Catching Instant Messaging Worms with Change-Point
Detection Techniques

Guanhua Yah Zhen Xiaé Stephan Eidenbehz

 Information Sciences (CCS#3) * School of Electronics Engineering & Computer Science

Los Alamos National Laboratory Peking University
Los Alamos, NM 87545, USA Beijing, P. R. China
{ghyan, eidenber@Ianl.gov xiaozhen@net.pku.edu.cn
Abstract perimeter protections such as firewalls have been by-

. . passed. The two major propagation vectors of IM worms
Instant messaging (IM) systems have gained a lot of POP3refile transfersandURL-embedded chat messagas

ularity in recent years. The increasing number of IM IM worm using the first approach (e.g., Sumom.a [19])
users has lured malware authors to develop more Wormﬁaquests transferring a file, which contains the worm

and virusgs that sp'read in IM networks. In response tc?:ode, to an online buddy: in the second approach, an IM
S.UCh growing security threat to IM_systems, Itis IMpera-y orm (e.g., Kelvir.k [7]) sends a hyperlink, which is em-
tive to develop a fast and responsive IM worm detectlonbedded in a text chat message, to an online buddy. If the

system. In this paper, we a_lpply change-point det(_eCt'oqeceiver accepts the file transfer request or clicks the em-
techniques to catch two families of IM worms, one a'medbedded URL. a malicious file will be downloaded onto

at infecting all vulnerable machines as quickly as POSSIar machine and its execution creates a new infection.
ble and the other aimed at spreading slowly in a stealthy N
fashion to evade detection. Experimental results demon- Outbreaks of traditional Internet worms such as Code

strate that the proposed solutions are very effective in deRed tell us that any effective defense scheme against an
tecting both families of IM worms. epidemic spreading requires a fast and responsive alert

system [18]. Motivated by this, we propose to apply
change-point detection techniques to detect two fami-
lies of IM worms quickly. The first family of IM worms

aim to infect all vulnerable machines as quickly as pos-

Instant messaging (IM) systems have grown tremen-" . X "
dously in the past few years. It is estimated that theS|ble by aggressively hunting for new victims. We detect

total number of active IM accounts will increase from]E.r;is typefof IM worms by monitoriggdaébrgptr:ncrease of
867 million by the end of 2005 to 1.2 billion by 2009 [5] fll€ transfer requests or URL-embedded chat messages

and the number of enterprise IM users will increase from!" the IM SYSFem- The seco_nd family of IM worms al-

67 million in 2007 to 127 million in 2011 [6]. Accompa- low o_nly a I_|m|ted _number of infection at_tempts within a
nied with such increasing popularity of IM systems is thecr:a_rtam per]lod of time. dAIthough spreadllng more sblowly?
growing security threat that IM malware poses to botht,lIS typefo 'M worms do TQOE tng%e:jg 3rgﬁ numuer o
residential and enterprise IM users. For instance, fron{I € transier requests or U -embedded chat messages.
January 1, 2005 through September 2005, more than 3ggur detection schemg rehe; on the observation that dif-
new IM worms have surfaced [8]. According to a report ferent degrees of social online intimacy among IM bud-
from Akonix Systems Inc., there have been 346 IM at_dies lead to uneven communication messages exchanged
tacks in 2007 [4]. In 2005, Reuters was even forced tg?Mong them. An IM worm that randomly chooses on-

shut down its instant messaging service temporarily duéIne bu_dd|es as infection victims can, very likely, gen-
to the Kelvir IM worm [16]. erate file transfer requests or URL-embedded chat mes-

IM worms have posed significant challenges to secySages between IM buddies that barely chat in the past.

: : o To detect this type of IM worms, we measure the average
rity protection for enterprise-like networks. IM worms log-likelihood of file transfer requests or URL-embedded
can be leveraged to implant rootkits or bots onto victim 9 q

machines inside an enterprise network after traditionaf:hat messages in the IM system; its abrupt de_crease ISa
good indication of stealthy IM worm propagation. We

*Los Alamos National Laboratory Publication No. LA-UR-0g- €valuate our detection schemes with an IM dataset col-
1010 lected from a large enterprise network and experimental

1 Introduction

results show that they are very effective in detecting botha solution requires further explanation. Encryption is
families of IM worms. rarely used in existing major IM systems, suggesting IM
The remainder of this paper is organized as follows.servers or enterprise gateways can see most text-based
Section 2 presents some background knowledge abowuhat messages delivered through them. Hence, if an IM
IM architecture and IM worms. Section 3 discusses IMworm uses the URL-embedded chat messages to spread
worms that aggressively scan for new victims and theiritself, the IM servers or the enterprise gateway can parse
detection. Section 4 discusses how an intelligent IMunencrypted chat messages and derive the URL informa-
worm evades the detection scheme described in Secticipn. However, the IM servers or the enterprise gateway
3. In this section, we also provide an algorithm that de-can not capture the file being transferred between two
tects this type of IM worms. In Section 5, we evalu- IM clients, unless the sender and receiver are both pro-
ate the effectiveness of the proposed solutions with anected by a firewall or NAT router [23]. Hence, if an IM
IM dataset collected from a large corporate network. Weworm propagates through file transfers, we may not be
present some related work in Section 6 and conclude thiable to detect IM worm propagation through binary mal-

paper in Section 7. ware code analysis at the enterprise gateway or the IM
) servers. Nevertheless, any file transfer between two IM
2 IM Architectures and IM Worms clients must involve some IM servers to set up their ini-

tial connection, so we can still infer that a file transfer is
going to take place between two IM clients by analyzing
IM command traffic at the enterprise gateway or the IM

IM architectures. Popular IM systems include MSN

messenger, AIM, Yahoo Messenger, IRC, ICQ, and
Google Talk. Although these systems are built on dif"servers
ferent protocols, they bear little difference in their ba- '

S IM worms. An infection attempt through an IM net-
sic client-server structures. The general framework of an : .
. o .) .—work consists of two processdsandshakinganddown-
IM system in an enterprise-like network is depicted in

Fig. 1. IM servers form the backbone of an IM system loading In the handshaking step, an infected machine

: . . e with IM accountwu requests a file transfer or sends a
and their typical functionalities include account man- .
L e URL-embedded chat message & online buddywv.
agement, user authentication, presence notification, tex

. . . hen IM userv receives the file transfer request or the
based chat message relaying, file transfer estabhshmer‘LtJ,RL_embedded chat message. she decides whether to
and group chatting. Albeit major IM systems provide ge.

similar functionalities, their server architectures méy d accept the request o click on the URL. Only if she does

fer from each other. For instance, a text-based chat mess—O will the next step take place: the recipient machine

sage in the AIM system has to go through two BOS (Ba_do_wnlogds _the worm code body from j[he machine that
u is using if the file transfer scheme is used, or from

sic Oscar Services) servers before it is delivered to th?he host specified by the URL if the worm spreads by

receiver, but a similar message in the MSN system traURL-embedded chat messages. Once the second step
verses only one SB (switchboard) server [23].

finishes, the recipient machine gets infected if it is vul-
nerable to the worm infection; otherwise, the infection
servers attempt fails.

We us€eT}, andTy to denote the durations of the hand-
shaking step and the downloading step, respectively. We
also useT, to denote the time needed to execute the
worm code on a victim machine, e.g., modifying the reg-
istry on a Windows machine. Le&®; be the probabil-
ity that a node accepts a file transfer request or clicks
on the embedded URIE; essentially reflects the proba-
bility that the worm spreading attempt succeeds in each
hop. We also us@, to denote the probability that a node
is vulnerable to the worm infection after the worm code
body is downloaded.

| Enterprise

3 Network Gateway
'

'

' : :

' : :

Figure 1: Architecture of a typical IM system 3 Fast Scanning IM Worms
In our work, we focus on schemes that detect IM worm
propagation in a centralized fashion. More specifically,Many existing IM worms adopt the fast scanning strat-
we consider approaches that can be directly deployed atgy, that is, they, after infecting a new host, immediately
the IM servers, or at the enterprise gateway if the goal igterate the online buddy list and attempt to infect each
to protect an enterprise network. The feasibility of suchcontact on it either by requesting a file transfer or sending

out a URL-embedded chat message. Such IM worms inin this way,y,,(X) can be immediately computed based
clude Bropia and Kelvir that have been observed spreadan y,,—; (X) once measuremetX,, is available. There-
ing on the MSN IM network. The common objective of after, we decide whether there is an abrupt change at time
fast scanning IM worms is to infect all vulnerable ma- n by comparingy,, (X) against a predefined threshold
chines as quickly as possible. Experiences with tradif(X): if y,(X) < 6(X), there is no abrupt change of
tional Internet worms such as Code Red and Slammemean in random sequengg otherwise, there is.
suggest that an effective defense scheme against a fastOne might suggest that we apply the CUSUM algo-
scanning worm must detect it at its early propagationithm directly on random sequem{é)ﬁlf)} or {Cr({“)} to
stage [18]. - _ . detect fast scanning IM worms spreading by file transfers
Algorithm description. ~ The aggressive spreading or rL-embedded chat messages. A basic assumption of
strategy used by fast scanning IM worms, although accelthe cUSUM algorithm, however, is that the process be-
erating their propagation, inevitably increases the numfore the change point should be stationary. It is easy to
ber of file transfer requests or URL-embedded chat MEeSzae that both random sequene@ééf)} are{C,(l“)} vary

with the number of online users, which typically changes

vectors. Moreover, these file transfer requests or URL'overthe time in a day. For instance, measurements of IM

embedded texF messages introduged Py fast.scanning I|Yllaffic in a large corporate network reveal that the peak
worms t.’e"’.‘r different source-desthatlon pairs. Such Rimes of user login and user logout are around 9AM and
distinguishing feature of fast scanning IM worms moti- 5PM, respectively, which are strongly correlated with

vates us to apply sequential change detection theory foémployees’ working hours [23]. If we attempt to detect a

their detection. The key idea of sequential change detecfast scanning IM worm quickly by selecting a measure-
tion theory is to locate the point of change, if it occurs

' ment windowé; much smaller than a day, applying the

within an observed time series by checking whether "cusum algorithm directly on random sequeni@;’’}
is statistically homogeneous in an online fashion. Fur- () i
{C»"} may lead to high false alarm rates.

ther explanation requires more notations. We discretiz€" 1“n» .
time into measurement windows of equal length de- To circumvent this problem, we measure another ran-

noted by{A’ng)hneN- We use random sequencé/) — dom process\ = {M,}, in which M, is the number

of online IM users within the:-th measurement window
(O} jnen and C™ = {CF},.en to denote the to- f(

1) i (f)
: » . Instead of detect brupt ch {012
tal number of file transfer requests and URL-embedde nstead of detecting abrupt changest yor

(u) . .)
chat messages with different source-destination paits th Cn .} directly, we normal!ze them bM n first before
have been observed within theth measurement win- applying the CUSUM algorithm. Algorithm 1 provides a

dow, respectively. brief overview of our solution to detecting fast scanning

To detect fast scanning IM worms, we use the”vI worms.
CUSUM algorithm [14], which is a standard tool in
statistical process control. Particularly, we apply its _)
non-parametric version [1] as it does not demand any-th measurement window,,

a priori information on distributions of the random se- 1. CollectM,,, C\, andC(*

guence before and/or after the change point. Xet= 2: if M,, is Othen

{Xn}nen be a random sequence with meaQX) un- 3. Ignore this measurement window

der normal operation. Our goal is to detect whether there 4: end if

is an abrupt change of mean {X,,}. As the non- 5. Updatey, (%) andy, (%) according to Eq. (2)
parametric CUSUM algorithm only works on random . i Y (@) > 9(@) then

sequences with negative means before the change point. Aot that a fasiuscanning IM worm is propagating
and positive means after the change point, we transform by file transfers

{Xn}nen into a new random sequende (X,,) },en, g end if

whereZ(X,,) = X,, — B(X), 8(X) is a constant de- 9: if yn(ﬂ) S 9(@) then

pending on random proces§, anda(X) < B(X). M M
The non-parametric CUSUM algorithm works as fol-

Algorithm 1 Detect fast scanning IM worms within the

10: Alert that a fast scanning IM worm is propagating
by URL-embedded chat messages

lows. First we define sequen¢g,, } |, en+: 11: end if
Yn(X) = Sn(X) — min S (X), 1)
whereS;(X) = Zle Z(X;) andSy(X) = 0. We can When implementing Algorithm 1, if there are no on-
calculate{y,, } more efficiently in a recursive manner: line IM users (i.e.,.M,, = 0), we ignore this measure-
Yn(X) = max{0,yn_1(X)+ Z(Xn)}, ment window, which means that the next measurement
y(X) = 0, (@) window is still then-th measurement window.

Parameter configuration. We set the model pa- Among them online buddies, an infected machine can
rameters in a similar way as in [21]. First(S~) and ~ only infectmP,P, of them successfully. Let be the
number of worm generations before the worm is detected
by the CUSUM algorithm. The number of infected ma-

F(X) = inf{n:yn(X) > 0(X)} (3) chines in the-th worm generation, where < i < , is

max{0,7(X) — m} (mP;P,)"~1. Suppose that the IM worm starts to spread
p(X) = 0(X) (4) at the beginning of measurement windav;"’ and the
IM worm is detected at the end of measurement window

wherem is the time when the worm starts to propagate, A(l We then have:
X is elther@ or (“) ~(X) denotes the time of the
change pomt angd(X) |s the normalized detection time (#—1)(Th +Ta+Te) < (b—a+1)d1 < £(Th+Ta+Te).
after the change point. L&{ X) be the increase of mean (8)
after the IM worm starts to propagate. We then have: 1 nerefores can be represented as:

oz(C()) can be estimated from training data. Define:

1 - (b —a—+ 1)51
X) — . = lrm— t 1 ©)
A0 e - © T Tt T,
By choosingl'(X), which is a lower bound of(X), to ~ Moreover,y,(X), whereX is &7 or <, can be ap-
replaceh(X), we can sef(X) as follows: proximated as follows:

6(X) = max{0,y(X)—m}-(h(X)—|a(X)-B(X)|). wX) ~ (b—a+1)(a(X)-p0(X))+

(6) m(1+ (mPyP)! + ... + (mPyP,) 1)
Similar to [21], we leth/ (X) be2|a(X) — G(X)|. Recall I
that 5(X) is an upper bound of(X); hence, we can = (b—a+1(a(X) - B(X)) +
choosef(X) to be (1 + ¢)a(X), wheree is a positive m((mPyP,)" — 1)

number. We also specifyiax{0, v(X)—m} as the target —
detection delayl. We thus have: HmPaby 1)
As we havey,(X) > 0(X) andy,—1(X) < 0(X), we

can estimaté — a + 1, which is the number of mea-
Algorithm analysis. We now analyze how effective surement windows required to detect the fast scanning

the CUSUM algorithm is in detecting fast scanning IM IM Wo(zmaﬂ'i';rft suppose thag,—,(X) ~ 6(X) and
worms. We assume that a machine attempts to spredd ~ T T T + 0.5. Letz beb — a, g bemPyP,,
the worm onto its online IM buddies immediately after andr bew We then have:

it gets infected. For simplicity, we also assume that at

the initial propagation stage, the number of buddies that X) — 3(X m(yg 1) 0(X 10
have already been infected can be ignored. /Ls¢ the 2(alX) - A(X) + l(g—1) (X)(10)

average number of online users amdbe the average o e . .

number of online buddies of each online user in the IMAS itis difficult to SOIV_e th? above equation a_nglytlcally,

network when the IM worm is spreading. When an in- we use Taylor approximation fgf™”. Although itis pos-
sible to use Taylor series of orders higher than one, the

fected machine attempts to spread the worm enton- . ,
line buddiesy - P, of them actually download the worm solution becomes lengthy. Hence, we use the first-order
Taylor series at point 0, i.el+rIn(g) - =, to approximate

code. We assume that the worm downloading time is Einall h
T,1. Hence, if an infected machine initiates a successt Inally, we have.
ful infection attempt to an online buddy at tintg the (g — 1)O(X) +m(1 - /g)

Tr = .
victim machine is infected at time+ 7}, + T + Te. I(g — 1)(a(X) — A(X)) + mrin(g)vg
IHere, we ignore the network-level interaction among multies- . .
sions that download worm code from the same infected hosts hi We can thus establish the following theorem:
because typical IM worms have small sizes, especially aftekipg .)
themselves when spreading. For instance, the code size oif Kl Theorem 1 Given the assumptions we have made, Algo.
worm is about 24KB, if unpacked, or 9KB if packed [20]. Henas; 1 needs approximately] + 1 measurement windows to

ing TCP, typical IM worm code can be downloaded within onlyew detect the fast Scanning IM worm. wheres given in Eq
round trip times and thus less than one second. Moreoveryvegse !)

of file transfer requests think for different time before tiumcide to (11)'
download the worm code. Such stochasticity also reducesythe . .
chrony among worm code downloading processes that aretéuittzy From Eq. (11), we observe that#(X) is high, or

the same worm instance. B(X) is chosen much larger thar(X), it takes a longer

0(X) = dea(X). (7

re+0.5 _

(11)

time to detect the fast scanning IM worm, which is con- The color of a token can bgreenor red. Initially,
sistent with our intuition. we set the colors of all tokens to green. The protocol
Implementation. If Algorithm 1 is implemented by works as follows: (1) If the color of a token changes
the IM servers, it needs to know the online status of eactio green, the holding worm instance randomly chooses
IM user. Such information is already available becausea new victim that it has never tried to infect from the
the IM servers need to notify an IM user of each buddy’sonline IM buddy list and then attempts to infect it. If
presence status when she just logs into the IM systenthe holding worm instance cannot find an online buddy
If Algorithm 1 is implemented at the enterprise gateway,contact that has never been tried, it passes the green to-
there are two ways of keeping the online status of eacliken to a random online buddy that it knows has already
internal IM user. One is to intercept every IM command been infected, or to the machine from which it gets in-
that carries the presence information of an IM user. Thdected; otherwise, it changes the color of the token to
second approach is to monitor the persistent TCP conred, inscribes the current time onto the token, and sched-
nections between the IM user and some IM servers, suchles anactivation timerwhich fires after§; time units
as the BOS server in the AIM system and the notificationsince the timestamp on the tok€@) When an activation
server in the MSN system [23]: if such TCP connectionstimer fires, the associated token changes to green and the

are still alive, the corresponding IM user is online. holding worm instance proceeds as in (@3) If a worm
instance successfully infects a new machine, it cancels
4 Self-Restraining IM Worms any of its red tokens, if it has such one, and passes it

to the new machine without altering its inscribed times-
Security by obscurity is never a good practice. If an ad-tamp. (4) When a worm instance receives a red token
versary knows that Algorithm 1 has been deployed to dewith time stampy, it schedules an activation timer after
tect IM worms, can he design an intelligent IM worm that time 6, — (¢ —t,), wheret is the current time(5) When a
spreads without being caught? We demonstrate its possiworm instance receives a green token, it proceeds in the
bility in the following discussion. Note that the CUSUM same way as in (1). We can easily establish the following
algorithm triggers an alarm only when the cumulative property of the token-based protocol (proof omitted due
sum reaches thresholt X); this allows an IM worm to space limitation):
to ramp up its infection coverage using the fast scanningl_
strategy to a certain point without being detected. After ' €orem 2 The token-based protocol guarantees that

that, the difference between(X) and3(X) allows the within any time interval of length; since the last:’-

IM worm to spread at a constant speed without increasth generation worm instance has been installed, the total

ing y,(X). Following the scenario analyzed in Section number of file transfer requests or_URL-embedded chat
3, an adversary estimatesaccording to Eq. (11) and Messages generated by the worm is at rffost

predicts that a fast scanning IM is detected aftgr+- 1 Algorithm description. We call intelligent IM worms
measurement windows. To avoid detection, the IMworMy 5t se rate limiting methods such as the token-based

is designed to stop propagating in a fast scanning modgiocolself-restraining IM wormsTo detect such type

afterx’ generations, where: of IM worms, monitoring surges of file transfer requests
or URL-embedded chat messages in the IM system is

"+1)8 7 I .
K = L% +1] (12) not sufficient. Instead, we measure likelihoods of file
ntlatde transfers or URL-embedded chat messages between IM
andz’ < z. clients and use them to decide whether a self-restraining

Since (z + 1)-th measurement window, the worm IM worm is spreading. This idea is based on the mea-
spreads in a self-restraining manner. If the number ofUréments on IM messages in a large corporate network:
file transfer requests or URL-embedded chat messaged? average, an AIM user chats with only 1.9 buddies,
per measurement window generated by the worm doe&Pout 7% on her buddy list, and an MSN user chats
not exceed (3(X) — a(X)), it is highly likely that the ~ With 5.5 buddies, 25% on her buddy list, in a month
worm propagates without triggering an alarm. We now[23]- Such an observation suggests that an IM user tends
show how an intelligent IM worm can achieve this Using cajly and another one is created with probability™— — | —X— |. If
atoken-based approach. Note that Fhe number of infecte@e protocol is implemented as such, the follogwing Theorem 2 mady
machines in the’-th generation ig" —!, where we re- strictly follow due to randomness.

callg = mP,;P,. LetY bel(ﬂ(x) — a(X)). After a 3We suppose that once a new machine is infected, it reporteto th
«’-th worm instance is created ‘1/(7 tokens are gener- machmethat_ infects it. If the worn,1 spreads by flletrgnsm,sender
ghk’'—1 and the receiver know each other’s IP address. But if the vepmeads

ated for it. by URL-embedded chat messages, the sender and the receiveotnay n
know each other’s IP address. But such information can bgedlhy
2In one impIementationLgK,%J tokens are created deterministi- the remote server where the worm code resides.

5

to chat more often with a small set of her online bud-Algorithm 2 Detect self-restraining IM worms within
dies, Which reflects her online socia}I intimacy. However,then-th measurement Windoyﬁg)
self-restraining IM worms as_descrlbed do not have that 1. CollectJ) andJ)
knowledge about social relationships between IM users. 2: Updatey (J(f)) andy, (u)) according to Eq. (2)
Hence, when an IM worm instance chooses a victim from " " N e "H " '
the online buddy list, it randomly picks one from those "' y"I(‘]" h) > (Jnlf) then il
that have not been attempted before. As such random-% Aertft at a;ed—_restrammg_lM worm using fie
ness may not reflect real-world online social intimacy, it _ t(;a}][]s er method is propagating
offers a weakness for their detection. 5: in ! @9 < (7 th

Similar to Algorithm 1, we discretize time into mea- 6: if yn(Jn ") > 0(Jn ") t en. .
surement windows of equal length,, denoted by + Alert that a self-restraining IM worm using URL-
{Af)}‘neN. 02 IS not necessarily equal @. Let Wi embedding method is propagating

8: end if
andW{" denote the set of IM user paits, b), where IM
usera sends at least one file transfer request and at least
one URL-embedded chat message to IM usevithin Parameters in Algorithm 2 are specified in a similar
measurement WindowAsf), respectively. We also use manner as in Algorithm 1. For brevity, we do not repli-
m(a,b) to denote the metric that reflects how close IM cate it here.
userb is to IM usera in the IM world. Essentiallyr(a, b) Algorithm analysis. We consider the self-restraining
is the probability that IM uses sends a chat message or IM worm that uses the token-based scheme to control
a file transfer request tb in the history. LetQ be the its propagation speed. The total number of tokens is

whole set of IM users. We have: T. We assume that at the initial stage of worm propa-
gation, each worm instance has received at most one to-

> w(a,b)=1, foranyaeQ (13) kerf. Also let the number of online buddies per user be
vbeQ m. To ease analysis, we further assume that under nor-

mal conditions, the nominators and denominators in Eq.

We use the EWMA (exponentially weighted moving av- (15) are constant. That is,

erage) approach to updatéa,d). First, we discretize

time into intervals of the same length. A time interval)

. g — B
here can represent, for instance, a week.7;éi, b) de- L A(J§f>)) (16)
note ther(a, b) value estimated after theth time inter- Jw = %

val and7;(a, b) denote the fraction of chat messages or
file transfer requests that are sent frarto b during the whereA(J (), B(J(), A(J™), andB(J) are con-
i-th time interval. We then updateg (a, b) as follows: stants. Suppose that the self-restraining IM worm starts
propagating at the beginning of theh measurement
mi(a,b) = p7i(a,b) + (1 — ¢)mi—1(a,b), (14) window and Algorithm 2 detects it aftermeasurement
windows. We ignore the cases in which the worm sends
wherey € [0,1] is the weighting factor. Itis trivial to a file transfer request or a URL-embedded chat message
verify that Eq. (13) must be true for any € Q and fromu to v but there is also a normal file transfer request
i > 1ifinitially »-,c mo(a,b) is equal to 1. or URL-embedded chat message franandv. This is
We define sequencek!) = {J'r(bf)}hzeN andJ® — areasonable assumption because the infection attempts
by a self-restraining IM worm are usually small (other-

(u) .
n Hnen as follows: ! . .
{0 dmen wise, Algorithm 1 can detect it). Suppose that we choose

¥ — 5,0 e (n Imax{Fr(ab)} a smalli such that it is smaller thatym. We then have:
_ a,b)eW,"
" o ‘Wr(zf)l N 15 5o 1
J(“') _ — Z(a,b)EW,(L“) In max{#,r(a,b)} () . _7Th+72“d+Te hl(E) + B(X) o b 00X
n Wi z 55T +A(X) z- B()> ()7
) Th+Ta+Te

) W) 7
wherer € (0,1). —Ji” and—J\" give the average log- where X is JU) or J), depending on the spreading
likelihood of file transfer requests and URL-embedded,gctor of the IM worm. Hence, the CUSUM algorithm is
chat messages within measurement windﬁ\ﬁ), re-

spectively. In Eg. (15), we use the minimum dfand 4If a worm instance has received more than one token, the worm
7r(a, b) in case that the latter is O. instance will not attempt to infect the buddies that it hasadsy tried.

P () This may not hold for the’-th generation worm instances#ﬁ?ff1 >
H g

We then monlt_or abrupt change de andJ, "’ to 1, but after that, it is very likely that tokens are passed atifierent
detect self-restraining IM worms: IM users.

able to detect the self-restraining IM worm aftemea- based on part of this dataset that has ten weeks’ records.

surement windows, where This subset has 193 internal IM users; on average, each
of them has 22 IM buddies. In total, 3851 external IM
_ 0(X) contacts appear on the buddy lists of these 193 inter-
z=[—=7 N 1. (18)
~mrtgrTe WG HBX) B(X) nal IM users. Unfortunately, we cannot get the buddy
TR TAX) lists of these external IM users. As observed in [12, 17],

IM networks tend to have power-law structures. We use
the Power-Law Out-Degree Algorithm [15] to generate

Theorem 3 Given the assumptions we have made, Algo_power-law graphs with 3581 nodes, whose average out-

rithm 2 needs approximatelymeasurement windows to gegreje is 22. The pOW(tar Iawltex]!oonenﬂs f?t tcl):be 17
detect the self-restraining IM worm, whetds given in ased on measurement results from [12, 17]. For sim-

Eq. (18). plicity, we let the buddy relationships in the external
graph be symmetric. Furthermore, if an external user is
From Eq. (18), it is clear that a too largg¢X) or ~ On the buddy list of an internal user, she also has that
((X) extends the detection period. But in reality(X) internal user on her own buddy list.
and B(X) change over time. Hence, makifdgX) or In our experiments, we consider only IM worms that
B(X) too small can introduce high false alarm rates. ~ are based on file transfers. Due to some technical prob-
Implementation. One implementation issue with the lems, we are not able to obtain sufficient data on normal
aforementioned algorithm is the complexity of collect- file transfers between internal IM users or between in-
ing Jy(Lf) and Jﬁ“). The algorithm requires knowledge ternal IM users and external IM users as of writing. We
of buddy relationships in the IM system. If the algo- thue use measurement results f_rom [10]: on average an
rithm is implemented at the IM servers, such knowledgeom'”e IM user .sends out 1.84 file transfer requests per
is already available, as the IM servers need it to notify24 hours. Similarly, we assume that the average num-
an IM client of the presence statuses of her buddies iP€r Of file transfer requires an IM user receives is also
they change. For instance, in the AIM system, when_1-84- For eaeh f|Ie transfer requesj[, the probability that
an IM user logs in, the client software sends a list ofit falls into a time interval is proportional to the number
her IM buddies in screen names to the message serve‘?f online internal IM users; once the time interval is cho-
these names will be monitored for login/logout events.S€N: ItS exact appearance time at the enterprise gateway
If the detection algorithm is implemented at the enter-iS uniformly distributed within that time interval.
prise gateway, we need to parse IM command messages NOW we introduce how to generate the sender and re-
to derive buddy relationships. For instance, the detecceiver of a file transfer request if it is issued by an inter-
tion algorithm designed for the AIM system can capturenal IM user. For each of the 193 internal IM users, we
the “oncoming buddy” commands at the enterprise gatePuild a buddy relationship table, an entry in which indi-
way that appear in the following three cases: first, thecates the probability that a chat message is sent from her
AIM messenger server notifies each user of the statusé® the corresponding contact on her buddy list within the
of her buddies when she is logging into the system; seccurrent week (i.e., not history based). These probabili-
ond, whenever one of the buddies comes online after 46S are empirically measured from the IM dataset. Let
user logged in, she gets a notification from the servers7(u; v) denote the probability that a chat message goes
third, the IM servers regularly use these commands tdrom intemal IM user to another IM usep. Also, we
update the buddy list of each user [13]. measure the probability that an outbound chat message
Algorithm 2 also requires knowledge afa, b) from (i.e.,it |_s.ge_nerated from an internal IM user) comes from
each online IM use to each of her buddids As text- & Specific interal IM usex, denoted byw(u). Then,
based chat messages and file transfer requests go throu@ﬁ'en a file tfar!Sf_ef request sent by an |_nternal IM user
IM servers, we can calculate(a, b) by parsing IM chat 1S generated within a tlme interval, We_f|rst <_:o||ect the
messages or IM command messages for setting up filgntire set of IM user pairgu, v), whereu is an internal

transfers at the IM servers or the enterprise gateway. M user and both IM users andv are online during that
time interval. Letd be this set. Then, IM user pdit, v)

We can thus establish the following theorem:

5 Experimental Evaluation is chosen with probability(u, v):
- . p(u,v) = wu) - 7 (u, v) (29)
We use a realistic MSN IM messaging dataset to eval- ’ Z(mb)@w(u) -7 (a,b)

uate the effectiveness of our algorithms in detecting IM

worms. This dataset, collected from a large corporate In the experiments, we assume that the delay in sec-
network, records chat messages of internal IM users andnds from one IM user to another obeys normal distribu-
their online durations within a year. Our experiments aretion A/(0.1,0.01) in seconds. The time that a recipient

of a file transfer request spends on deciding whether tevorm propagation, Algorithm 1 cannot detect it based on
accept the request is exponentially distributed with mearthe number of file transfer requests observed.
5 seconds. The downloading time is generated from nor- Fig. 3 depicts the detection delay in terms of mea-
mal distribution\/(2,1). We ignore the execution time surement windows. For most of the scenarios, it takes
of downloaded malware in our experiments. We vary thebetween one and three measurement windows to detect
acceptance ratio of a file transfer request (¥g),among the IM worm propagation. We, however, observe that
0.25, 0.5, 0.75, and 1.0. We also vary the vulnerablevhen both the acceptance ratio and vulnerable proba-
probability of a machine (i.e,) among 0.25, 0.5, 0.75, bility are low, it takes a significant number of measure-
and 1.0. ment windows to detect the IM worm. This is because
For each simulation scenario, we randomly pick an IMin these cases the IM worm propagates very slowly and
node, either internal or external, as the initial infection thus does not generate a large number of file transfer re-
The first infection takes place at simulation time 42000quests within a single measurement window. This is fur-
secondd For each simulation scenario, we run it 10 ther confirmed in Fig. 4, which demonstrates the fraction
times with different random number generation seeds. Irof internal IM contacts that are infected among all inter-
our experiments, IM worm detection is performed at thenal vulnerable machines when the IM worm is detected.

enterprise gateway. Itis observed that for those cases with large detection de-
. lays, the fraction of internal infections is below 10%. On
5.1 Fast Scanning IM Worms the other hand, when the vulnerable probability is 1.0,

In Fig. 2, we present the growth curves of internal in- the fraction of internal infections reaches between 15%
fections (i.e., infected machines that are behind the enand 20% when the IM worm is detected, even though
terprise gateway) when the IM worm uses the fast scanit takes only one measurement window. In these cases,
ning spreading strategy. Obviously, when the acceptancee can accelerate IM worm detection by decreasing the
ratio (i.e., P;) is fixed, a higher percentage of vulnera- measurement window size.
ble IM contacts leads to faster IM worm spreading; sim- .
ilarly, when a fixed portion of IM contacts is vulnera- 2-2 Self-Restraining IM Worms
ble, a higher acceptance ratio also accelerates IM Wormye now consider a self-restraining IM worm that lim-
propagation. Both observations agree with our intuition. ;s jis spreading speed to evade detection by Algorithm
Moreover, the maximum number of infected internal IM 1 - Thjs worm allows only three infection attempts (i.e.
contacts is bounded by the number of internal vulnerasjie transfer requests in our experiments) every 300 sec-
ble machines. This is confirmed in the right graph: thegngs, |t uses the token-based protocol, as described in
number of internal infections is always less than 97 (re-ggction 4. to control its propagation speed. Fig. 5 de-
call that there are 193 internal IM users in our dataset)picts the number of internal infections at simulation time
However, this is not true when the acceptance ratio i$50 000 seconds as a function of acceptance ratio and
fixed at 50% and the vulnerable probability is 100%. It\inerable probability. Compared against the fast scan-
is because an IM user can receive multiple file transferning IM worm, the self-restraining IM worm propagates
requests from different buddies and accepting any one gfy,ch more slowly. For instance, when the acceptance
them leads to a new infection. . ~ ratio is 50% and the vulnerable probability is 75%, the
We now investigate how effective Algorithm 1 is in n,mper of internal infections is only 9 after simulation
detecting these fast scanning IM worms. We let the meagme 250,000 seconds, as opposed to 88 internal infec-
surement window size be 300 seconds. The thresholgq,s with the fast scanning spreading strategy.
parameter is computed based on Eq. (7), in which we let g g presents the successful detection ratio of the
¢ be 3 andd be 3. Here, we choose a relatively large gef_restraining IM worm by Algorithm 1. Among 160
so that effects of white noise (e.g., bursts of normal f"esample runs, Algorithm 1 can only catch 11 of them be-

transfer requests) can be offset. We first test the algofyre simulation time 250,000 seconds. This leads to a
rithm when there is no IM worm spreading. No false 5o ayerage detection ratio of 7%. The result is not
positives have been observed. We then test 160 samplg,prising because Algorithm 1 relies on the abrupt in-

runs with 16 different combinations of vulnerable prob- ¢rease of file transfer requests for detection but the self-

abilities and acceptance ratios. We find that there argegiraining IM worm generates only a limited number of
eight false negatives. A closer examination at the eightjie transfer requests per measurement window.
false negatives reveals that in all of them either one (the \ye now evaluate the effectiveness of Algorithm 2 in

initial infection point) or two have been infected before detecting self-restraining IM worms. The measurement
simulation time 250,000 seconds. Due to no widespreag,indow 5, used in this algorithm is also set to be 300

SThis initial infection time is carefully chosen so that there a ~ S€conds. We let the Weightipg factprbe 0.25 in Eq.
significant number of online IM users at that point. (14) and parametet be 10~Y in Eq. (15). Ther; pa-

200

=)
S

vulnerability prob 0.25 —— acceptance ratio 0.25 ——

vulnerability prob 0.5 - acceptance ratio 0.5 acceptance ratio 0.25 ——

45 acceptance ratio 0.50 - |
40 Y acceptance ratio 0.75 - _|

vulnerability prob 0.75 acceptance ratio 0.75
i 0

@
S

3
H
E 150 vulnerability prob 1. g acceptance ratio 1.0 £ acceptance ratio 1.00 &
O S R g @
E 100 g z ¥
3 s | A e 2
g LI B P e e el § 25
= 5 7 E 2
I 5 | e I 45
50 — I — °
I e P s £ 20 i 3
E | E ; ° 10
= = i £
o am— o g8 O al
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000 8 0 0.25 0.5 0.75 1
Simulation time (sec) Simulation time (sec) Vulnerable probability
(1) Acceptance ratio = 0.5 (2) Vulnerable prob = 0.5

Figure 3: Detection delay in measure-
Figure 2: Growth curves of internal infections when the IMrmaises ment windows for fast scanning IM

the fast scanning spreading strategy worms

0.2

Internal infections
detection ratio

o

a
N
S

1
ceptance ratio 0.25 —+— 078
acceptance ratio 0.50 -

Inerabl
acceptance ratio 0.75 % v ngfb ® 05
acceptance ratio 1.00 —&
0.25)35

OO ™
[SERT S)

coooooo00

o
1=
o

Fraction of internal infections
at detection time
o
o

vulnerable
prob 05 075
O‘QCCeplance ratio

o

Oa‘r’cceptance.ralio
0.25 0.5 0.75 1 1.25

Vulnerable probability

Figure 4: Fraction of internal infec- Figure 5: Number of internal in- Figure 6: Detection ratio of self-
tions at detection time for fast scan-fections with the self-restraining restraining IM worms with Algo-
ning IM worms spreading strategy rithm 1

rameter in Eq. (14) is updated every week. Similar to thethat IM worms can be effectively mitigated by disabling
experiments in Section 5.1, we let bethndd be 3. the top few most connected IM accounts [17]. In [22],
The experimental results show that Algorithm 2 is ableWilliamson et al. demonstrated the effectiveness of a
to detect the propagation of the self-restraining IM wormvirus throttling algorithm against IM worm propagation.
in all the 160 sample runs. Fig. 7 depicts the number ofXie et al. proposed a framework called HoneylM that
measurement windows that are needed to detect the IMses decoy IM accounts in normal users’ buddy lists to
worm under different combinations of acceptance ratiodetect IM propagation in enterprise-like networks [24].
and vulnerable probabilities. The average detection de€ompared with previous solutions, our work focuses on
lay is 16 measurement windows, which is equivalent toa centralized approach that leverages statistical metrics
one hour and 20 minutes. Fig. 8 gives the fraction of in-collected from IM systems. As our solution does not re-
ternal infections among all internal vulnerable machinesquire involvement of IM clients, it can be more easily
when the IM worm is detected. Obviously, only a small deployed than those distributed detection schemes such
fraction of internal IM contacts has been infected beforeas HoneyIM.
the IM worm is detected, suggesting that Algorithm 2 is Applying change-point detection techniques to detect
effective in detecting self-restraining IM worms at their network attacks is not a new idea. Wang et al. applied the

early stages. non-parametric CUSUM algorithm to detect TCP SYN
flooding attacks [21]. The CUSUM algorithm has also
6 Related Work been used to detect Internet worms in [2, 3]. IM worms

differ from traditional Internet worms such as Code Red
IM malware has posed significant security threats toll and Slammer because they propagate in social IM net-
both residential and enterprise IM users. Mannan etvorks. In our work, we demonstrate that the change-
al. presented a survey on secure public instant mespoint detection techniques are effective in catching IM
saging in [9]. They later proposed to use limited throt- worms with different spreading strategies.
tling and CAPTCHA-based challenge-response schemes
to defend against IM worms [10]; they also developed a7 Conclusions And Future Work
cryptographic protocol to further enhance authentication
and secure communications in public IM systems [11].In this paper, we have proposed to apply change-point
Smith analyzed a French language IM system and afdetection techniques to detect both fast scanning and
ter observing the IM network is scale-free, he suggestedelf-restraining IM worms. We monitor abrupt increase

30
acceptance ratio 0.25 —+—

acceptance ratio 0.50 -~
acceptance ratio 0.75 ¥
acceptance ratio 1.00 &

25 %

20

3

¥

Detection delay (measurement windows)
=

0.25 0.5 0.75 1
Vulnerable probability

0.18

acceptance ratio 0.25 —+—
» 0.16 acceptance ratio 0.50 -
s acceptance ratio 0.75 -
5, 0.14 acceptance ratio 1.00 &
(o3
EE 012
T5 o1 e 3 *
[oks] g
£8 o008 [
=
- POV R T
St 006 :
2 0.04 [-
3 : —_ ey
w 0.02

0.25 0.5 0.75 1
Vulnerable probability

Figure 7: Detection delay of self-restraining IM Figure 8: Fraction of internal infections at de-

worms with Algorithm 2

tection time with Algorithm 2

of file transfer requests or URL-embedded chat messagg$1] M. Mannan and P.C.v. Oorschot. A protocol for secure
to detect fast scanning IM worms; we leverage social
intimacy of IM users to detect stealthy IM worms that

spread slowly. Experimental results show that the pro-
posed solutions are effective in detecting both familieg[12]
of IM worms. We are currently developing algorithms
for detecting another type of stealthy IM worms, which

spread themselves between two online users only after

they observe some ongoing conversations between therfl3]

In the future, we plan to evaluate the detection schemes

proposed in this paper against more realistic IM datasetg 4]

References

(1]

(2]

(3]

(4]

(5]
(6]
(7]
(8]

El

[10]

B. E. Brodsky and B. S. DarkhovskyNonparametric
Methods in Change Point Problem&luwer Academic
Publishers, 1993.

T. Bu, A. Chen, S. V. Wiel, and T. Woo. Design and

evaluation of a fast and robust worm detection algorithm.[

In Proceedings of IEEE Infocom’Q&006.

J. Chan, C. Leckie, and T. Peng. Hitlist worm detec-
tion using source ip address history. Rroceedings
of Australian Telecommunication Networks and Applica-
tions Conference2006.

(15]

(16]

17]

(18]

IM security exploits explode in 2007ht t p: / / esj . [19]
conf news/ article.aspx?Editorial sl D=
http://ww. i nternetnews. con stats/

article. php/ 3521456. [21]
http://software.tekrati.comresearch/

9512/ .

http://ww. viruslist.conlen/viruses/ [22]
encycl opedi a?vi rusi d=78581.

M. Landesman. Kelvir worm overview.
http://antivirus. about.com od/ 23]

vi rusdescri ptions/a/ kel virfam htm

M. Mannan and P.C.v. Oorschot. Secure public instant
messaging: A survey. IRroceedings of Privacy, Security
and Trust (PST'04)2004.

M. Mannan and P.C.v. Oorschot. On instanct messaging
worms, analysis, and countermeasurefvceedings of
WORM'05 November 2005.

10

public instant messaging. financial cryptography and data
security. InProceedings of Financial Cryptography and
Data Security 2006 (FC'062006.

C. D. Morse and H. Wang. The structure of an in-
stance messenger network and its vulnerability to mali-
cious codes. IProceedings of ACM SIGCOMM 2005
Poster SessigrAugust 2005.

AIM/Oscar Protocol Specification. http:// www.
oi | can. org/ oscar/ .

E. S. Page. Continuous inspection scheniBiemetrika
41, 1954,

C. R. Palmer and J. G. Steffan.
topologies that obey power laws.
GLOBECOM'0Q 2000.

http://ww.theregister. co. uk/ 2005/ 04/
15/ i mwor mr uns _anok/ .

R. D. Smith. Instant messaging as a scale-
free network, 2002. http://arxiv.org/abs/
cond- mat / 0206378v2.

S. Staniford, V. Paxson, and N. Weaver. How to Own the
internet in your spare time. IRroceedings of the 11th
USENIX Security Symposium (Security }0)02.

http://ww. viruslist.conlen/viruses/
encycl opedi a?vi rusi d=75305.

Generating network
IRroceedings of

http://ww. viruslist.comen/
vi rusesdescri bed?chapt er =153312410.

H. Wang, D. Zhang, and K. G. Shin. Detecting SYN
flodding attacks. IfProceedings of IEEE INFOCOM’'Q2
June 2002.

M. Williamson, A. Parry, and A. Byde. Virus throt-
tling for instant messaging. Mirus Bulletin Conference
September 2004.

Z. Xiao, L. Guo, and J. Tracey. Understanding in-
stant messaging traffic characteristics.Phoceedings of
ICDCS’07, 2007.

] M. Xie, Z. Wu, and H. Wang. HoneyIM: Fast detec-

tion and suppression of instant messaging malware in
enterprise-like networks. IRroceedings of ACSAC'Q7
2007.

