
USENIX Association

Proceedings of the
Java™ Virtual Machine Research and

Technology Symposium
(JVM '01)

Monterey, California, USA
April 23–24, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The HotSpot™ Serviceability Agent:
An out-of-process high level debugger for a Java™ virtual machine

Kenneth Russell1 and Lars Bak2
Sun Microsystems

fKenneth.Russell, Lars.Bakg@eng.sun.com

Abstract
The HotSpot™ Serviceability Agent (SA) is a set of APIs
for the Java programming language which model the
state of Sun Microsystems’ Java™ HotSpot Virtual Ma-
chine. Unlike most previous debugging systems for dy-
namic languages which assume a “cooperative” model
in which the target process runs code to assist in the de-
bugging process, the SA requires no code to be run in the
target VM. Instead, it uses primitives like symbol lookup
and reading of process memory to implement its func-
tionality. The SA can transparently examine either live
processes or core files, making it suitable for debugging
both the VM itself and Java programs in production. We
describe the design and implementation of the SA, com-
paring it to other debugging systems for both statically
compiled and dynamic languages, and illustrate future
directions for this architecture.

1 Introduction

The Java HotSpot Virtual Machine implementation
(hereafter referred to as the HotSpot JVM) is Sun Mi-
crosystems’ high-performance VM for the Java plat-
form3. HotSpot’s origins are in language research in
Beta [18], Smalltalk [6], and Self [12] [13]. The
HotSpot JVM uses many advanced techniques to
achieve high performance. The system employs a
mixed-mode assembly interpreter which shares the stack
with both C code and Java programming language meth-
ods (Java methods) compiled to machine code. Run-
time profiling focuses compilation effort only on “hot”
methods. Dynamic deoptimization [14] allows a com-
piled method to revert back to the interpreted state if
invariants under which the method was compiled are
compromised by future class loads. The ability to de-
optimize allows the compiler to perform aggressive op-
timization and inlining.

How does one debug the product version of a highly-
optimizing JVM which is written largely in C or C++ ?

1901 San Antonio Road, M/S UCUP02-302, Palo Alto, CA 94303.
2Computer Science Department, Aarhus University, Aabogade 34,

DK-8200 Aarhus N, Denmark.
3An arbitrary Java virtual machine implementation is hereafter re-

ferred to as a JVM.

Figure 1. An object inspector built with the SA’s APIs.

Such a JVM

• tends to operate with generated machine code,
and to merge the C++ and Java virtual machine
stacks (Java stacks). Activations on the stack cor-
responding to invocations of Java methods (Java
frames) show up in a C++ debugger as raw program
counters with no corresponding symbol.

• may have a highly-optimizing compiler. An acti-
vation on the stack may correspond to more than
one Java method invocation, because of inlining.

• may encode many of its run-time data structures
to save space.

• will not have available debug information for the
C++ data structures describing portions of the run-
time system such as the layout of the heap.

In short, when one examines the product version of such
a JVM with a traditional C++ debugger, one deals with
raw bits. All of the high-level abstract data types are
gone.

The HotSpot Serviceability Agent is a set of APIs
for the Java programming language which recover this
high-level state from a product-mode HotSpot JVM or
a core file. Clients of the SA can use its APIs to write
application-specific tools, debugging aids, and querying
operations which operate directly on a target JVM and in
a completely non-intrusive fashion; Figure 1 illustrates
an object inspector built on top of the SA’s APIs. Unlike
most debuggers for dynamic languages, the SA requires
no code to be run in the target JVM. It is therefore robust
in the face of JVM failures. This property is what allows
it to operate as a post-mortem JVM debugger. The SA
is also applicable to more situations than just debugging
the JVM; for example, end users can use it to write heap
profilers which operate on servers in production without
taking them down.

The rest of the paper is organized as follows. Sec-
tion 2 compares the SA to other work in the field of
debugging. Section 3 describes its contributions. Sec-
tion 4 gives a concrete example of walking the JVM’s
thread list, and describes how the SA’s APIs relate to
the target JVM. Section 5 describes how the SA obtains
type and offset information for C++ data structures in the
target JVM. Section 6 details the low-level debugging
primitives used by the SA. Section 7 explains the traver-
sal of the remote JVM’s heap, and gives an example of
an object histogram. Section 8 describes how the SA
walks the remote JVM’s Java stacks. Section 9 discusses
future work.

2 Related Work

We partition related work into two categories: debuggers
for statically compiled languages (e.g., C, C++ , Fortran,
Modula-2) and “dynamic languages”, which are typi-
cally characterized by the ability to load and/or compile
code at run time and which typically have a substantial
run-time system including a garbage collector.

The two standard UNIX debuggers, dbx [17] and
gdb [25], assume the model of anuncooperativedebug-
ging target. In this model it is assumed that the target
process may be dead, in which case only examination-
only operations are allowed. While both debuggers have
a “call” facility which allows an arbitrary procedure to
be executed in the target process if it is alive, a large per-
centage of the debugging tools are available for use on
core files. These debuggers are language-independent,
but have only been developed in the realm of statically-
compiled languages like C, C++ , Fortran, and Modula-2.

Higher-level debugging tools for statically compiled
languages have been developed as well. Sosic [23] de-
scribes a set of APIs which were used to implement de-
buggers in the Dynascope distributed system; these APIs
map closely to much of the functionality provided in dbx
and gdb. The notion of modeling the contents of the re-

mote process’s heap is introduced with an example of
copying a linked list from one process to another as-
suming that the two processes are written in the same
language. While language independence is claimed, no
language other than C is described. Gough, Ledermann
and Elms [11] describe a substantially different type of
debugger which is targeted toward fully optimized ma-
chine code. Their system works in a ”forward” fashion,
using a modified compiler to evaluate expressions in the
context of optimized code, rather than attempting to an-
notate the generated code with debugging information.
This system also claims language independence, but was
developed for statically-compiled languages like C, Pas-
cal and Modula-2 [7]. Both of the systems described in
Sosic and Gough et al. use an agent embedded in the tar-
get process to implement all of the functionality, thereby
requiring that the target process be alive.

Debuggers for dynamic languages generally assume
acooperativedebugging model; that is, the debugger co-
operates with the execution environment (or virtual ma-
chine or “VM”) for the language in order to allow debug-
ging of programs written in the language. The debugger
may be implemented in-process as in Perl [1], Python
[29], and Scheme [2] or out-of-process using a wire pro-
tocol as in Spinellis’ two-process Prolog debugger [24]
or as in the Java Platform Debugger Architecture [19].
Some debuggers for safe languages like Tolmach and
Appel’s Standard ML debugger [27] and the Objective
Caml debugger [8] take advantage of the safety of the
target language to provide facilities not commonly found
in debuggers for statically-compiled languages, such as
the ability to step backward through the execution of
the program. Gill’s post-mortem debugger for Haskell
[10] is in the same vein as the SA an examination-only
system, but is post-mortem in the sense that the Haskell
program has terminated abruptly, not the entire run-time
system. All of these systems assume that code can be
run in the target VM. Squeak [15] was developed and
debugged using itself; the debugging methodology used
was to prototype and debug in Smalltalk and then trans-
late to C for high performance. Debugging a crashed
Smalltalk VM is not discussed. Lisp systems, like the
Allegro Common Lisp environment [9], often have the
capability to dump an executable image. However, it
appears that it is not possible to debug such a dumped
image without running code in it.

The Jalape˜no project has developed a JVM written in
the Java programming language which is based around
compiling Java bytecode to machine code [5]. Because
nearly all of the code being executed is generated by the
system itself, a traditional (C or C++) debugger is of no
help in examining data structures. The debugging sys-
tem for Jalape˜no [21] uses the same mechanisms used
by dbx, gdb, and the SA to attach to a target JVM and
read its process memory without running code in the tar-

get. A unique aspect of the Jalape˜no debugger is that
since both the debugger and the JVM being debugged
are written in Java, a modified Java interpreter can be
used to execute the debugger’s code which allows the
JVM’s data structures to debug themselves. This aspect
of the Jalape˜no debugger goes beyond what the SA can
currently do, since the HotSpot JVM is implemented in
C++ .

3 Contributions

Compared to previous work, the HotSpot Serviceability
Agent is closest in design to the Jalape˜no debugger [21],
which is also constructed around examination-only, out-
of-process operations. In addition, the Jalape˜no sys-
tem, by taking advantage of the fact that the debugger
and target JVM are implemented in the same language,
achieves a level of elegance not currently possible with
the SA.

The HotSpot Serviceability Agent was designed to
be able to diagnose JVM failures. This requirement in-
formed several design decisions, including that no code
is run in the target process. The SA is currently an
examination-only system, meaning that it derives all
of its information using low-level primitives like sym-
bol lookup and reading memory from a remote process.
This allows it to work both by attaching to a running
process as well as reading a core file. It can also run its
code in an arbitrary JVM.

Compared to the Jalape˜no work, this paper con-
tributes a deeper discussion of debugging in the face
of JVM failures, especially regarding heap and stack
traversal. It describes a new architecture for interacting
with remote Java objects which is similarly applicable
to a run-time system. It discusses cross-language issues
which arise when the target JVM is not implemented in
Java. Finally, it analyzes the modeling process used to
describe JVM data structures and discusses possible al-
ternative implementations.

Because of the architectural similarities between the
SA and the Jalape˜no debugger, throughout this paper we
explicitly point out some of the differences between the
two systems. Chief among these is that the SA has been
used to successfully diagnose difficult bugs in the pro-
duction HotSpot JVM, whereas Jalape˜no is a research
system.

4 Example: Walking the Thread List

The HotSpot JVM maintains information indicating
what kind of code each Java thread is executing: JVM-
internal code, “native” code [16], or Java code. Consider
the simple example of traversing the target JVM’s thread
list and determining this information.

Figure 2 provides a diagram of the interaction be-
tween the SA and the target JVM. The JVM uses the C++

data structure in 2A to describe the thread list. A static
pointer in classThreads points to the head of the list.
The memory layout of the resulting objects in the target
JVM is shown in 2B. Figure 2C illustrates the analogous
code from the SA. The SA does not actually use hard-
coded offsets, as is described and illustrated later.

The APIs in the SA mirror the C++ structures.
When an object created by the SA’s code models an
object in the target JVM, it fetches data from the
target using theAddress abstraction, which con-
tains the illustrated methods as well as those which
fetch strongly-typed, Java-sized primitive data like
byte getJByteAt(long offset) and short
getJShortAt(long offset) .

5 Describing C++ Types

In order to avoid hardcoded offsets in the SA’s code (as
used in Figure 2), it is necessary to model the types and
structures of C++ objects in the target JVM, so that fields
can be fetched by name. There are several ways that this
structural information can be obtained, the most widely
used and automatic being to have the C++ compiler gen-
erate debugging information such asstabs[17] during
the build. These annotations are stored in the object file
and resulting linked shared object or executable and can
be parsed by the C++ debugger on the same platform.

The HotSpot JVM contains some classes which have
fields defined to be the same sizes as some of the Java
primitive types; for example, the C typejshort , de-
fined by the JNI specification [16], is identical in size
and signedness to the Java typeshort . In order to re-
duce the possibility of accidental errors in the SA’s code,
it was necessary to understand which fields in C++ types
were actually “Java fields” and expose their contents as
the correct Java primitive types in the SA.

The nature of the process by which stabs and other
debug information are generated typically loses such
type information; for example, ajshort may be type-
defed to a Cshort int or similar, and the debug in-
formation for a data structure containing a field of that
type will identify the given field as ashort int , not a
jshort . This information loss was deemed unaccept-
able in the type modeling process for the SA.

For this reason, the structural information provided
by the target JVM to the SA is presented in the form
of three tables which are generated by C++ preprocessor
macros and compiled into the target JVM. We illustrate
only the first of these tables in Figure 3A. This table
contains name, type, and offset or address information
for nonstatic and static fields, respectively. The second
table models the C++ inheritance hierarchy, and the third
provides named integer constants needed by the SA to
properly traverse data structures. The SA uses a gen-
eral symbol lookup mechanism to locate these tables and

class JavaThread {
 JavaThread* _next;
 // _in_vm, _in_native, _in_Java
 JavaThreadState _state;
public:
 JavaThread* next() { return _next; }
 JavaThreadState state() { return _state; }
};

public class JavaThread {
 private Address addr;
 public JavaThread(Address addr) { this.addr = addr; }
 public int state() {
 // offset, size, isUnsigned
 return (int) addr.getCIntegerAt(4, 4, false);
 }
 public JavaThread next() {
 Address nextAddr = addr.getAddressAt(0);
 if (nextAddr == null) return null;
 else return new JavaThread(nextAddr);
 }
}}

Threads::_thread_list

_next

_state

JavaThread

..

..

..

offset 0
size 4

offset 4
size 4

AA

BB

CC

Figure 2. Illustration of the mirroring of the JVM’s data structures in the SA. (A) shows a subset of the JVM’s JavaThread
code, including the state of the thread (in JVM code, in native code, or in Java code) and the structure of the thread list. (B)
illustrates the memory layout of this data structure in the JVM’s address space; starting with the global thread list, JavaThread
objects are linked together. (C) shows the SA code which accesses this data structure. Access to the start of the list is not
shown.

AA

BB

typedef struct {
 const char* typeName; // Type name containing field (Example: "JavaThread")
 const char* fieldName; // Field name within type (Example: "_state")
 const char* typeString; // Quoted type of field (Example: "JavaThreadState")
 int32_t isStatic; // Effectively a boolean
 uint64_t offset; // Used for nonstatic fields
 void* address; // Used for static fields
} VMStructEntry;

extern "C" VMStructEntry* gHotSpotVMStructs; // The table itself
// The following offsets describe the layout of the table for bootstrapping
extern "C" uint64_t gHotSpotVMStructEntryTypeNameOffset;
extern "C" uint64_t gHotSpotVMStructEntryFieldNameOffset;
...

public interface TypeDataBase {
 public Type lookupType(String name);
}}

public interface Type {
 // Java fields:
 public JByteField getJByteField(String fieldName)
 throws WrongTypeException;
 ...
 // C fields:
 public CIntegerField getCIntegerField ... ;
 public AddressField getAddressField ... ;
}}

CC public class JavaThread {
 private Address addr;
 private CIntegerField stateField;
 private AddressField nextField;
 static {
 TypeDataBase db = VM.getVM().getTypeDataBase();
 Type type = db.lookupType("JavaThread");
 stateField = type.getCIntegerField("_state");
 nextField = type.getAddressField("_next");
 }

 public JavaThread(Address addr) { this.addr = addr; }
 public int state() {
 return (int) stateField.getValue(addr);
 }
 public JavaThread next() {
 Address nextAddr = nextField.getValue(addr);
 if (nextAddr == null) return null;
 else return new JavaThread(nextAddr);
 }
}}

Figure 3. Modeling of C++ types in the SA. (A) shows the structure of one of the JVM’s three type tables and the global
symbols used to access and describe it. (B) highlights the salient aspects of the TypeDataBase and Type interfaces. (C)
shows a portion of the actual SA code; compare to the hardcoded offsets in Figure 2.

Target
HotSpot

JVM

dbx

import module

SA’s
JVM

dbx APIs socket

/proc

Figure 4. Block diagram of connections between the SA and the target HotSpot JVM on Solaris.

parses them upon attaching to the target JVM or core
file, effectively downloading the information it needs to
analyze the remote JVM.

This approach has two additional advantages over
using the compiler’s raw debug information: first, since
the symbols being referenced in the SA are explicitly ex-
ported by the JVM, changes to the JVM code which are
incompatible with the SA’s code are often encountered
at build time as a failure during compilation of the side
tables. Second, it reduces porting time by eliminating
the need to understand the platform-specific debugging
information generated by the C++ compiler.

The structural information for C++ types is stored in a
TypeDataBase (Figure 3B), which supports looking
up aType by name. From theType , Field s can be
fetched by name. TheField mechanism provides type
checking between the SA’s code and the target JVM, in
addition to ensuring that field offsets are always kept
synchronized as in Figure 3C.

Because the SA models C++ types as first-class Java
objects, the relatively simple current implementation of
the type system can be straightforwardly extended in the
future.

6 Access to the Remote Process

The SA is built on top of a few very simple debugging
primitives, including

• attach to remote process or core file

• lookup symbol in remote process

• read remote process memory

The Solaris™ Operating Environment (hereafter So-
laris) version of the SA uses the native debugger, dbx,
to obtain this functionality, encapsulating it in a small
interface calledDebugger .

When the SA is launched, it usesjava.lang.-
Runtime.exec() to launch a subordinate dbx pro-
cess. It sends commands to dbx to load and execute
a small piece of self-contained C++ code, called anim-
port module(Figure 4), and either to attach to the tar-
get HotSpot JVM (causing it to be suspended, as with
any program being debugged) or to load a core file. The

import module communicates with dbx via a small set
of internal APIs and with the SA using a custom text-
based protocol over a socket, and provides the SA with
the above debugging primitives. The SA itself is written
entirely in Java.

The only significant additional mechanism that has
been added to the SA’sDebugger interface as the sys-
tem has evolved is the ability to query the CPU register
set for a given thread. The need for this is described in
Section 8.

Compared to the Jalape˜no debugger, the SA ex-
plicitly models the interaction with the remote address
space. This was a requirement since the target JVM was
not implemented in Java and, therefore, JVM data struc-
tures could not be directly repurposed (and still write
the SA in Java). Explicitly describing the interaction
with the remote address space conveys two additional
advantages: first, it describes failures using the Java lan-
guage (for example, by throwing anUnmappedAd-
dressException), and thereby allows the debug-
ging system to become more robust where necessary:
see Section 7. Second, it opens up the possibility for
language-independent debuggers written in Java; for ex-
ample, the SA’s modeling of C++ types is the first small
step toward writing a C++ debugger. This is discussed
further in Section 9.

7 Traversing the Heap

The SA exposes HotSpot’s generational [28] garbage
collection framework in an abstraction called theOb-
jectHeap . The most significant operation provided
by this abstraction is the ability to uniformly visit all
fields in all objects in the heap. These objects include
both Java objects as well as JVM-internal reflective ob-
jects like methods and classes. For this reason objects
are termedOops, a term borrowed from the Smalltalk
community.

Figure 5 illustrates the iteration mechanism provided
to clients. Implementing debugging and profiling tools
as shown in Figures 1 and 6 requires very little additional
code.

The iteration mechanism can be made robust in the
face of JVM failures. Consider the situation where a bad

// An OopVisitor can be used to inspect
// all fields within an object.
// Fields include vm fields, java
// fields, indexable fields.

public interface OopVisitor f
// Called before visiting an object
public void prologue();

// Called after visiting an object
public void epilogue();

public void setObj(Oop obj);

// Returns the object being visited
public Oop getObj();

// Callback methods for each field type
// in an object
public void doOop(OopField field);
public void doByte(ByteField field);
public void doChar(CharField field);
public void doBoolean(BooleanField field);
public void doShort(ShortField field);
public void doInt(IntField field);
public void doLong(LongField field);
public void doFloat(FloatField field);
public void doDouble(DoubleField field);
public void doCInt(CIntField field);

g

Figure 5. The OopVisitor interface, which provides uni-
form iteration over all objects in the heap.

pointer has been stored in an object field of a Java object.
Constructing anOop for the value stored in that field
will likely result in an UnmappedAddressExcep-
tion or UnalignedAddressException . Client
code, for example in an object inspector, can explicitly
catch these exceptions and raise a red flag in the user
interface if one arises. It is not clear from the descrip-
tion of the Jalape˜no debugger how similar functional-
ity is provided, since it seems that such exceptions are
not modeled explicitly in the Java language, but instead
handled somehow by the underlying remote-aware inter-
preter.

8 Traversing the Stacks

A debugger is hardly useful if it does not provide de-
tailed information about where the program has failed.
In the context of debugging a static program, for exam-
ple from a core file, this means providing a stack back-
trace of all threads. Figure 7 shows the trace for one
thread.

The HotSpot JVM necessarily has internal abstrac-
tions for describing and walking the stack; it performs

type-precise garbage collection [4], and must therefore
be able to walk the stacks of all Java threads at GC time,
precisely locating all pointers to live Java objects and up-
dating those pointers if the object is moved during GC.

The HotSpot JVM uses a safepointing mechanism
[3] to halt execution of interpreted or compiled Java
code only when the locations of all objects are known
precisely. (Recent work has described how to eliminate
the need for safepoints for the purposes of garbage col-
lection [26], but HotSpot also uses safepoints for other
system-wide operations such as deoptimization.) Meta-
data generated by HotSpot’s compilers describes the
state of compiled code in great detail at safepoints, in-
cluding any inlining the compiler may have performed.

The code in HotSpot’s run-time system was de-
signed to operate at safepoints. In a debugging scenario,
however, the JVM will in general not be at a safepoint; it
may be suspended, or may have crashed, at an arbitrary
point in its execution.

The SA’s stackwalking code was ported from the
JVM and modified over time to handle problems which
arise when the JVM is not at a safepoint:

• the JVM may not have metadata for a program
counter in compiled Java code. In this case the
metadata associated with the closest possible PC
is used, unless there is no such information (as in
a leaf method), in which case the iteration code
assumes that there is, for example, no inlining.

• an interpreter frame may not have been set up yet,
yielding an incorrect bytecode index. In this case
the iteration code skips the topmost frame on the
stack.

• a thread executing generated machine code may
have been interrupted by a signal.

• the topmost Java frame may not be available to the
run-time system at all.

Figure 6. Histogram of objects in the heap.

Figure 7. Stack memory annotated with Java frames and live objects.

The latter problem is the most significant. When
the JVM reaches a safepoint, each thread currently ex-
ecuting Java code enters the run-time system, storing
its last known Java stack pointer into thread-local stor-
age in preparation for stack traversal. The JVM’s run-
time code traverses only Java frames, skipping around
sequences of C frames. In a debugging scenario the en-
tire topmost sequence of Java frames for a given thread
will be unreachable with the JVM’s built-in stackwalk-
ing code if the thread was suspended (or crashed) while
executing either interpreted or compiled Java code.

The SA solves this problem by using theDebugger
interface to fetch the last known stack pointer for a given
thread (Section 6). Given that stack pointer, it must be
able to walk backward to find the first Java frame on the
stack, proceeding as usual from that point on. We have
found that the JVM’s run-time code is basically adequate
to handle this technique on the SPARC architecture, but
expect that in a forthcoming port to the x86 we will have
to implement a more general stackwalking mechanism
to handle cases where the frame pointer has been elimi-
nated, as described by Linton [17].

A full description of the technique for recognizing
and traversing signal handler frames on the stack is be-
yond the scope of this paper. We briefly note that we
have implemented a not-quite-satisfactory mechanism
on the SPARC architecture as an extension to the SA’s
port of the JVM’s run-time code.

Our experience has been that implementing stack-
walking in the context of a debugging system has been

non-trivial. The Jalape˜no debugger rightly emphasizes
its reuse of JVM code in examining the remote JVM’s
data structures. We have found, however, that in order
to handle and diagnose JVM failures, significant diver-
gence from the JVM’s code is required in the area of
stackwalking.

9 Discussion and Future Work

The Serviceability Agent is similar in architecture to
the Jalape˜no debugger. The most interesting aspect of
the latter is that the same code can both implement
and debug the JVM’s run-time system. A valid criti-
cism of the SA is that it requires duplication of JVM
code, since the SA and JVM are implemented in dif-
ferent languages (and necessarily with different under-
lying architectures). We have found a few unexpected
instances of version skew which silently broke the SA.
For the most part, however, the table-based symbol ex-
port mechanism described in Section 5 provides early
warning when the SA will break. Roughly 13,000 lines
of the SA’s 35,000 lines of code must track the VM with
varying degrees of closeness.

Compared to other previous work, the SA appears to
be the first system which has the ability to debug in a
high-level manner data structures from both static lan-
guages like C++ and dynamic languages like Java. Other
dynamic languages could be targeted by the SA by using
its debugging primitives to model the run-time system
of the target VM, as has been done for HotSpot. This is

currently a labor-intensive process but has the advantage
of providing a true post-mortem debugger.

The SA operates either on a JVM that has been sus-
pended by platform-specific debugging mechanisms or
on a core file. Solaris contains a program calledgcore
which takes a core file snapshot of a running process
without terminating that process; it is frequently used in
conjunction with dbx to examine the state of production
systems written in C or C++ rather than attaching a de-
bugger directly [22]. The SA allows gcore to be used
for Java programs as well. The speed of the SA’s ac-
cess to the target JVM’s heap is substantially slower than
that enabled by the current standard API, the Java Vir-
tual Machine Profiling Interface [20]. However, JVMPI
imposes a significant performance overhead to the nor-
mal running of the application. Used in conjunction with
gcore, the SA only has the impact of suspending the pro-
cess while taking the snapshot, which takes a few sec-
onds for programs of normal heap size.

An early design decision was to use only
examination-only debugging primitives, to make the
goal of the system clear and to explore what was pos-
sible to build using them. If the target JVM is alive (not
a core file) and running properly, being able to write to
the process memory would facilitate more rich interac-
tions when debugging. Some of the possible features,
like setting fields, would be straightforward to imple-
ment and would not require JVM code changes, while
others, like setting breakpoints, would likely require a
substantial amount of supporting code in the JVM. An
advantage of the SA’s architecture is that it could de-
grade gracefully back to an examination-only system if
the JVM crashed.

In the future, we plan to complete support for So-
laris/x86, Linux, and Win32. We will continue to ex-
pand the SA’s knowledge of JVM data structures. We
plan to write more tools using the SA’s APIs, and to
explore the addition of debugging primitives which af-
fect the state of the target JVM. We will investigate if
it would make sense from a performance or footprint
standpoint to rewrite portions of the JVM’s run-time sys-
tem in Java.

10 Acknowledgments

We thank Ivan Soleimanipour and Siva Annamalai for
their help with the system’s use of dbx; our managers,
Jerry Driscoll and Tricia Jordan, for their support of the
project, especially in its early stages; the entire HotSpot
group for encouragement; and Robert Griesemer in par-
ticular for reviewing early drafts of this paper. We also
thank the anonymous reviewers for their helpful com-
ments.

References

[1] CPAN: comprehensive perl archive network,
2000.
http://www.cpan.org/ .

[2] The Scheme programming language, 2000.
http://www.swiss.ai.mit.edu/projects/
scheme/index.html .

[3] O. Agesen. GC points in a threaded environment.
Technical Report SMLI-TR-98-70, Sun Microsys-
tems Laboratories, December 1998.

[4] O. Agesen, D. Detlefs, and J. E. B. Moss. Garbage
collection and local variable type-precision and
liveness in Java Virtual Machines.ACM SIGPLAN
Notices, 33(5):269–279, 1998.

[5] B. Alpern, D. Attanasio, J. Barton, A. Cocchi,
S. Hummel, D. Lieber, M. Mergen, T. Ngo,
J. Shepherd, and S. Smith. Implementing
Jalape˜no in Java. In 1999 ACM SIGPLAN
Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOP-
SLA’99), Denver, Colorado, November 1 1999.
http://www.research.ibm.com/jalapeno/
publication.html#oopsla99 jvm .

[6] L. P. Deutsch and A. M. Schiffman. Efficient
implementation of the Smalltalk-80 system. In
Conference record of the 11th ACM Symposium
on Principles of Programming Languages (POPL),
pages 297–302, 1984.

[7] K. Elms. Debugging optimised code using func-
tion interpretation. In Mariam Kamkar, editor,
AADEBUG ’97, Proceedings of the Third Interna-
tional Workshop on Automatic Debugging, pages
27–36, Linköping, Sweden, May 26-27 1997.

[8] X. Leroy et al. The Objective Caml system release
3.00, 2000.
http://caml.inria.fr/ocaml/htmlman/ .

[9] Franz Incorporated. Online documentation in html
as part of the Allegro Common Lisp 5, July 1998.

[10] A. Gill. Haskell object observation debugger,
2000.
http://www.haskell.org/hood/ .

[11] K. Gough, J. Ledermann, and K. Elms. Interpretive
debugging of optimised code, 1994.

[12] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with
polymorphic inline caches. In P. America, editor,
Proceedings ECOOP’91, pages 21–38, Geneva,
Switzerland, July 15-19 1991. Springer-Verlag.

[13] U. Hölzle and D. Ungar. Optimizing dynamically-
dispatched calls with run-time type feedback. In
PLDI ‘94 Conference Proceedings, pages 326–
335, Orlando, FL, June 1994.

[14] U. Hözle, C. Chambers, and D. Ungar. Debugging
optimised code with dynamic deoptimization. In
Proceedings of the SIGPLAN ‘92 Conference on
Programming Languages Design and Implementa-
tion, SIGPLAN Notices, pages 32–43, San Fran-
cisco, CA, June 1992. ACM Press.

[15] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the future: The story of squeak, a
practical smalltalk written in itself. InOOPSLA’97
Conference Proceedings, pages 318–326, 1997.

[16] Sheng Liang.The Java Native Interface. Addison-
Wesley, Reading, MA, 1999.

[17] M. A. Linton. The evolution of dbx. InProceed-
ings of the 1990 Usenix Summer Conference, Ana-
heim, CA, 1990.

[18] Ole Lehrmann Madsen, Birger Moller-Pedersen,
and Kristen Nygaard. Object-Oriented Pro-
gramming in the BETA Programming Language.
Addison-Wesley, Reading, 1993.

[19] Sun Microsystems. Java platform debugger
architecture, 2000.
http://java.sun.com/j2se/1.3/docs/
guide/jpda/ .

[20] Sun Microsystems. Java virtual machine profiling
interface, 2000.
http://java.sun.com/j2se/1.3/docs/
guide/jvmpi/ .

[21] T. Ngo and J. Barton. Debugging by remote
reflection. In Proceedings of Euro-Par 2000,
Munich, Germany, August 27-September 1 2000.
http://www.research.ibm.com/jalapeno/
publication.html#remotereflect .

[22] I. Soleimanipour and S. Annamalai. Personal com-
munication, 2000.

[23] R. Sosic. A procedural interface for program
directing. Software: Practice and Experience,
25(7):767–787, 1995.

[24] D. Spinellis. The design and implementation of
a two process Prolog debugger. Technical Report
IR-LP-31-21, ECRC, September1989.

[25] R. Stallman and R. Pesch. Debugging with GDB:
The GNU source-level debugger, 1999.

[26] J. Stichnoth, G. Lueh, and M. Cierniak. Support
for garbage collection at every instruction in a Java
compiler, 1999.

[27] A. P. Tolmach and A. W. Appel. Debugging Stan-
dard ML without reverse engineering. InACM
Conference on Lisp and Functional Programming,
pages 1–12, 1995.

[28] D. M. Ungar. Generation scavenging: A non-
disruptive high-performance storage reclamation
algorithm. In Peter Henderson, editor,Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Devel-
opment Environments, pages 157–167, Pittsburgh,
Pennsylvania, 1984.

[29] G. van Rossum et al. Python library reference:
The Python debugger, 2000.
http://www.python.org/doc/current/
lib/module-pdb.html .

