallelization. In ad-
dition to its important role in scalable computation, the
FMM is used here as a case study as well as a test of

parallel schemes for its interesting, intrinsic, and com-
prehensive ST-DAG structures. The FMM graph may be
better described by its subgraphs and the operations they
represent.

2.1 The FMM tree

The FMM tree represents a hierarchical partition of a
bounded spatial domain. The root node at the top level,
or level 0, represents the smallest bounding box in Rd,
d = 1, 2, 3, that contains N source and target spatial
samples. A box at level " ≥ 0 is further partitioned
equally along each dimension if it contains more than
a prescribed number of points. Otherwise, the node
associated with the box becomes a leaf node. Nodes
corresponding to empty sub-boxes are pruned from the
tree. With the node-box correspondence, we use node(s)
and box(es) interchangeably. Let "max be the index to
the bottom level. When source and target clusters are
uniformly distributed in the initial bounding box, the
tree is likely full and well-balanced, yielding "max =
O(logN).

Strictly speaking, the FMM tree is a fusion of two spa-
tial partitions in one spatial hierarchy. One partitions the
source ensemble, and the other partitions the target en-
semble, see Fig. 1b for a separated view of the source
and target trees in red and blue colors, respectively.

2.2 Intra-scale bipartite traversal

The FMM represents compressively the pairwise inter-
actions at multiple scales. We describe the bipartite sub-
graph G! at each level " ∈ [2, "max]. The vertex set of G!

includes Vs
! and Vt

! , the respective sets of source and tar-
get boxes in the FMM tree at level ", and the edge set rep-
resents the source-target interactions. A source box Bs
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and a target box Bt at level " are connected by an edge if
(1) Bs∩Bt = ∅, and (2) their parents are near-neighbors,
i.e., with common boundary (see Fig. 1b). The bipartite
interaction subgraphs G! at different levels are disjoint
from each other. When the source and target clusters are
uniformly distributed, G!+1 has 2d times as many nodes
as G! does. Often, the trees are far from well-balanced,
as a result of the adaptation to the domain geometry and
sample distribution. Each of the bipartite interaction sub-
graphs is subsequently irregular. In the FMM nomencla-
ture, the traversal operations on the scale-level subgraphs
are referred to as the multipole-to-local translations, de-
noted by TML (see Fig. 1b).

The source tree, target tree, interaction graphs, and
their inter-connections constitute the FMM graph.

2.3 Inter-scale tree traversal

Besides its precise analysis on accurate computation, the
FMM surpasses also in arithmetic complexity the so-
called tree codes (such as the BH algorithm) by intro-
ducing inter-scale translations. The FMM computation
traverses the source tree, the interaction graphs, and the
target tree in the following partial ordering. (1) Upward
traversal on the source tree, up to level 2. Every leaf
node in the source tree computes and renders a vector-
valued output data, namely, the multipole expansion co-
efficients. A non-leaf node accumulates and translates
data from its child nodes into its own multipole coeffi-
cients. Such upward inter-scale operations are known as
the multipole-to-multipole translations, denoted by TMM

(see Fig. 1b). (2) Bipartite traversal of the interaction
subgraphs G!, namely, the multipole-to-local translations
TML, as described in Section 2.2. (3) Downward traver-
sal of the target tree. At level " > 2, every node gets
the local coefficients at its parent, merges them with its
own at level ", and makes the integrated results avail-
able to its child nodes or residing target locations. These
downward inter-scale operations are known as the local-
to-local translations, denoted by TLL (see Fig. 1b). By
their spatial relationships, the levelwise interaction sub-
graphs are overlaid at the tree nodes in the data structures
of many FMM implementations.

At any non-leaf node of the FMM tree, the traver-
sal operations follow the same dependency order: up-
ward, horizontal and downward. A naive way to sat-
isfy the dependency constraints at all the spatial nodes
is to carry out the computation in three synchronized
stages. It is, however, customary in the sequential FMM
implementation that the horizontal operations are inter-
leaved with the downward operations. A parallelization
from such a sequential ordering would be very limited in
performance by the obscured concurrencies. Although
the concurrency among the upward or downward tree

traversal operations are well understood and exploited,
the multiple-way concurrency across the upward (TMM),
horizontal (TML) and downward (TLL) traversal opera-
tions had been waiting for long to be exposed and ex-
plored. The dynamic prioritization approach we describe
in the next section allows us to exploit efficiently such
multi-way concurrency with various and irregular spatio-
temporal structures.

3 Dynamic prioritization

The objective of parallel traversing a ST-DAG is to reach
the shortest time possible under certain constraints. We
shall discuss first on the minimal-time parallel travers-
ing in an ideal, constraint-free situation where we have
sufficient resources to employ at our disposal and we are
assisted by a mechanism that invokes the computation
at a node the instant its input data become available. We
then introduce a dynamic prioritization scheme for paral-
lel traversal subject to a resource constraint and dynamic
variation in computation time among the nodes.

3.1 Absolute ranking

The shortest time in the constraint-free case can be
achieved by following a simple data-driven rule. The
frontier nodes start computation immediately and uncon-
ditionally, which are removed together with their inci-
dent edges upon the completion of their computations.
In the reduced ST-DAG, nodes with available input data
become the new frontier nodes and start their compu-
tation, and so on. The latest time step among all the
terminal nodes in the original ST-DAG is the absolute
shortest time. The predecessors of the final-step terminal
nodes are time critical. Within the same period, how-
ever, it is not necessary to start every non-critical node
at the earliest possible time. In the constrained situation,
as we shall show shortly, we utilize the slack period at
any non-critical node between the time its input becomes
available and the latest time the computation must start.
To this end, we define the absolute node ranking as fol-
lows. Adopting Hu’s methodology [13], we introduce
an artificial sink node to the graph under consideration
as the sole successor to all the original terminal nodes.
The absolute rank of a node v is the length of the longest
path connecting v and the sink node. With this ranking
system, one can invoke the nodes of the highest ranks
among the frontier nodes at any given time while main-
taining the shortest time in parallel traversal.

We define also the unconditionally sufficient number
of processing elements (PEs) as the maximal number
of nodes in concurrent computation at any time, across
all possible schedules for parallel traversing in the abso-
lutely shortest time.
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Figure 2: Parallel traversing with (left) or without (right) the dynamic prioritization on a non-tree DAG with P = 3
(top), on a tree with P = 3, 4, 2 (bottom), respectively.

3.2 Conditional ranking and prioritization

Parallel computation in a practical environment is subject
to limited resources, such as the number of PEs and vari-
ation in latency due to memory accesses, thread switches,
time sharing, and etc. The constrained minimization in
traversal time is further complicated on highly irregular
graphs. We introduce in this section the concept of adap-
tive ranking among the frontier nodes.

Assume first the resource constraint. The number of
available PEs, P , is far smaller than sufficient for the ab-
solutely shortest time case. At any step, however, when
there are no more than P frontier nodes, the frontier
nodes are served all at once, just as in the constraint-
free situation. Otherwise, the nodes of higher ranks are
served first.

Consider the case there are two frontier nodes u and
v of the same rank, but only one of them can be served
together with the other P−1 nodes of higher ranks. A
random tiebreaker is a candidate policy for utilizing the
parallel capacity at the current step. However, it is not an
optimal policy for any DAG towards the shortest time un-
der resource constraint. It is necessary to look ahead and
maximize the number of frontier nodes at the next steps,
which influence the subsequent steps. We want to main-
tain maximal degree of concurrency at any and all steps.
We are also concerned with the execution dynamics. The
set of the frontier nodes deviate substantially due to the
dynamics which we shall discuss shortly in Section 3.3.
We associate each frontier node c with an ordered pair,
〈d−m(c), ns(c)〉, where

d−m(c) = min
(c,d)∈E(G)

deg−(d). (1)

When d−m(c) = 1, ns(c) equals to the number of direct

successors of c with in-degree 1. That is, c is the only
node in the way to release and enable these successor
nodes. Otherwise, ns(c) equals to the out-degree of c,
deg+(c). The completion of c makes its successors one
step closer to the front. Back to the selection between
equal-ranked nodes u and v for service by one available
PE. We give u a higher priority if

〈d−m(u),−ns(u)〉 < 〈d−m(v),−ns(v)〉 (2)

in the lexicographical order. A random selection breaks
the tie in (2). Suppose u is chosen. Upon u’s com-
pletion, each of its direct successors decrements its in-
degree by one. The ranking criterion (2) may seem coun-
terintuitive in the case d−m(u) = 1, as opposed to the
case d−m(u) > 1. They are consistent in that we deal in
the former case with immediate node release in order to
maximize the concurrency at the very next step, and in
the latter case, with the greatest reduction in parallel de-
pendency for maximizing the concurrency in the future
steps.

We illustrate in Fig. 2 the distinction between the dy-
namic prioritization scheme, to the left, and that by static
ranking and random tiebreaker, to the right. The remain-
ing portion of the same DAG in the final two traversal
stages (in the constraint-free sense) is shown, without
drawing the sink node explicitly. Nodes a, b, c, and d
are of the same absolute rank. With P = 3, only three
nodes can be served at the current step. Two schemes are
compared. The scheduling on the left follows the adap-
tive ranking (2), see the three-step assignments enclosed
in the red, blue, and brown curves with marked order-
ings. When the first assignment uses a random selection
instead, oblivious to its impact on the concurrency de-
gree in future steps, the same work takes four steps to
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complete, as shown on the right, in the red, blue, brown
and green curves. Consider the case that the DAG is a
tree. When the number of PEs remains constant, the pri-
ority scheme by the adaptive ranking (2) is as good as
the random tiebreaker. When the number of PEs varies
in the course of traversal, however, the adaptability in (2)
shows its advantage, see the comparison at the bottom of
Fig. 2, where the available PEs increase from 3 to 4 and
then drop to 2. Detailed analysis will be provided else-
where. We remark that the problem of parallel traversing
a DAG of N nodes in the shortest time, with the number
of PEs constant or varying, is in general NP-complete,
see [18].

3.3 Adaptability to traversal dynamics

The ranking and prioritization scheme described above
is adaptable, in a straightforward way, to practical situa-
tions with multiple sources of dynamics. Among others,
the computation at the nodes may be asynchronized or
non-systolic, the latency in memory accesses is not uni-
formly distributed, the input to a high-ranked node may
not be made available prior to that of a low-ranked node,
and the number of available PEs may fluctuate during
the course of traversal. We use the Pthreads library [16]
in implementation. The scheme is friendly to thread dy-
namics in creation, switching and termination. It is exe-
cuted by all participating threads in collaboration, using
priority queues, without reserving one for central control.
We also leverage the release-relay property in the thread
management. Once created, a thread moves, upon com-
pleting the computation at the current node, to another
frontier node of top priority, as long as the set of frontier
nodes remains non-empty.

4 Experimental results and discussion

The experiments were carried out on a workstation with
two 12-core AMD 6168 processors and 64GB memory.
We used the system function pthread set affinity np to
select and activate a partial or the entire set of the cores
for evaluating scalability. For the numerical task, we
computed the pairwise interactions of N particles gov-
erned by the Yukawa potential e−λr/r using the FMM,
where r is the Euclidean distance between two interact-
ing particles and λ is a modest positive constant. Parti-
cles were randomly distributed within a normalized unit
cube in R3. The top bar chart in Fig. 3 shows parallel
efficiency in the weak scaling aspect, namely, the ratio
between the problem size N and the number of cores P
remains constant. The ordinate axis is the parallel effi-
ciency. We used as the base line the sequential code [19],
one of the best in practical use. We present two cases.
The ratio is 3.75E6 for 3-digit accuracy, shown in blue
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Figure 3: Parallel efficiency in weak (top chart) and
strong (bottom chart) scaling aspects.

bars, and 6.25E5 for 6-digit accuracy, shown in red bars.
The parallel efficiency remains above 90% in each case,
in the presence of thread overhead. Without the dynamic
priority scheduling, the parallel efficiency was above
90% up to 8 cores but dropped to 60% with 24 cores.

The bottom bar chart shows the parallel efficiency in
the strong scaling aspect, with the number of cores in-
creasing from 4 to 24, while keeping the problem size N
at 1.5E7. We show two cases. The first, shown in blue
bars, attains 3-digit accuracy. The second case, shown in
red bars, reaching 6-digit accuracy, maintains above 90%
parallel efficiency, as it involves more numerical opera-
tions at each and every computation node in response to
a higher accuracy requirement. The first case lacks com-
putation work to keep all 24 cores busy most of the time.
This is in part caused by the operation aggregations to
counterbalance the overhead in thread management. The
balance between the granularity in concurrent operations
and the overhead in thread management is delicate.

This work on parallel FMM is preceded by many re-
lated works over the last two decades, from the first
and insightful one by Greengard and Gropp [9] to the
most recent and spectacular implementation and appli-
cation by Rahimian et al [17]. The exploitation of multi-
way concurrency in the FMM and the application of the
dynamic prioritization in this work seem new and lead
to significantly improved parallel performance on multi-
core processors.

The authors thank the referees for their critical and
constructive comments on the initial manuscript.
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