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Abstract

Debugging multi-threaded programs is notoriously
hard. Probably the worst type of bug occurring in
multi-threaded programs is a data race. There is
therefore a great need for tools to automatically
detect data races during execution. This article
presents, TRaDe, a novel approach to detect races
in object-oriented languages using a topological ap-
proach. An implementation of TRaDe based on
the Sun JVM 1.2.1 is compared with existing tools.
TRaDe proves to be a factor 1.6 faster than any
known race detection tool for Java and has memory
requirements similar to the best competing tools.

1 Introduction

Multi-threaded applications are hard to debug. This
is due to the fact that when searching bugs in multi-
threaded applications we have to reason about a
multitude of threads, each simultaneously perform-
ing separate tasks. One particularly hard bug to
detect is a ‘data race’. A data race occurs when
the programmer does not correctly synchronize the
access to a variable which is being manipulated by
more than one thread. This can leave the variable
in an unexpected or inconsistent state. In Figure 1,
we see a simple example.

Data races are very hard to find because of two rea-
sons. First of all, they are non-deterministic be-
cause they depend on the interleaving of the actions
of threads, which is not always the same. Even if
we observe them in one run, during a next run, they
may not occur again, leaving us totally in the dark
as to what went wrong. Secondly, they are non-
local. One thread may be performing a spelling
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Figure 1: On the left we see thread 2 accessing a
common object, A, and writing the value 5. This is
followed by thread 1, writing the value 6 to A. The
result of this operation is that A contains the value
6. On the right, thread 1 for some reason executes
faster which results in the same events happening
but in reverse order. This is possible since there is
no synchronisation between thread 1 and 2. A now
contains the value 5.

check and another may be editing the text being
checked. These are two almost totally unrelated
sections of code that, if not well synchronised, will
cause havoc.

There are three major approaches to finding data
races:

e Static analysis of parallel programs has been
proven in general to be an NP hard problem
[13].

e Post-mortem analysis usually involves large
traces of the execution of the multi-threaded
program [4, 14, 15] but recently new techniques
were developed that make this approach viable
[16, 17].

e On-the-fly analysis [5] has no need for traces
since it tries to detect data races as they occur.
However, it has the potential to be very intru-
sive which must be avoided as much as possible.



Current on-the-fly techniques incur large overheads
due to the fact that they must observe every read
and write operation to shared variables. Time over-
heads as high as a factor 30 are not uncommon.

In this article, we present, TRaDe (Topological
RAce Detection), a novel method to automatically
detect data races on-the-fly with reduced effort in
“pure” object-oriented environments. Using this
technique, we are able to dynamically make a se-
lection of the objects we need to observe to find
data races by analyzing the graph formed by the in-
terconnection between these objects. This approach
is applicable to a wide range of object-oriented lan-
guages. Since Java is widely used, object-oriented
and multi-threaded, we will give a practical imple-
mentation as proof of concept by extending a Java
Virtual Machine. We have compared TRaDe to
two commercial competitors, JProbe [9] and As-
sureJ [10]. We have found that Assure] ignores a
subset of data races which we correctly detect. More
importantly, TRaDe is on average a factor 1.6 faster
than its closest competitors with comparable mem-
ory requirements.

In Section 2, we briefly describe the synchronisation
primitives of Java and in this context we give our
definition of data races. In Section 3, we present
the idea of topological race detection followed by a
description of our implementation in Section 4. Per-
formance measurements are provided in Section 5.
Finally, we indicate some avenues for future research
in Section 6 and present our conclusions in Section 7.

2 Synchronisation in Java

Java [2] is an object-oriented language that was de-
signed with multi-threading in mind [11, 12, 21]. In
Java there are only two fundamental data types:
‘primitive types’ and ‘reference types’.  Primi-
tive types consist of booleans, integers, floats,
... Reference types contain a reference to an object
or contain ‘null’. These objects are created dynam-
ically on the heap. A garbage collector is respon-
sible for destroying them when they are no longer
referenced [8]. Objects themselves contain primitive
types or references.

A race between two (or more) threads occurs when
they modify a member variable of an object in an
unpredictable order. Races on variables on the stack

are impossible since the stack can only be manipu-
lated by the thread it belongs to.

To avoid data races, a programmer can force frag-
ments of code running on different threads to exe-
cute in a certain order by adding extra synchronisa-
tion operations. Java offers several constructs that
enforce extra synchronisation!:

start and join which operate on Thread ob-
jects,

locked objects,

synchronized (static) member functions and

e wait and notify(All).

The fragments of code of a thread that are separated
from each other by a synchronisation operation are
abstracted into the notion of ‘events’. Notice that
the synchronisation operations are not considered
events themselves. The t? event of thread T; will
be denoted by e; ;. Two events, e; and e;, are said to
be ‘ordered’, e; —+ e;, if there exists a set of synchro-
nisations that force event e; always to occur before
event e;. A data race occurs when there is no set
of synchronisations that force the events modifying
a shared variable to occur in a fixed order.

TRaDe models the ordering of events by using a con-
struct called a ‘vector clock’ as defined in [6, 7, 20].
Vector clocks are tuples of integers with a dimension
equal to the maximum degree of parallelism (num-
ber of threads) in the application. The first event,
et 0 of every thread T is assigned the vector clock,
VC(et,0), with components

Ve ={ 1 17 )

The value of the vector clock of the next event in
a thread is calculated using the vector clocks of its
preceding events. If event e;; on thread T} is guar-
anteed to occur after events E = {eg ...e,}, its vec-
tor clock is updated as follows

VC’(et,,- )_7' =

{ maz({VC(e)jle : E}U{0}), it
mazx({VC(e)jle: E}YU{0})+1, j=t

IThere are a few other operations on Thread objects,
which influence the execution of other threads but which we
do not take into consideration since they are either being re-
moved from the Java APIs or cannot be used to synchronize
two threads: destroy, interrupt, resume and stop.
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Figure 2: Synchronisation using the Thread class

For our purposes, the most important property of
vector clocks, is that they can be used to verify
whether two events are ordered. Two events, a and
b, are ordered iff

a—=b=Mi.VC(a); <VC(b);)ANa#b (3)
Two events are parallel, i.e. not ordered, iff

allb=-(a—b)A-(b— a) (4)

If we define W(a) the set of all locations written to
during event a and R(a) the set of all locations read
during event a, then two events, a and b, will be
involved in a data race iff

(W(a) N R(b) # D)V
(@llv) A (R(a) NW(b) # D)V ()
(W(a) nW(b) #0)

i.e. the two events are executed in parallel, both
events access a common variable and at least one
event modifies the variable.

The ordering between events is obtained by observ-
ing the synchronisation operations in Java. The
start member function of Thread is used by one
thread to start the execution of a second thread.
The join member function allows one thread to
wait for the end of the execution of a second thread.
These operations impose an ordering on the events
of these threads as can be seen in Figure 2. The
value of the vector clocks is shown in the figure,
illustrating the calculation of the vector clocks at
synchronisation operations.

A lock is associated with every Object in Java. A
thread can try to take this lock using the bytecodes
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Figure 3: Synchronisation through a locked object

monitorenter and monitorexit. When the object
is already locked, the thread will wait until it is un-
locked and can then proceed. This construct does
not impose a fixed time order on the code of the
two threads involved, it just enforces mutual exclu-
sion. It does suggest that the programmer is aware
of a potential race and has used this construct as
a means of synchronisation. We therefore consider
this a ‘de facto’ ordering, depicted in Figure 3 by a
dashed arrow.

The synchronized keyword is applied to a subset
of the member functions of a class, the ‘monitor’.
When a thread invokes one of these member func-
tions on an object of the synchronised class, Java
ensures that none of the other member functions in
the monitor is being executed. This is implemented
through the object locking mechanism mentioned
above. When a synchronised member function is
executed, the lock of the object containing the mem-
ber function is taken. When the member function
finishes, the lock is released.

A final set of synchronisation primitives is wait and
notify(A1ll) which are member functions of every
Object. When a thread invokes wait on an object,
the execution of the thread is halted until another
thread executes notify (A11) on that very same ob-
ject. At that time the first thread in line can con-
tinue its execution. This imposes the ordering de-
picted by the dotted arrow in Figure 4. However, a
thread is only allowed to invoke wait or notify on
an object if that thread owns the lock of that object,
so in reality it suffices to observe the ordering be-
tween the monitorenter and monitorexit depicted
by the solid arrows.
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Figure 4: Synchronisation through signals

To detect data races, an access history for every
object is constructed. In this access history, every
read an write operation to the object must be stored
together with the identity of the thread that per-
formed the operation and the vector clock of the
event to which the operation belongs. When a new
read or write operation occurs, it is compared to the
previous operations stored in the access history. If
condition 5 is satisfied, a race is found.

Of course, as the program continues to execute, the
access histories grow without bounds. In [5] it is
shown that it suffices to store only the last? write
operation in the access history, since these write op-
erations must be ordered or a race would already
have occurred. As a consequence, only one write op-
eration is stored in the access history. Also, only the
read operations which are parallel with each other
need to be stored. So at most one read operation for
every thread present in the program must be stored
in the access history.

Still, this can amount to a very large overhead, es-
pecially if there are many threads (remember that
the size of each vector clock grows proportionally to
the number of threads). One way out is to reduce
the number of objects for which an access history
must be maintained. In the next section, we shall
present a method which makes this possible.

2w.r.t. the vector clock ordering

3 Topological Race Detection

There are some apparent and also some less appar-
ent advantages to doing race detection on the Java
bytecodes instead of on the underlying hardware in-
structions.

First of all, we have the granularity argument. Since
Java bytecodes are quite high level, many machine
instructions can be necessary to perform one byte-
code instruction. If we try to detect data races at
the machine level, we will have to observe every
hardware read/write instruction for every thread.
If however we observe at the bytecode level, many
machine instructions can safely be ignored, assum-
ing a correct JVM.

Secondly, Java, by construction, makes a large num-
ber of instructions data race free. Every thread
has its own private stack on which it allocates lo-
cal variables and parameters for each member func-
tion call. This data can only be modified by the
owning thread. As a consequence, all instructions
that solely manipulate stack data cannot cause a
data race. There are 181 guaranteed data race free
instructions and 20 ‘dangerous’ instructions. The
latter set can be split into 2 categories. The first
category consist of the {a,b,c,d,f,i,1,s}aload
and {a,b,c,d,f,i,1,s}astore bytecodes. These
instructions read and write the contents of arrays on
the heap. Since objects on the heap can be reached
from multiple threads, these instructions need to be
checked for data races. The second category consists
of getfield, getstatic, putfield and putstatic.
These are instructions that read or write the fields
of objects or classes on the heap.

Finally, and this will prove essential to our tech-
nique, Java enforces a very strict object model, even
on the bytecode level. Machine instructions can
modify practically any location in the address space
of a program. Java, on the other hand, only allows
modification of an object’s data through the refer-
ence to that object.

As can be seen in Figure 5, an object is created by
invoking the bytecodes new, newarray, anewarray
or multianewarray (1 in the figure). These instruc-
tions all put a reference to the newly allocated ob-
ject on the stack of the invoking thread. At this
point, these objects are only reachable through this
one reference and this reference is only accessible to
one thread. We call this situation a ‘local object’.
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Figure 5: The life cycle of an object

No races are possible. An object that is reachable,
through some path, by several threads, is called a
‘global object’. It has the potential to be involved
in a race. Since we construct information about
the reachability of objects from several threads in
order to detect potential race problems, we call
this method ‘topological race detection’, TRaDe for
short.

Initially an object is created locally. The only refer-
ences to it exist on its creating thread’s stack (1 in
Figure 5). One way to change the status of an object
from local to global is by storing its reference into
a second object. If this second object is reachable
by another thread, our object also becomes reach-
able by this other thread (2 in Figure 5). At this
point, the object could potentially be involved in a
race. When an object becomes global all the objects
reachable from this new global object also become
global. If, on the other hand, the second object is
solely reachable by our own thread, it remains local.

There are only a small number of bytecodes that can
change the topology of the object interconnection
graph: aastore, putfield and putstatic. They
all have in common that they store references in an
object’s field.

There are a few exceptions to the outline given

above. Every object of type Class is global right
from the start. The reason for this is that every
thread needs to be able to access every class to con-
struct objects of this class. Inside a class, there are
static variables that can be read and written to. So
these are, by definition of the Java language, imme-
diately global to all threads.

A second way in which an object can become global
is when it is involved in the startup of a new thread.
In Java, threads are started by creating an object
containing a run method. When this object’s start
method is called, a new thread is created and starts
executing the code in the run method. At this
very point, this object is reachable by both the
new thread and the original thread that started the
new thread. It must therefore immediately be made
global together with all objects reachable from this
object.

This last observation is crucial and is the reason why
a refinement of our global objects is necessary (5 in
Figure 5). Consider for example the Java program
in Figure 6. It creates 10 separate threads (besides
the main thread). Each of these threads creates
a linked list of 10000 local objects.> No races are
present in the program. Note that the main thread
does not maintain a link to the started threads (g
= null).

This program was artificially made to be very suit-
able for our approach to race detection; it is very
simple and contains large data structures which are
clearly not shared between the threads. Almost all
calculations are performed on these local data struc-
tures so fairly little overhead should be incurred by
doing race detection. Still, without the refinement
step, TRaDe would perform very badly.

When the new threads are started (at line 29) by in-
voking start on the object g of the class Separate,
g must be made global. If it were not for the re-
finement, these objects would remain global for the
remainder of the program’s execution. When the
threads would start to construct their linked lists,
these linked list would also become global. Not
much can be gained from such an approach. To
do the refinement step, we turned to the garbage
collector (GC).

Whatever the underlying algorithm of the GC is,
somehow it must determine whether an object is no

30f course the JVM makes hundreds more objects for its
internal use but this is not important in this example.



1 class Separate extends Thread {

2 Link root;

3 int count;

4

5 class Link { Link prev, next; }
6

7 Separate (int count) {

8 root = new Link ();

9 root.prev = root.next = root;
10 this.count = count;

11 }

12

13 public void run () {

14 for (int i = 0; i < count; i++) {
15 Link 1 = new Link ();

16

17 l.prev = root;

18 1l.next = root.next;

19 root.next.prev = 1;

20 root.next = 1;

21 }

22 }

23

24 public static void main (String []1 arg) {
25 Separate g;

26

27 for (int i = 0; i < 40; i++) {
28 g = new Separate (10000);
29 g.start ();

30 }

31

32 g = null;

33 }

34 }

Figure 6: The test program

longer reachable by any thread in the program. If
this is the case, the object can be removed from
the heap. This is very similar to what TRaDe is
trying to do. TRaDe tries to determine whether an
object is reachable by more than one thread in the
program.

We exploited this observation as follows. Each time
the GC performs its job, it is followed by our ‘re-
finer’. For every thread, we generate a set, S;, of
all the objects that are reachable from that thread.
Then we combine these sets into a set of objects
reachable from multiple threads as follows.

Stot = Ui,5(S; N S5) (6)

We use Syt to refine the general TRaDe mechanism

after garbage collection. If an object is not present
in Sie, it is only reachable from one thread and
therefore local. The large data structures that are
necessary to enable data race detection are removed
and the object is marked as being reachable only by
this one thread.

A minor, yet crucial, modification to our refiner
proved necessary. A reference to each Thread
(and derived classes) is always present in at least
one ThreadGroup and every Thread can obtain the
ThreadGroup of which it is a member. This has
the annoying consequence that every Thread can
be reached from every other Thread through its
ThreadGroup. If we instruct our refiner to only col-
lect the objects reachable from one thread, it will in-
evitably start collecting a large portion of the other
thread’s data structures through these hidden refer-
ences. The solution was not to follow links leaving
ThreadGroup. Should a program use these refer-
ences in ThreadGroup, it will circumvent our tech-
nique. We believe this will occur only rarely. If this
is a problem, we could adapt the JVM further so as
to flag such behavior.

Figure 7 compares the approach without a refine-
ment phase (top graph) with the approach with
a refinement phase (bottom graph). The figures
are constructed by analyzing the heap each time a
garbage collection has occurred. We see the total
number of handles allocated (a handle points to an
object). These handles are subdivided into unused
handles which are preallocated each time the heap is
expanded, local handles which point to objects that
are detected as being local to a thread and global
handles which point to objects which were detected
as being reachable by more than one thread.

The top graph shows that practically all used han-
dles point to global objects. This means that we
would have to observe accesses to most objects for
potential data races. The number of local objects is
so small that they are not noticeable on the graph.

The bottom graph, using the refiner, shows the ex-
pected result. We see that almost all used handles
point to local objects. The number of global objects
is very small. Clearly, the large linked lists are be-
ing detected as local so we will not need to observe
these to detect data races.
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after each garbage collection phase. The top graph
was measured without using the refiner. The bot-
tom graph was measured while using the refiner.

4 Implementation

To test our ideas in practice, we implemented the
TRaDe method in an existing JVM. We selected
the Sun JVM 1.2.1 on Solaris. This JVM comes
equipped with a just in time compiler (JIT). A JIT
is used to compile bytecodes to machine instructions
on-the-fly so as to accelerate the execution of a Java
program. We decided to turn the JIT compiler off
to simplify our coding. This way, the JVM just uses
an interpreter loop, executing the bytecodes one by
one. Our techniques should be readily transferable
to JIT compilers.

Our first step was to instrument all the synchro-
nisation primitives of Java using vector clocks as
described in Section 2. Vector clocks have a seri-
ous drawback: they contain as many components as
there are threads in the program. This means that
if we are dealing for example with an FTP-server
which creates a thread for every file request it re-
ceives, the size of the vector clock grows without
bounds. We have implemented an advanced ver-
sion of vector clocks that can dynamically grow and
shrink as threads are created and destroyed with-
out losing accuracy while doing data race detection
and with little overhead involved called ‘accordion
clocks’. The exact approach we took is beyond the
scope of this article.

The next step was to instrument every object with
a minimal data structure that allows TRaDe to be
used. The basic idea can be seen in Figure 8. When
objects are created using new, newarray, anewarray
or multianewarray, they are extended with a data
structure consisting of 20 extra bytes.? It consists of
2 parts. The first is the thread identification num-
ber (TID). In this field, the TID of the thread that
created this object is stored or, when the object be-
comes global and is reachable by several threads, -1
is stored. The second part consists of link fields that
will be used to link a much larger data structure for
full data race detection only if the object becomes
global.

An object can contain several fields that can be
written or read (#fields). If we instrument a
new global object, each field must have its spe-
cific data structure that maintains its access his-
tory. This data structure contains: a description
(description) of the field being accessed (its name,

4This could be reduced to 8 bytes, but this is just a pro-
totype.
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Figure 8: Full instrumentation of an object for data
race detection

type info, ...) and links to information about the
read and write operations that involved this field.
For each read and write operation we store the lo-
cation in the code where the operation occurred
(a class, a member function and a JVM program
counter) and a vector clock indicating ‘when’ the
operation occurred.

Using this data structure, the instructions aastore,
putfield and putstatic are instrumented. We will
explain what happens for aastore. A similar pro-
cedure is followed for putfield and putstatic.

Suppose the bytecode aastore stores a reference, R,

into an array, referred to by reference A. There are
2 possibilities:

o If the object pointed to by R is already global

(R.TID == -1) then nothing happens, the ob-
ject is already being watched for possible data
races.

e If on the other hand, the object is not yet
global, the TID of the array referred to by A
is checked. If it is global (A.TID == -1), then
by storing R into A, the object referred to by
R also becomes global. Otherwise, if A.TID !=
R.TID, we are storing our reference into an ar-
ray that is reachable by another thread. The

object referred to by R must again be made
global.

If the object referred to by R becomes global, we
recursively check all its children. Each child that is
not yet global is made global. Here we must pay at-
tention to stack overflow when recursively marking
a deep data structure as global.

The actual race detection consists of instrumenta-
tion added to the 20 bytecodes which read or write
to an object as follows. Each time such a bytecode
is executed, we check whether it affects a global ob-
ject. If not, we don’t have to do anything; races are
impossible. If we are dealing with a global object,
we can access the extra data structures and verify
using the vector clocks whether this new instruction
represents a data race. If so, we flag this to the user.
Then we update the access history with the new lo-
cation of this instruction and the new vector clock
indicating when the instruction occurred.

5 Performance Measurements and
Comparison with Existing Tools

A number of general tools have already been devel-
oped to automatically detect data races in a pro-
gram. Eraser®, for example verifies the locking dis-
cipline [19]. If a memory location is read/written by
different threads, a set of locks must be held. Each
time this location is accessed again, the tool checks
which locks are held and whether their use is con-
sistent with previous use. Another tool for check-
ing, among others, for data races is RecPlay [17]. It
takes a different approach from Eraser’s since it per-
forms data race detection off-line, using a recorded
trace from a previous execution. The types of races
detected are similar to our definition given above.

Both these tools function ‘blindly’, not knowing
what type of program they are analyzing, and ob-
serve the stream of processor instructions that are
being executed and the memory locations upon
which they operate. In contrast, true Java specific
tools also exist.

JProbe is a tool capable to detect, among other
things, data races [9] in Java programs. It seems

5Eraser is apparently now marketed by Compaq under the
name VisualThreads



to be using Sun’s Java Virtual Machine Profiler In-
terface (JVMPI). This is an interface that allows
profilers to request to be notified of certain events in
a Java program such as the loading of classes, start
of garbage collection, entering of monitors, etc. Al-
though nothing is published about its internal work-
ings, except its user manual, it seems to use a similar
definition of data races as the one used by TRaDe.

Another Java tool is Assure] [10]. It is also ca-
pable of data race detection, among other things,
and is very fast. Nothing is known about the algo-
rithm it uses. It does not seem to use the JVMPI
but rather to be a modified Sun 1.2 JVM. Again, it
seems to use a similar definition of a race as used in
TRaDe. One important short-coming that was no-
ticed is that when two events race (so their vector
clocks are parallel) but their threads do not actually
overlap in time, no race is detected.® This is proba-
bly due to the fact that they remove all information
concerning the behaviour of a thread as soon as it
terminates, which is incorrect.

We've run extensive benchmarks comparing TRaDe
to JProbe and Assure]. See Table 1 for a description
of the benchmark programs and options used. We
selected large applications from a wide variety of
problem domains.

The options used for each race detection tool are
configured so that each has to find races in the whole
of the program. Both JProbe and AssureJ have op-
tions to focus their race detection on certain sections
of the code. These options were turned off. All pro-
grams have the ability to detect races on arrays as
a whole, called ‘collapsing’ arrays, or to consider
the elements of an array as separate entities which
each can be involved in a race. We chose to collapse
arrays to conserve memory since this is the recom-
mended setting for JProbe and AssureJ. Each was
configured so as to enable their best performance.
All other features were turned off.

The results can be seen in Table 2. All benchmarks
were run on a Sun Ultra 5 workstation with 512 MB
of memory and a 333 MHz UltraSPARC IIi with a
16 KB L1 cache and a 2MB L2 cache. Memory
usage and user time were estimated by averaging
5 measurements with no other user programs run-
ning. Some benchmarks could not be run in 512 MB
of memory. A larger system was then used as an in-
dication of how much more resources are needed to

6This shortcoming was confirmed by their product sup-
port.

complete the benchmark. In this case, a Sun Ultra-
2 was used with 2048 MB of memory, 4X400 Mhz
UltraSPARC 1IIi processors with 16 KB L1 direct
mapped cache and 4dMB L2 direct mapped cache
each. Note that we were unable to use this machine
exclusively. Other user programs were running si-
multaneously.

We also added some baseline measurements for com-
parison with normal execution without race detec-
tion. Figures using the Hotspot 1.0.1, mixed mode,
build f were added. This is a state of the art just-in-
time (JIT) compiler from Sun which compiles Java
code to native code where necessary. Since we are
not using the JIT included in the Sun JVM, we also
added baseline figures using only the interpreter ver-
sion of the JVM.

As can be seen, TRaDe is faster on all benchmarks
than JProbe and AssureJ. It beats JProbe by a very
large margin; many benchmarks cannot be com-
pleted due to memory exhaustion. When averaged
out, TRaDe is a factor 1.6 faster than AssureJ. As to
memory consumption, TRaDe again beats JProbe
by a very large margin.

AssureJ is more on par with TRaDe in the area of
memory consumption. AssureJ, on average, uses
only a factor 0.74 of the memory TRaDe uses. This
may be caused by the fact that AssureJ incorrectly
removes information about dead threads but until
they divulge their algorithm, it is anybody’s guess.

6 Future Work

As can be seen from Table 2, the overhead of
data race detection is still large when comparing
to normal execution. We plan to further investigate
whether it is possible to tighten the gap between
normal execution of Java programs and our race de-
tection through the use of a JIT compiler.

In TRaDe, we are using an advanced form of vector
clocks, called ‘accordion clocks’, which dynamically
grow and shrink. We will evaluate their performance
in highly multi-threaded applications.

Recently, a static analysis technique, called ‘escape
analysis’, has been applied to Java (see for exam-
ple [1, 3, 18]). It is used to classify objects as escap-
ing from a method or from a thread. Objects that



SwingSet Demo

Jess 6.01al

Resin 1.2bl

Colt 1.0.1.56

Raja 0.4.0 pre2

A highly multi-threaded demo, included with the JDK 1.2, of the Swing widget
set. It demonstrates buttons, sliders, text areas, ... The demo was run until
it was fully loaded and displaying its initial screen. Immediately thereafter it
was shut down.

Jess is a clone of the expert system shell CLIPS, rewritten entirely in Java.
Input is provided so that is solves the famous ‘The monkey and the ba-
nana’ problem included with the Jess distribution. Run with: jess.Main
examples/fullmab.clp

Resin is a web server entirely written in Java. It supports JSP, XML,
JavaScript, XTP, XSL, ... The JSP files hello. jsp, env.jsp, counter. jsp
and index. jsp, included in their examples directory, were requested in parallel.
Open Source Libraries for High Performance Scientific and Techni-
cal Computing in Java. A benchmark program is included in
the distribution which does a number of matrix calculations. Run
with: cern.colt.matrix.bench.BenchmarkMatrix dgemm dense 10 2 0.99
false true 5 5 50 100 300 50 100

Ray tracer in Java generating a picture demonstrating their Phong
highlight capabilities. raja.ui.Compute -v -p txt -r 128x128 -d20 -o
Phong-128x128.png Phong.raj

Table 1: Description of benchmark programs

TRaDe Assurel JProbe Hotspot Interpreter

S MB S MB S MB S MB S MB
SwingSet | 98.3 | 126.6 | 160.6 | 73.3 | >1200t1 | >650f | 20 | 41.8 | 15 | 29.8
Jess 370.3 | 12.1 610 | 17.5 | >3600t | >650F | 22 | 19.8 | 76 8
Resin 56.5 | 27.6 68 27.3 193 226.17 | 11.8 | 279 | 10 | 13.7
Colt 132.5 25 187.8 | 21.2 471.6 71 27.8 | 23.6 | 404 | 13.5
Raja 204.8 | 19.5 372 | 17.8 | 1945+ | 1037t | 14.6 | 24.5 | 42.2 | 11.3

Table 2: Performance measurements




remain local to a method can be stack allocated,
removing the overhead of heap allocation. Synchro-
nisation operations can be removed when operating
on objects that are local to a thread. Although this
is a static, conservative technique, not applicable to
Java programs dynamically loading classes, it would
be interesting to have a clearer view on how many
objects escape analysis can mark as thread local in
comparison to TRaDe.

7 Conclusions

Data races are a serious problem inherent to multi-
threaded programs. There exist a number of general
techniques to combat data races but they are slow
and very intrusive. In this article, we have intro-
duced a new technique, TRaDe, that uses informa-
tion about the changing topology of the objects in-
terconnection graph to more efficiently detect data
races. Despite the fact that TRaDe does not cut
corners while doing data race detection, it is faster
than all known competition and comparable to the
best in memory usage.
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