
USENIX Association

Proceedings of the
Java™ Virtual Machine Research and

Technology Symposium
(JVM '01)

Monterey, California, USA
April 23–24, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Mostly Accurate Stack Scanning

Katherine Barabash
IBM Haifa Research

Laboratory
kathy@il.ibm.com

Elliot K. Kolodner
IBM Haifa Research

Laboratory
kolodner@il.ibm.com

Janice Shepherd
IBM T.J. Watson Research

Laboratory
janshep@us.ibm.com

Niv Buchbinder
IBM Haifa Research

Laboratory
nivb@il.ibm.com

Yoav Ossia
IBM Haifa Research

Laboratory
yossia@il.ibm.com

Ron Sivan
IBM Haifa Research

Laboratory
rsivan@il.ibm.com

Tamar Domani
IBM Haifa Research

Laboratory
tamar@il.ibm.com

Shlomit S. Pinter
IBM Haifa Research

Laboratory
shlomit@il.ibm.com

Victor Umansky
IBM Haifa Research

Laboratory
victoru@il.ibm.com

Abstract: The Java Virtual Machine (Jvm) needs, for the
purpose of garbage collection (GC), to determine the data
type stored in every memory location. Jvms that can do
this reliably are said to be type-accurate (TA). Full type-
accuracy usually exacts a price in performance due to the
need to scan stacks and registers accurately. The mostly ac-
curate approach presented here can reduce the TA overhead
significantly by sacrificing accuracy for the small minority
of memory locations that add the most to the cost. Per-
formance results show that mostly accurate stack scanning
performs as well as conservative stack scanning and that
relatively few objects are identified conservatively.
In addition our implementation is designed to support and
generate type maps for any verifiable bytecode stream (in-
cluding combinations that are unlikely to be produced by a
compiler) without requiring rewriting of the bytecode. We
introduce a new compression technique for type maps that
uses a program-friendly format for the maps; yet, achieves
good compression and provides fast opening of compressed
maps. We show how to apply systematic testing techniques
and test coverage tools to an accurate stack scanner.

Keywords: Jvm, type accuracy, garbage collection.

1. INTRODUCTION
For Java Virtual Machines (Jvms) the unequivocal identi-
fication of references at run time may be difficult. This is
mainly a problem for the task of Garbage Collection (GC),
mandated by the Jvm Specification [29], which needs to
make such determinations.

In a commonly used solution, known as conservative GC
[10], any value that could possibly signify a reference is
treated as one; this includes both values in objects and val-
ues on the stack. While avoiding the danger of ever missing
a reference, conservative GC runs the risk of considering
values that are actually integers or irrelevant, thus retain-
ing garbage. Moreover, this approach is incompatible with
schemes that move objects, since when a value used as a ref-
erence is not guaranteed to be one, updating it (as would be
necessary if the object it points to is relocated) could have
disastrous effect if in fact the value was not a reference.

Another approach, often described as conservative with re-
spect to the roots [8], scans the stacks and registers conserva-
tively, but uses type information associated with the objects
to scan them accurately. This approach is used widely in
Java Virtual Machines, where the run time is implemented
in C, e.g., the Sun Classic JVM [12] and IBM’s Developer
Kit [25]. In these Jvms scanning the stacks accurately is
difficult, as C compilers do not typically produce type infor-
mation for the stack frames they generate. However, type
information is readily available for object slots. The conser-
vative with respect to the roots approach, while retaining
less garbage and allowing object relocation, complicates the
use of copying GC [11], compaction, and algorithms such
as generational scavenging [27, 40, 32] and Train [24, 36],
which rely on copying. Nevertheless, there is a range of GC
techniques available that do not require that all objects be
relocatable, e.g., [8, 9, 33, 15, 13, 16, 35].

A third approach is type-accuracy (TA) [14], where the lo-
cation of all references, both in the roots (stacks and reg-
isters) and objects, can be determined with certainty. TA
for stacks and registers is generally obtained by producing
type maps for methods, and using these maps to interpret
stack frames as they are scanned by GC. This approach is
also widely used in Jvm implementations [23, 5, 17, 26]. It
is often considered the most technologically advanced of the
three approaches since it allows all objects to be relocated
and retains the least amount of garbage.



As appealing as TA sounds, it comes with a performance
and a complexity price, especially for Java in server environ-
ments where applications are highly multithreaded and may
make frequent transitions into native code, e.g., to enable
access to legacy code. In a multithreaded environment all
threads must be stopped for GC at safe points, execution
points where type information for volatile structures such
as stack frames and registers is available. GC safe points
are typically placed at invocation sites and on backward
branches in loops. Thread stopping is usually done through
polling or code patching. Agesen [2] found that polling has
a high performance overhead and that code patching is more
efficient for single-threaded programs. However, code patch-
ing is complex and its performance is not likely to scale in a
highly multithreaded environment, where every thread may
potentially need to be patched. Stichnot et al. [39] report
that the amount of space required to save type informa-
tion for every compiler generated instruction for Java code
can be kept manageable using appropriate compression tech-
niques. This would avoid stopping overhead by allowing a
thread to stop at any point in Java code. However, it re-
mains to be shown that this approach performs well, as the
compression/decompression algorithms are likely to be time
consuming, and that it extends to handle native code where
no maps are available.

Transitions from Java methods into native code require the
saving of non-volatile registers. This is because compilers for
native code, e.g., for C, do not generally keep track of type
information or where registers are saved in stack frames.
Frequent saving of non-volatile registers may also hurt per-
formance. Dealing with registers may also present other
problems. In particular, not all platforms allow the regis-
ters of a stopped thread to be updated by a non-privileged
thread. This may be required in case registers contain ref-
erences to objects that have been relocated.

1.1 Our Contribution
We propose a fourth approach, that is mostly accurate with
respect to the roots. It is a pragmatic approach that has the
potential to deliver a high degree of type accuracy, thereby
reducing retained garbage and the number of non-relocatable
objects, while incurring little or no performance overhead as
compared to conservative stack scanning. It is also signifi-
cantly less complex than full accuracy, as it does not require
complicated schemes for stopping threads or for identifying
all frames on the stack.

In principle, mostly accurate stack scanning applies accu-
rate scanning only to frames where it is easy and fast to do
so, and scans the remaining frames conservatively. Thus,
threads are no longer required to be stopped at GC safe
points but may be stopped anywhere, at the price of a con-
servative scan of the most recent frame on the thread’s stack.
Most other frames are expected to be at invocation points
and therefore remain candidates for accurate scanning. Of
those, frames whose type information is complicated to ob-
tain (e.g., native code frames) are also scanned conserva-
tively. Our implementation also does not pay the cost for
saving non-volatile registers before transitions into native
code. This does not incur an additional loss of accuracy
since native code frames are scanned conservatively in any
case.

We implemented a mostly accurate scanner, replacing the
conservative stack scanner in a prototype version of IBM’s
Developer Kit for Windows NT that is compatible with Java
2. The GC in this Jvm is a stop-the-world parallel mark
and sweep collector, which compacts only when necessary.
We compared the performance of the mostly accurate scan-
ner with the conservative scanner. Our results confirm that
mostly accurate scanning performs as fast as conservative
scanning and reduces the number of objects that are identi-
fied conservatively.

We also used several interesting techniques applicable to
other implementations of type-accuracy. Our implementa-
tion of accurate stack scanning is designed to support and
generate type maps for any verifiable bytecode stream (in-
cluding combinations that are unlikely to be produced by a
compiler) without requiring rewriting of the bytecode. It is
based on the scheme first used by Jalapeño [6, 5]. In ad-
dition, we introduce a new compression technique for type
maps that uses a program-friendly format for the maps; yet,
achieves good compression and provides fast opening of com-
pressed maps. Finally, we show how to apply systematic
testing techniques and test coverage tools to an accurate
stack scanner.

1.2 Outline
Section 2 presents our overall approach to scanning stack
frames accurately and describes which frames we scan ac-
curately and which frames we scan conservatively. Sec-
tion 3 discusses map generation for interpreted Java meth-
ods. Section 4 describes how we store and compress the
type maps, and provides performance results for our com-
pression scheme. Section 5 shows how systematic testing
techniques can be applied to accurate stack scanning. Sec-
tion 6 presents performance results for our prototype im-
plementation of mostly-accurate stack scanning. Finally we
conclude in Section 7.

2. MECHANICS OF TYPE ACCURACY
The task of running a Java program can be split in the Jvm
into several subtasks that together do the job correctly and
efficiently. Type accuracy is achieved by a combination of
means and techniques which collectively cover the various
subtasks and the many cases within them that need to be
handled. First we briefly review the mechanics of TA in
general. Then we describe which parts of the stack we scan
accurately and which conservatively.

2.1 Type Accuracy
References to objects can occur within other objects or in
volatile execution structures: stack frames and machine reg-
isters. References within an object are documented by the
class of the object. GC uses this information recorded in
the class to accurately scan object instances. Comparable
descriptions of volatile structures must be generated specifi-
cally to support TA. These descriptions often take the form
of type maps which indicate which stack slots and machine
registers contain a reference at a given execution point of a
given method.

The Jvm subtasks may be broadly categorized as follows:

• Interpretation of Java bytecode.



• Execution of Just-In-Time compiled Java code (JITted
code).

• Execution of non-Java (native) code.

• Jvm services, such as object allocation, class loading,
JIT compilation and GC.

Type maps for frames of interpreted bytecode are generated
by analyzing the bytecode itself; we describe map genera-
tion in detail in Section 3. Type maps for compiled code are
generated by the JIT compiler as part of its compilation pro-
cess. Non-Java methods (native code) are expected to abide
the Java Native Interface (JNI, [30, 31]) that closely controls
the usage of references. References are generally kept out-
side the reach of native code, and JNI provides mechanisms
for tracking them in the few exceptions where they are not.
Finally there are Jvm services, which are routines written
in the implementation language of the Jvm, in our case, C.

Scanning of volatile structures is done using the following
elements:

1. stack scanner

2. frame traverser

3. type map repository

4. type map generator

GC calls upon the stack scanner to scan the stacks. The
stack scanner resorts to the frame traverser to walk the stack
one frame at a time and to determine its particulars: which
of the subtasks above owns the frame, what method is it ex-
ecuting and where is the execution of the method stopped.
Based on the method and the point within its execution, the
stack scanner attempts to obtain a type map for the frame
from the repository. Type maps are normally available for
compiled methods since the JIT compiler deposits maps for
every method it compiles. If the method is interpreted and
its maps are not yet available in the repository, the stack
scanner invokes the map generator to create maps for the
method and then saves them in the repository for possi-
ble future use. Note that in the case of interpreted code,
this arrangement results in maps being calculated only for
methods that are active at the time of GC. Once a map is
available, the stack scanner can identify the slots containing
references and report them to GC.

2.2 Mostly Accurate Stack Scanning
The frame traverser is able to recognize stack frames for Java
methods, whether interpreted or JITted. Accordingly, our
mostly accurate stack scanner scans all frames belonging to
interpreted and JITted methods accurately, except for the
most recent frame on the stack of each stopped thread. All
other frames, which are just the regions on the stack between
groups of Java frames, are scanned conservatively. Thus, the
stack scanner does not differentiate between frames belong-
ing to native methods and Jvm services.

3. GENERATING TYPE MAPS
The type map generator for the interpreter analyzes the
bytecode of a method and produces maps for any execu-
tion point at which GC could occur. Below we provide an

overview of the type map generator. We adopted the ap-
proach used by Jalapeño [5], which does not require rewrit-
ing of bytecode. Then we briefly discuss maps for JITted
methods.

Since the use of slots in a stack frame could change during
the course of execution of a method, maps depend on the
point of execution. Conceivably, the layout of the frame
need not be unique even at a specific execution point, but
could depend on the history of execution. However, due to
the Gosling property [19, 4], which holds for Java bytecode,
except for jsr subroutines (discussed below), and is verified
at class load time, the stack frame structure is normally
independent of the execution path. This allows the use of a
basic algorithm, similar to the one used for verification[29,
Section 4.9], consisting of three steps:

1. The bytecode for a method is split into basic blocks.

2. An iterative algorithm computes the type map for the
start of each basic block.

3. The maps for the GC points (e.g., invocation points,
allocation points) within each basic block are calcu-
lated.

3.1 jsr Subroutines
The jsr and the accompanying ret bytecodes are a source
of difficulty for generating type maps since their semantics
permits a violation of the Gosling property. This bytecode
pair is used to declare an inner subroutine within a method,
which does not have its own frame. Java compilers use jsr
subroutines to control the flow from a sequence with many
exits into a sequence that must be executed regardless of
the exit taken, e.g., a finally clause, or the release of the
lock at the end of a synchronized method. Semantically,
jsr is an intra-method branch instruction just like the goto
bytecode, except that it also pushes a return address (the
offset of the bytecode following the jsr) onto the operand
stack. If that address is subsequently stored in some local
variable, the ret bytecode can be used to jump back to the
point from which the subroutine was called.

Various restrictions apply to jsr subroutines: they may be
entered only via a jsr and may not call themselves recur-
sively. However, there is no restriction on the contents of
local variables that the subroutine does not reference. As
a result, the same local could contain a reference at some
invocations of the jsr subroutine and a non-reference at
others (see Figure 1). This will not disturb the execution of
the subroutine, but if it is stopped for GC and the types of
its frame slots are needed, the state of that local could be
indeterminate.

3.2 Solution For jsr
A solution, adopted here from the work done on the Jalapeño
project [5], postpones the generation of the map until run
time, when the actual path the execution has taken is known.
The generator prepares two kinds of maps in advance: final
maps and change maps. A final map is a bit array where
each bit is associated with a stack frame slot. Slots expected
to contain a reference (ref) have their bits set. A change
map consists of two bit arrays that together represent the



local3 is set to
non-ref

jsr 
�

local3 is set to
ref

jsr 
�

local3 is used
as ref�

local3 is used
as non-ref�

local3 is not
referenced

ret 

GC
�

jsr Subroutine
�

Figure 1: jsr subroutine where the Gosling property could be violated: the contents of local3 at the time of
GC may depend on the history of execution.

merge a with a final map with another change map
change map non-ref ref to-non-ref to-ref neither

to-non-ref non-ref non-ref to-non-ref to-ref to-non-ref
to-ref ref ref to-non-ref to-ref to-ref

neither non-ref ref to-non-ref to-ref neither

(a) (b)

Table 1: Rules for merging a change map with (a) a final map and (b) with another change map

difference between two states of the stack frame, and hence
between two final maps. One array, to-ref, indicates the
locations that have changed to contain a reference, and the
other, to-non-ref, indicates changes to a non-reference. A
change map C can be merged with a final map F to obtain
a new final map F ′, representing the state of a stack frame
after applying the change described in C to the state de-
scribed in F (see Table 1 (a)). Two change maps can also
be merged, producing a new change map which describes
the result of applying them consecutively (see Table 1 (b).
Note that this merge operation is not commutative.)

Within jsr subroutines the map generator calculates change
maps, which reflect the changes from the beginning of the
subroutine to the point for which the map was made. In
addition, the map contains the location at which the return
address provided by the jsr is kept. At run time, the Jvm
retrieves the return address and uses its actual value to de-
termine which jsr actually invoked the present subroutine,
and obtains another map from there. If the latter map is a
final map, merging the two maps yields a final map which
correctly describes the present frame. If the map at the site
of the jsr is a change map as well, (probably due to nesting
of jsr subroutines), merging the maps produces yet another
change map. The procedure is repeated recursively until a

final map is obtained.

Finding the return address is not always simple. Normally, a
jsr subroutine begins by storing the return address in some
local and using that local in the ret at the end. However,
verifiable code in general need not be this simple, and the
return address could at times be rather elusive:

• A subroutine may store the return address in a local,
but not at the very beginning of its execution. Conse-
quently, the return address may still be on the operand
stack when a map is required.

• The subroutine may dup the return address and use the
duplicate, rather than the original value, for returning.

• The subroutine may discard the return address alto-
gether, but then it may no longer return, and in effect
it is no longer a subroutine.

• In case of nested subroutines, there are two return ad-
dresses in effect at the same time. The inner subrou-
tine may swap the two values if they are adjacent on
the operand stack. This could confuse the recursion
process described above, as the map for the outer sub-
routine could specify a return address location, which



is not the right one after the swap. This is an esoteric
case that was discovered during the course of map test-
ing, which is described in Section 5.

Much of the complexity in implementing the map genera-
tor centered on the tracking of the return addresses for jsr
subroutines.

3.3 Maps for Compiled Methods
Maps are generated for compiled methods as well. Unlike
interpreted methods that are produced on demand, maps
for compiled methods are created by the JIT compiler as a
byproduct of the compilation. The maps are then kept in
the repository until they are needed. Producing them on
demand would essentially require recompiling the method
and would be too costly.

Compiled methods also have to deal with various aspects of
the architecture that are shielded by the interpreter. Non-
volatile registers (NVRs) are one such aspect. To abide by
the calling convention, a method must save an NVR in its
frame before its first use of the NVR and restore the NVR
before returning. However, the method saving the NVR can-
not know the type of its value. To overcome this problem,
each map contains information both about what values its
method places in NVRs on the one hand, and which NVRs
it saves and where on the other. The stack scanner can
intersect content information from one map with storage
information from another as it traverses the stack, and so
determine which slots used for saving NVRs actually contain
references.

Another issue is that of untidy references, i.e., references
which do not point to the top of objects as canonical, or tidy,
references do. Untidy references are generated by the com-
piler when optimizing access to arrays, for example. Each
type map contains a list of all such references if any exist in
the frame, together with how they are dependent on the cor-
responding tidy references (see [14]). The stack scanner is
again responsible for updating any untidy references when-
ever any of the tidy ones they depend on get modified in the
process of GC. Our current implementation does not handle
untidy references yet and instead scans them conservatively.

When compiled methods are concerned, the normal relation-
ship of one frame per each active method may no longer hold.
For example, there are cases where additional frames are in-
jected between those of otherwise adjacent methods. This
is done when incompatible calling conventions require refor-
matting of the arguments, or when a method switches from
being interpreted to being compiled. These extra frames
may also contain references, but for the most part are cur-
rently scanned conservatively.

3.4 Related Work
The challenge of generating type maps in the presence of jsr
was first described by Ageson et al. [3, 4]. They solve the
problem by splitting the problematic variables in two, one
for the reference type and the other for the non-reference
type. This requires rewriting of bytecode. Since there are
size restrictions on a method’s stack and the bytecode, this
solution will not always work.

Another solution [1] maintains tags for ambiguous variables
that indicate their current type at run time. This requires
code to initialize and maintain the tags, and incurs an over-
head upon method invocation and with each update of the
affected variables.

A third approach [39] is similar to the one used in Jalapeño
[5], which was described above. It also makes compile-time
information available to the Jvm, which can then apply run-
time knowledge to determine the true type of ambiguous
variables.

4. REPOSITORY FOR MAPS
Generation of type maps for stack frames raises the need for
map management. Although maps could be generated on
demand each time one is required, such an approach would
be wasteful and would hurt performance. A map, once cre-
ated, is kept in a repository for possible future use. This
section describes the repository and the compression tech-
nique it uses.

4.1 Requirements
Maps for interpreted methods are calculated on demand.
Maps for JITted methods are produced as a byproduct of
the compilation process. Each method may have multiple
maps associated with it that are all produced at one time.

Type maps, in addition to indicating which slots of the frame
contain references, provide information necessary for proper
interpretation of the frame at run time. Some fields of the
map fit in fixed sized fields, such as the number of local vari-
ables or operand stack entries, while others, such as the list
of untidy references in JITted maps, are of variable length.
The maps consist of a fixed size header, followed by a vari-
able length data area, whose components and size are deriv-
able from information stored in the header.

When interpreting a frame, only one of the maps of the
corresponding method is ever needed. Over time, however,
several or even all of the method’s maps may be called for,
particularly for methods that are called often. On the other
hand, methods such as “main”, that are called shortly after
the run starts and remain active for a long time, may have
their frames examined several times, requiring the same map
over and over again.

In summary, the characteristics of map usage make the fol-
lowing demands on the repository:

• Maps should be saved for future use, avoiding the over-
head of recalculating them. There are maps for all
JITted methods and for all interpreted methods for
which a map was ever requested. This could add up
to a large number of maps, so compression, efficient in
both time and space, is required.

• Maps are called for in random order, but only one
map per method at a time. This requirement of fast
retrieval of randomly selected maps favors compression
schemes where each map is compressed separately from
the others.

• Maps should not require a lot of bit operations for
extracting information. This simplifies the code of the



stack scanner. This means that maps will be wider,
but we need a compression scheme in any case.

We expect the maps to have the following characteristics:

1. Methods may have any number of maps, including
none.

2. Most of the methods will have only a small number of
maps.

3. Maps of the same method should be similar to each
other, yet there is no part of all the maps of a method
that is guaranteed to be the same.

4. For methods with many maps, the similarity should
increase with proximity (within the bytecode stream),
i.e., maps of neighboring bytecodes should be more
similar than maps associated with bytecodes that are
further apart.

5. Most of the maps are not big, less than 50 bytes on
average.

6. All of the above holds true for both JITted and inter-
preted methods.

Examination of actual maps corroborated most of the as-
sumptions above. Assumptions 2 and 4 did not quite hold
for interpreted methods in short-lived applications. The rea-
son could be that since maps for interpreted methods are
created on demand, longer methods which invoke many ad-
ditional methods are more likely to be encountered on the
stack and therefore over-represented among the maps. In-
deed, the failure of these assumptions was less pronounced
in longer-running applications, where eventually maps were
created for more of the methods.

4.2 Compression Techniques
In order to meet the requirements above, and with consid-
eration of the characteristics of maps, we chose to represent
every map as the difference from a specific (fixed) map of
the same method. The latter was called the pivot map. A
variation on the run-length encoding scheme [18], which we
call dirty runs, is used to record the difference between a
map and the pivot map.

A compressed map consists of a sequence of runs, {R1 . . . Rn}.
Each run Ri has the structure {Si, Di, B1 . . . BDi}. Si is the
number of similar bytes, Di is the number of different bytes
that follow, and {B1 . . . BDi} are the actual Di different
bytes. Maps are assumed to start with similar bytes (if this
is not the case, S0 is zero), and any tail part of the com-
pressed map that is not accounted for in the runs is assumed
to be similar to the tail of the pivot map.

Considering the expected size of maps, the S and D fields
are almost always less than 128 and thus representable in
7 bits. The sign bit is therefore free to indicate a further
optimization: if Si ≤ 15 and Di ≤ 7 then both values are
packed into a single byte whose sign bit is set to indicate
that such compression was done.

Maps turn out to contain many zero bytes, so the pivot
map itself is saved internally as compressed against a map

of similar length containing only zeros. This proved to be a
good practice, even for methods having only one map.

The maps relating to one method are combined into a stream
of bytes, consisting of:

• A small header indicating the number of maps and the
index of the pivot map.

• A ”table of contents” (TOC) listing the compressed
size of each map. TOC entries are all the same size,
but may differ from method to method, and are large
enough to accommodate the largest value for the method.

• The dirty runs of all the maps of the method

4.3 Selecting the Pivot Map
The representation of a map is shorter the more similar the
map is to the pivot. Thus, choosing a good pivot map is
central to the quality of the compression on the whole.

Given a set of N maps, an exhaustive search for the best
pivot map among them requires N2 different compression
attempts. We used a heuristic to select a good pivot map in
N steps.

Let Mp be the pivot map and Mc a map to be compressed.
Define Cost(Mp, Mc) as the length of the compressed rep-
resentation of Mc with respect to Mp. (With dirty runs
scheme, the cost is the number of S and D bytes plus the
number of bytes that are actually different between the maps).
Define further TotalCost(Mp) as the total length of the com-
pressed representation of all the maps in the method:

TotalCost(Mp) =
NX

i=1

Cost(Mp, Mi) (1)

where N is the number of maps in the set. The purpose
is to find a p such that TotalCost(Mp) is minimal. The
algorithm is based on the heuristic assumption that if:

Cost(Mp, M1)− Cost(Mp, M2) = δ (2)

then

Cost(M2, M1) ≈ δ (3)

In other words, a subset of maps that are different from a
pivot map by similar degrees will probably be compressed
at a lower cost if one of them is chosen as the pivot map
instead. It is therefore possible to predict the results of
compression with one pivot map based on the actual result
of compressing it with another.

The algorithm for choosing a good pivot map is as follows:

1. A map in the set is arbitrarily selected as the initial
pivot map Minit. (Cost: O(1).)

2. All maps of the set are compressed using Minit as
pivot. (Cost: O(N).)

3. A histogram H of the costs of all the compressions of
maps of the set is created. H(λ) is the number of maps
whose length after compression is λ, i.e.,

H(λ) =‖ {i | Cost(Mi, Minit) = λ} ‖ (4)



For each λ for which H(λ) > 0, a pointer to a map
whose cost is λ is kept. The histogram itself is of size
K, where K is the longest compressed representation
of any of the maps in the set. With dirty runs, K
is usually much less than the maximal uncompressed
string length. (Cost: O(N) in time and O(K) in
space.)

4. A λopt is extracted from the histogram H. In our
implementation, the expected λ is used:

λopt =
PK

λ=1(λ×H(λ))
N

(5)

(Cost: O(K).)

5. A map Mopt associated with λopt is selected as the
pivot map. (Cost: O(1) since no search is involved.)

The compression scheme allows for more than one pivot
map. This capability may be used to improve the overall
compression ratio. Each map is then compressed using the
pivot it is most similar to, thus reducing the space for its
representation. This approach is useful when the map pop-
ulation is big and aggregated in a small number of clusters.
There is a cost involved in encoding the pivot used for com-
pressing each map into its representation. We chose to allow
a maximum of two pivot maps, extended the header to in-
clude the actual serial numbers of those pivot maps, and
used a bit in every field of the TOC to record the logical
index ∈ [0..1] of the pivot map used in that compression.

To determine whether using a second pivot map is advanta-
geous for a given map set, as well as selecting such a second
pivot appropriately without repeating the expensive step 2
above, the algorithm is modified as follows:

• Step 4’: The λopt is selected differently in this case
to be at the center of the largest cluster in H. (Cost:
O(K).)

• Step 5’: Same as 5 above.

• Step 6’: A second histogram H2, estimating the effect
of using Mopt as pivot, is calculated:

H2(λ) = H(λopt − λ) + H(λopt + λ) (6)

One of the maps that was associated with either λopt−
λ or λopt +λ is now made to represent λ. H2 is smaller
in size than H. (cost: O(K).)

Steps 4 and 5 above are repeated using H2 to obtain a sec-
ondary (and subsequent) pivot maps.

4.4 Compression Results
The algorithm above was tested with SPECjvm98 [38]. The
tests were run in two modes:

1. Interpreter only mode, where the JIT compiler is not
active.

2. Mixed mode, where methods are interpreted initially,
and are JIT-compiled only if they are invoked suffi-
ciently often.

Compression statistics collected from tests in the two modes
above are summarized in tables 2 and 4, respectively. The
numbers in Table 4 represent the sum of the resources taken
by the Jvm while running the test (e.g., “total maps size”
is the total size of all maps generated, either for interpreted
or for JITted methods; maps of same method may appear
in both.).

There are a few observations that can be made about these
results:

• The compression ratio is computed as the ratio be-
tween the space taken by the maps (after compres-
sion) and the size of the method’s code (bytecode if
interpreted, object code if JITted). We see that in all
practical cases the space required for maps is less than
that taken by the method’s code.

• Comparing corresponding entries in Tables 2 and 4,
it can be seen that the compression ratio is improved
when JITting is done. This is not due to smaller map
size but larger code size: bytecode is a rather terse
program representation, and is typically much smaller
than the object code created by the JIT compiler for
the same method.

• The last two columns in Tables 2 and 4 indicate the im-
provement in compression ratio (in percentage points)
that could be achieved if one of the alternatives de-
scribed above were used instead. The column labeled
“optimal pivot” applies to compression using the very
best map of the set as a pivot. Note that finding this
optimal pivot requires O(N2) compression tests for a
set of N maps. The column labeled “two pivots” ap-
plies to the second option, which provides two good
pivots without recalculating the histogram.

4.5 Related Work
Space for type maps is an issue every system that makes use
of them must deal with. Agesen et al. [4] measured their
type map overhead to be 57% of the size of the bytecode,
compared with our 105% average (see Table 2). They chose
a concise representation for the type information, which they
do not compress, whereas we have chosen a wide, programmer-
oriented representation and relied on compression to com-
pensate for the wasted space. Also, they compute maps
for all methods at class load time, while our scheme lim-
its map generation to methods caught on the stack at GC
time. When all methods are considered, the map space ver-
sus bytecode size ratio is lower (70%; see Table 3). We found
that methods encountered on the stack at GC time tend to
have more invocations than normal, a property which in-
creases both their number of maps as well as their likelyhood
to be found on the stack. Finally, the solution of Agesen et
al. to the jsr problem is based on variable splitting and
rewriting of the bytecode. The way we handle jsrs does
not affect the bytecode, but does increase the size of the
maps.

Stichnot et al. [39] describe a system totally dependent on
JIT compilation where a map can be generated at any in-
struction. They use a two-level scheme: first, the data itself
is encoded efficiently using domain-specific knowledge. Sub-
sequently, Huffman compression is applied to the encoded



number total maps total improvement
test of size of raw compressed optimal two
name methods code (C) size size (M) M/C pivot pivots
compress 17 2689 10552 3293 1.22 6.0% 10.9%
jess 42 5682 20212 6233 1.10 5.3% 9.1%
db 22 3204 11672 3655 1.14 6.5% 9.7%
javac 121 21599 64376 21696 1.00 8.1% 7.5%
mpegaudio 12 2114 8592 2615 1.24 3.8% 11.5%
mtrt 27 4793 19120 5972 1.25 8.8% 8.4%
jack 59 10957 36424 10281 0.94 6.1% 8.4%
total 300 51038 170948 53745 1.05 7.0% 8.5%

Table 2: Compression results for SPECjvm tests using bytecode interpretation only.

number total maps total
test of size of raw compressed
name methods code (C) size size (M) M/C
compress 222 16757 54352 12054 0.72
jess 841 50996 175900 51392 1.01
db 212 16988 60456 13802 0.81
javac 1309 102703 255204 77430 0.75
mpegaudio 489 65257 82296 20109 0.31
mtrt 354 25671 90528 23106 0.90
jack 490 48819 123892 31427 0.64
total 3917 327191 842628 229320 0.70

Table 3: Compression results for SPECjvm tests using bytecode interpretation only, when maps are generated
for all methods (rather than only for those caught on the stack at GC time).

number total maps total improvement
test of size of raw compressed optimal two
name methods code (C) size size (M) M/C pivot pivots
compress 32 6446 17000 4665 0.72 3.7% 4.9%
jess 139 41395 111288 26512 0.64 3.6% 3.0%
db 56 8513 26424 7090 0.83 4.6% 4.4%
javac 517 189342 365320 81113 0.43 2.8% 1.6%
mpegaudio 97 11274 36448 9206 0.82 3.1% 2.9%
mtrt 93 33448 72496 15269 0.46 2.9% 2.4%
jack 288 117225 243376 53097 0.45 3.1% 4.1%
total 1222 407643 872352 196952 0.48 3.1% 2.8%

Table 4: Compression results for SPECjvm tests using both bytecode interpretation and compilation (JIT-
ting).



data, also using compression parameters that are collected
during offline training runs. They report 20%–30% overhead
when compared with the size of the compiled code. Their ap-
proach is quite different from the one presented here, making
a direct comparison difficult, but for reasons explained above
(Section 4.4), compression rates improve as more methods
are JITted. Also, Stichnot et al. do not compress maps
separately, so the time to extract a map using their scheme
could be larger.

5. CORRECTNESS OF TYPE MAPS
The generation of stack frame type maps presents a prob-
lem for testers. The map generation algorithm is far from
trivial and any implementation of it requires careful testing
and debugging. On the other hand, testing is not easy. Few
of the maps generated are actually used under normal cir-
cumstances. Moreover, even an incorrect map is surprisingly
unlikely to cause a program to fail.

Map errors could either cause retention of garbage, by iden-
tifying a slot as a reference when it is not, or allow the
collection of a live object, by failing to identify a slot with a
reference. Errors of the former type do not cause program
to fail. Those of the latter type can do so only when the
missed reference is the sole reference to its object or the
referenced object has moved, and even then it is very de-
pendent on program behavior if a noticeable failure actually
occurs. This was born out by the tests described below:
they uncovered rather fundamental errors in the implemen-
tation of the map generation algorithm, even after it had
passed without error a variety of benchmarks and a battery
of specifically designed test programs.

The test strategy consisted of three components:

1. The Jvm was instrumented to allow for direct verifica-
tion of map content, independent of whether any map
errors could cause program failures.

2. An automated tool for generating test program was
employed to cover the more difficult aspects of map
generation.

3. A tool measuring the extent to which the map gen-
eration code had been covered by the tests was used.
Additional test programs were handcrafted to expand
the coverage to those parts of the code left unexercised.

5.1 Jvm Instrumentation
In order to verify maps directly, the Jvm interpreter was in-
strumented to place tags on all stack slots, indicating which
of them contain object references. (Such tags could in prin-
ciple solve the type accuracy problem in general, but their
maintenance at runtime is too time-consuming. They are
therefore useful only in tests where performance is not an
issue.)

The tags are not kept on the stack itself but in a separate
data structure which parallels it, the shadow stack. Tag in-
formation is initialized upon entry to a method with the
types of the arguments (kept in local variables). It is up-
dated after the execution of any bytecode that affects the
stack according to the semantics of the executed bytecode.

Whenever the execution of a method reaches a point for
which a map exists, the map is retrieved from the repository
and compared with the tag information for the frame. Two
kinds of disagreement could occur:

1. the map indicates a reference in a slot tagged as a
non-reference, and

2. the map indicates a non-reference in a slot tagged as
a reference.

The first kind is clearly an error and is flagged immediately,
but the second kind might not be: it is possible that the slot
in question is holding some layover value that no execution
path will subsequently use. Although the map generator
does not perform full liveness analysis, it can detect cases
where conflicting types get stored in the same slot on differ-
ent execution paths. Such slots are declared unusable until
they are reinitialized; code which indeed never uses them
can pass verification. The instrumentation code, therefore,
postpones flagging an error on this kind of mismatch un-
til the slot is actually used. It is interesting to note that
although unusable slots among the local variables are ex-
pressly permitted [29, p. 146], the verifier rule for merging
operand stacks in the JVM Specification [ibid] seems to pre-
clude them from the operand stack. In reality, however, code
in which unusable slots occur on the operand stack do pass
verification. (The only bytecode which can legally apply to
an unusable operand stack slot is pop, so this does not seem
like a security loophole.)

5.2 Automatic Generation of Test Programs
Standard benchmarks, the JCK 1.3, and some handcrafted
tests were used for testing the instrumented Jvm. How-
ever, due to the complexity of handling jsr bytecode in the
course of map generation, test programs that use jsr are
particularly important.

The Java compiler uses the jsr bytecode predictably when
compiling a try {body} finally {handler} construct (and
also for synchronized blocks). It is therefore possible to
use test programs in Java instead of resorting to programs
generated directly in bytecode.

A test-program generation tool, GOTCHA-TCBeans [22]
was employed for this purpose. To use this tool, the desired
behavior of the code to be tested must first be modeled us-
ing a special modeling language. The tool then analyzes the
model and generates tests in an abstract language, which is
later converted to actual test code; in this case, Java classes.

The model built in this case is based on the specification
of the try statement in the Java Language Specification[20,
Section 14.18, pp. 290–294]. The model includes variables,
such as whether to use catch, finally or both, the nesting
depth of finally blocks (and consequently of jsr subrou-
tines), and the type of exceptions generated: intentional
(caused by a throw), or accidental (e.g., divide by zero).
GOTCHA subsequently creates tests for every permissible
combination of the variables. In our case, 5783 test pro-
grams were generated.



As discussed in Section 3.1, however, many interesting sit-
uations involving jsr subroutines may never be generated
by a compiler. To cover these cases, the test suite was aug-
mented with programs written directly in bytecode, using a
bytecode assembler/disassembler [21].

5.3 Measuring Test Coverage
To measure the extent to which the map generating code
is exercised by the test programs, the code-coverage tool
ATAC [7] was used. By using an ATAC-provided C com-
piler, which saves compile-time information and instruments
the tested program to produce runtime statistics, one can
determine the lines of code that have not been exercised.
ATAC provides several types of coverage statistics, but the
results below pertain only to statement coverage, which re-
gards any line of code that has been executed at least once
as covered.

The ATAC-provided visualization tool can also prioritize
lines of code considered uncovered according to how many
additional lines are dependent on them: lines whose execu-
tion will cause the greatest number of additional lines to be
covered are ranked the highest. A human test writer can
then concentrate his or her effort where it is likely to make
the greatest difference. The existence of unusable slots on
the OPS (see Section 5.1 above) was discovered by one of the
tests that was generated specifically to improve the coverage
results.

5.4 Testing Results
Coverage was measured for the map generation code only,
which consists of 6914 lines of code making 2649 basic blocks.

The generation of maps was exercised using tests from the
following sources:

• JCK 1.3

• SPECjvm98

• Tests automatically generated by GOTCHA

• jsr tests, handcrafted in bytecode

• Tests in Java and bytecode, manually generated based
on ATAC recommendations.

The coverage results are summarized in Table 5. As ex-
pected, the greatest contribution comes from the JCK. It
is interesting to note that some JCK tests are so small that
they contain no maps at all and do not contribute to the cov-
erage. It is not surprising to see that the SPECjvm98 test
suite does not add any coverage beyond what is provided by
the JCK. The effectiveness of the hints ATAC provides the
test writer are also evident from the data.

The 83% represents close to complete statement coverage.
Most of the code in the remaining 17% is in one of the
following categories:

1. Error handling code to handle situations that should
never occur.

test coverage
suite added total
JCK 1.3 78.4%
SPECjvm98 0.0% 78.4%
GOTCHA 0.7% 79.1%
jsr tests 0.3% 79.4%
ATAC-directed 3.4% 82.8%

Table 5: Code-coverage test results.

2. Trivial transformations for quick bytecodes [28, Chap-
ter 9] not exercised due to the testing methodology.
The instrumented Jvm generates a method’s maps when
it is first invoked before any of its bytecodes have been
converted to their quick equivalents.

3. Separate map generation for small and large methods.
A small method is one with fewer than 16 slots of local
variable and operand stack entries combined. Every
possible bytecode is treated in either case, but the wide
bytecode variants never occur in short methods.

6. PERFORMANCE
Our implementation of mostly accurate stack scanning was
compared with conservative stack scanning on an IBM pro-
totype of J2SE v1.3 for Windows [25]. The garbage collector
was essentially the same in both cases: a stop-the-world par-
allel mark and sweep collector, which compacts only when
necessary. The only differences between the two collectors
were minor changes to compaction designed to take advan-
tage of accurately scanned stack slots. We compared both
the performance of the Jvm and the efficiency of the GC. All
tests were run on IBM Netfinity 7000, a PC server with 4
550MHz Pentium III XeonTM processors and 2GB of RAM
running Windows NT 4.0. The programs used were taken
from SPECjvm98 [38], a suite of client benchmarks, and
SPECjbb2000 [37], a multithreaded server benchmark.

Table 6 presents performance data collected while running
SPECjvm with a 12MB heap. We ran the Jvm in two modes:

• with interpretation only, and

• in mixed mode, where methods are interpreted ini-
tially, and are JIT-compiled only if they are invoked
sufficiently often.

The best of 10 running times in both cases was selected.
The results corroborate our expectation that the overhead
incurred for mostly accurate stack scanning is small.

Tables 7, 8 and 9 show how much memory is found in
conservatively referenced objects. Tables 7 and 8 refer to
SPECjvm using 12MB and 24MB heaps, respectively, while
Table 9 describes SPECjbb running in a heap of 512MB.
The tables provide object counts as well as total object sizes.
The numbers represent averages of measurements taken at
the end of each GC cycle. The results indicate that mostly
accurate stack scanning removes a significant part of the
conservatively referenced memory. In particular, the num-
ber of non-relocatable objects was reduced by 37% to 94%



-.34
�

.25

.82�

2.72

.71

-.73

-1.45

-2.14

2

-1

0
�
1

3
�

-3
�
-2

Number of Warehouses
1 2 3

�
4 5

�
6
�

7 8
�

% over (under) no TA

SPECjbb TPMs

Figure 2: SPECjbb 2000 performance with TA compared with results without TA.

and the space they occupy was reduced by 40% to 99.7%.
The reduction was particularly noticeable in benchmarks
with the largest number of such objects. Moreover, most
of the varability in test results is due to variations in the
behavior of the non-TA Jvm; the number and size of im-
movable objects with mostly accurate stack scanning seems
to be independent of heap size and number of GC cycles in
the run.

SPECjbb is a benchmark which simulates a 3-tier trans-
action processor. Unlike other benchmarks, SPECjbb lets
the application reach a steady state and then measures the
rate at which its simulated server responds to its simulated
clients, reported as transactions per minute (TPMs). This
form of measurement makes it difficult to separate the over-
head incurred from the benefits obtained when mostly ac-
curate stack scanning is applied. Figure 2 shows the per-
cent performance change of mostly accurate scanning with
respect to the base, conservative scanner. Performance is
improved up to a peek of 2.7% over base (at 4 warehouses),
but at larger numbers of warehouses performance deterio-
rates until it drops 2.1% below base. From studying the GC
trace output (not shown) it seems that although scanning
the stacks accurately takes about 80% longer than it does
when done conservatively, the overall time spent doing GC
is practically not affected. The difference in the TPM figures
must stem from other sources, currently under investigation.

7. CONCLUSIONS AND FUTURE WORK
We have tried to make a case for mostly accurate stack scan-
ning as a viable alternative to full accuracy in cases where
performance outweighs GC efficiency, and also where the
complexity involved in implementing full accuracy is not
justified. We have shown that a mostly accurate Jvm can
reduce the amount of conservatively referenced memory to
very low levels while making a very small impact on per-
formance. There is room to explore other frame types that
could also be accurately scanned without hurting perfor-
mance. A better understanding of the characteristics of

conservative and mostly accurate stack scanning and the
tradeoffs between them could provide leads to additional
improvements.

We have consciously chosen a programmer-friendly format
for the type maps, in which the data is redundantly en-
coded. A more concise representation could improve repos-
itory compression rates, but at the same time increase the
overhead involved in uncompressing maps at GC time.

We have applied a comprehensive testing methodology to
map generation for interpreted bytecodes. It would be in-
teresting to extend this methodology to map generation
for compiled (JITted) code. In particular, extending the
shadow stack mechanism would not be trivial.

Acknowledgments: We would like to thank the many peo-
ple who have contributed to this project: Alain Azagury,
Victor Leikehman, Yossi Levanoni, Erez Petrank, Dafna
Sheinwald, Boaz Shmueli and Sagi Snir of HRL, Toshio
Nakatani, Toshio Suganuma, Tamiya Onodera, Takeshi Oga-
sawara and many others at TRL, Kean Kuiper of Austin
Java Performance Group, and Dionis Hristov of Toronto.
Special thanks go to our colleagues at the JTC: Martin Trot-
ter, whose proposal of a shadow stack to test the maps with
is but one of his many contributions to this effort, and to
Sam Borman, who together have nurtured this project from
its inception.

8. REFERENCES
[1] Ali-Reza Adl-Tabatai, Michal Cierniak, Guei-Yuan

Leuh, Vihesh M. Parikh, and James M. Stichnoth.
Fast effective code generation in a Just-In-Time Java
compiler. In PLDI [34].

[2] Ole Agesen. GC points in a threaded environment.
Technical report, Sun Microsystems, Inc., 1999.
TR-98-70.



test without JIT with JIT
name w/o TA w/ TA change w/o TA w/ TA change
compress 291.4 288.5 -1.01% 15.6 15.6 0.0%
jess 77.7 77.3 -0.52% 13.9 13.9 -0.0%
db 158.6 155.6 -1.93% 29.3 29.2 -0.3%
javac 108.1 106.9 -1.12% 38.4 38.7 0.8%
jack 64.9 64.5 -0.62% 22.6 22.5 -0.4%
mpeg 257.1 257.2 0.04% 12.6 12.5 -0.8%
mtrt 80.2 80.2 -0.07% 8.8 8.8 0.1%
total 1038.0 1030.2 -0.76% 141.2 141.2 -0.0%

Table 6: Running times of SPECjvm98 tests with and without mostly accurate stack scanning. Tests were
run with a fixed heap size of 12MB.

GC cycles Average object count Average memory size (bytes)
test w/o w/ total immovable total immovable
name TA TA w/o TA w/ TA change w/o TA w/ TA change
compress 20 20 5715 51.7 26.0 49.7% 3413692 1880 880 53.2%
jess 35 35 25532 345.6 25.3 92.7% 1553343 21930 862 96.1%
db 28 28 275351 69.2 25.1 63.7% 8399507 78767 858 98.9%
javac 97 84 238768 224.3 40.5 81.9% 8632638 15079 1227 91.9%
jack 18 18 11244 82.6 26.0 68.5% 859647 3290 880 73.3%
mpeg 2 2 6217 41.0 26.0 36.6% 590608 1472 880 40.2%
mtrt 26 26 253945 199.8 28.4 85.8% 7151880 7385 1029 86.1%

Table 7: Amount of memory in conservatively referenced objects. Tests were run with a fixed heap size of
12MB. The numbers reflect the average of measurements made at the end of each GC cycle.

GC cycles Average object count Average memory size (bytes)
test w/o w/ total immovable total immovable
name TA TA w/o TA w/ TA change w/o TA w/ TA change
compress 7 7 5532 50.3 26.0 48.3% 2129904 332428 880 99.7%
jess 16 16 24045 201.1 25.3 87.4% 1470944 11883 863 92.7%
db 8 8 223300 53.5 25.3 52.7% 6864361 63524 862 98.6%
javac 26 26 196537 178.7 40.4 77.4% 7194786 9189 1225 86.7%
jack 10 10 14392 75.1 26.0 65.4% 980317 3251 880 72.9%
mpeg 2 2 6189 41.0 26.0 36.6% 582660 1472 880 40.2%
mtrt 9 9 210157 130.2 27.9 78.6% 5989970 4600 1000 78.3%

Table 8: Amount of memory in conservatively referenced objects. Tests were run with a fixed heap size of
24MB. The numbers reflect the average of measurements made at the end of each GC cycle.

GC cycles Average object count Average memory size (bytes)
test w/o w/ total immovable total immovable
name TA TA w/o TA w/ TA change w/o TA w/ TA change
SPECjbb 126 127 727379 268 17 93.7% 83798673 17236 859 95.0%

Table 9: Amount of memory in conservatively referenced objects used by SPECjbb. Tests were run with a
fixed heap size of 512MB. The numbers reflect the average of 3 runs.



[3] Ole Agesen and David Detlefs. Finding references in
Java stacks. In Peter Dickman and Paul R. Wilson,
editors, OOPSLA ’97 Workshop on Garbage
Collection and Memory Management, October 1997.

[4] Ole Agesen, David Detlefs, and J. Eliot B. Moss.
Garbage collection and local variable type-precision
and liveness in Java Virtual Machines. In PLDI [34],
pages 269–279.

[5] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño virtual
machine. IBM System Journal, 39(1):211–238, 2000.

[6] B. Alpern, C. R. Attanasio, J. J. Barton, M. G.
Burke, A. Cocchi, S. F. Hummel, D. Lieber, T. Ngo,
M. Mergen, J. C. Shepherd, and S. E. Smith.
Implementing Jalapeño in Java. In Proceedings of the
1999 ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications
(OOPSLA ’99), volume 34, 1999.

[7] ATAC: Automatic test analysis for C, 1998. Available
at http://xsuds.argreenhouse.com.

[8] Joel F. Bartlett. Compacting garbage collection with
ambiguous roots. Technical Report 88/2, DEC
Western Research Laboratory, Palo Alto, CA,
February 1988. Also in Lisp Pointers 1, 6 (April–June
1988), 2–12.

[9] Joel F. Bartlett. Mostly-Copying garbage collection
picks up generations and C++. Technical note, DEC
Western Research Laboratory, Palo Alto, CA, October
1989. Sources available in
ftp://gatekeeper.dec.com/pub/DEC/CCgc.

[10] Hans-Juergen Boehm and Mark Weiser. Garbage
collection in an uncooperative environment. Software
Practice and Experience, 18(9):807–820, 1988.

[11] C. J. Cheney. A non-recursive list compacting
algorithm. Communications of the ACM,
13(11):677–8, November 1970.

[12] Java Virtual Machine by Sun Microsystems, Inc.
Available at http://www.sun.com/software/sales.

[13] Robert Dimpsey, Rajiv Arora, and Kean Kuiper. Java
server performance: A case study of building efficient,
scalable Jvms. IBM System Journal, 39(1):151–174,
2000.

[14] Amer Diwan, J. Eliot B. Moss, and Richard L.
Hudson. Compiler support for garbage collection in a
statically typed language. In Proceedings of
SIGPLAN’92 Conference on Programming Languages
Design and Implementation, volume 27 of ACM
SIGPLAN Notices, pages 273–282, San Francisco, CA,
June 1992. ACM Press.

[15] Damien Doligez and Georges Gonthier. Portable,
unobtrusive garbage collection for multiprocessor
systems. In Conference Record of the Twenty-first
Annual ACM Symposium on Principles of

Programming Languages, ACM SIGPLAN Notices.
ACM Press, January 1994.

[16] Tamar Domany, Elliot Kolodner, and Erez Petrank. A
generational on-the-fly garbage collector for Java. In
Proceedings of SIGPLAN 2000 Conference on
Programming Languages Design and Implementation,
ACM SIGPLAN Notices, Vancouver, June 2000. ACM
Press.

[17] EVM: an exact Java Virtual Machine by Sun
Microsystems, Inc. Available (as part of J2SE) at
http://www.sun.com/solaris/java.

[18] S.W. Golomb. Run-length encodings. IEEE
Transactions on Information Theory, 12(3):399–401,
July 1966.

[19] James Gosling. Java intermediate bytecodes. In
Proceedings of the ACM SIGPLAN Workshop on
Intermediate Representations, pages 111–118, January
1995.

[20] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. The Java Series.
Addison-Wesley, 1997.

[21] Matt Greenwood and Sara Porat. TOAD - an
environment for monitoring understanding and
optimizing Java. In OOPSLA ’99 Companion, 1999.
Available at
http://www.alphaworks.ibm.com/tech/toad.

[22] Alan Hartman and Kenneth Nagin. TCBeans Software
Test Toolkit. In Proceedings of the 12th International
Software Quality Week, May 1999. Available at
http://www.haifa.il.ibm.com/projects/gtcb.

[23] Java HotSpot Technology by Sun Microsystems, Inc.
Available at http://java.sun.com/products/hotspot.

[24] Richard L. Hudson and J. Eliot B. Moss. Incremental
garbage collection for mature objects. In Yves Bekkers
and Jacques Cohen, editors, Proceedings of
International Workshop on Memory Management,
volume 637 of Lecture Notes in Computer Science,
University of Massachusetts, USA, 16–18 September
1992. Springer-Verlag.

[25] IBM 1.3 Java Developer Kit for Windows. Available
at http://www.software.ibm.com/download.

[26] Open runtime platform by Intel, Inc. Available at
http://intel.com/research/mrl/orp.

[27] Henry Lieberman and Carl E. Hewitt. A real-time
garbage collector based on the lifetimes of objects.
Communications of the ACM, 26(6):419–429, 1983.
Also report TM–184, Laboratory for Computer
Science, MIT, Cambridge, MA, July 1980 and AI Lab
Memo 569, 1981.

[28] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. The Java Series.
Addison-Wesley, 1st edition edition, 1997.

[29] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. The Java Series.
Addison-Wesley, 2nd edition edition, 1999.



[30] SUN Microsystems. Java Native Interface
Specification. Technical report, Sun Microsystems,
Inc., http://java.sun.com/j2se/1.3/docs/guide/jni/,
1997.

[31] SUN Microsystems. JNI enhancements in JDK 1.2.
Technical report, Sun Microsystems, Inc.,
http://java.sun.com/j2se/1.3/docs/guide/jni/jni-
12.html,
1998.

[32] David A. Moon. Garbage collection in a large LISP
system. In Guy L. Steele, editor, Conference Record of
the 1984 ACM Symposium on Lisp and Functional
Programming, pages 235–245, Austin, TX, August
1984. ACM Press.

[33] Tamiya Onodera. A generational and conservative
copying collector for hybrid object-oriented languages.
Software Practice and Experience, 23(10):1077–1093,
October 1993.

[34] Proceedings of SIGPLAN’98 Conference on
Programming Languages Design and Implementation,
ACM SIGPLAN Notices, Montreal, June 1998. ACM
Press.

[35] Tony Printezis and David Detlefs. A generational
mostly concurrent garbage collector. In Proceedings of
the International Symposium on Memory Management
(ISMM00), pages 143–154, Minneapolis, MN, October
2000.

[36] Jacob Seligmann and Steffen Grarup. Incremental
mature garbage collection using the train algorithm.
In O. Nierstras, editor, Proceedings of 1995 European
Conference on Object-Oriented Programming, Lecture
Notes in Computer Science, University of Aarhus,
August 1995. Springer-Verlag.

[37] SPECjbb2000 Java Business Benchmark. Standard
Performance Evaluation Corporation (SPEC), Fairfax,
VA, 1998. Available at
http://www.spec.org/osg/jbb2000/.

[38] SPECjvm98 Benchmarks. Standard Performance
Evaluation Corporation (SPEC), Fairfax, VA, 1998.
Available at http://www.spec.org/osg/jvm98/.

[39] James M. Stichnoth, Guei-Yuan Lueh, and Michal
Cierniak. Support for garbage collection at every
instruction in a Java compiler. In Proceedings of
SIGPLAN’99 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices,
pages 118–127, Atlanta, May 1999. ACM Press.

[40] David M. Ungar. Generation scavenging: A
non-disruptive high performance storage reclamation
algorithm. ACM SIGPLAN Notices, 19(5):157–167,
April 1984. Also published as ACM Software
Engineering Notes 9, 3 (May 1984) — Proceedings of
the ACM/SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, 157–167, April 1984.


