USENIX Association

Proceedings of the
Java™ Virtual Machine Research and
Technology Symposium
JVM '01)

Monterey, California, USA
April 23-24, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office @usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Proof Linking: Distributed Verification of Java Classfiles in the

Presence of Multiple Classloaders

Philip W. L. Fong
Sitmon Fraser University, B.C., Canada
pwfong@cs.sfu.ca
Robert D. Cameron
Simon Fraser Uniwversity, B.C., Canada
cameron@cs.sfu.ca

Abstract

To offload the computational burden of bytecode
verification within Java Virtual Machines (JVM),
distributed verification systems may be created us-
ing any one of a number of verification protocols,
based on such techniques as proof-carrying code and
signed verification by trusted authorities. This pa-
per advocates the adoption of a previously-proposed
mobile code verification architecture, proof link-
ing, as a standard infrastructure for performing dis-
tributed verification in the JVM. Proof linking not
only supports both CLDC-style and signature-based
distributed verification protocols, but it also pro-
vides interoperability between the two. To ground
our work in the real-world requirements of Java
bytecode verification, we also extend previous work
on proof linking to handle multiple classloaders.

1 Introduction

Security is the cornerstone of trustworthy mobile
code systems such as that of Java. In accepting arbi-
trary mobile code from unknown and potentially un-
trustworthy sources, a Java Virtual Machine (JVM)
enforces type safety—the first line of defence in mo-
bile code security—through a a link-time bytecode
verification process. The bytecode verifier performs
dataflow analysis and various structural analyses to
guarantee that untrusted classfiles can be linked into
the JVM without producing type confusion. We call
this protection mechanism, in which a static code

verification procedure is invoked dynamically by the
runtime environment, proof-on-demand.

Proof-on-demand is conceptually simple and allows
the JVM to take full responsibility for assuring type
safety even in the presence of dynamically generated
code. However, proof-on-demand imposes a con-
siderable computational burden on the JVM. The
link-time overhead is significant enough that some
authors hyperbolically compare it to a denial-of-
service attack [12, p. 110]. Moreover, the architec-
tural complexity of the JVM is greatly increased by
the coupling of complex verification logic with lazy
dynamic linking [7]. Compounding these concerns,
the bytecode verifier also adds significantly to the
JVM’s memory footprint [16, Sec. 5.3.1].

Future computational platforms will likely include
a vast array of small information appliances that
have limited computational resources and demand-
ing response-time requirements. Downloaded mo-
bile code will continue to be popular to provide
short-lived system extensions (see, for example,
the mobile code language WMLScript [17] for the
Wireless Application Protocol). With its stability
and widespread acceptance, the Java platform—and
specifically realizations thereof based on the Con-
nected, Limited Device Configuration (CLDC) spec-
ification [16]—will likely become a major infrastruc-
ture for hosting mobile programs in small devices.
In these contexts, however, the high resource re-
quirements and architectural complexity of proof-
on-demand implementations may become intolera-
ble. The CDLC specification has hence rejected the
proof-on-demand approach.

Future systems will also likely see additional forms
of run-time verification to provide enhanced levels
of protection. As the pervasiveness of mobile code
hosting environments increases, so too do the vul-
nerabilities and the potential consequences of these
vulnerabilities. To counteract this, attention will
turn to safety properties that go beyond simple
“type safety” in ensuring system integrity. The
complex program analyzers necessary to verify these
additional properties may well become impracti-
cal even for a standard JVM, let alone a CLDC-
compliant device.

To address these issues, some or all of the verifica-
tion burden may be offloaded to parties other than
the mobile code hosting environment. This gives
rise to a distributed verification system, in which a
mobile code runtime environment shares some or all
of its verification burden with certain remotely lo-
cated facilities. Each facility interacts with the host-
ing environment by means of a verification protocol.
A distributed verification system may in fact employ
distinct verification protocols for different code units
provided that an overall framework for protocol in-
teroperation is defined. An individual verification
protocol is thus a fixed scheme that orchestrates
the communication and division of labour among
the parties involved in the distributed verification
of a code unit. For example, proof-on-demand is a
trivial verification protocol that assigns the entire
verification burden to the host environment.

This paper is a contribution to the ongoing devel-
opment of a standard distributed verification archi-
tecture for mobile code systems in general, and for
the JVM in particular. The focus of this paper is
twofold:

1. We refine our previously-proposed proof link-
ing architecture [5, 7] as an architectural
framework for supporting distributed veri-
fication of Java bytecode. In particular,
our framework provides for highly efficient
signature-based verification protocols, as well
as interoperability between different verifica-
tion protocols.

2. We extend our previous work to account for a
unique feature of the JVM, namely, multiple
classloaders. We articulate how this extension
preserves the modularity of our architecture as
well as the correctness conditions of the proof
linking strategy. We further describe how this
extension may be implemented, not only in a

CLDC-compliant environment, but also in a
standard JVM.

2 Distributed Verification: Related

work and major issues

In a distributed verification system, the machine
hosting the mobile code runtime environment is
called the code consumer. The party responsible for
construction and distribution of mobile programs is
the code producer. Code producers and consumers
interact in various ways to define a verification pro-
tocol.

As an alternative to proof-on-demand, two families
of verification protocol have been proposed in the
related literature.

Self-Certifying Code. The first protocol family
involves augmenting the untrusted code to make it
self-certifying. This approach is exemplified in the
work on proof-carrying code [14, 13]. The proto-
col proceeds as follows. (i) The code consumers, or
possibly an authority representing them, publish a
safety policy in the form of a verification-condition
generator. Given any mobile program, the genera-
tor computes a verification condition that must be
shown to be true if the code is to be accepted as
safe by consumers. (ii) To distribute a program, a
code producer computes the verification condition
from the code, proves the condition, and then at-
taches the proof to the program code when it is dis-
tributed. (iii) Upon receiving a mobile program, a
consumer recomputes the verification condition, and
then checks if the attached proof indeed establishes
the verification condition. Execution is granted if
proof checking succeeds. Since proof checking is of-
ten substantially easier than proof generation, this
protocol induces less link-time overhead than proof-
on-demand. Furthermore, since proof generation
may now be performed once and for all on the pro-
ducer side, difficult-to-prove safety properties may
become affordable.

In application to Java, the essential idea behind
proof-carrying code is that the code producer can
annotate a mobile program with static analysis re-
sults, so that a consumer may use the annotations to
avoid performing a full bytecode verification. This
idea has been applied to the verification of Java

bytecode in various forms [15, 9, 1], and has fur-
ther been incorporated in the stack map method of
the CLDC specification [16, Sec. 5.3].

Signature-based Methods. A second family of
distributed verification protocols is based on a very
efficient and well-understood mechanism, namely,
signature checking. Execution is granted to code
that is signed by a trusted party.

A major objection to these protocols is that, unlike
a proof (or other kind of annotation), the semantics
of a signature may not be well defined. Thus, there
may be no protection against the possibility that
signing authorities miscertify. Moreover, celebrity
is required in the certification of mobile programs,
making it hard for non-established developers to in-
spire trust.

These objections are nicely addressed by a protocol
which we call proof delegation [2, 3]. The proto-
col proceeds as follow. (i) The code consumers, or
more likely an authority representing them, publish
a safety policy in the form of a static program ana-
lyzer that checks if a given mobile program is safe.
The analyzer is encapsulated in a trusted coproces-
sor, for example, having the form factor of a PCM-
CIA card or a PCI card [8]. Attempts to physically
tamper with the encapsulated analyzer or to extract
the private encryption key in the hardware will ren-
der the hardware dysfunctional, or perhaps clear its
memory [4]. The hardware is then distributed to
code producers. (ii) To distribute software, a code
producer submits mobile programs to the trusted
program analyzer, which verifies the safety of the
code, and digitally signs it. (iii) Upon arrival at a
consumer site, the signature atttached to the pro-
gram code will be authenticated. The bytecode veri-
fication of the proof-on-demand protocol is replaced
by a simple and efficient signature-checking primi-
tive.

Using trusted coprocessors, proof delegation phys-
ically binds the signature to the formal properties
enforced by a static program analyzer, thereby giv-
ing a well-defined semantics to the signature. How-
ever, in order to support signature-based verifica-
tion protocols such as proof delegation, two further
issues must be addressed.

1. Conditional Certification. When a Java
classfile is verified remotely, it is only checked

against the classes on the producer side. How-
ever, Java type safety is a run-time notion,
and a classfile is safe only if we check it against
the loaded classes on the consumer side. For
example, during verification of a classfile, the
dataflow analyzer might need to show that
class A is a subclass of class B. This fact can
only be shown by examining the classes that
are already loaded into the consumer’s JVM.
As a result, a conditional certification seman-
tics for signature is needed. That is, signa-
tures certify that a classfile is safe if specified
external dependencies are further validated on
the consumer side at link time.

2. Protocol Interoperability. A Java devel-
oper may use some off-the-shelf components,
and write “glue” code to orchestrate their in-
teraction. A common scenario may be that
the prefabricated components are already cer-
tified using efficient signature-based protocols,
while the home-grown connection code is certi-
fied by CLDC-style stack maps. A JVM host-
ing this program will not only need to be fluent
in both protocols, but also need to combine
two different kinds of certificate (signatures
and stack maps) when accessing the safety of
the whole program. What is needed, then, is
a mechanism to hide the details of a module’s
certificate, and examine only its certification
interface, which offers us a safe mechanism for
combining certificates.

In support of both self-certifying protocols and
signature-based methods, this paper proposes a
proof linking architecture with the following fea-
tures.

1. Each module is wverified separately, using its
own verification protocol.

2. Certificates are annotated by a well-defined
verification interface, namely, a set of proof
obligations and commitments, which delineate
the external dependencies of the certified unit.

3. A lightweight, incremental verification pro-
cess, namely, proof linking, is integrated into
JVM’s linking algorithm, so that proof obliga-
tions can be discharged by commitments.

This architecture closely follows that previously de-
veloped to deal with modularity concerns in Sun’s

JVM [5, 7]. Here, however, we refine the architec-
ture to addess the needs for conditional certification
and protocol interoperability in distributed verifica-
tion systems.

3 The Proof Linking Architecture

3.1 Assumption, Notations and Mod-
elling

The standard Java classloading semantics uses mul-
tiple classloaders to implement namespace parti-
tioning. A loaded class is identified by both its class-
name and its defining classloader [10]. For the pur-
pose of introducing the proof linking architecture
and its application to distributed verification, how-
ever, this section makes the simplifying assumption
that only a single classloader exists. This assump-
tion will be relaxed in subsequent sections.

As a result of the single-classloader simplification,
symbolic class references and loaded classes are each
denoted simply by classname. A member named M
of a class X with type signature S is identified by
the symbolic reference X::M(S). We do not differ-
entiate a symbolic member reference and an actual
member of a loaded class.

We model the linking activities of the simplified
JVM by a set of linking primitives, including, for ex-
ample, “load X”, “verify X”, “resolve Y in X”,
“resolve Y::M(S) in X7, and so on. The JVM ex-
ecutes linking primitives in a concurrent, nondeter-
ministic fashion, in accordance with a well-defined
partial ordering enforced by the implementation.
We call this partial order the linking strategy of the
runtime environment. Further details are presented
in Section 4.

3.2 A Motivating Example

Signature-based verification protocols involve the
remote verification of classfiles. Safety is in general
a whole-program notion, and thus cannot be estab-
lished by merely examining a single module. Ex-
ternal dependencies (e.g., checking for assignment
compatibility, computing the meet of two flow val-
ues, and so on) validated remotely may no longer

hold when a classfile is linked into the runtime en-
vironment. The following example is illustrative.

Suppose class A defines a method M (S). Suppose
further that A has a direct subclass B, which in turn
has a direct subclass C. Assume that C overrides
the method M(S). Say the method C::M(S) con-
tains an invokespecial bytecode instruction that
delegates the call to method A::M(S). A bytecode
verifier is supposed to check that class C' is a sub-
class of class A. If the verification of class C' is per-
formed at link time, the bytecode verifier will recur-
sively invoke the classloader to bring in the classfiles
for both B and C to validate the required subclass-
ing relationship. However, if the verification of class
C is carried out remotely, this strategy will fail for
two reasons. First, the remote verifier might not
have access to the classfiles for A and B. Second,
even if it does, the versions of A and B considered
by the remote verifier may not be compatible with
the ones actually loaded into the JVM.

This configuration management issue motivates a
two-stage verification architecture based on condi-
tional certification and proof linking. In the first
stage, remote verification is performed in a modular
fashion to generate conditional certificates. These
certificates specify the assumptions (dependencies)
that must be checked to ascertain the safety of the
code unit in question. In the second stage, the JVM
performs proof linking to check the asserted condi-
tions in the context of the classes actually loaded.

3.3 First Stage: Modular Verification

Untrusted classfiles are certified by a trusted ver-
ifier at a remote site. Instead of endorsing exter-
nal dependencies that might be invalidated at run-
time, the remote verifier computes, for each classfile,
a conservative safety precondition summarizing the
external dependencies that must hold at runtime in
order for the classfile to be safe. The safety pre-
condition is here represented as a conjunctive set of
database queries. In the running example, during
the remote verification of classfile C, a trusted veri-
fier will generate the query subclass(C, A) as the
invokespecial instruction is scanned. The remote
verifier may end up generating many such queries.
The conjunctive set of all the queries formulated by
the remote verification session becomes the safety
precondition for endorsing the classfile being con-
sidered.

In addition, the remote verifier also schedules each
of the queries for evaluation. Each query de-
scribes a safety precondition for a particular link-
ing primitive. For example, the query above,
subclass(C, A), is associated with the linking
primitive “resolve A:M(S) in C.” In essence, this
schedules the subclassing check for evaluation imme-
diately prior to resolution of A::M(S) within class
C. Such a query is said to be the proof obligation
for the associated primitive, representing a condi-
tion that must be met if the runtime system is to
safely execute the corresponding linking primitive.
We also say that a proof obligation is attached to its
associated primitive.

In order for the runtime system to discharge proof
obligations, the remote verifier also computes, for
each code unit, a set of clauses called commitments.
The commitments are ground facts that describe the
interface properties of the code unit. For example,
during the remote verification of the classfile C, the
fact extends (C, B) is generated as one of the com-
mitments. As we shall see below, this fact will be
used to satisfy the subclassing query in our example.

Prior to shipping a classfile, the remote verifier will
package together the classfile itself, the obligations
annotated with the associating primitives, and the
commitments. The entire package is signed by the
verifier using its private key. The signed package
is then distributed to consumers. The obligations,
commitments, and the signature can all be pack-
aged inside a classfile using classfile attributes (see
the JVM specification for details [11]).

3.4 Second Stage: Proof Linking

When a remotely certified classfile X arrives at the
code consumer’s site, it is loaded into the JVM.
The local “verify X” primitive, instead of perform-
ing bytecode verification on X, will unpackage the
classfile, authenticate the signature, and then pro-
cess the proof obligations and commitments follow-
ing the procedure outlined below.

We assume that the runtime environment is
equipped with two data structures: (1) an obligation
table mapping linking primitives to their attached
proof obligations, and (2) a commitment database
holding commitments already known by the JVM.
After unpackaging an untrusted classfile, the local
“verify X” primitive records the newly obtained

proof obligations in the corresponding entry of the
obligation table, and asserts the commitments into
the commitment database.

Subsequently, when a linking primitive is to be exe-
cuted, the JVM will (1) look up the obligations that
are already attached to the primitive, (2) attempt
to satisfy each of the obligations by consulting the
commitment database (raising an appropriate link-
ing exception if the attempt fails), and (3) perform
the action prescribed by the primitive.

To make proof linking more expressive, arbitrary
logic programs can be provided as an initial theory
in the commitment database. For example, the fol-
lowing program can be present in the database to
define subclassing as the transitive closure of the
extend/2 relation.

subclass (X, X).

subclass(X,Y) :-
extends (X, Z),
subclass(Z,Y).

After the local verifier has processed the classfiles
for B and C, the commitment database may con-
tain the following commitments:

extends(C, B).
extends (B, A).

When the primitive resolve A::M(S) in C is to be
executed, the JVM will look up its attached obli-
gations, among which the query subclass(C, A)
will be found. The JVM then attempts to satisfy
this query by consulting the facts and rules within
the commitment database. The query succeeds and
the primitive is executed (assuming that any other
obligations are satisfied as well).

3.5 What We Have Gained

The scheme presented above nicely addresses the
need for conditional certification. Even though the
remote verifier is unable to validate the external de-
pendencies of a class, it nevertheless can express
them as proof obligations. The proof linking mecha-
nism is invoked to discharge the obligations at run-
time, when the necessary information has become
available.

Proof linking also provides interoperability between
distributed verification protocols such as proof del-
egation, proof-carrying code, and proof-on-demand.
Because linking primitives communicate solely by
attaching obligations and asserting commitments,
they are highly modular. A local verifier may
process classfiles annotated with CLDC-style stack
maps to generate the appropriate proof obligations
and commitments just as a remote verifier would do
through bytecode analysis. In the event of a class-
file that is neither signed by a remote verifier nor
annotated with stack map, the local verifier may
itself perform a complete bytecode verification to
generate the necessary proof obligations and com-
mitments. The proof linking mechanism checks and
discharges obligations from each of these sources in
the same way, without any need to know the verifi-
cation protocol used for a particular classfile. As a
result, a Java application could consist of a number
of classfiles that are signed remotely, others that
are “pre-verified”, and still others that are com-
pletely uncertified. As long as each verification pro-
tocol uses the same verification interface for asserted
proof obligations and commitments, interoperability
is assured.

3.6 Correctness Considerations

That the incremental proof linking procedure is as
safe as proof-on-demand is not obvious. Could an
obligation be generated after its attachment tar-
get is already executed? Could it be possible that
checked obligations are falsified by subsequently
generated commitments? Is it possible that an obli-
gation fails only because the commitments necessary
for satisfying it are generated too late? To address
these concenrs we formulate the following three cor-
rectness conditions.

1. Safety. Every primitive that could attach
obligations to another primitive p must be
completed before the execution of p begins.

2. Monotonicity. Obligations may not be con-
tradicted by subsequently asserted commit-
ments.

3. Completion. Let o be an obligation that
could be attached to a primitive p. All prim-
itives that could generate commitments con-
tributing to the satisfaction of o must be com-
pleted prior to the execution of p.

By reasoning about the partial ordering of primi-
tives, and analyzing the structure of the commit-
ments, obligations and the initial theory, we have
formally established the three correctness conditions
above for our Java proof linking formulation, and
have check the proof with the aid of a mechanical
theorem prover [7].

3.7 Implementation

Throughout the presentation above, we have used a
simple logic programming notation to represent the
proof obligations, commitments, and initial theory.
However, this abstract model is presented as such
only to clarify ideas and to facilitate the articula-
tion of correctness (see Section 5). By no means are
we suggesting that an actual implementation em-
ploy a logic programming system in proof linking.
Rather, commitments can be optimized as flags and
pointers stored in the Class and Method objects in-
side the JVM. A recursive query such as subclassing
could well be realized by a standard tree traversal
algorithm. The obligation table need not even exist
physically; obligations attached to a resolve prim-
itive could be stored in the corresponding constant
pool entry. Such optimizations were used in the pro-
totype implementations reported previously [5, 7].

4 Java Proof Linking for Multiple
Classloaders

The discussion above assumes a simplified JVM
with only one classloader. We relax the assumption
in this section, and analyze the interaction between
proof linking and dynamic linking in the setting of
multiple classloaders. It turns out that a systematic,
straightforward set of extensions to the previously
proposed model is sufficient to make proof linking
work with multiple classloaders. This demonstrates
that the proof linking technique is applicable to re-
alistic mobile code environments and is orthogonal
to Java’s delegation-style classloading.

4.1 Enter Multiple Classloaders

When a Java application attempts to load a class C
with a given name X with a classloader L;, the ini-

load (X, J) | Define a class with name X and defining classloader J.
J) | Using the appropriate verification protocol, assess the safety of the
bytecode in loaded class (X, J).

Bind the class symbol X in the namespace of classloader L to the
loaded class (X, J). That is, classloader L becomes an initiating
classloader of X.

endorse (X,

Endorse the loaded class (X, J) for resolution.

~—

Endorse the loaded member (X::M(S), J) for resolution.

Resolve the class symbol Y in loaded class (X, J).

J)
endorse (X::M(S),J)
resolve Y in (X, J)
resolve Y:M(S) in (X, J)

)

Resolve the member symbol Y::M(S) in loaded class (X, J).

Figure 1: The Extended Set of Linking Primitives for Java

tiating classloader of C, L; may delegate the class-
loading task to another classloader, which, in turn,
might delegate the task to yet another classloader.
The classloader L, that eventually loads and de-
fines C' is said to be its defining classloader. C is
uniquely identified by the pair (X, L;). We also
write XL — (X, Lq) to indicate the fact that L;
initiates the loading of (X, Lg). When a symbolic
reference Y is resolved in a class (X, L), the class-
loader L will be used as the initiating classloader for
class Y. We identify the member M (S) of a loaded
class (X, L) by the notation (X::M(S), L). Details
of Java’s classloading mechanism are described else-
where [11, Chapter 5][10].

4.2 Overview of the Solution Approach

Since a loaded class is identified not only by its class-
name, but also by its defining classloader, a remote
verifier has no way of naming the classes in the com-
mitments and obligations it generates. To deal with
this, we extend our scheme by the following set of
reformulations:

1. The remote verifier expresses commitments
and obligations not in terms of loaded classes,
but in terms of symbolic class references.

2. The local verify primitives tag the symbolic
class references by their initiating classloaders.

3. Name binding events are explicitly modeled as
linking primitives generating binding commit-
ments.

4. Translation rules are introduced into the ini-
tial theory for explicit resolution of tagged
symbolic references into loaded classes using
binding commitments.

4.3 Linking Primitives

We begin the discussion of our extended proof link-
ing model by looking at its linking primitives. We
define a linking primitive as a self-contained action
which never activates other primitives as a subrou-
tine, nor recursively invokes itself. The JVM exe-
cutes a linking primitive p using the following pro-
tocol:

1. Look up the proof obligations that have been
attached to primitive p.

2. Attempt to satisfy each of the obligations us-
ing the commitments that have been asserted
into the commitment database. Raise an ap-
propriate exception if any obligation is unsat-
isfiable.

3. Perform the action prescribed by the linking
primitive.

4. Collect the new proof obligations generated by
the primitive, and record the obligations in the
corresponding entry of the obligation table.

5. Collect the new commitments generated by
the primitive, and assert them into the com-
mitment database.

Our multiple-classloader linking model contains the
extended set of linking primitives in Figure 1. We
inherit the two endorse primitives from our origi-
nal work. They are auxiliary targets of obligation
attachment. Since they do not contribute much to
our present discussion, readers may safely identify
them with class preparation. Only the verify prim-
itives generate obligations, and only the verify and
bind primitives generate commitments.

Two changes to the original primitive set have been
made [7, Sec. 4.1]:

1. Theload, verify, endorse and resolve prim-
itives have been adapted to refer to loaded
classes rather than simple class names.

2. A new family of bind primitives has been in-
troduced. These model the explicit binding of
loaded classes to symbols defined in the local
namespace of a classloader. When the JVM
binds the loaded class (X, J) to the symbol
X in an initiating classloader L, the primitive
“bind XT to (X,J)” is executed. It is as-
sumed that the JVM will execute at most one
“bind X' to (X,J)” for each symbol X in
classloader L.

The JVM orders the nondeterministic, concurrent
execution of linking primitives according to the con-
straints prescribed by the linking strategy found in
Section 4.7.

4.4 Static Type Rules

The static type rules for Java under the single class-
loader assumption have been presented previously
[7, Figure 6]. A straightforward mechanical trans-
lation to replace classnames with loaded class nota-
tions adapts these rules for the multiple classloader
case. For example, consider the subclassing rule
mentioned above.

subclass (X, X).

subclass(X,Y) :-
extends (X, Z),
subclass(Z,Y).

This rule is transformed as follows.

subclass ({X, J), (
subclass ({X, J), (

~
-

A list of all the reformulated rules is available in a
technical report [6, Figure 2].

4.5 Commitment Assertion

Suppose that a classfile with classname X is being
verified remotely, and that X extends a class with
name Y. The verifier must assert a commitment
specifying this subclassing relationship. However,
at remote-certification time, the defining classload-
ers J and K for the classes X and Y respectively are
unknown, so the commitment cannot be phrased in
terms of (X,J) and (Y, K). Three reformulations
address this problem. First, the remote verification
procedure instead formulates the commitment:

extends (this, Y)

The relative reference this represents the class be-
ing verified. When the commitments are actually
asserted into the commitment database by the lo-
cal “verify (X,J)” primitive, the defining class-
loader J for class X is known. Therefore, whenever
“verify (X, J)” asserts a commitment p, it system-
atically tags the commitment as p@ (X, J). For ex-
ample, the commitment above will be asserted as:

extends (this, Y) @ (X, J)

A list of all the reformulated commitments that a re-
mote bytecode verifier should generate can be found
in the technical report [6, Figure 4].

Second, execution of the bind primitive contributes
binding information by asserting commitments.
Whenever a “bind X to (X,J)” primitive ter-
minates, it asserts the commitment “XT s (X, .J)”.
These facts will be used for explicit resolution of
symbols in commitments and queries.

Third, the initial theory is augmented with trans-
lation rules that express how subgoals expressed
in terms of loaded class notations may be satisi-
fied using corresponding goals using tagged com-
mitments. For example, to evaluate queries of
the form subclass({X,J), (Y, K)), we will even-
tually need to evaluate subgoals of the form
extends ((X, J), (Y, K)) using the tagged commit-
ments above. To do so, the following translation
rule is used.

extends ({X, J), (Y, K)) :-
extends(this, Y) (X, J),
Y/ = (Y, K).

The rule basically retrieves the corresponding
tagged commitment, and then validates binding in-
formation by consulting the binding commitments.
A similar translation rule is required for each pred-
icate that may be asserted as a commitment. The
formulation of these rules is straightforward and the
complete set is presented in the technical report [6,
Figure 6].

4.6 Obligation Attachment

As with commitments, a remote verifier cannot
identify the defining classloader for the classes ap-
pearing in obligations. We then follow the same
strategy and formulate obligations in terms of static
classnames, and then rely on the local verify primi-
tive to tag the obligations with the context in which
they are to be evaluated. For example, the remote
verifier may formulate an obligation of the following
form:

subclass (Y, Z)

When the local verify primitive processes this obli-
gation, it tags the query with an evaluation context
before attachment:

subclass (Y, Z) e (X, J)

Similar tagging is systematically applied to each
obligation [6, Figure 7).

Translation rules transform tagged queries into
queries in terms of loaded classes. For example,
the following rule is required in the initial theory
in order to handle all subclass/2 queries:

subclass(Y, Z) @ (X, J) -
Y/ = (Y,K),
Z7 —(Z,L),
subclass (Y, K), (Z,L)).

The translation rule basically resolves all the sym-
bols in the tagged context, and evaluates a corre-
sponding query in terms of loaded classes. The com-
plete set of these translation rules is presented in the
technical report [6, Figure 8].

Recall that, in the running example, the above sub-
classing obligation should be attached to the prim-

itive “resolve Z::M(S) in (X, J)”, which is iden-
tified by the loaded class reference (X, J). The re-
mote verifier cannot completely identify the target
primitives to which the obligation is attached. For-
tunately, obligations are always attached to primi-
tives that are operating on the class being verified [6,
Figure 7]. The remote verifier may thus formulate
the target of attachment in terms of place holders:

resolve Z:M(S) in ___

and rely on the local “verify (X, J)” primitive to
fill in (X, J), as it does when tagging obligations.

4.7 Linking Strategy

A linking strategy schedules the execution of linking
primitives, and coordinates incremental proof link-
ing. The following notations are used to express
ordering constraints. For linking primitives p and ¢,
the constraint “p < ¢” requires that any execution
of primitive ¢ should be preceded by the completion
of primitive p. The constraint “p < q if ¢” requires
that execution of ¢ must not begin if g holds and p
has not yet completed.

Java proof linking requires the ordering constraints
shown in Figure 2. Except for the newly introduced
Proper Resolution Property [PR], these constraints
for the multiple-classloader case are extensions to
the corresponding constraints for the single class-
loader case [7, Sec. 4.1].

4.8 DPutting It All Together

To illustrate how the scheme above works, con-
sider a refinement of the running example. Sup-
pose class (A, L;) defines a method M(S). Sup-
pose further that (A,L;) has a direct subclass
(B, Lz), which in turn has a direct subclass
(C, L3). Assume that (C, L3) overrides the method
M(S). Say the loaded method (C::M(S),Ls)
contains an invokespecial instruction that dele-
gates the call to (A:M(S),L;). The obligation
subclass(C, A) @(C, L3) will be attached to the
primitive “resolve A:M(S) in (C,L3)”. When
the obligation is checked, the subgoals in Fig-
ure 3 will be generated. The original obligation

[NP] Natural Progression Property: The natural life cycle of a class (X, J) is reflected in the ordering
below:

load (X, J) < verify (X, J) < bind X’ to (X,J)
< endorse (X, J) < resolve Y in (X, J) < resolve Y::M(S) in (X, J)

[PR] Proper Resolution Property: The defining classloader of a loaded class is used for resolving the
symbolic references of the class:

bind Y’ to (Y, K) < resolve Y in (X, J)
Delegation of classloading bottoms out when a classloader defines the requested class:

bind Y¥ to (Y, K) < bind Y’ to (Y, K)

[IC] Import-Checked Property: Resolving a symbolic reference requires that the target object is well-
defined:

endorse (Y, K) < resolve Y in (X, J) if Y/ (Y, K)
endorse (Y::M(S), K) < resolve Y::M(S) in (X, J) if Y/ = (Y, K)

[SD] Subtype Dependency Property: To establish an obligation concerning a class, type information
about its superclasses and superinterfaces might be needed. For example, to establish that the direct
superclass Y7 of a loaded class (X, J) is subclassable (i.e. subclassable(Y) @(X,J)), We require
that all superclasses and superinterfaces of (X, J) to be loaded, verified and bound before (X, J) is
used. To address this need, we require that

bind Y to (Y, K) < endorse (X,J) if subtypedependent (V") @ (X,.J)

where the conditional query is handled by the following rules in the initial theory:

subtypedependent (X”) @ (X, J). subtypedependent (Y1) @ (X, J) :-
subtypedependent (Y1) @ (X, J) :- subtypedependent (25) @ (X, J),
subtypedependent (ZX) @ (X, J), zZ¥ —(z,L),
Z¥ s (Z, L), implements (this, I) @(Z, L),
extends(this, Y) @(Z, L). member (Y, I).

[RD] Referential Dependency Property: Sometimes, verification of a class Y is needed before we can
safely endorse a method (X::M(S),J). For example, if method (X::M(S), J) assigns a reference of
type Y to a variable of type Z, then Java type rules require Z to be either a superclass or a su-
perinterface of Y. Unless Y is a superclass of X, it is entirely possible that the superclasses and
superinterfaces of Y are not verified yet. Consequently, the required supporting commitments for
the obligation are not necessarily present at the time the obligation is checked, a violation of the
Completion Condition. In such a case, we say that Y is relevant to the endorsing of (X::M(S), J).
We assume that, remote verification of the bytecode for method (X ::M(S), J) generates commitments
relevant (Y, this: : M (S)) @ (X, J) for all relevant class symbols Y, and we require that:

endorse (Y, K) < endorse (X::M(S), J) if relevant (Y, this:: M(S)) (X, J)

That is, we want to collect the commitments for all relevant classes (plus their superclasses and
superinterfaces) before we check the obligations attached to “endorse (X::M(S), J)”.

Figure 2: The Extended Java Linking Strategy

1. subclass(C, A) @(C, L3)
1.1. Cts = (C, L3)
1.2. ALs 5 (A, L)
1.3. subclass({C, L3), (A, L))

1.3.1. extends ((C, L3), (B, L))
1.3.1.1. extends(this, B) @ (C, L3)
1.3.1.2. BLs s (B, L)

1.3.2. subclass((B, Ls), (4, L1))
1.3.2.1. extends((B, La), (4, L1))

1.3.2.1.1. extends(this, A) @(B, L»)
1.3.2.1.2. A2 (A L)
1.3.2.2. subclass ({4, L;), (4, L1))

/* resolve A:M(S) in (C, L3) */
/* bind C2 to (C, L3) */
/* bind ALs to (A, L) */

/* verify (B, Ly) */
/* bind B¢ to (B, Ls) */

/* verify (B, Ly) */
/* bind A2 to (A,L) */

Figure 3: Subgoals generated by evaluating subclass(C, A) @{(C, L3)

is shown as the top-level goal, annotated with
“resolve A:M(S) in (C,Ls)”, the primitive to
which the obligation is attached. We have also anno-
tated all the innermost subgoals with the primitives
that assert their matching commitments.

The deduction is successful because the commit-
ments required by the innermost subgoals are al-
ready asserted at the time the obligation is checked,
that is, at the time “resolve A:M(S) in (C, L3)”
is executed. For example, subgoal 1.1 is satisfiable
because, according to the Natural Progression Prop-
erty [NP], the primitive “bind CL* to (C, L3)” has
already been executed. Also, subgoal 1.2 is satisfi-
able because

bind AL to (A, L;)
< resolve A in (C, L3) ...[PR]
< resolve A:M(S) in (C, L3)...[NP]
The rest of the subgoals are more interesting. Note
that subtypedependent (B?) @ (C,Ls3) is satisfi-
able before “resolve A:M(S) in (C, L3)” is exe-

cuted. By applying the Subtype Dependency Prop-
erty [SD] and other ordering constraints, we deduce

verify (B, L)

< bind B** to (B, L) ..[NP]
< bind B to (B, L) ..[PR]
< endorse (C, L3) ..[SD]

< resolve B::M(S) in (C, L3)...[NP]

That is, the commitments extends (this, B) @ (C, L3)

and B3+ (B, L,) (generated by “verify (B, L,)”
and “bind BL® to (B, L,)” respectively) are al-
ready in place when the obligation is checked.

Therefore, subgoals 1.3.1.1. and 1.3.1.2. are nec-
essarily satisfiable. Similar reasoning applies to
subgoals 1.3.2.1.1. and 1.3.2.1.2.

This example is really a skeleton for the proof of
Completion, one of the three correctness criteria for
proof linking. These criteria are considered in detail
in the next section.

5 Correctness

Given a well-defined linking strategy, proof linking
is correct if we can establish the three correctness
conditions: Safety, Monotonicity and Completion
[7, Sec. 3.3].

5.1 Safety and Monotonicity

Establishment of the Safety and Monotonicity prop-
erties follows the corresponding arguments for the
single-classloader case [7, Sec. 4.3].

1. Safety: Notice that, when the local
“verify (C, L3)” primitive generates the obli-
gation subclass(C, A) @(C, L3), the obliga-

tion is attached to “resolve A::M (S) in (C, L3)”.

By the Natural Progression Property [NP],
the obligation is always attached on time.
Similar reasoning can be applied to all the
obligations [6, Figure 5].

(a-0) X{0 (X, Lo)

() X0 = (Xn, Ln)

(8-0) extends (this, X1) @{Xg, Lo)
(a-1) X{ = (X1, L)

(8-1) extends (this, X5) @(X1, L)
(a-2) X5 (X, L)

(8-2) extends (this, X3) @(Xs, L)
(a-3) X352 = (X3, Ly)

(B-(n—1)) extends(this, X,,) @{(X,_1,Lp,_1)
(a-n) Xp " e (X, L)

bind X£° to (Xo, Lo)
bind X% to (X, L)
verify (Xg, Lo)
bind X{° to (X, L;)
verify (X, L)
bind X1 to (X», Ly)
verify (Xs, Ls)
bind X;” to (X3, L3)

verify <Xn—1a Ln—l)
bind X+"~* to (X,,,L,)

Figure 4: Leaves of the Proof Tree for the Obligation subclass(Xy, X,,) @ {(Xo, Lo)

2. Monotonicity: The initial theory, commit-
ments and obligations forms a monotonic,
horn clause logic (see [6] for details).

5.2 Completion

Completion has to be established on an obligation-
by-obligation basis. Continuing with our running
example in section 4.8, we consider an obligation
subclass(Xo, X,) @(Xp, Lo) that is attached to
the primitive “resolve X,:M(S) in (X, Lo)”.
Our goal is to show that, if the predicate
subclass (X, X,,) @(Xy, Lo) eventually becomes
provable, then it is necessarily provable before the
primitive “resolve Xj:M(S) in (X, Lo)” is exe-
cuted.

Suppose that the obligation subclass (X, X,) @ (Xo, Lo)

becomes provable at a certain point. Generalizing
the proof found in Figure 3, the proof tree of the
obligation contains the innermost subgoals in Figure
4.

We number the subgoals as (a-i), (8-i) and
(7). We want to show that the primitives
that assert commitments satisfying these subgoals
have all been executed prior to the execution of
“resolve X,,::M(S) in (Xo, Lo)”. As already ex-
plained in Section 4.8, the Proper Resolution Prop-
erty [PR] guarantees that supporting commitment
(v) is already in place. We use induction to show
that commitments (a-i) and (5-i) are already as-
serted when the obligation is checked.

Basis: Commitment (a-0) and (5-0) are already as-
serted because,

verify (Xo, Lo)
< bind XJ° to (X, Lo) ...[NP]
< resolve X;::M(S) in (Xo, Lo). . .[NP]

Induction Step: Assume that commitments (a-
i) and (B-i) are already in place, for 0 <
i < k, where £ > 0. The pres-
ence of these commitments enable the query
subtypedependent(X,fk_l)@(XO,LO) to be
satisfiable. We then have

verify (X, L)

< bind X{* to (X, L) ..[NP]
< bind X ** to (X, L) ..[PR]
< endorse (X, Lg) ..[SD]

< resolve X,:M(S) in (Xo, Lo)...[NP]

Since the contributors “bind X,f’“‘l to (X, Lg)”
and “verify (X, L;)” for respectively (a-
k) and (B-k) are already executed, the com-
mitments are present when the obligation is
checked.

This concludes the proof of Completion for one class
of obligations. Completion can be established simi-
larly for the rest of the obligations.

6 Discussion

6.1 Implementation Guidelines

The linking strategy above suggests a natural im-
plementation of proof linking in a JVM with mul-
tiple classloaders. In particular, a call to the
defineClass method of class loader J, with ar-
gument X as the expected classname, will exe-
cute “load (X,J)” and “verify (X,J)”. A call
to the loadClass method of class loader K, re-
questing the loading of class X, corresponds to the
primitive “bind X¥ to (X,J)”. The primitive
“endorse (X, J)” could be executed when the class
“(X,J)” is prepared [11, Sec. 5.4.2]. The primitive
“endorse (X:M(S),J)” could be executed right
before the method is first resolved. The resolution
primitives coincide with regular symbol resolution.

The translation rules, binding commitments, and
tagging can be optimized readily. For example,
a classloader usually has a hash table storing the
classes whose loading it has initiated. Such a ta-
ble can be reused to represent binding commit-
ments. Also, tagging is just an abstract way to
say that the tagged commitments/obligations are
stored in the Class objects themselves. Notice that
this suggests a very convenient way to retract com-
mitments/obligations when a class is finalized.

6.2 Comparison with Sun’s Linking
Strategy

As opposed to Sun’s JVM implementation, which
postpones bytecode verification until a class is
linked, the implementation strategy above performs
eager verification, that is, the local “verify (X, J)”
primitive is executed immediately after (X, L) is
defined. This is necessary to ensure that commit-
ments are gathered as soon as possible. Sun’s JVM
performs one pass of verification at class definition
time, postponing the second and third passes until
link time.

6.3 Implementation Status

We are in the process of implementing a proof linker
in a CLDC-compliant KVM extended with multiple

classloaders. The exercise has clarified a lot of our
thoughts, and has confirmed the compatibility of
proof linking and Java’s delegation style classload-
ing mechanism.

7 Conclusion

We advocate the adoption of the proof linking ar-
chitecture as a standard framework for conducting
distributed verification for the JVM. The architec-
ture supports the notion of conditional certifica-
tion essential for signature-based verification proto-
cols, and offers interoperability among various dis-
tributed verification protocols. We have also ex-
tended our original proof linking model to account
for the presence of multiple classloaders in the stan-
dard JVM, thereby showing that proof linking is ap-
plicable to complex mobile code environments such
as J2SE.

Acknowledgement

The research was funded in part by a scholarship
and an operating grant from the Natural Sciences
and Engineering Research Council of Canada.

References

[1] Christopher Colby, Peter Lee, George C.
Necula, Fred Blau, Ken Cline, and Mark
Plesko. A certifying compiler for Java. In
Proceedings of the 2000 ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI’00), Vancouver,
BC, Canada, June 2000. Also available as
http://www-nt.cs.berkeley.edu/home/
necula/public html/pldiO0b.ps.gz.

[2] Prem Devanbu and Stuart Stubblebine. Auto-
mated software verification with trusted hard-
ware. In Proceedings of the Twelfth Interna-
tional Conference on Automated Software En-
gineering, 1997.

[3] Premkumar T. Devanbu, Philip W. L.
Fong, and Stuart G. Stubblebine. Tech-
niques for trusted software engineering. In

[6]

[7]

[10]

Proceedings of the 20th International Con-
ference on Software Engineering (ICSE’98),
Kyoto, Japan, April 1998. Also avail-
able at http://seclab.cs.ucdavis.edu/
“devanbu/files/icse98.pdf.

Federal Information Processing Standards
Publication. Security requirements for crypto-
graphic modules. Technical Report FIPS PUB
140-1, U.S. Department of Commerce /National
Institute of Standards and Technology, January
1994. Available as http://csrc.nist.gov/
fips/fips1401.pdf.

Philip W. L. Fong and Robert D. Cameron.
Proof linking: An architecture for modu-
lar verification of dynamically-linked mobile
code. In Proceedings of the Sizth ACM SIG-
SOFT International Symposium on the Foun-
dations of Software Engineering (FSE’98), Or-
lando, Florida, USA, November 1998. Also
available at http://www.cs.sfu.ca/ pwfong/
personal/Pub/fse98.ps.

Philip W. L. Fong and Robert D. Cameron.
Java proof linking with multiple classloaders.
Technical Report SFU CMPT TR 2000-04, Si-
mon Fraser University, 2000. Available at
ftp:// fas.sfu.ca/pub/cs/TR/2000/.

Philip W. L. Fong and Robert D. Cameron.
Proof linking: Modular verification of mobile
programs in the presence of lazy, dynamic link-
ing. ACM Transactions on Software Engi-
neering and Methodology, 2000. To appear.
Also available as http://www.cs.sfu.ca/
“pwfong/personal/Pub/tosem2000.ps.

IBM. IBM PCI cryptographic coproces-
sor. Available at http://www-3.ibm.com/
security/cryptocards.

Gerwin Klein and Toblias Nipkow. Verified
lightweight bytecode verification. In ECOOP
2000 Workshop on Formal Techniques for
Java Programs, 2000. Also available at
http://www4.informatik.tu-muenchen.de/
“nipkow/pubs/1bv.ps.

Sheng Liang and Gilad Bracha. Dynamic
class loading in the Java virtual ma-
chine. In Proceedings of the 1998 ACM

[11]

[12]

[13]

[14]

[15]

[16]

[17]

SIGPLAN Conference
Programming, Systems, Languages and
Applications (OOPSLA’98), pages 36-44,
Vancouver, British Columbia, October 1998.
Also available at http://java.sun.com/
people/gbracha/classloader.ps.

on Object-Oriented

Tim Lindholm and Frank Yellin. The Java Vir-
tual Machine Specification. Addison Wesley,
2nd edition, 1999. Also available at http://
java.sun.com/docs/books/vmspec.

Gary McGraw and Edward W. Felten. Java Se-
curity: Hostile Applets, Holes, and Antidotes.
Wiley, 1997.

George C. Necula. Proof-carrying code. In Pro-
ceedings of the 24th ACM Symposium on Prin-
ciples of Programming Languages (POPL’97),
Paris, France, January 1997. Also available
at http://www-nt.cs.berkeley.edu/home/
necula/public_html/popl97.ps.gz.

George C. Necula and Peter Lee. Safe kernel
extensions without run-time checking. In Pro-
ceedings of the Second Symposium on Operating
System Design and Implementation (OSDI’96),
Seattle, WA., October 1996. Also avail-
able at http://www.cs.cmu.edu/ necula/
0sdi96.ps.gz.

Eva Rose and Kristoffer Hogsbro Rose.

Lightweight bytecode verification. In
The OOPSLA’98 Workshop on For-
mal Underpinnings of Java, Vancouver,
BC, Canada, November 1998. Avail-
able at http://www-dse.doc.ic.ac.uk/

“sue/oopsla/rose.f.ps.

Sun Microsystems. Connected, Limited Device
Configuration: Java 2 Platform Micro Edition.
Sun Microsystems, version 1.0 edition, May
2000. Available at http://java.sun.com/
products/cldc/.

WAP Forum. WAP-193-WMLScript Lan-
guage Specification. WAP Forum, version 1.2
edition, June 2000. Available at http://
www.wapforum. org/what/technical.htm.

